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traditional material matrices, new and 
potentially useful properties can be con-
ferred. For example, embedding bacteria 
with inherent sensitivity to environmental 
signals such as pH or the presence of 
heavy metals[1] can impart environmental 
awareness to a material. Enhancements are 
not limited to competencies which natively 
exist in embedded organisms; embedded 
cells can be genetically reprogrammed to 
be sensitive to non-native signals, as in the 
case of Saccharomyces cerevisiae engineered 
to be responsive to the presence of fungal 
pathogens.[2] When the embedded cells 
are also capable of responding to sensed 
signals, for example, by secreting growth 
factors,[3] enzymes,[4] or functionalized pro-
tein fibers,[4] then sensing and actuation 
circuits are in place to enable smart, evolv-
able, and living biomaterials.[5]

A conceptual bacteria-enabled mate-
rial is shown in Figure  1. In this illustra-
tion, genetically engineered bacteria are 
embedded into a hydrogel matrix. The 
cells possess a desired environmental sen-
sitivity and are programmed to produce 

and secrete protein upon environmental stimulus. The matrix 
is designed for specific applications with regard to material 
stiffness and moldability, optical transparency, permeability to 
diffusing molecules including water and secreted proteins, and 
cure time.

Microbes embedded in hydrogels comprise one form of living material. 
Discovering formulations that balance potentially competing for mechanical 
and biological properties in living hydrogels—for example, gel time of 
the hydrogel formulation and viability of the embedded organisms—can 
be challenging. In this study, a pipeline is developed to automate the 
characterization of the gel time of hydrogel formulations. Using this pipeline, 
living materials comprised of enzymatically crosslinked silk and embedded 
E. coli—formulated from within a 4D parameter space—are engineered to 
gel within a pre-selected timeframe. Gelation time is estimated using a novel 
adaptation of microrheology analysis using differential dynamic microscopy 
(DDM). In order to expedite the discovery of gelation regime boundaries, 
Bayesian machine learning models are deployed with optimal decision-
making under uncertainty. The rate of learning is observed to vary between 
artificial intelligence (AI)-assisted planning and human planning, with the 
fastest rate occurring during AI-assisted planning following a round of human 
planning. For a subset of formulations gelling within a targeted timeframe of 
5–15 min, fluorophore production within the embedded cells is substantially 
similar across treatments, evidencing that gel time can be tuned independent 
of other material properties—at least over a finite range—while maintaining 
biological activity.
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1. Introduction

A new frontier in materials development exists in combining 
living components with traditional material matrices. When 
living cells, for example, bacteria, are encapsulated within 
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1.1. Living Bacterial Silk Hydrogels

There is a significant body of literature describing efforts to 
embed living cells into hydrogels. Among hydrogels of recent 
interest, silk-based hydrogels are prominent.[6] A number of 
properties make silk-based hydrogels attractive: in its natural, 
fibrous forms, silk has outstanding strength and elasticity.[7] Silk 
is both biocompatible and biodegradable.[8] When reconstituted 
from cocoons produced at industrial scale, silk is abundant. 
Furthermore, as a genetically encoded, proteinaceous mate-
rial, a large number of varieties can potentially be produced 
using recombinant methods.[9] In addition to sequence modi-
fications at the genetic level, silk as a protein possesses han-
dles for chemical functionalization and bioconjugation, further 
expanding the palette of material options for engineered appli-
cations.[10] Finally, silk has been successfully processed from 
aqueous solutions into fibers, hydrogels, foams, and films.[6e]

Due to its favorable properties, silk materials have fea-
tured in numerous applications including: scaffolds for tissue 
engineering[6a,8c,11]; injectable matrices for drug delivery[6d,6g,12]; 
immobilization matrices for biocompatible, sub-dermal 
sensors[6d,13]; optical devices[8a,14]; and bio-functionalized bulk 
materials for microfluidic devices.[15]

Bacteria are an attractive option for adding biological func-
tion to materials due to their robustness and genetic tracta-
bility. Previous reports include embedding Bacillus sphaericus 
in hydrogels for calcium carbonate precipitation for self-
healing concrete,[16] E. coli[17] and B. subtilis[18] into 3D printing 
matrices for programmable secretion of biomolecules, E. coli 
into polyacrylamide and agarose for sustained secretion of 
drugs,[19] E. coli into polyvinyl alcohol for heavy metal toxicity 
biosensing,[1] and Pseudomonas putida and A. xylinum into hya-
luronic acid, fumed silica, and κ-carrageenan for bioremedia-
tion and in situ production of bacterial nanocellulose.[20]

1.2. Linking Formulation Conditions with Material Properties

A key requirement for successfully designing living mate-
rials is linking formulation conditions with final material 
properties and—concurrently—biological activity.[21] Mate-
rial properties of general interest include those related to 
material formulation and processing (cure time, polymer 
fraction), mechanical properties (toughness, stiffness, 
fatigue strength), and transport properties (mass diffusivity, 
hydraulic permeability, etc.). Biological activity includes 
viability and motility of embedded organisms, ability to pro-
liferate, responsivity of embedded organisms to signals of 
interest, or activity of secreted biologicals within or upon 
the embedding matrix. Generally speaking, trade-offs exist 
between idealized mechanical properties and idealized bio-
logical activity. A material’s suitability for a given application 
may depend critically upon finding an optimum among com-
peting characteristics.

In developing a novel living material to achieve this balance 
of properties, a vast space of formula component permutations 
may need to be characterized. In the case of enzymatically 
crosslinked silk, hydrogels can be formed from aqueous solu-
tions of purified silk protein, horseradish peroxidase (HRP) as 
an enzymatic crosslinker, and hydrogen peroxide.[22] Gelation 
kinetics and final material stiffness vary widely over this multi-
dimensional, continuous formulation space depending on the 
concentrations of the individual components.[6e–h,10–11,22] The 
inclusion of microbes or other biological components within 
the embedding medium also impacts the material properties. 
Conversely, components in the embedding medium potentially 
impact the biological properties of the living material. As an 
illustrative example, Hasturk and coworkers embedded human 
mesenchymal stem cells into hydrogels comprised primarily of 
silk.[6c] The materials were desired to rapidly gel once mixed 

Figure 1.  A generic bacteria-embedded living biomaterial. Living biomaterials can be formed by embedding microbes into a material matrix. A) To 
impart specific biological activity, the microbes may be genetically engineered. B) Signal molecules, (e.g., small molecules ≈ 1 nm in diameter), may 
be required to diffuse through the embedding medium to be internalized or otherwise sensed by the microbes. C) In response to signal molecules, 
the microbes may produce biological materials which are transported extracellularly and then diffuse through the embedding medium. D) For some 
embedding media, microbial mobility is limited and binary fission is difficult, whereas for less stiff or more porous matrices microbial mobility and 
reproduction are unhindered.
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from precursor solutions and to achieve both high stiffness 
and high bioactivity in the final hydrogel. Casting gels from 
precursors dispersed in distilled water resulted in poor sur-
vivability of the cells due to osmotic stress, but casting gels 
from precursors mixed into buffered salt solutions resulted 
in unacceptably slow gelation. To find formulation conditions 
that met all performance criteria, it was necessary to navigate 
a formulation space defined by a large number of parameters. 
Silk fraction, hydrogen peroxide concentration, crosslinking 
enzyme concentration, embedded cell concentration, buffer 
strength, and even the concentrations of potential crosslinking 
additives were all critical parameters impacting both the mate-
rial and the biological properties of the final material. In the 
cited study, only a fraction of treatment combinations could be 
tested, possibly leaving the most suitable material formulation 
undiscovered.

