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Introduction

Abstract

Satellite imagery is now well established as a method of finding and estimating
the abundance of Antarctic penguin colonies. However, the delineation and
classification of penguin colonies in sub-meter satellite imagery has required
the use of expert observers and is highly labor intensive, precluding regular cen-
suses at the pan-Antarctic scale. Here we present the first automated pipeline
for the segmentation and classification of seabird colonies in high-resolution
satellite imagery. Our method leverages site-fidelity by using images from previ-
ous years to improve classification performance but is robust to georegistration
artifacts imposed by misalignment between sensors or terrain correction. We
use a segmentation network with an additional branch that extracts the useful
information from the prior mask of the input image. This prior branch pro-
vides the main model information on the location and size of guano in a prior
annotation yet automatically learns to compensate for potential misalignment
between the prior mask and the input image being classified. Our approach
outperforms the previous approach by 44%, improving the average
Intersection-over-Union segmentation score from 0.34 to 0.50. While penguin
guano remains a challenging target for segmentation due to its indistinct and
highly variable appearance, the inclusion of prior information represents a key
step toward automated image annotation for population monitoring. Moreover,
this method can be adapted for other ecological applications where the dynam-
ics of landscape change are slow relative to the repeat frequency of available
imagery and prior information may be available to aid with image annotation.

Algorithms to identify guano in Landsat imagery have
been used to detect the presence of penguin colonies

Earth observation (EO) imagery provides new opportuni-
ties for monitoring the state of the planet, particularly in
the polar regions where logistical challenges preclude
direct access to many locations (e.g., LaRue & Knight,
2014; Lynch et al., 2012). The use of satellite imagery to
identify penguin colonies in Antarctica extends back to
the work of Schwaller et al. (1984) but has seen more
active development in the last decade as the availability of
satellite imagery continues to grow alongside an interest
in monitoring Antarctic species impacted by climate
change. Much of this work has focused on the use of
medium-resolution Landsat imagery (Fretwell & Trathan,
2009; Lynch & Schwaller, 2014; Schwaller et al., 2013).

(e.g., Borowicz et al., 2018; Schwaller et al., 2013) and
estimate colony abundance (Lynch & Schwaller, 2014).
High-resolution (sub-meter) commercial satellite imagery
has also been used to map penguin colonies (e.g., Fretwell
et al., 2012; LaRue et al, 2014; Lynch & LaRue, 2014;
Lynch et al., 2012), but the automation of that process
has proven much more difficult.

Although penguin guano has a distinct spectral signa-
ture that aids in separating it from the surrounding ter-
rain in satellite imagery, penguin colonies can range
widely in shape and size (from ~1 to 10° m% Lynch &
LaRue, 2014). At very high resolution, each pixel is so
small that the spectral properties of the guano are easily
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confused with the spectral properties of common geologi-
cal (e.g., eroded ridge tops) and biological (e.g., snow
algae) features. Guano can be highly variable across sites
and even between different images of the same site, as
can the background substrate on which the guano is
deposited; this heterogeneity makes it difficult to develop
a general classification algorithm that can be used reliably
across the entire Antarctic (Witharana & Lynch, 2016).
Limited training data also make it difficult to overcome
scene-level properties, such as atmospheric effects (e.g.,
clouds, haze) that can change the spectral signature of
guano. Notably, human annotators are not strongly influ-
enced by guano color and can easily adjust for clouds, in
large part because the guano stain is relatively stable in
location and shape between years and experts can use that
prior expectation to quickly discard other non-essential
information. Our aim in this work was to leverage the
implicit use of prior expectation in the manual classifica-
tion of imagery for penguin colonies to improve classifi-
cation performance.

