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Background: Population-based state cancer registries are an authoritative source for cancer statistics in the United States. They
routinely collect a variety of data, including patient demographics, primary tumor site, stage at diagnosis, first course of treatment,
and survival, on every cancer case that is reported across all U.S. states and territories. The goal of our project is to enrich NCI’s
Surveillance, Epidemiology, and End Results (SEER) registry data with high-quality population-based biospecimen data in the form
of digital pathology, machine-learning-based classifications, and quantitative histopathology imaging feature sets (referred to here as
Pathomics features). Materials and Methods: As part of the project, the underlying informatics infrastructure was designed, tested,
and implemented through close collaboration with several participating SEER registries to ensure consistency with registry processes,
computational scalability, and ability to support creation of population cohorts that span multiple sites. Utilizing computational
imaging algorithms and methods to both generate indices and search for matches makes it possible to reduce inter- and intra-observer
inconsistencies and to improve the objectivity with which large image repositories are interrogated. Results: Our team has created and
continues to expand a well-curated repository of high-quality digitized pathology images corresponding to subjects whose data are
routinely collected by the collaborating registries. Our team has systematically deployed and tested key, visual analytic methods to
facilitate automated creation of population cohorts for epidemiological studies and tools to support visualization of feature clusters
and evaluation of whole-slide images. As part of these efforts, we are developing and optimizing advanced search and matching
algorithms to facilitate automated, content-based retrieval of digitized specimens based on their underlying image features and staining
characteristics. Conclusion: To meet the challenges of this project, we established the analytic pipelines, methods, and workflows to
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support the expansion and management of a growing repository of high-quality digitized pathology and information-rich, population
cohorts containing objective imaging and clinical attributes to facilitate studies that seek to discriminate among different subtypes of
disease, stratify patient populations, and perform comparisons of tumor characteristics within and across patient cohorts. We have
also successfully developed a suite of tools based on a deep-learning method to perform quantitative characterizations of tumor
regions, assess infiltrating lymphocyte distributions, and generate objective nuclear feature measurements. As part of these efforts, our
team has implemented reliable methods that enable investigators to systematically search through large repositories to automatically
retrieve digitized pathology specimens and correlated clinical data based on their computational signatures.

Keywords: Cancer registries, computational imaging, deep-learning, digital pathology

INTRODUCTION

The NCI’s Surveillance, Epidemiology, and End Results
(SEER) program is a coordinated system of 19 cancer
registries that is charged with providing timely and accurate
data regarding cancer incidence, mortality, treatment,
and survival. Pathology datasets currently available in
the SEER registries are qualitative in nature, consisting
of scoring and staging data captured in normal registry
abstracts and pathology reports. Such datasets are generally
subject to inter-observer variability, which can result in
biases in population-wide studies of cancer incidence,
mortality, survival, and prevalence. The main goal of our
project is to enrich SEER registry data with high-quality
population-based digital biospecimen data in the form of
pathology tissue images and detailed computational tissue
characterizations and features (also referred to as Pathomics
features) derived from the images. Examples of Pathomics
data include detailed characterizations of cancer and
stromal nuclei and quantification and mapping of tumor-
infiltrating lymphocytes (TILs) along a supplementary
histology classification generated through deep-learning
algorithms. These data will augment existing registry data
with quantitative features obtained directly from clinically
acquired whole slide tissue images and provide detailed and
nuanced information on tumor histology.

The scientific premise motivating this work is that the
incorporation of quantitative digital pathology into the
cancer registries will result in a valuable population-wide
dataset that can provide additional insight into the underlying
characteristics of cancer. Next Generation Sequencing
(NGS) technologies have captured much attention of the
clinical community for their capacity to provide insight as
to personalized choice in treatment and therapy. A major
limitation of NGS technologies is that they obliterate the
spatial information associated within and throughout the
tumor environment. Histopathology and immunostaining
localization techniques preserve this information which is
invaluable in making accurate determinations. In fact, it is
through the process of histopathology examination that
tumor margins/volumes are determined by pathologists prior
to the NGS analysis. These parameters are subsequently used
to help guide decisions regarding appropriate cut-offs for allele
frequencies and drive other components of the overall analysis.
Pathomics features extracted from high-resolution pathology
images are a quantitative surrogate of what is described in