1.3. Estimating Gel Times by Automated DDM Microrheology

Rapid screening of the mechanical properties of hydrogel for-
mulations would facilitate living materials developments. For 
many applications, for example, injectable living hydrogels 
with biological activity, the gel time of the material (i.e., the 
time scale over which solid-like mechanical properties develop) 
is one property that could critically impact a material’s suc-
cessful deployment. Prior to this work, despite the existence of 
a number of techniques for gel time measurement in hydrogels 
(see Supporting Information Sections S1–S3), a fully automat-
able process for gel time measurement in hydrogels had not 
been reported. Limitations of previous techniques impacting 
utility for automated implementation include large sample vol-
umes, laborious setup, a need for user interactivity, and ambig-
uous gelation criteria.

Among existing techniques most promising for auto-
mated application is multiple particle tracking (MPT) micro-
rheology.[23] Indeed, MPT has been used for high-throughput 
screening.[24] By tracking the particle trajectories of individual 
tracer beads embedded in a sample, MPT can be used to pro-
duce families of mean-squared displacement (MSD) curves over 
the course of gelation reactions. Once such MSDs are obtained, 
a number of robust techniques can be applied to ascertain the 
gel time.[24b,d,25] However, the major limitation of MPT pre-
cluding automated application is its need for user supervision, 
as the particle tracking algorithms generally require tuning of 
analysis parameters from sample to sample. For evolving sam-
ples such as gelation reactions, analysis parameters may even 
require repeated tuning.

A new image analysis technique known as differential 
dynamic microscopy (DDM) has recently been adapted to con-
duct microrheological measurements.[26] Like MPT microrhe-
ology, the technique requires commonly available optical equip-
ment. In contrast with MPT microrheology, however, DDM 
requires no a priori input selection or interactive tuning[26–27] 
and is therefore well-suited for automated application. Through 
Fourier analysis of image intensity fluctuations[26a,c,28] and 
the application of theories for thermally-driven motion, DDM 
quantifies the MSD of embedded tracer beads without the need 
to track individual particle trajectories.[26b,29]

1.4. Experimental Approach and Findings

In this work, we present a new experimental methodology and 
pipeline based on DDM for the automated screening of mate-
rial formulations for gel time. We present some of DDM’s 
strengths and weaknesses for that task in relation to conven-
tional gel time estimation techniques based on MPT. We also 
apply novel machine learning algorithms specifically for-
mulated for characterizing a 4D formulation space in terms 
of gel time. As a demonstrative use case, we develop a living 
silk hydrogel embedded with viable microorganisms, antici-
pating applications such as injectable and self-setting biological 
delivery materials. We asked the following coupled optimization 
questions: What bacteria-embedded silk hydrogel formulations 
produce gelation within 5–15 min? Within those formulations, 
which promote maximum bacterial activity? These coupled 
criteria—gelation within 5–15 min and maximum bacterial 
activity—were arbitrarily chosen as examples of criteria that 
might be targeted when engineering living materials.

In answer to these questions, we demonstrate and validate 
the capabilities of this new methodology through three experi-
ments: 1) correlation of gel time estimation by a novel adap-
tation of DDM microrheology—requiring no user inputs and 
thus fully automatable—to gel time estimation by traditional 
methods based on MPT which do require user inputs, 2) char-
acterization and prediction of gel time regime boundaries in 
bacteria-laden silk hydrogels spanning a 4D formulation space 
by use of novel machine learning algorithms and an automated 
gel time characterization pipeline, and 3) comparison of bac-
terial protein production in silk hydrogels of various formula-
tions gelling in 5–15 min by use of confocal microscopy.

In brief, we find that DDM can be used as the basis to objec-
tively and autonomously estimate gel times in silk hydrogels. 
In conjunction with machine learning, the estimates of gel 
time by DDM were useful in characterizing regions within a 4D 
formulation space which were likely to gel faster than 5 min, 
more slowly than 15 min, or within 5–15 min. Individual bac-
teria-embedded silk hydrogel formulations exhibited gel times 
ranging from instantaneous gelation to no gelation at all, with 8 
of 63 treatments gelling within the targeted 5–15 min window. 
Among a subset of samples that gelled within the 5–15 min 
window, biological productivity of embedded E. coli, as meas-
ured by fluorescent protein production and colony morphology, 
was found to be relatively constant despite a significant differ-
ence in formula constituency.

Over the course of the 4D formula space characterization cam-
paign, we employed Bayesian machine learning (ML) models 
and algorithms to perform decision-making under uncertainty 
to accelerate knowledge acquisition. ML supervision can proceed 
without operator intervention, however the fastest rate of learning 
was observed when a round of expert user decision making was 
interspersed between rounds of artificial intelligence (AI) deci-
sion making. Without operator intervention, the ML algorithms 
were capable of approximating gel regime boundaries in as few 
as 20 treatments.

The findings of this work collectively illustrate the complex 
relationship between formulation and properties in living silk 
hydrogels and show that automated materials characterization 
techniques such as DDM microrheology can help to navigate 
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seemingly intractable and vast formulation spaces, especially 
when paired with ML-informed modeling and decision making 
algorithms. Importantly, the techniques deployed in this 
work—in particular gel time estimation by DDM—are easily 
transferred to other laboratories and can be implemented on 
equipment which is readily available.

2. Results and Discussion

2.1. Comparison of Gel Time Estimation by DDM and by MPT

Characterization of gelation kinetics requires an estimation of 
the gel time. A number of methods for gel time estimation exist 
based on various dynamic linear viscoelastic material functions, 
and these methods are summarized in detail in the Supporting 
Information Sections S1–S3. These methods include determi-
nation of the point of crossover between the elastic and viscous 
moduli (G′ ≈ G″ ) for a given deformation frequency or frequency 
range, the point at which the loss tangent tan δ   becomes inde-
pendent of frequency, or by time-cure superposition (TCS), in 
which time-domain shifting of the viscoelastic response is used 
to identify the asymptotic point at which shift factors transition 
from pre-gel to post-gel scaling. Each of these methods is acces-
sible to MPT microrheology by way of MSD curves.

As mentioned previously, DDM can be used to produce 
MSDs without user supervision and is thus potentially ame-
nable to automation. When used to calculate MSD curves, DDM 
compares well with MPT over a wide variety of conditions.[26,29] 
As MSD curves can serve as the foundation for rigorous micro-
rheological assessment of gelation, both DDM and MPT can 
be used to measure gel time. However, automating gel time 
estimation by way of MSDs can be challenging for a number 
of reasons: 1) there exists no simple gelation criterion directly 
accessible from MSDs. That is, a power law exponent threshold 
of 0.5 (or any other value) cannot be used to accurately indicate 
gelation in all gelling systems, 2) computing elastic and viscous 
moduli from MSD data with limited frequency content is diffi-
cult, especially in gelling systems, potentially precluding the use 
of gel time estimations based on G′ and G″, and 3) automating 
TCS can be difficult and subjective, and requires pre- and post-
gelation MSD curves which may not always be available.

During a gelation reaction, probe particles undergo progres-
sively smaller cumulative displacements approaching the gel 
point and beyond, where probe particle motion is restricted by 
the elasticity of the gel. DDM fails to replicate MPT-extracted 
MSD curves in samples exhibiting very small cumulative dis-
placements (see Supporting Information Section S4), where 
the weak intensity fluctuations associated with particle motion 
are not easily discernable from other contributors to the image 
structure function.[26b] Under these circumstances, the DDM 
signal generally fails to meet the tolerance criterion for suc-
cessful MSD estimation. In some cases under these circum-
stances, the tolerance criterion is met but no physically mean-
ingful MSD curves are produced. An example of the difference 
in the sensitivity range between MPT and DDM is highlighted 
in Section S4 of the Supporting Information, where MPT yields 
physically reasonable MSD curves at time points well beyond 
those that produce physically reasonable MSD curves by DDM.