Automating imagery classification

Because of the pre-existing volume of imagery to be pro-
cessed, and the rate at which new Antarctic imagery is
captured, existing classification pipelines are not vyet
robust enough for full automation, requiring time-
consuming review by experts familiar with each penguin
colony. As a result, we must consider methods that
involve super-pixel features and spatial context, both of
which are critical for manual annotation of sub-meter
commercial imagery. Imagery classification is an active
field (e.g., Arefin et al., 2020; Baghbaderani et al., 2020;
Garnot et al., 2020; Lary et al., 2018; Xie et al, 2017;
Zheng et al., 2020; Zhu et al., 2017), particularly with the
integration of new methods, such as ‘deep learning’, from
computer vision and machine learning. As a result, deep
learning approaches such as convolutional neural net-
works (CNNs) are rapidly taking their place as invaluable
tools alongside more traditional pixel-based classification
methods (Zhu et al, 2017). CNNs are computational
models composed of multiple convolutional layers (Lecun
et al., 1989). Each layer of a CNN consists of multiple
learnable filters that allow the CNN to capture important
spatial information from the input signals. In the last dec-
ade, CNNs have dramatically improved many computer
vision benchmark records, especially thanks to the imple-
mentation of CNNs on GPUs (Ciresan et al., 2012).
While CNNs often require a large number of data points
to train, they can be particularly valuable when feature
characteristics appear at the super-pixel scale or rely on
contextual clues elsewhere in the scene. Some target
classes, however, remain challenging even using state-of-
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the-art CNN architectures; features may be difficult to
classify accurately using CNNGs if they are rare and train-
ing sets are thus unavoidably small, or if they are similar
to other objects in the scene. Animals are frequently both
rare and camouflaged, and even aggregations of animals
may be small relative to the resolution of the sensor or
the area to be searched.

Despite these challenges, CNNs have been developed to
monitor wildlife populations from satellite imagery,
including the identification of pack-ice seals (Goncalves
et al., 2020) and whales (Borowicz et al., 2019) in Antarc-
tica. Although the areal extent of a penguin colony is
much larger than that of an individual seal or whale, their
identification has proven surprisingly challenging and an
automated pipeline for extracting colony area has lagged
these other applications. Fortunately, the size, shape and
extent of penguin colonies evolve slowly over time due to
their long lifespan and high nest site fidelity. As a result,
each image is similar to the previous image and prior
classification can be used to greatly improve classification
accuracy. Here we focus on the use of prior information
to improve the classification performance of a CNN-
based approach to identifying penguin guano in sub-
meter resolution satellite imagery. The overall shape and
location of the penguin colony presented in the prior
mask can directly aid the segmentation model. In fact,
image segmentation with priors (Gulshan et al., 2010;
Isack et al., 2018; Le et al., 2016, 2017; Luo et al., 2019)
has been shown to effectively improve object segmenta-
tion accuracy and precision. In the context of remote
sensing, there have been several efforts to incorporate a
shape prior into a segmentation model. For example, a
contour model was used in Han and Wu (2017) for river
image segmentation and Maggiori et al. (2015) used a
segmentation model with a shape prior (Gorelick et al.,
2014) for semantic segmentation of satellite imagery.
However, these methods cannot be applied to cases, like
the identification of penguin guano, where the target
shape and size varies significantly and where misregistra-
tion may corrupt the alignment between each image and
its prior mask.

Using prior information to improve
segmentation

In previous work (Le et al., 2019), we trained an Adélie
penguin colony segmentation model using a semi-weakly
supervised framework that used the medium-resolution
Landsat-based masks from Lynch and LaRue (2014) as a
weak annotation to train a classifier for penguin guano in
high-resolution (Worldview-2, Worldview-3, QuickBird-2,
Geoeye) imagery. Specifically, we used the guano classifi-
cations from Lynch and LaRue (2014) to identify 2044
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unlabeled high-resolution images over Adélie penguin
colonies and to serve as weak annotation for the location
and approximate extent of guano in each image. We
combined these weakly labeled images with a small num-
ber (n=18) of manually annotated high-resolution
images to train our model. Because penguins are highly
site faithful, the size, shape and location of penguin colo-
nies does not change dramatically from one year to the
next. Accordingly, the annotation of penguin guano in a
previous year’s image provides important information on
areas more likely to contain penguin guano. However, the
use of prior information becomes challenging because
natural fluctuations in the appearance of the colony are
convolved with georegistration errors or orthorectification
artifacts that result in mismatches between the weak-
annotation masks and the input images. Thus, in Le et al.
(2019), we approximated the area of the penguin colony
in the training image from the weakly annotated masks
and enforced a constraint that the segmentation network
should learn how to generate output masks with the same
number of pixels as the corresponding masks created
through weak annotation. In this way, the use of weakly
annotated masks provided a useful training signal allow-
ing the network to learn useful features from a large
number of unlabeled images and only a minimal set of
labeled images. While largely successful, this approach did
not attempt to use the prior information directly to
incorporate the shape and the location of the penguin
colony into the segmentation model.