a pathology report. The important distinction is that these
features are reproducible, unlike human observations, which
are highly qualitative and subject to a high degree of inter-
and intra-observer variability. The importance of increasing
reproducibility and reducing inter-observer variability in
pathology studies has been previously reported.!>) Moreover,
many studies have demonstrated that quantitative image
characterizations (e.g., nuclear features, patterns of TILs) are
promising biomarkers which can be used to predict outcome
and treatment response, if available in a large population.?
These biomarkers integrated with clinical and genomics data
can provide new opportunities to enhance our understanding
of cancer incidence, mortality, survival, along with statistical
characterizations of lifetime risk, and to improve prediction
and assessment of therapeutic effectiveness.

Our project began as collaboration among investigators
within the state cancer registries of New Jersey, Georgia,
and Kentucky. The consortium of partnering sites has
recently expanded to include the newly established New
York Cancer Registry. In this collaborative effort, we are
implementing a framework of data curation and analysis
workflows, computational imaging tools, and informatics
infrastructure to support the creation and management of a
well-curated, integrated repository of high-quality digitized
pathology images and Pathomics features, for subjects whose
data are being collected by the registries. The framework is
being developed in close collaboration with SEER registries
to ensure that it is scalable and in-line with existing registry
processes and can support queries and the creation of
population cohorts that span multiple registries.

Inourframework, wholeslide tissueimagesin therepository
are systematically processed to compute Pathomics data
and to establish linkages with registry data. The current set
of Pathomics data includes (1) quantification of TILs, (2)
segmentation and computational description of cancerous
and stromal nuclei, (3) segmentation of tumor regions, (4)
characterization of regional Gleason grade for prostate
cancer, and (5) identification of non-small cell lung cancer
(NSCLC) adenocarcinoma subtypes. This initial set is
primarily motivated by an increasing number of scientific
studies that investigate TILs and the relationships among
TILs, tumors, and nuclear structure of tissue.***! Such
investigations can provide important information to
advance our understanding of immune response in many
cancer types. In the future, additional Pathomics features,
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such as the spectral and spatial signatures of staining
characteristics exhibited by the digitized specimens, will
be incorporated into our framework.

The informatics infrastructure for this project is being built
on open-source software and leverages modern software
technologies, such as containerization and web-based
applications, for a scalable, extensible implementation. 647
The infrastructure facilitates visualization of high-
resolution whole slide tissue images along with associated
Pathomics datasets. User authentication and access
controls are implemented to thwart unauthorized access
to data. The informatics infrastructure is being expanded
to include tools to support content-based image retrieval.

Presently, the repository manages diagnostic whole slide
tissue images and analysis results obtained from 772
prostate cases, 1410 NSCLC cases, 70 breast cancer cases,
and 48 lymphoma cases from the New Jersey State Cancer
Registry and from 198 breast cancer cases from the
Georgia State Cancer Registry. The scientific validation
of the proposed environment will be undertaken through
performance studies led by investigators throughout the
four collaborating sites with an overarching focus on
breast cancer, colorectal cancer, lymphoma, melanoma,
NSCLC, and prostate cancer. We are confident that this
repository will enable effective integration of pathology
imaging and feature data as an invaluable resource in
SEER registries.

In the rest of the paper, we describe the design and
implementation of the key components of the framework:
the data curation and analysis processes, the initial set of
image analysis methods, and the underlying informatics
infrastructure for data management and visualization.

MarteriaLs AND METHODS

Aggregation, quality control, and linkage of image data
The first component of our framework is the curation of
pathology imaging data and linkage with other data from
the cancer registries. Image quality control is an essential
step, because specimen preparation protocols and tissue
scanning procedures may result in imaging artifacts and
variations in image quality. We devised and refined a
workflow to facilitate the collection and quality control
of digitized tissue specimens and linkage of images with
correlated data extracted from the cancer registries. Here
we describe the workflow deployed at Rutgers and the
New Jersey SEER registry; the other sites—Georgia,
Kentucky, and New York—are incrementally adopting
analogous workflows as approved by their SEER registries
and Institutional Review Boards (IRBs).