The lack of MSD curves resulting from DDM analyses 
of late-stage gelation limits the amount of data that can be 
observed during a gelation reaction, potentially precluding gel 
time estimation by G′/G″ cross-over, TCS, or tan(δ) analysis. 
However, in practice, the point at which DDM fails to extract 
physically reasonable MSD curves may itself be useful as an 
estimate of the gel time. In this work, we develop a technique 
for gel time estimation based on identifying the time during a 
gelation reaction after which no MSD curves can be extracted 
from D(q, Δt) curves obtained by DDM. We term this method 
DDM-RL, referring to the resolution limit of DDM for MSD 
extraction. If DDM-RL does in fact produce useful estimates 
of the gel time, then the parameter-free nature of the analysis 
makes DDM microrheology an excellent basis for an automat-
able pipeline for objective gel time characterization.

The first investigation presented in this work examines 
DDM-RL as a method for gel time estimation. Estimates 
obtained by DDM-RL are compared with two conventional 
methods based on further processing of MSDs obtained by 
MPT: 1) converting the MSDs into mechanical moduli and then 
observing the time at which G′ exceeds G″ over all measured 
frequencies (termed here, MPT-G′/G″), 2) applying TCS to the 
MSDs (MPT-TCS). DDM-RL estimates are also compared with 
estimates obtained by oscillatory rheology of bulk samples, 
based on the time at which the loss tangent, tan(δ), becomes 
frequency-invariant.

Passive probe microrheology data from three silk hydrogel 
formulations with distinct gel times were analyzed by DDM-
RL, MPT-G′/G″, and MPT-TCS. For this comparison, none of 
the silk formulas contained bacterial biomass. All gels con-
tained 3% silk (w/v). The HRP and H2O2 concentrations varied 
as: 1) 20 U mL–1 HRP with 53  ppm H2O2, 2) 10 U mL–1 with 
25  ppm H2O2, and 3) 3.33 U mL–1 HRP with 25  ppm H2O2. 
Results are shown in Figure 2. Estimates of gel times obtained 
by DDM-RL are reported as the interval between the time of the 
last resolved MSD curve and the sum of that time plus the sam-
pling interval. See Section 4 for experimental detail. Estimates 
by MPT-G′/G″ are reported as the range of times bracketing the 
presumed switch from a pre-gel to post-gel regime based on the 
criterion that G′  > G″ (or G′  ≈ G″) for all measured frequen-
cies. Estimates by MPT-TCS are reported as the range of times 
bracketing the estimated critical gelation time.

In general, during gelation processes, the MSDs measured by 
both DDM and MPT are expected to exhibit power law behavior 
with decreasing power law exponents as gelation proceeds, that 
is, a decreasing linear slope on a log–log scale. For the cases of 
DDM here, each sample exhibits power law slopes greater than 
0.5 for all time points at which the MSD can be resolved. After 
converting MSDs obtained by DDM to G′/G″ plots, no time point 
exhibited G′ in excess of G″ for all frequencies. This is due to the 
resolution limit of DDM in extracting MSDs, with a lower bound 
on MSD related to the pixel size and the influence of intensity 
fluctuations away from the focal plane.[26b] However, DDM does 
produce MSDs for some time points where G′ > G″ for some 
frequencies. In the case of 3% silk, 10 U mL–1 HRP with 25 ppm 
H2O2 (Figure 2B), DDM produced an MSD curve for the 5.3 min 
time point that corresponds to G′ ≈ G″ for many of the lower fre-
quencies. This demonstrates that DDM can resolve MSD curves 
at time points very close to the gel time.
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Figure 2.  Estimation of gel time by DDM-RL, MPT-G′/G″, MPT-TCS, and bulk rheology. Gel time was estimated by A–C) DDM-RL , by D–F) MPT-G′/G″ 
crossover, G–I) MPT-TCS, and J–L) bulk rheology for three gels. Each gel contained 3% silk but varied in the other constituents. For the sample comprised 
of 20 U mL–1 HRP with 53 ppm H2O2, gel times were estimated at 3.80–4.48 min by DDM-RL (A), 3.80–4.48 min by MPT-G′/G″ (D), 3.11–3.80 min by MPT-
TCS with a critical gelation time of approximately 3.6 min (G), and at approximately 2.85 min by bulk rheology (J). For the sample comprised of 10 U mL–1 
HRP with 25 ppm H2O2, estimates were between 5.30–5.99 min by DDM-RL (B), 5.30–5.99 min by MPT-G′/G″ (E), 4.62–5.30 min by MPT-TCS with an 
estimated critical gelation time of approximately 5.05 min (H), and at approximately 5.1 min by bulk rheology (K). The sample comprised of 3.33 U mL–1 
HRP with 25 ppm H2O2, was measured to gel at 21.7–23.9 min by DDM-RL (C), 23.9–26.0 min by MPT-G′/G″ (F), 19.5–21.7 min by MPT-TCS (I) with an 
estimated critical gelation time of 21.2 min, and at approximately 32.5 min by bulk rheology (L). Grey lines (A–C) indicate power law slopes of ½ and 1. 
Panels (D–F) show G′ and G″ plots obtained by local power-law fitting of MSDs obtained by MPT. Panels (G–I) show time-cure superposition results from 
shifting MSDs obtained by MPT. Panels (J–L) show results of bulk rheology, with critical gel times estimated by the time of tan(δ) frequency-invariance.
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In the three cases presented in Figure 2, estimates of gel time 
by DDM-RL and by MPT-G′/G″ approximately agree. Likewise, 
for an additional three replicates of the 3% silk, 3.33 U mL–1  
HRP, and 25 ppm H2O2 case, each estimate by DDM-RL over-
laps with the estimate by MPT-G′/G″ (data not shown). In 
most of these cases, the latest gel time estimated by DDM-RL 
matches the earliest time suggested by MPT-G′/G″. That is, 
DDM fails to resolve MSDs when G′ begins to be equal to or 
to exceed G″ for some frequencies. As a result, in comparison 
with MPT-G′/G″ on these samples, DDM-RL tends to slightly 
underestimate the gel time. It is also possible that DDM-RL 
reports gelation when gelation has not (and will not) occur, 
although this has not been observed in any of the cases reported 
in this study. On the other hand, when DDM-RL gel times are 
compared with MPT-TCS for these gelling samples, DDM-RL 
indicates gelation after gelation has occurred (and therefore 
may be able to observe the critical gel point if the observation 
timing was perfectly synchronized with gel point.) In general, 
whether in comparison with MPT-G′/G″ or with MPT-TCS, gel 
time estimation by DDM-RL lies within a few observation inter-
vals on these gelling silk samples.

If drift and convective currents exist in the sample (e.g., as 
might be indicated in Figure  2A at the 3.8 min time point), 
DDM-RL might tend to overestimate the gel time. Indeed, 
many of the MSD curves reported in this study exhibit upturns 
in the MSDs at large lag times. Dedrifting algorithms applied 
to the MPT data eliminate these upturns (see Supporting Infor-
mation S5). The drift is not unexpected as the measurements 
were taken in open well dishes to facilitate robotic handling. 
Importantly, the drift in these samples does not appear to sig-
nificantly impact the gel time estimates by DDM-RL.