Here we describe a custom-designed CNN architecture
that takes full advantage of a prior mask by injecting the
prior mask into the segmentation model via a prior
branch. This branch extracts the global geometric struc-
ture and location of the penguin colony from the prior
mask. While these masks provide highly salient informa-
tion about locations where penguin guano is more likely
to be found, as well as information on colony shape, the
actual location of guano in the image to be classified may
be significantly different either due to (1) natural changes
in the size and shape of the penguin colony over time, or
(2) georegistration errors or orthorectification artifacts.
While guano evolution may be slow from one year to the
next, the prior mask may be several years (and up to a
decade) from the image to be classified, compounding the
potential mismatch due to the dynamics of the colony.
Orthorectification artifacts arise primarily when the ter-
rain model used for orthorectification changes over time,
which can create differences in guano shape and size
between two images processed using different terrain
models. Some examples of prior masks are shown in
Figure 1. On the one hand, these prior masks hint at the
overall shape of the colonies and their approximate loca-
tion. On the other hand, they could introduce misleading
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information to the segmentation model since only some
parts of the masks overlap the ground-truth masks. Thus,
we seek a model that is flexible enough to extract useful
information from the prior masks but does not cause the
model to ignore strong guano signatures in the actual
input image. By training this branch together with the
main segmentation branch in an end-to-end segmentation
framework, we introduce flexibility in the use of the prior
mask to compensate for the potential misalignment
between the prior mask and the input image. This design
overcomes image registration mismatches, which are com-
mon to many applications, and improves classification
accuracy across a range of image conditions.

As of August 2018, we had 19 404 high-resolution
images over Adélie penguin colonies available to be anno-
tated, which at 1 h/scene (conservative) would require
over 9 years of full-time annotation by a penguin expert.
In a similar use case involving pack-ice seals (Goncalves
et al., 2020), we demonstrated that automated algorithms
for target detection in high-resolution imagery using only
a single GPU can reduce processing time by >95% when
compared to an expert annotator. Thus, our automated
approach not only speeds up the process of monitoring
penguins by satellite imagery but is in fact absolutely nec-
essary for the kind of routine cost-effective monitoring
required to understand penguin dynamics across the
entire Antarctic. While our particular use case is focused
on a specific application, small training datasets, image
heterogeneity and poor discrimination between target and
non-target features are widespread challenges. Fortunately,
however, many EO applications (such as ours) benefit
from dynamics that are slow relative to the repeat fre-
quency of the available imagery. The use of prior knowl-
edge naturally extends to the classification of an imagery
time series, which in the aggregate can be used to under-
stand the underlying dynamics of landscape change. Addi-
tional applications of this method would include studies
of changing forest composition (Hansen et al., 2013), for-
est cover (Eidenshink et al., 2007), fires and related dis-
turbances (Huang et al., 2010; Liu et al., 2006), landslides
(Tralli et al., 2005) and urban sprawl (Gradinaru et al.,
2019; Yang & Lo, 2002).

Materials and Methods

Data

In this work, we use multi-band high-resolution satellite
imagery (Worldview-2 and -3, Quickbird-2 and -3 and
Geoeye) provided by Maxar, Inc. (Westminster, Colorado,
USA), for training and testing our model. All multi-band
images were converted to RGB images by selecting the
respective bands and normalizing the intensity values to
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Figure 1. Prior masks and hand-annotated masks for two penguin colonies as seen in Worldview-2 imagery (top row (A): Paulet Island, bottom
row (B): Chappel Island) in our testing set. From left to right are as follows: input images, the prior masks overlaid on top of the input images
and the hand-annotated masks of the penguin colonies. The prior masks provide information on the overall shape and approximate location of

the penguin colonies. Satellite imagery copyright Maxar, Inc. 2021.