Figure 1 depicts an instance of the workflow. Specimen
retrieval and imaging are coordinated at the Biomedical
Informatics Shared Resource (BISR) of Rutgers Cancer
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Institute of New Jersey (RCINJ). Breast, colorectal, lung,
melanoma, and prostate cancer cases suitable for the project
exhibiting well-defined tumor type and diagnoses are
selected by a pathologist at the RCINJ and Rutgers Robert
Wood Johnson Medical School. Cases within approximately
a 2-year window are retrieved from onsite storage, whereas
others are requested from offsite storage with the help
of BioSpecimens Repository Service of RCINIJ. After a
certified pathologist selects suitable slides according to
requirement of each cancer type—e.g., prostate cancer
specimens are selected according to the Gleason grade—the
specimens are imaged with an Olympus VS120 whole slide
scanner with no protected health information appearing in
image filename, image metadata, or the images themselves.

Team members from the BISR and NJCR perform cross-
specialty review of the data for quality control. A secure,
IR B-approved, Oracle-based (Redwood Shores, CA, USA)
Clinical Research Data Warchouse is used at Rutgers
to facilitate review of imaging and correlated clinical
information on an individual patient basis or as part of
large cohorts. The data warehouse has been commissioned
to house multimodal data (genomics, digital pathology,
radiologyimages). [torchestratesaggregation of information
originating from multiple data sources including Electronic
Medical Records, Clinical Trial Management Systems,
Tumor Registries, Biospecimen Repositories, Radiology
and Pathology archives, and Next Generation Sequencing
services [Figure 2]. Innovative solutions were implemented
in the warehouse to detect and extract unstructured clinical
information that was embedded in paper/text documents,
including synoptic pathology reports. The Warehouse
receives objective oversight by a standing Data Governance
Council.® An Informatica-based (Redwood City, CA,
USA) extraction transformation and load interface (ETL)
has been developed to automatically populate the Data
Warehouse with data elements originating from the multi-
modal data sources. This past year our team worked closely
with the Google Healthcare team to successfully create
and test an instance of the Data Warehouse on the Google
Cloud Platform (GCP). In May 2020, we demonstrated the
scalability of the cloud-based ETL, Warehouse, and Data
Mart. As part of the project, our team will expand the use
of the Warehouse by configuring it to integrate digitized
pathology specimens with data originating from all of the
collaborating cancer registries.

The images and cases are linked through deidentified ID
sequences. The New Jersey State Cancer Registry receives
the deidentified ID as well as case information including
specific surgery number and date, so that after data retrieval
and decoding encrypted fields, the deidentified ID is linked
with clinical data associated with the case and, more
specifically, with the diagnostic surgery. This ensures that
the cancer specimen images are associated with the correct
staging of the disease at the time of diagnosis so that it
can be used in downstream research. The total corpus of
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Figure 1: Workflow for assembling linked image/data cohorts
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Figure 2: Clinical Research Data Warehouse workflow. The research data warehouse aggregates information from multiple data sources such as
electronic health records, tumor registries, and radiology and pathology archives. It facilitates review of imaging data and linked clinical data on a

single patient or cohort basis

data comprising the linked data sets encompasses more
than 150 data elements, including the de-coded NAACCR
data, as shown in Table 1. The de-identified images are
analyzed through a set of deep-learning analysis pipelines
as described in the subsequent sections.

Extraction of Pathomics features
Development of tissue image analysis methods is a highly
active area of research and implementation. A variety

of analysis methods for segmentation and classification
of objects, regions, and structures (such as nuclei,
tumors, glands) in tissue images have been developed.
Excellent overviews of existing techniques can be found
in several review papers.*-53 Deep-learning-based analysis
approaches have become popular, because deep-learning
methods have been shown to outperform traditional image
analysis methods in many application domains, including
digital pathology. Our current tissue image analysis
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library consists of deep-learning methods developed by
our group to classify patterns of TILs,5 segment tumor
regions, classify tumor subtypes,®®*>! and segment nuclei
in whole slide images (WSIs) of hematoxylin and eosin-
stained tissue samples.[%-¢!