As applied here, DDM does not identify drift or convective 
currents in the sample. A potentially useful adaptation to the 
DDM algorithm could identify and computationally eliminate 
excessive drift or convective currents, as is currently possible 
with MPT. Such an adaptation to DDM which compensates for 
unidirectional flow was recently developed.[30]

Despite the difficulties of gel time estimation by DDM, DDM 
still appears to be useful in screening scenarios where auto-
mated analysis is desirable. Each of the samples observed to gel 
by way of MPT-G′/G″ crossover, MPT-TCS, and bulk rheology 
was also successfully reported to gel by DDM-RL, with esti-
mates of gel time by DDM-RL generally agreeing with either 
MPT-G′/G″ or MPT-TCS within one measurement interval. Gel 
time estimates from each of the microrheology techniques are 
less congruent with estimates from bulk rheology, consistent 
with other comparisons in the literature.[25d,31]

Based on these findings, we argue that for objective, param-
eter-free characterization of gel time in hydrogel formulations, 
DDM-RL produces approximate gel times that are sufficiently 
accurate to be useful as an initial screen. Although the estima-
tion of gel time by this technique is not rigorously supported 
by theory, the MSD curves collected during execution of the 
technique do capture important rheological information that is 
quantitatively comparable to more rigorous viscoelastic meas-
ures obtained by MPT. As desired, the MSDs obtained by DDM 
can be processed to quantify the evolution of complex shear 
modulus or viscosity as a sample gels. Also, since the same raw 
data is used for both DDM and MPT, the image stacks for a 

given sample can be reprocessed by MPT if additional informa-
tion is required—for example, the explicit particle trajectories 
or van Hove displacement distributions.

As already mentioned, DDM does not require a user to fine-
tune parameters for each analysis and is therefore an excellent 
option for automated characterizations. This is especially ben-
eficial when the sample is optically changing over the course 
of an experiment, as was sometimes observed for these gelling 
samples. As samples gelled, changes in the opacity required 
careful tuning of the processing parameters when analyzing by 
MPT. In contrast, analysis by DDM proceeded without regard 
for changes in optical opacity.

Parameter-free measurement of evolving MSD curves in 
gelling samples could have potentially been obtained using a 
recently developed convolutional neural network (CNN).[32] 
The CNN was trained using both simulated and real particle 
imaging videos and can convert image stacks into MSDs 
without user-supplied parameters. We processed image stacks 
from a silk gelation (see aitracker.net) and observed that CNN 
based particle tracking and conversion to MSDs was excellent—
and agreed well with DDM-based MSDs—for early time points. 
However, for later stages in the gelation process, the CNN algo-
rithms failed. See Supporting Information S6 for details which 
indicate that automated gel time estimation by CNN holds sig-
nificant promise but is not currently suitable for routine use.

2.2. Automated Screening of Gel Time in Bacteria-Laden  
Silk Hydrogels in 4D Formulation Space

Having established that DDM-RL is a useful estimator of 
gel time, we constructed a pipeline for its automated imple-
mentation. The pipeline consists of the following operations 
(Figure 3A): 1) formula specification, 2) mixing and dispensing, 
3) video microscopy, 4) DDM microrheology, and 5) gel time 
estimation by DDM-RL. Once the gel time was determined, 
the experiment’s results were added to a growing ensemble of 
results, and a new formula specification was generated by an 
experimental planner and the cycle repeated.

The possible combinations of formula components in a 4D, 
continuous formulation space are potentially overwhelming. To 
address this issue, we deployed a novel ML strategy based on 
iterative Bayesian closed-loop design. In contrast to more tra-
ditional design of experiment (DOE) approaches based on col-
lecting batches of observations to fill a model design space, we 
coupled small sets of exploratory experiments with Bayesian 
beliefs to more adaptively navigate the formulation space, relying 
on a sequential experimental design and a decision policy known 
as the Generalized Knowledge Gradient (GKG). The method was 
specifically devised to optimally identify gel regime boundaries 
in the design space. The basic scheme is illustrated in Figure 3B. 
After an experiment, the gel time landscape over the 4D input 
space is expressed as a Gaussian process (GP) model and used to 
estimate the gel regime boundaries. The GKG policy then selects 
the formulation that is expected to most impactfully change this 
prior estimate of the boundary. The policy employs a Monte 
Carlo (MC) approach to calculate the expected change of the 
boundary. Namely, the GP model is then also used to simulate 
new data points within the gelation time landscape from which 
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new potential posterior gel regime boundaries are calculated and 
compared with the prior boundaries, obtaining a measure of dif-
ference between the two estimated boundaries. This is repeated 
several times to obtain an average measure of difference for a 
given formulation. The formula specification which is expected 
to maximally impact the gel regime boundary, as measured by 
this MC-averaged difference, is then selected as the next physical 
experiment to run, and the cycle repeats.

By focusing on specific desiderata in an adaptive manner, we 
can drive the exploration to achieve the particular design objec-
tives of an investigation—in this case, finding formulas that 
gel within 5 to 15 min—without needing to learn the design 
space landscape in general. As a result, fewer experiments may 
be required, as has been demonstrated for a number of related 
sequential approaches in comparison with traditional global or 
space filling designs.[33] This efficiency is particularly impor-
tant in higher-dimensional design spaces as is the case in this 
application. The specifics of the boundary-learning ML method 
we developed for this work are presented in Section 4, and in 
Section S7 of the Supporting Information.

The results of a campaign to characterize gel times by 
DDM-RL in a 4D formulation space are presented below in 
Figure  4. The results were obtained from 63 formula charac-
terization experiments. A typical iteration of the campaign loop, 
testing 4 formulations at a time, required approximately 4 h to 
complete. See Section 4 for details.

The formula samples were organized into three gel regimes: 
samples gelling within the selected 5–15 min window, sam-
ples gelling faster than 5 min, and samples taking longer than 
15 min to gel or not gelling at all. Individual observations are 
shown in the plots in Figure 4A which also show predicted gel 
regime boundaries as the campaign progresses.

Selection of formulations for characterization was alternated 
between our ML algorithm (picking four treatments per itera-
tion) and a domain expert (picking one treatment at a time) 
attempting to pick treatment combinations that gelled within 
the 5–15 min window based on domain expertise.

Gelation data and the Bayesian beliefs on gelation time, as 
presented in Figure 4, have been projected from full 4D input 
space to two dimensions by plotting as H2O2/Cell versus 

Figure 3.  Automated gel time characterization pipeline. A) A closed-loop experimental campaign to characterize a 4D silk hydrogel formulation space 
was conducted iteratively. B) Each iterate of the campaign began with a formulation specification suggested by a decision-making policy informed by 
Bayesian ML models of gelation regimes, or by an expert operator. Next, the suggested formulas were mixed using a pipetting robot or manually. Sam-
ples were loaded into open wells and manually placed onto the microscope for image acquisition. Images were acquired automatically at set intervals 
and framerates and then processed using a series of automated MATLAB scripts which implemented DDM. The gel time was estimated from the time 
course of MSD curves using DDM-RL. Whereas the estimated gel times were earlier specified as an interval, when interacting with the ML algorithms 
the gel time was estimated as ½ the sampling interval added to the time of the last resolved MSD.
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HRP*Silk/Cells. Exploratory data visualization revealed this 
representation to be the most differentiating with respect to 
gelation kinetics.

Not all observations fell within regions delineated by the 
model predictions. Notably, though, the approximate gel regime 
boundaries are qualitatively projected in as little as 20 observa-
tions, with only minor alterations observed progressing through 
the full 63 experiments. Interestingly, the learning rate observed 
at the beginning of the experimental campaign is substantially 
slower than that observed in the later stages of the campaign. In 
both ML-guided phases, learning was faster than that achieved 
when a domain expert attempted to find regions within the tar-
geted 5–15 min window, suggesting the policy designed specifi-
cally to quickly learn the gel regime boundaries is successfully 
doing so. Of additional note, the treatments selected during the 
expert-guided stage appeared to result in an increased learning 
rate in the following ML-guided stage. Experiments selected by 

the expert were exploitation ones – experiments believed by the 
domain expert to produce gelation times in the target window, 
while ML-selected experiments attempted to balance exploitation 
and parameter space exploration. These results suggest alterna-
tive exploration/exploitation stages may be beneficial. Another 
interesting question raised here is the potential for collabora-
tive teaming between ML algorithms and domain experts. The 
use of ML allows for reasoning in high dimensions with statis-
tical analysis, while human experts can make suggestions using 
prior or unmodeled knowledge not built into the ML models. 
These results point to the beneficial effect that combining both 
approaches has to accelerating discovery.