(0-255). We hand-annotated a set of 90 images, which
are split into 18 training images from 18 different pen-
guin colonies and 72 testing images from 21 different
penguin colonies (Fig. 2; image details in Data S1). Col-
ony size ranged from ~1 m’ to over 10 000 m®. There
were 32 penguin colonies in total. In the testing set, there
were seven colonies that had images included in the train-
ing set and the remaining 25 were new locations not rep-
resented in the training set. All images were collected
during the austral summer when penguins are nesting
and guano is visible.

Processing

To prepare imagery for use in our model, we split each
image and its annotation mask into patches of size
386 x 386 with 50% overlap between neighboring
patches. Each training patch is randomly cropped into
the size of 256 x 256, followed by several standardized
image augmentation techniques, that is, randomly flipped,
rotated by a random (—10, 10) degree, and random color
jittering. For testing, we split each image into patches of
size 256 x 256 with 50% overlap between neighboring
patches.

At the core of our image processing pipeline is our seg-
mentation model PenguinNet (Fig. 3). PenguinNet is
designed based on a U-Net (Ronneberger et al., 2015),
which is composed of a down-sampling part and an up-
sampling part. The input is first processed by a sequence
of down-sampling blocks that could extract features
across different scales, including both global contexts and
local cues that are useful to detect penguin guano. These
features are gradually up-scaled and processed to predict
an output heatmap via a sequence of up-sampling blocks.
The architecture also sends the output of down-sampling
blocks directly to corresponding up-sampling blocks (i.e.
skip connections) to be combined with up-sampled out-
puts that facilitate the learning of useful patterns such as
the identity function.

To incorporate the information from the prior mask,
we custom designed an additional down-sampling prior
branch with similar architecture as the main down-
sampling branch but with fewer convolutional filters. The
prior branch takes as input the prior mask only; features
extracted from this branch serve as additional cues for
the network to detect the penguin guano, which are
merged into the main branch. The position at which
we merge prior features with the main network is a
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Figure 2. (A) Photograph of an Adélie penguin colony on Paulet
Island showing the pinkish-white guano stain used to identify penguin
colonies from satellite imagery. Inset: Diagram illustrating the
approximately hexagonal packing of penguins within the guano stain
as illustrated by the pink polygon. (B) The locations of penguin
colonies around Antarctica used for training and testing of the guano
detection algorithm.
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hyper-parameter of our model, determining the number
of down-sampling operations and, consequently, the opti-
mal level of detail for features from prior images. This
branch is colored as blue with the length n = 3 in Fig-
ure 3. While merging prior features later can ameliorate
the difficulties imposed by image-mask misalignment,
down-sampling the prior features too much causes a loss
of information on the location of the colony and degrades
segmentation performance. To obtain the output segmen-
tation mask, we first crop the input image into patches of
size 256 x 256 with 50% overlap between neighboring
patches. We use the trained network to obtain a predic-
tion mask for each patch and average all overlapped patch
predictions at each pixel to obtain the prediction mask
for each image.

Similar to our previous method (Le et al.,, 2019), we
train our network in a semi-supervised learning manner.
We use a small set of 18 images with hand-annotated
guano areas and a set of 2044 images with their prior
masks to train our network. Among the 2044 automati-
cally amassed images, there are images without visible
guano areas due to bad weather conditions such as heavy
snow, clouds, shadows, or because the timing of the
image was not well aligned with the period of guano visi-
bility. We first trained a patch-level classification CNN
using patches extracted from areas with and without visi-
ble guano within the 18 hand-annotated images to filter
out images without visible guano areas from our training
set. Whenever hand-annotated masks are available for a
scene, we train the network to output an identical pixel
mask. For scenes where only prior masks are available,
the network is forced to generate prediction masks such
that the sum values of the prediction masks equal the
sum of values for the prior masks (i.e. the prediction and
ground-truth contain the same area of guano).