We should note that the analysis functionality is not
limited to methods implemented by our group only. We
have started with these methods because (1) they are
based on state-of-the-art convolutional neural network
architectures, suchas VGG16, Inception V4, ResNet,
and U-Net,® (2) they have achieved high accuracy scores,
and (3) they have been previously used, refined, and
validated in generating large, curated Pathomics datasets.
For example, the TIL models were developed in close
collaboration with pathologists, who generated a large
set of training data, evaluated analysis results, and helped
refine the models. The final models were employed to
produce and publish a TIL dataset from 5202 WSIs from
13 cancer types.**>" The nucleus segmentation model was
developed in a similar approach with one difference. In
addition to manually annotated segmentations, a synthetic
data generation method, based on generative adversarial
networks,® was used to significantly increase the diversity
and size of training data.’’”! The model trained with the
combined manual and synthetic training data was used
to generate a quality-controlled dataset of 5 billion
segmented nuclei in 5060 WSIs from 10 cancer types®! in
the Cancer Genome Atlas (TCGA) repository. We plan
to expand the suite of analysis methods and incorporate
state-of-the-art methods developed by other groups over
time. Indeed, at the time of writing this manuscript, we are
in the process of integrating and validating Hover-Net!®”
in the framework for segmentation and classification of
nuclei.

The current suite of TIL analysis models can resolve TIL
distributions in a WSI at the level of 50 X 50 pm? patches.
The characteristics of tumor regions and the relationship
between tumor regions and lymphocyte cells can be
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used to determine cancer stage and evaluate response to
treatment. Our current models can segment tumor regions
in lung, prostate, pancreatic, and breast cancer types and
can classify tumor and non-tumor regions at the level of
88 x 88 pm? patches. The model for prostate cancer can
segment and label a tumor subregion with one of the three
Gleason scores: Benign, Grade 3, and Grade 4+5. The lung
tumor segmentation model is able to segment and label
a tumor subregion with one of the six tumor subtypes:
acinar, benign, lepidic, micropapillary, mucinous, and
solid. Nucleus segmentation is one of the core digital
pathology analysis steps. The shape and texture properties
and spatial distributions of nuclei in tissue specimens
are used in cancer diagnosis and staging. Our nucleus
segmentation model can detect nuclei and delineate their
boundaries in WSIs. After a WSI has been processed
by the segmentation model, we compute a set of shape,
intensity, and texture features. We use the PyRadiomics
library!®® to compute the patch-level features.

Management, visualization, and review of Pathomics
features

Our data analysis workflow implements an iterative train-
predict-review-refine process to curate robust Pathomics
features. This process is based on our earlier works in
curating large Pathomics datasetst’-¥¢1 and is carried out
as part of the training and prediction phases of the deep-
learning analysis pipelines. We developed a set of tools to
enable the iterative process and to provide support for the
management, indexing, and interactive viewing of WSIs
and analysis results. The tools are implemented as a set
of web-based applications and services in the PRISM
and QulP software platforms.*4 Using these tools,
pathologists can inspect the output of a tumor or TIL
analysis pipeline as full-resolution heatmap overlays on
WSIs. A heatmap is a spatial representation of prediction
probabilities assigned to individual image patches by the
deep-learning model; the probability value indicates if a

Table 1: Representative categories and linked data elements

Source Category Representative elements
Cancer Demographics age_at_dx, sex, marital_status_at_dx, race, nhia, napiia, county_at_dx, etc
Registry
Vital information vital_status, date_of _death, primary_cause
Tumor information  Primary_site, laterality, grade, diagnosis_confirmation
Tumor extension cs_extension, ¢s_tumor_size, cs_lymph_nodes, cs_mets_at_dx
and metastasis
Pathology info and  histology_icdo3, behavior_icdo3, clinical and pathology staging in AJCC 6, 7, 8 and SEER staging
tumor staging
Site-specific data cs_site_specific factors
Tumor treatments Surgical, radiation, hormone, BRM, and other cancer treatment information
Imaging Pathology images Digitized representative diagnostic slides in Olympus (.vsi) and Philips (.svs?) whole slide image formats,