The rapid rate of learning at the end of the 63 experiments sug-
gests that more data are necessary to definitively characterize the 
gel regime boundaries. However, the decreasing error between 
each iteration’s expectations and the expectations in the final itera-
tion suggests that predictive quality in the dataset is converging.

Figure 4.  ML and expert-guided experiment planning. A) Low-dimensional visualizations of the mean-estimates of the gelation regimes after 20, 40, 
and 62 experiments. Observations that gelled within the targeted window of 5–15 min are shown as black circles. Observations that gelled faster than 
5 min are shown as blue squares. Observations that took longer than 15 min, or that did not gel at all in the 30 min observation window, are marked 
as red triangles. The size of the marker reflects the relative concentration of HRP, with the larger markers indicating larger concentrations. Colored 
regions indicate areas in the formulation space predicted by an SVM classifier to produce samples gelling in three gelation regimes: 1) faster than  
5 min (blue region), slower than 15 min or not gelling at all within the observation period of 30 min (red region), or 3) samples gelling within the 
targeted window of 5–15 min (lighter red and blue). Units are coded gel regime units, with ℓi = −1 representing gel times less than 5 min and ℓi = 1 
representing gel times greater than 15. The plot at far right in Panel A presents the uncertainty associated with the predictions after 62 experiments, 
representing the error bars (in minutes) on the corresponding gel regime predictions. B) The error in the estimates of the full-dimensional gelation 
time boundary obtained for each iteration in the campaign relative to the estimate obtained after 63 observations. Purple dots show the relative error 
during an initial ML-guided phase of the campaign. Red triangles show the errors observed during a phase in which a domain-expert selected the 
formula components with the intent to find samples that gelled within the desired timeframe. Blue circles show errors incurred during a second ML-
guided phase of the campaign. Dashed lines are a linear fit to the data, with the slopes of these lines indicating a measure of the rate of learning, with 
more negative rates signifying faster learning. The expert opinion phase had the slowest rate of 0.003, which is more than 3 times slower than that of 
the initial ML-guided phase (rate = 0.01) and ten times slower than the final ML-guided phase (rate = 0.036). C) A comparison of successive gel time 
regime boundary estimates, as measured by relative change. Larger values indicate experiments that more drastically change the prediction. The most 
drastic changes occur in the beginning of the first ML-guided phase of the campaign.
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The gelation times of silk hydrogels in this study varied 
widely from near instantaneous gelation, to gelation over the 
course of tens of minutes, to not gelling at all even after many 
hours (as observed incidentally; the observation period for 
microrheology was 30 min). The formulation transition from 
samples that gel faster than 5 min to samples that take longer 
than 15 min to gel is abrupt; the gelation window of 5–15 min 
is extremely narrow under the conditions explored in this study. 
This is an example of a situation where discovering the gel 
regime boundaries may be preferable to fully characterizing 
the formulation space, as a full characterization is expensive 
to obtain and a sparsely occupied space-filling design might 
poorly characterize the boundaries.

Also indicated in Figure  4C is the relative concentration of 
HRP in each formulation. The size of the marker indicates 
the relative concentration of HRP, with larger markers indi-
cating higher concentrations of HRP. A clear relationship exists 
between HRP concentration and gel time, with higher HRP 
concentrations tending to gel the reactions more quickly. This 
finding agrees with other literature detailing HRP-mediated 
silk hydrogelation.[6c]

Table S1 (see Supporting Information) presents the data 
in tabular form. Silk was added in the range of 1.71–6.0% w/v, 
hydrogen peroxide ranged from 15–300 parts per million,  
HRP from 5–243 U mL–1, and cell concentrations from  
0.1–1.4 × 109 cells mL–1. 8 of the 63 samples, 7 obtained during 
the expert guided phase, gelled within the specified 5–15 min 
window. Note that the object of the ML algorithm was to discover 
the gel regime boundaries in the formulation space and not to 
find specific formulas that gelled within the 5–15 min window.

2.3. Comparison of Protein Production in 5–15 min Silk 
Hydrogels

A second experiment was designed to determine which for-
mulas that gelled within 5–15 min promoted maximum bacte-
rial activity. Four such formulas were selected for further study. 
To facilitate comparison, each chosen formula contained a 
matched bacterial load of 1.14 × 109 cells mL–1. Beyond that, the 
selected formulas sampled the widest range of constituent con-
centrations available in the previously obtained 5–15 min sam-
ples and included: 1) 5.31% silk, 175 ppm H2O2, and 10 U mL–1 
HRP, 2) 3% silk, 50 ppm H2O2, and 18 U mL–1 HRP, 3) 2% silk, 
125 ppm H2O2, and 20 U mL–1 HRP, and 4) 3% silk, 300 ppm 
H2O2, and 28 U mL–1 HRP.

For these experiments, fresh cultures were grown to the 
required OD600 and added to the treatments immediately. This 
is in contrast to the way cells were prepared and added to the 
treatments in the 4D formula space experiment presented in 
Figure  4. In that case, all cells for the entire campaign were 
prepared in one large batch and frozen in aliquots to ensure 
matched cell fractions throughout the characterization cam-
paign. In these experiments addressing bacterial viability, fresh 
cells were added to gel formulas. Once fresh cells were added to 
the formulas, the samples were allowed to gel, overlaid with cul-
ture medium, and cultured for 24 h under inducing conditions.

From preliminary growth experiments, it had been 
observed that both the fluorescence intensity produced by the 

embedded cells and evidence of extended bacterial growth 
(as indicated by the appearance of bacterial colonies) varied 
significantly based on location within a gel. That is, the fur-
ther away a cell was from the nutrient overlay within any 
given sample, the less intense, generally, the fluorescence. 
In fact, induction of fluorescence in cells located deep within 
a gel was extremely poor (see Section S8 of the Supporting 
Information.) In gels seeded with dilute suspensions of cells, 
where the oxygen and other nutrient levels were not limiting 
during early stages of growth, a number of distinct colony 
morphologies (including oblong spherical, filamentous, and 
“hairy” filamentous) were produced in different hydrogel for-
mulations even in deep sections (see Section S9 in the Sup-
porting Information). In contrast, when cells were added in 
higher concentrations (such as was done for the replicated 
treatments), cells grew into colonies only near the surface of 
the gel–liquid interface perhaps as facilitated by more readily 
available oxygen or other nutrients.

To ensure similar nutrient and oxygen availability between 
samples, gels were cast into thin sheets by adding approxi-
mately 100 μL of pre-gel material to the open wells and then 
spreading the material to cover the entire well bottom (≈1 cm2). 
Casting into thin sheets created areas that could be observed 
microscopically to contain cells growing in gels near the 
liquid-gel interface, where a pathway to oxygen and nutrient 
exchange was not blocked by competing cells. Confocal stacks 
used for comparisons between treatments were selected to 
show regions spanning the coverglass, at various z-positions 
within the hydrogel including near to the gel–liquid interface, 
and extending into the culture medium overlay. Thus each 
imaged gel section was no thicker than approximately 180 μm. 
Figure 5A illustrates the imaged regions. Results from imaging 
through the thin sections of the four bacteria-laden silk hydro-
gels cast in formulas that previously gelled within 5–15 min is 
presented in Figure 5.

Of the four treatments recast with fresh cells, two produced 
gels that consistently gelled in the expected 5–15 min window. 
These treatments were: 3% silk, 50 ppm H2O2, and 18 U mL–1  
HRP; and 2% silk, 125 ppm H2O2, and 20 U mL–1 HRP. These 
growth experiments, with concurrent gel time measurements, 
were repeated on two, three, and four separate days (see 
Figure 5B) starting from fresh inoculum. In general, the repeat-
ability of each treatment across days is excellent.