Manual
annotation
mask

image
@ Jiy

y dgs
i’

Prior
mask wlaye®

H Output \seN\SE
?‘-M .
TOta/c
oung i,
Prior
mask

i — Down-sampling block

 Up-sampling block

e

“ Copy & Concatonate

Figure 3. PenguinNet architecture. Our network is based on a U-Net architecture. We input the prior mask into a separate CNN branch
constructed by n down-sampling blocks. Similarly, the input image is processed separately using a CNN branch constructed by m down-sampling
blocks. The outputs of these two branches are concatenated, followed by several down-sampling and up-sampling blocks to predict the final

output segmentation mask.
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Results

We evaluated our method on 72 testing images from 21
different penguin colonies in which guano stains were
hand-annotated (Table 1). The new model here described
outperforms both a baseline U-Net model (trained using
only 18 images from the fully supervised training set) and
the ‘no prior’ model (like the new model, trained with
the 18 images from the fully supervised training set and
the 2044 images from our database of penguin colony
images with misaligned masks) from Le et al. (2019)
(Table 1), using mean Intersection-Over-Union (mloU)
and pixel-wise accuracy to evaluate the output segmenta-
tion masks. Note that a simple baseline where we use 4-
channel input images consisting of three RGB color chan-
nels and one channel for the prior mask can be consid-
ered as one specific configuration of our model, that is, a
model with a O-layer prior branch that injects the infor-
mation at the 0-th layer of the main branch. The results
for our proposed model in this paper are computed from
a model with a prior branch consisting of 5 down-
sampling blocks and merges into the main branch at the
5th layer.

Because each image has slightly different orthorectifica-
tion, and the priors do not exactly align with the actual
guano in the image being classified, the priors provide
only basic information on the shape and location of the
penguin colonies. Our model capitalizes on the informa-
tion inherent in these prior images and outperforms the
benchmark (‘non-prior’) model (Fig. 4), which lacks the
branch for the prior guano mask, in various scenarios. As
seen in Figure 4A, our model correctly identifies the
majority of guano areas whose locations are suggested by
the prior mask. By contrast, the non-prior model from Le
et al. (2019) is only able to identify guano in a localized
area. Importantly, our model does not simply copy pixel-

Table 1. Segmentation performance (mloU and pixel-wise accuracies
for guano and non-guano classes) of different models on the testing
set of penguin colony images.

Non-

Guano guano
Model mloU accuracy  accuracy
Baseline U-Net 026 29.7% 99.7%
No prior (Le et al., 2019) 0.36 50.9% 98.5%
Stacking prior masks on top of input  0.42  66.8% 98.7%

images (no separated CNN branch)

Using a separated CNN branch for 050 71.1% 98.7%

prior masks (proposed)

The testing set includes 72 images from 21 penguin colonies. mloU,
mean Intersection-over-Union; CNN, convolutional neural network.

H. Le et al.

level information from the prior mask but rather incorpo-
rates global information on shape and size obtained from
the prior mask to improve the segmentation. In Figure 4B
and C, our model almost perfectly predicts the exact
mask that was annotated by an expert while the non-
prior model over-estimates the guano area because it is
confused by spectrally similar areas that lead, in the
absence of any auxiliary information on the guano loca-
tion, to false positives. In Figure 4D, there are areas in
the scene where both the texture and colors are similar to
guano-covered areas. The non-prior model misclassifies
them as guano while also fails to identify the correct
guano areas. By contrast, the prediction from our prior-
based model largely overlaps with the human annotation.
Figure 4E shows a challenging case where the guano areas
are only barely visible due to poor weather conditions.
These kinds of images would generally not be considered
viable for abundance estimation and were not included in
the training set. While the non-prior model fails to detect
any guano areas, the new model performs surprisingly
well in this case, suggesting that the prior-based model
generalizes to a wider set of conditions than its non-prior
counterpart.