including image metadata such as imaging device, optical settings and configuration, specimen staining,

etc.
Computational

imaging signatures  tion; spatial and spectral signatures

Tumor-infiltrating lymphocytes; tumor pattern segmentation; tumor and stromal nuclei segmenta-
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patch is class-positive (e.g., TIL-positive, tumor-positive).
Figure 3 shows example heatmaps generated from the TIL
(upper figure) and tumor (lower figure) analysis pipelines.
Nuclear segmentation results can be viewed as polygons,
which represent the boundaries of segmented nuclei as
overlays on the images in QulP [Figure 4].

Figure 5 shows how the iterative process is executed with
QulIP. For example, after a set of WSIs are processed by
the TIL and tumor segmentation models, the source WSIs
and the heatmaps are loaded to QulIP for management
and visualization. The heatmaps and WSIs are also
transformed into feature maps. Feature maps are lower
resolution representations of the heatmaps and WSIs in a
four-panel image. Figure 6 illustrates an example feature
map which combines TIL results from a VGG16 model
and tumor segmentation results from a ResNet model. The
upper left corner of the image is the low-resolution tissue
image, the upper right corner is the tumor segmentation
map, the lower left corner represents the TIL map, and
the lower right corner is the combined and thresholded
TIL and tumor maps. Feature maps allow a pathologist
to review results more efficiently than examining full-
resolution images and maps. If the pathologist sees
potential problems with the results during this review,
they use the web applications in QulP to visualize the
WSIs and heatmaps at higher resolutions. If the review
necessitates refinements to the model, additional training
data are generated and added to the training dataset.
They can annotate regions in an image using web-based
visualization and annotation tools. Patches extracted
from these annotations are reviewed and labeled to
create additional training data. The model is refined by
re-training the method with the updated training dataset.

ResuLts

The current implementation of the framework—the
curation and analysis workflows, analysis methods,
and informatics infrastructure—has been successfully
deployed. The workflows and analytic methods have
received IRB approval at all collaborating institutions.
The framework has been employed to create a repository
of diagnostic images from 772 prostate cases, 1410
NSCLC cases, 70 breast cancer cases, and 48 lymphoma
cases from the New Jersey State Cancer Registry and
from 198 breast cancer cases from the Georgia State
Cancer Registry. The repository also contains results from
TIL and tumor segmentation for each image and more
than 2.5 billion segmented nuclei from all of the images.
For each image, there are two TIL analysis results (one
generated from the VGG16 network and the other from
the Inception V4 network). The images and Pathomics
data are managed by an instance of QulP running at
Stony Brook for interactive visualization of images and
Pathomics features. All of the results and images are also
stored in Box folders to facilitate bulk data downloads.
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Figure 3: TIL and tumor analysis results displayed as a heatmap on
the whole slide tissue image. TIL analysis results on the left and the
tumor segmentation results on the right. The red color indicates a higher
probability of a patch being TIL-positive (or tumor-positive) and the blue
color indicates a lower probability

Discussion AnD GoncLusions

Evaluation of cancer control interventions in prevention,
screening, and treatment and their effects on population
trends in incidence and mortality hinge on accurate,
reproducible, and nuanced pathology characterizations.
Diagnostic and treatment guidelines also specify detailed
measurements of TILs, nuclear grade; i.e., evaluation
of the size and shape of the nucleus in the tumor cells,
mitoses, and ITHC staining, which are currently not
included in cancer registry data abstraction. Presently, the
SEER Pathology workflow, depicted in Figure 7, begins
with normal registry abstracts and electronic pathology
(e-Path) reports securely transmitted to the SEER
registries. Although scoring and staging data are captured
and made available through the registries, there have
been numerous studies that showed a high level of inter-
observer variability among the diagnostic classifications
rendered by pathologists, which can potentially give rise to
biases when conducting population-wide studies. As the
diagnosis of cancer and its immune response to therapy is
made through tissue studies, the integration of pathology
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Figure 4: Segmented nuclei overlaid as polygons shown in blue on the WSI. Each polygon represents the boundary of a segmented nucleus
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Predictions from the trained model are reviewed as feature maps and heatmaps. The heatmaps are annotated to generate additional labeled patches
which are added to the training dataset. The deep learning network is retrained with the updated training dataset to refine the model

imaging in SEER registries is critical to precisely classify
tumors and predict tumor response to therapies.