The two treatments that did not gel within the expected 
window (treatments 1 and 4 from Figure 5B) were observed to 
gel within 30 min. The inability to repeat gel times in all treat-
ments of the growth experiments compared with the gel times 
observed for those matched treatments in the 4D characteriza-
tion campaign may be due to a number of factors including 
the difference in cell seeding stock (fresh vs frozen), varia-
bility in the age or activity of the other hydrogel precursors, or 
the discrepancy in reaction temperature between the gel time 
screening campaign and the campaign to study bioactivity in 
the matched subset of formulas gelling within the targeted 
5–15 min window. Specifically, reactions during the 4D char-
acterization campaign were conducted at 30 °C, whereas the 
bioactivity assays were done without that control. The lower 
temperature in the bioactivity assays (conducted at room tem-
perature) likely explains the slower gelation observed in those 
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samples. These discrepancies highlight the potential need to 
characterize a biomaterial system in a manner that anticipates 
the intended use as closely as possible. On the other hand, the 
ability to reproduce gel times in two of the four selection treat-
ments in spite of the experimental differences suggests that 
certain regions of the bacteria-embedded silk formula space 
are quite robust.

Biological activity in the treatments was assessed according 
to three criteria that could be observed microscopically. The 
first criterion was the relative number of cells, as suggested 
by the number of E. coli-sized fluorescent puncta. The second 
was the amount of fluorescent protein in the cells, as judged 
by the brightness of the individual puncta. The third was the 
amount of growth as measured by the morphology of a colony 
extending beyond individual E. coli-sized puncta.

By visual inspection, cell numbers appeared roughly con-
stant across treatments. As each treatment was seeded with 
a matched bacterial population, the observation of similar 
quantities of E. coli-sized puncta across treatments suggests 
no significant differences in reproduction. For each of the 
four treatments, fluorescence intensity in E. coli-sized puncta 
was high near the glass surface and generally diminished as 
the optical path length increased. As the availability of oxygen, 
required for fluorophore maturation, is expected to be higher 
as the distance from the coverglass increases, the observed 
attenuation in the fluorescence intensity with increased dis-
tance from the coverglass is attributed to optical attenuation 
in the material. In fact, the clarity of distinct silk hydrogels 
does differ depending on formula (data not shown), and the 

formula with the highest H2O2 concentration demonstrated 
the most significant optical attenuation. The variations in 
optical attenuations made it impossible to compare the treat-
ments by fluorescence intensity differences alone without 
complex normalization schemes.

Despite the challenges in comparing treatments based on 
simple fluorescence intensity, Figure  5 presents evidence that 
bacterial growth within each of the distinct formulations was 
qualitatively similar. Near the gel–liquid interface for each for-
mulation, cells grew into sphere-like colonies. The thickness of 
the region producing the colony formations was similar across 
treatments. Cells far from the gel–liquid interface did not 
manifest similar colony morphology. For the two cases which 
repeatedly gelled within the chosen window of 5–15 min, dif-
ferences in confocal images are not pronounced. This observa-
tion suggests that other material properties, for example stiff-
ness and optical clarity, may be able to be tuned independent 
of the gel time and biological productivity. Further studies on 
bacterial growth within hydrogels are needed to study the range 
in which material properties can be varied while maintaining 
bacterial activity.

3. Conclusion

Exciting opportunities exist for living biomaterials. Challenges 
to their development and perfection include the potential vast-
ness of material formulation spaces and potential trade-offs in 
competing materials and biological properties. Tools to facilitate 

Figure 5.  Overnight protein production in 5–15 min silk hydrogel formulas. A) The confocal imaging setup. A relatively thin section of bacteria-laden 
hydrogel was imaged in an inverted configuration, with images spanning the region beneath the coverglass, through the hydrogel sample, and into the 
overlaying culture medium. B) Representative confocal micrographs of bacterial cells growing near the gel-medium interface for four treatments that 
were previously observed to gel within 5–15 min. Each confocal image is a side view of the maximum intensity projection of a stack of 80 × 80 µm2 
images sampled every 0.5 µm over a depth of 200 µm. Micrograph orientation matches the orientation depicted in (A). Cells positioned toward the 
top side of the images were progressively closer to the gel-medium interface, and gel sections were chosen such that the top side of each image shows 
(as a lack of fluorescence) the liquid media overlaying the hydrogel. The white rectangles mark the estimated location of the gelled material, whereas 
red rectangles illustrate the full stack of images taken through the sample. C) The gel times for each replicated treatment measured by DDM-RL, with 
gel times reported in minutes and the number of replicates for each treatment indicated. Treatment formulas included 1) 5.31% silk, 175 ppm H2O2, 
and 10 U mL–1 HRP, 2) 3% silk, 50 ppm H2O2, and 18 U mL–1 HRP, 3) 2% silk, 125 ppm H2O2, and 20 U mL–1 HRP, and 4) 3% silk, 300 ppm H2O2, 
and 28 U mL–1 HRP. Scale bar is 20 μm.
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rapid screening of large numbers of formula permutations and 
processing conditions are needed to maximize return on devel-
opment efforts.

We modified a recently developed tool for microrheology 
known as DDM to enable a new framework for automated 
screening of gel times in bacteria-laden silk hydrogels. The 
last point in the gelation process for which DDM resolves 
physically meaningful MSD curves was developed as a 
simple criterion for the onset of gelation. This approach, 
termed DDM-RL, is shown to correlate approximately with 
gel time measured by MPT-G′/G″ cross-over and MPT-
TCS in hydrogels comprised of enzymatically crosslinked 
silk. DDM-RL thus provides a supervision-free route to the 
approximate determination of gelation kinetics which is 
valuable for automated or high-throughput screens. When 
greater precision or more comprehensive data is required, 
TCS, conversion of MSDs from MPT into mechanical 
moduli, or the determination of individual particle trajecto-
ries and displacement distributions can all be performed on 
the same raw data through MPT. These procedures, however, 
require an expert user to adjust a number of parameters 
and to subjectively determine the suitability of the analysis. 
DDM-RL, though less accurate and yielding less information 
than MPT-based techniques, can be objectively implemented 
without expert user interactions and is thus an enabling 
technique for screening large numbers of samples in auto-
mated pipelines.

In hydrogels with added E. coli cells, a range of gel times 
is observed when formula components (silk, HRP, hydrogen 
peroxide, and bacterial cells) are varied over wide ranges. 
Within a small subset of treatments that gel within 5–15 min 
with matched bacterial loads, biological activity as measured 
by production of fluorescent protein appeared to be roughly 
the same. This suggests that other material properties, for 
example stiffness and optical clarity, may be able to be tuned 
independent of the gel time while maintaining biological 
activity.

The mix of properties important to the success of bioma-
terial design efforts, in combination with the potential vast-
ness of formulation spaces, highlights the need for tools to 
facilitate rapid and intelligent screening. In this regard, we 
demonstrated that a combination of Bayesian ML models and 
optimal decision-making under uncertainty was more effi-
cient than an expert user at choosing experimental treatments 
to characterize a complex formulation space. Interestingly, the 
data obtained when switching planner responsibility between 
an ML algorithm and expert user suggests the possibility that 
cooperative experimentation between ML and experts could 
result in increased learning in comparison to either agent 
acting alone.

4. Experimental Section
Silk Hydrogelation: Silk hydrogels were made according to previously 

published procedures[22] which were based on di-tyrosine crosslinking by 
HRP in the presence of hydrogen peroxide. A two-part mixing scheme 
was employed to control gelation and mixing by separating the HRP 
from the hydrogen peroxide until the time of mixing. Part A contained 

water, silk, cells, and HRP. Part B contained water, silk, cells, and 
hydrogen peroxide. Tracer beads were added to the silk formulas at 1:700 
dilution, resulting in approximately 100–150 beads per 40 × 40 µm2 field 
of view. Beads were near-IR calibration beads (750 nm excitation) with a 
diameter of 100 nm, dialyzed against water to remove cytotoxic sodium 
azide. (F8799, Thermofisher).