As a second mechanism to evaluate model perfor-
mance, we manually graded segmentation performance
on 162 images from six penguin colonies with well-
known colony configurations. This method allows us to
quickly assess the overall performance of the segmenta-
tion method without time-consuming guano annotation.
We rated each output guano mask with a score ranging
from 1 to 5: 1 being ‘poor’ and 5 being ‘perfect’ (Fig-
ure 5). A rating of 4 indicated segmentation en par with
manual human annotation, with only very small errors
similar to those common when manually annotating
images. Table 2 summarizes the performances of our
model in comparison with the baseline model that does
not use a prior branch. As can be seen, our model out-
performs the baseline model on all sites by at least 0.5
points on this five-point scale. Several images were unus-
able for reasons related to cloud cover, recent snow, or a
severe mismatch between the timing of the image and the
appearance of guano at the colony. Unsurprisingly, the
percentage of unusable images peaks at the beginning
(September; 44%) and end (March, 67%) of the austral
summer breeding season, whereas only 5% of December
images were considered unusable for classification. Condi-
tional on being a usable image, however, there was no
strong trend in segmentation performance from Decem-
ber through March; all 4 months yielded strong (average
score >4.0) segmentation performance.

Overall, our model outperformed the non-prior model
by a large margin in terms of both mloU and visual
inspection. It effectively extracts the crucial information
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input image input image

input image
with prior mask with result from  with result from
Le etal. (2019)

input image
with manually-
annotated guano

input image

this paper

Figure 4. Segmentation results of our proposed model in comparison with our previous method (Le et al., 2019) that does not include a branch
for the prior mask for five images of penguin colonies: (A) Worldview-2 image of Chick Islands on 2 December 2015, (B) Worldview-2 image of
Balaena Islands on 23 November 2015, (C) Worldview-2 image of Balaena Islands on 19 January 2016, (D) Worldview-2 image of McDonald Point
on 16 January 2016 and (E) Worldview-3 image of Arthurson Ridge on 24 November 2015. The prior mask is shown in blue, the segmentation
results are shown in green (both that from Le et al. [2019] and the newer model being presented here) and the manually annotated mask in red.

Satellite imagery copyright Maxar, Inc. 2021.

from the prior masks to better localize and segment the
guano areas. As can be seen in Figures 4 and 5, our
model works well even in the cases where the prior masks
significantly misalign with the actual guano, showing that
the model does not simply just copy the information
from the prior masks but rather learns how to incorpo-
rate the information contained therein with other visual
cues from the input image. This is best illustrated in Fig-
ure 6 where we visualize segmentation outputs for differ-
ent images of the colony at Arthurson Ridge (ARTH). It
should be noted that the outputs of the model change
according to the changes of the penguin colony while
using the same prior mask but the approach can intro-
duce failures, particularly when the prior mask is badly
misaligned (Figure 7).

Discussion

We report on a novel approach to improve classification
for highly challenging segmentation applications in
remote sensing. Our application of this method to pen-
guin colonies incorporates challenges common to many
remote sensing applications. The spectral signature of a
penguin colony is faint, highly variable, and has indistinct
edges. Guano color depends on penguin diet and can
range from deep pink to white, and the background sub-
strate is highly variable. Even repeated images at a single
location can look very different depending on weather
events like snow or differences in the timing of the image
relative to the species’ breeding phenology. In addition,
high-resolution satellite imagery is limited and manual

© 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London 7
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Figure 5. Segmentation outputs for different images of the colony at Cape Crozier. Each row represents a different input image from the lowest
to the highest classification score (A-E representing 1-5, respectively): (A) Quickbird-2 image from 16 December 2009, (B) Worldview-2 image
from 30 November 2011, (C) Worldview-2 image from 31 January 2011, (D) Quickbird-2 image from 28 November 2009 and (E) Worldview-2
image from 12 December 2011. Within each row, the leftmost image is the input image, the middle image and rightmost images show the input
image overlaid with the prior mask and the final segmentation, respectively. Satellite imagery copyright Maxar, Inc. 2021.

guano annotation exceptionally time consuming, which
limits the size of training data available for CNN-based
classification strategies. Another challenge is the near
impossibility of obtaining ground validation coincident
with a satellite image, since it is not possible to precisely
control the timing of tasking requests and cloud cover is
a frequent obstacle. For this reason, our goal here was to
develop a system that comes as close as possible to
matching the judgment of an expert human annotator.
While these challenges present real technical barriers to

an automated classification approach, the classification of
penguin guano has one significant advantage, which is
that the guano stain is largely stable in size, shape and
location from one season to the next. For this reason,
information from a prior classified image can be highly
informative and can improve segmentation and classifica-
tion performance.