Whole slide tissue scanning technologies have advanced
significantly over the past 20 years.” They are capable
of imaging tissue specimens at high resolution in several
minutes, and with advanced auto-focussing mechanisms
and automated slide trays, they can process batches of
tissue samples with little-to-no manual intervention.
Several studies have evaluated the utility of imaged
tissue data in pathology workflows."*” The Food and
Drug Administration has approved a number of digital
pathology systems for diagnostic use.’® We expect that
digital pathology will be employed increasingly as part

of routine pathology workflows at hospitals and medical
research centers. As institutions adopt digital WSIs into
their pathology workflows, we can envision that the images
and molecular reports will also be securely transmitted
to the SEER registries. Within the SEER registry, images
will be automatically processed by the suite of feature
extraction pipelines appropriate for the type of cancer. The
SEER database will be enhanced with quantitative features
and the accompanying pipeline distribution version.
SEER*DMS will be used to link and integrate cancer
abstracts, e-Path reports, WSIs, and Pathomics feature
sets from all reporting facilities. De-identified images and
annotations will then be extracted for data mining and
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Figure 6: A feature map representation of TIL and tumor analysis results generated from a WSI in the Cancer Genome Atlas repository. The low-
resolution version of the input WSI is displayed in the upper left corner. The upper right corner is the tumor segmentation map. The TIL map is
displayed in the lower left corner. The lower right corner is the combined and thresholded TIL and tumor maps

research use. Our work on building a repository of curated
WSIs and Pathomics features is an important step toward
realizing this capability. Availability of tissue images and
Pathomics datasets will also provide an invaluable resource
for medical education and Pathology training as well as to
facilitate multi-disciplinary approaches, improved quality
control, and more efficient remote and collaborative access
to tissue information.””7®

The first phase of our project focussed on the collection
of cases and correlated pathology specimens from the
archives of New Jersey State Cancer Registries and
Rutgers Cancer Institute of New Jersey and on targeted
prostate and NSCLC cases. To date, we have established
a repository of (1) high-quality digitized pathology
images for subjects whose data are already being
routinely collected by the collaborating registries and (2)
Pathomics features consisting of patterns of TILs, tumor
region segmentations and classifications, and segmented
nuclei. We have completed the initial linkages with
registry data, thus enabling the creation of information-
rich, population cohorts containing objective imaging
and clinical attributes that can be mined. As part of the
second phase of the effort, we have increased the number
of contributing state registries to include Georgia,
Kentucky, and New York and we have simultaneously
expanded the scope of cancers under study by including
melanoma, breast, and colorectal cancers. We will
also build upon our team’s previous research efforts to

design, develop, and optimize algorithms and methods
that can quickly and reliably search through a growing
reference library of cases to automatically identify and
retrieve previously analyzed lesions which exhibit the
most similar characteristics to a given query case for
clinical decision support?*-222-7-84 and to conduct more
granular comparisons of tumors within and across
patient populations. One of the potential advantages of
this approach over purely alphanumeric search strategies
is that it will enable investigators to systematically
interrogate the data while visualizing the most relevant
digitized pathology specimens.>%

As part of the next phase of our project, we plan to
investigate the automated nature of the full range of
algorithms and methods for their capacity to enable
clinicians and investigators to quickly and reliably answer
questions such as: (a) What level of morphological
variations are detected among a given set of tumors or
specimens? (b) What changes in computational biomarker
signatures occur at onset and key stages of disease
progression? (¢) What is the likely prognosis for a given
patient population?

Software availability

The QulP software and analysis methods are available as
open-source codes for use by other research groups. The
QulP software platform can be downloaded and built
from https://github.com/SBU-BMI/quip_distro.
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