Silk was isolated from Bombyx mori cocoons according to previously 
published procedures.[6a,22] In brief, cocoons were obtained commercially 
(e.g., Aurora Silk, Portland, Oregon, USA), delaminated and scraped 
clean of debris, boiled in sodium carbonate in water, soaked in lithium 
bromide in water, and dialyzed. Final silk concentration was assayed 
gravimetrically. Typical silk yields were approximately 50 mL of 6.5% w/v 
silk from 7.5 g of dewormed, delaminated cocoons.

Formulation treatments were prepared from frozen stock aliquots. 
Silk, HRP, and bacterial cell aliquots were all stored at -80 °C at 
concentrations of roughly 6% silk w/v, 2000 U mL–1 HRP, and cells at 
10× OD600 of 1.25 (all in water). Stock hydrogen peroxide (0.65 m, 1 mL 
30% w/w H2O2 in 14 mL water), was stored at 4 °C. Prior to use, a silk 
aliquot was thawed to room temperature and then lightly spun down. 
In some cases, a miniscule pellet of precipitated silk would appear on 
the tube side wall, but precipitated silk was not added to experimental 
samples.

Throughout this work, cell fractions in the silk formulations are 
expressed as cells mL–1, based on a conversion of 8 × 108  cells mL–1 
per OD600 unit. Cells were added to silk hydrogels in fractions ranging 
from ≈0.13–1.43 OD600 equivalents, corresponding to approximately  
0.1–1.4 × 109 cells mL–1.

Bacterial Culture: E. coli BL21 (DE3) was transformed with the 
pDawn plasmid and used for all experiments involving bacterial 
viability and induction. pDawn puts expression of dsRed-Express2 
under white light illumination control[34] and carries a resistance 
marker for kanamycin. Bacterial aliquots for mixing into hydrogels 
were prepared according to two protocols, depending on the 
experiment. For experiments characterizing living material gel time in 
4D formulations (as shown in Figure  4), a large number of bacterial 
aliquots were made of overnight bacteria harboring the pDawn 
plasmid. Bacteria were first shaken in LB at 37  °C with kanamycin  
(50 μg mL–1) overnight, and then the overnight culture was spun down 
and resuspended in PBS (pH 7.4; 8 g NaCl, 0.2 g KCl, 1.42 g Na2HPO4, 
0.25  g KH2PO4 per liter of water). The suspension was then titrated 
to an OD600 of 1.25 using PBS and then pelleted and resuspended 
in water to 1/10 volume for a 10× concentration of OD600 of 1.25. 
Aliquots of 120 μL were placed into a −80 °C freezer and stored until 
use, thawed immediately before use and kept on ice during use. All 
aliquots were used within one week.

For experiments characterizing biological production of bacteria in 
silk hydrogels (as shown in Figure  5), cells were first grown overnight 
in LB with 50 μg mL–1 kanamycin monosulfate (GoldBio, MO). 400 μL 
of overnight culture was then added to 20 mL M9 minimal broth (VWR 
International, LLC; 10  g L–1 with 0.24  g MgSO4, 0.011  g CaCl2, and 2  g 
glucose), supplemented with 1× vitamins (100× MEM vitamin solution, 
Thermofisher), 1× amino acids (50× MEM amino acids solution, 
Thermofisher), and kanamycin again at 50 μg mL–1. Cells were grown 
for 4–5 h until an OD600 of approximately 1. Cells were then spun 
down and concentrated in M9 salts (10  g L–1 M9 minimal broth base 
only) to achieve an OD600 of 1.25. The cells were then pelleted again 
and resuspended in 1/10 volume water and placed on ice to achieve 
a concentration matching bacteria used in the gel time experiments. 
Cells were kept in the dark during preparation of aliquots in order to 
keep background fluorescent protein to a minimum. Within 20 min 
after concentrating into water, cells were added to hydrogel precursor 
solutions and mixed together. Gels were cast as 100 μL slabs in 8-well 
chambered coverglass (Lab-Tek, Rochester NY, USA). Approximately 
30 min after gel reaction initiation, the samples were overlaid with  
600 μL of fresh M9 medium with antibiotics and supplements and 
placed into an incubator at 37  °C. Cells were grown overnight with 
continuous, incandescent illumination to induce protein expression 
(dsRed-Express2) from the pDawn plasmid.

Adv. Biology 2022, 6, 2101070



www.advancedsciencenews.com www.advanced-bio.com

2101070  (12 of 14) © 2021 Wiley-VCH GmbH. This article has been contributed to by US  
Government employees and their work is in the public domain in the USA

DDM Microrheology: Samples ranging in volumes from 100–400 μL 
were imaged within open (unsealed), 8-well chambered coverglass 
slides (Lab-Tek, Rochester NY, USA). Note that the volumes required 
for DDM were the same as those required for MPT but were larger 
for these experiments for convenience in sample preparation, 
handling, and imaging in the larger, open-well format. For 
experiments characterizing the 4D formulation space, the samples 
were held at 30 °C throughout the course of gelation using a heated 
stage whereas replicated treatments for the growth and viability 
study were at room temperature. Images were taken from a focal 
plane ≈100 µm above the coverglass. A typical acquisition framerate 
was 100  Hz, acquired using a CMOS camera on a Vutara 352 
microscope (Bruker, Billerica, MA, USA) with a 60× water immersion 
lens. Tracking bead density was selected to result in approximately 
100 beads per frame (per 40 × 40  µm2 field of view). Beads were 
carboxylate-functionalized polystyrene of 100 nm diameter, reporting 
in the near-IR wavelengths (F8799, Thermofisher). Videos of 1000 
frames each were captured at several points as each sample gelled. 
A typical gelation reaction was observed every 2 min over a 30 min 
timeframe. Intensity fluctuations in each image stack were converted 
to an image structure function using DDM implemented in MATLAB, 
as previously reported.[26b,26c,28] The MSD curves were then extracted 
from the image structure functions[26b] using a standard deviation 
acceptance cutoff of 0.025 a.u. in the plateau regions of the D(q,Δt) 
for each wave vector q. See Section S10 in the Supporting Information 
for more detail. Additional convenience code was written as part 
of this work in order to automate the collection and processing of 
gelation experiments. See Section S11 in the Supporting Information 
for details.

Gel Time Estimates by MPT and DDM: Gel times were estimated 
by MPT by two methods: MPT-G′/G″ and MPT-TCS. MPT-G′/G″ 
consisted of first computing the MSD at each time point,[26b] using 
a local power law approximation to compute the G′/G″ as functions 
of frequency,[35] and by then identifying the time at which G′ exceeds 
G″ for all frequencies. Gel time estimation by MPT-TCS was done 
by  applying shift factors to the lag times and MSDs, starting from 
both pre-gel and post-gel time points. Alignment was assumed 
successful when the MSDs were maximally overlapping and the plots 
of shift factors versus reaction coordinate were sufficiently linear on 
a log–log scale. See Section S3, Supporting Information, for detailed 
discussion.

Neither static nor dynamic MPT errors were corrected for in these 
data, as static and dynamic error correction methods require sampling 
closely-matched controls. These controls were not easily obtained 
in gelling systems, especially when gel opacity was changing as was 
observed for some of these samples.

For DDM-based gel times as supplied to the ML algorithms, 
estimates were obtained by adding half of the sampling interval to the 
time associated with the last MSD curve calculated by DDM. As an 
example, if a gelation reaction was observed every 2 min and the last 
physically reasonable MSD curve reported by DDM occurred at min 
14, then the gel time supplied to the ML algorithm was 15 min. For the 
purpose of comparison with other techniques, gel times by DDM-RL 
were estimated to occur in the time intervening the last resolved MSD 
and one full observation interval thereafter.