One challenge with incorporating prior classification is
that orthorectification can create significant misalign-
ments between the prior masks and the actual locations

8 © 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London



H. Le et al.

Table 2. Average scores of the outputs of our model in comparison
with the baseline model that does not use the prior branch.

Number of Model without prior (Le  Model with prior
Site images et al., 2019) (proposed)
ARTH 80 2.4 3.1
BEAG 6 2.5 3.3
CROZ 47 3.5 4.0
HERO 5 1.8 4.4
HOPE 9 3.2 4.1
BIRD 15 2.5 4.0
All 162 2.8 3.6

The methods are tested on the images of six penguin colony sites:
Arthurson Ridge [ARTH], Beagle Island [BEAG], Cape Crozier [CROZ],
Heroina Island [HERO], Hope Bay [HOPE] and Cape Bird [BIRD]. Each
output guano mask is graded from 1 to 5 with 1 being ‘poor’ and 5
being ‘excellent’.

of guano in the images. For this reason, simply stacking
prior masks on the input images does not yield a signifi-
cant improvement. However, a separate prior branch can
learn to extract the information from the prior mask that
could most benefit the classification. This design is flexi-
ble and can deal with these misalignment issues effectively
in our penguin use case. There are multiple ways that our
framework can be extended. For example, an interactive
framework with a human in the loop would allow for

Novel CNN Architecture for Seabird Surveys

test-time modification on the prior masks. We also can
use image registration to reduce the misalignment
between the prior mask and the testing image. Improved
correction of atmospheric effects and/or color normaliza-
tion methods would further improve the model’s perfor-
mance and generalizability to new scenes.

While the model performance likely still falls short of
what would be required for large-scale automated moni-
toring of penguin colonies, our inclusion of a prior mask
greatly improved the classification success when compared
to a previously published model and represents a general
strategy to improve classification for the classification of
features than evolve slowly relative to the repeat interval
of the imagery available. While a limited training dataset
is, in the near term at least, unavoidable, we anticipate
that injecting additional sources of auxiliary information
may further improve classification performance. For
example, penguins have specific terrain requirements for
nesting (e.g., McDowall & Lynch, 2017) and the recent
availability of digital elevation models for the Antarctic
(Howat et al., 2019) presents the opportunity to incorpo-
rate terrain as an auxiliary layer in the classification CNN.
Offering a significant improvement over Le et al. (2019),

our model represents a new benchmark for the automated
delineation of Adélie penguin colonies in Antarctica and
provides a new approach for segmentation of images
where the target image is largely stable over time.

Figure 6. Examples from Arthurson Ridge in which misalignments between the target image and the image from which the prior mask was
extracted can lead to poor segmentation results. Each row represents a different input image: (A) Worldview-2 image from 15 February 2015, (B)
a second but different Worldview-2 image from 15 February 2015, (C) Worldview-2 image from 23 October 2015, (D) Worldview-2 image from 3
December 2015, (E) Worldview-2 image from 4 February 2016 and (F) Worldview-3 image from 20 November 2014. Within each column, the
topmost image is the input image, and the middle image and bottom images show the input image overlaid with the prior mask and the final

segmentation, respectively. Satellite imagery copyright Maxar, Inc. 2021.
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Figure 7. Two examples in which the segmentation failed: (A) Worldview-2 image on 16 February 2011 at Cape Adare and (B) Worldview-2
image on 9 February 2016 at Forbes Glacier. The input image is in the first column, the prior mask is shown in blue (second column), the
segmentation results from the current model are shown in green (third column) and the manually annotated mask in red (fourth column).

Satellite imagery copyright Maxar, Inc. 2021.
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