Occasionally, DDM failed to resolve MSDs at some pre-gelation time 
points but would succeed in later pre-gelation time points. See Panel B 
of Figure S9, Supporting Information, at time points 2.56 and 3.24 min 
for an example. The reason for the failure was not apparent but forced 
the estimation of gel time by the last time point that DDM resolved an 
MSD rather than the first time point for which it failed to resolve. See 
S12 in the Supporting Information for more detail.

In some cases, the last or last few MSD curves of a gelling solution 
would result in physically nonsensical MSD curves. These curves would 
appear erratic, relatively independent of lag time, and report MSDs 
several orders of magnitude higher than earlier (temporally adjacent) 
MSD curves (e.g., see Supporting Information Section S13). These 
erratic curves likely result from intensity fluctuations due to background 

noise or out of plane light which do not correlate with particle motion 
but nevertheless pass the statistical acceptance criteria.[26b] Erratic 
curves were discarded manually by inspection.

A typical iteration of the gel time estimation campaign loop (Figure 3) 
consisted of four formulations tested in parallel, with each iteration 
taking approximately 4 h. Each set of four reactions was observed 
microscopically for 30 min. DDM-RL required approximately 5 min per 
time point per formula treatment when the images were analyzed using 
exponential lag time spacing. A typical reaction was observed at 15 time 
points, with 1000 images taken at each time point. Once gel times were 
determined, results were supplied to the ML experimental planner which 
required approximately 10 min to produce four new recommendations 
for the next iteration.

In contrast, processing by MPT (as was done to produce Figure  2) 
required approximately 15–20 min per gelling sample, with intensive 
user interaction for the first 5–10 min. Note that our MPT software also 
performed dedrifting, calculated G′ and G″, and annotated videos with 
particle identifications and could be run more quickly without these 
additional actions. MPT-TCS analysis added more time to the analysis, 
with manual shifting and plotting requiring approximately 30 min per 
gelation reaction, for some samples much longer.

Bulk Rheology: Bulk rheology was performed using a parallel plate 
rheometer with a fixed bottom plate and 25  mm rotating top plate 
(Discovery HR-2, TA instruments, New Castle, DE, USA). Immediately 
after mixing, 490 μL of gelling silk solutions were pipetted onto the 
bottom plate and held in place by surface tension. Temperature was 
maintained at 30  °C in order to match parallel optical microscopy 
experiments. Rheology was performed by oscillating at various 
frequencies ranging from 0.1–10  rad s−1 with strain held at 1.25%. 
Samples were run serially, one gelation reaction per oscillation frequency. 
Loss angle was plotted over time for each experiment, and the point at 
which loss angle was invariant with frequency (the point at which each 
curve intersected) was taken as the gel point.

Identifying Silk Formulas Promoting Maximal Biological Activity: 
Bacterial colonies were examined with a Bruker Opterra confocal 
microscope (Bruker, Billerica, MA, USA), imaging directly through the 
bulk gels. Image stacks were acquired with an 80 × 80 µm2 field of view, 
200  µm thick, sampling every 0.5  µm. 561  nm laser illumination was 
at 1–5% with an integration time of 100  ms. Embedded bacteria were 
imaged close to the coverglass and extending 200  µm up through the 
gel and into the cell culture medium. 3D volumes were projected into 2D 
using maximum intensity projections.

Machine Learning: After n iterations of the campaign loop, the 
planner built a GP model Bn  = GP(μn, Σn) of the gelation time f⋆(x), 
where x represented the input parameters of a gelation experiment. 
Here, μn(x) and Σn(x, x′) represented the time-n mean and covariance 
functions, respectively, and together, the GP model represented a 
probability distribution over functions that the authors believed the 
unknown gelation time response function f⋆was sampled from, based 
on the n experiments performed. These functions could be defined 
using standard formulas and a prior belief B0 = GP(μ0, Σ0), which was 
manually specified as

µ ( ) =0 x c 	 (1)

, exp /0
2
2
σ( )∑ ′ = − − ′



x x x xn 	 (2)

where c  = 10 s is a prior estimate of the average gelation time,  
σ0 = 5 s is a prior uncertainty around this initial, constant estimate. The 
(normalized) length scale ℓ = 0.2 describes the presumed statistical 
relationship between the gelation time f ⋆(x) and f ⋆(x′). See Rasmussen 
for details.[36]

With this belief, the GKG decision-making policy was used to select 
the next set of experiments to run.[37] Namely, the authors considered 
the input condition that maximized

argmaxnext GKGν ( ) ( )=x x AAAx 	 (3)
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where

GKG
1

nextL Lν ( ) =   =  −  
+x f x x fn nE 	 (4)

is the GKG acquisition function. Here:

•	 [·]L  is a feature operator, that calculates a feature vector from an 
estimate of the gelation-time response function. Namely, a set of 
query points {x1,x2,…, xL} and a bitmap representation predicted 
optimal region were defined:

( )  = …, , ,1 2 Lf b b bn T
L 	 (5)

b
t f x t

i

n
i1,

0,otherwise
lo hi( )= ≤ ≤




	 (6)

•	 The expected value term [ [ ] ]1
nextL =+f x xnE  is the average value of 

the feature vector +[ ]1f nL  that the authors would obtain if they were 
to a) run the experiment x as the next experiment, b) obtain the 
output, c) fit the time-(n + 1) GP, d) calculate the feature vector from 
the time -(n + 1) GP. It is an average over the result of this simulation 
of what would happen if the authors were to run experiment x. In 
practice, this quantity was calculated using MC methods. An estimate 
was obtained by averaging over the results of statistical simulations 
of what would happen if the authors were to run experiment x. The 
simulated output response was sampled from the time-n GP, and 
subsequent calculations were made upon and averaged over 32 
sampled responses.

A 4D grid with logarithmic scaling was used to define query points of 
the GP surrogate model. At each grid point xi, the surrogate was used to 
define a label ℓi to classify it into one of three discrete classes (gelation 
regimes) based on whether the surrogate predicted a gelation time of 
less than 5 min (ℓi = − 1), greater than 15 min (ℓi = 1), or between 5 and 
15 min (ℓi = 0)). The grid point was then transformed to a 2D point zi = 
h(xi) according to the domain-expert defined change in variables. The 
data set {(zi,ℓi)} was then used to train a kernel Support Vector Machine 
(SVM) classifier model using a squared-exponential kernel to obtain 
a classification of points of the 2D space. The colored regions in the 
predicted gelation regime map indicate the SVM model’s prediction of 
class at points in the 2D space.

A similar procedure was used to obtain the 2D visualization of model 
uncertainties shown as the last plot in Figure 4A. At each grid point xi, the 
GP model was queried to obtain the standard deviation representing the 
uncertainty σi associated with the model’s mean prediction of the gelation 
time. The data points {(zi, σi)} were used to train a kernel SVM regressor 
using a squared-exponential kernel. This SVM model was then used to 
calculate the projected estimate of the uncertainty in the 2D space.

Error estimates (Figure  4B) were computed from the GP model on 
the gelation time, g(x). Using the hypervolume as metric, the region 
corresponding to 5 < g(x) <  15 min for successive iterates of model 
fitting (Ωn) was compared with the region predicted by the final model 
(Ωfinal). Relative error was computed as:

Relative error final n

final
( ) = Ω − Ω

Ω
n 	 (7)

Likewise, the relative change (Figure 4C) was computed as follows:

( ) = Ω − Ω
Ω
+Relative change 1n n n

n
	 (8)

where Ωn+1 is the predicted hypervolume resulting from several scenarios 
given a choice of potential experiments.

Note that transformations and the use of SVM models in 2D space 
were solely for visualization. The decision-making and belief modeling 
were done in the original 4D space.
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