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Abstract

1. The Amazon basin hosts the Earth's highest diversity of freshwater fish. Fish spe-

cies have adapted to the basin's size and seasonal dynamics by displaying a broad

range of migratory behaviour, but they are under increasing threats; however, no

study to date has assessed threats and conservation of Amazonian migratory

fishes.

2. Here, the available knowledge on the diversity of migratory behaviour in Amazo-

nian fishes is synthesized, including the geographical scales at which they occur,

their drivers and timing, and life stage at which they are performed.

3. Migratory fishes are integral components of Amazonian society. They contribute

about 93% (range 77–99%) of the fisheries landings in the basin, amounting to

!US$436 million annually.

4. These valuable fish populations are mainly threatened by growing trends of over-

exploitation, deforestation, climate change, and hydroelectric dam development.
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Most Amazonian migratory fish have key ecological roles as apex predators, eco-

logical engineers, or seed-dispersal species. Reducing their population sizes could

induce cascading effects with implications for ecosystem stability and associated

services.

5. Conserving Amazonian migratory fishes requires a broad portfolio of research,

management, and conservation actions, within an ecosystem-based management

framework at the basin scale. This would require trans-frontier coordination and

recognition of the crucial importance of freshwater ecosystems and their

connectivity.

6. Existing areas where fishing is allowed could be coupled with a chain of freshwa-

ter protected areas. Management of commercial and subsistence species also

needs fisheries activities to be monitored in the Amazonian cities and in the flood-

plain communities to allow assessments of the status of target species, and the

identification of management units or stocks. Ensuring that existing and future

fisheries management rules are effective implies the voluntary participation of

fishers, which can be achieved by increasing the effectiveness and coverage of

adaptive community-based management schemes.

K E YWORD S

biodiversity, fisheries management, hydroelectric dams, overexploitation, societal importance,
threats

1 | INTRODUCTION

Recent reviews have shown that most migratory animals across the

planet are suffering major population declines, more so than related

non-migratory species (Bauer & Hoye, 2014; Lennox et al., 2019).

They have also emphasized the critical ecological role of animal migra-

tions for ecosystem stability and functioning, and the universality of

the causes driving their decline: habitat loss, barriers to migrations,

overexploitation, and climate change. Animal migrations are notori-

ously difficult to define, and classic examples involving large-scale

movements represent extreme cases rather than the rule (Dingle &

Drake, 2007). Here, based on Dingle and Drake (2007), Lucas and

Baras (2001), and McIntyre et al. (2016), migrations are considered as

periodic or seasonal synchronized movements of adaptive value (criti-

cal for individual fitness and population persistence) between two or

more separate habitats involving a large portion of the population and

which are repeated within or across generations. Migratory species

rely on multiple, distant but interconnected habitats during their life

cycle, which has been termed ‘triple jeopardy’, illustrating their

dependence on at least two distant habitats and on the corridor that

relates them (McIntyre et al., 2016). Unlike flying or terrestrial animals,

the movement of freshwater fishes is highly constrained by the linear

and hierarchical structure of freshwater networks, and their migration

corridors can be easily blocked by human causes. As a consequence,

freshwater migratory fishes, which sustain vitally important fisheries

for millions of people across the world, are among the most endan-

gered of freshwater biota (Dudgeon et al., 2006).

Human impacts on migratory fish species are of growing concern

in the Amazon basin, which hosts the world's highest freshwater fish

species richness, with 2,406 species, representing 15% of the world's

freshwater fishes (Jézéquel et al., 2020). Nearly all migratory fish spe-

cies in the Amazon are considered to be potamodromous, migrating

between different and often distant freshwater habitats to complete

their life cycles. Many migratory movements are synchronized with

the ‘flood pulse’ of Amazonian rivers (Junk, Bayley, & Sparks, 1989),

which creates marked seasonal water-level variations to which fish

species have adapted. The most conspicuous commercial species,

such as the large and medium-sized Characiformes (e.g. Prochilodus,

Collossoma) and the large goliath catfishes (e.g. Brachyplatystoma) per-

form medium‑ to long-distance migrations in the Amazon basin that

have received most of the attention to date (Barthem &

Goulding, 1997; Carolsfeld, Harvey, Ross, & Baer, 2003). However,

the species that perform seasonal synchronized movements at local

scales between the river channels and the flooded environments, such

as many floodplain species, can also be considered migratory. This is

because their non-random lateral movements involve the repetitive

use of separate habitats that are essential to their feeding and repro-

ductive success, and hence to the completion of their life cycles

(Fernandes, 1997; Lucas & Baras, 2001; Osorio et al., 2011;

Winemiller & Jepsen, 1998).

Given the diversity of Amazon fishes, the complexity of their life

cycles, and the growing human pressures, there is a major need to syn-

thesize critically available information to assess prospects for

conserving Amazonian migratory fishes. This article addresses five
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questions: (i) What is the diversity of migratory behaviour among

Amazonian fishes? (ii) What is the societal importance of migratory

fishes in the Amazon basin? (iii) What factors threaten migratory spe-

cies in the Amazon basin? (iv) What are the potential ecosystem

impacts of extirpation or strongly reduced populations of migratory

fishes in the Amazon basin? (v) What are the challenges in research,

management, and conservation to preserve migratory species in the

Amazon basin?

2 | DIVERSITY OF MIGRATORY
BEHAVIOUR IN AMAZONIAN FISHES

2.1 | Diversity

The freshwater fish fauna of the Amazon (excluding its coastal zones)

contains an estimated 2,406 valid species, including 1,402 endemic

species representing 514 genera, 56 families, and 15 orders (Jézéquel

et al., 2020). Of those, at least 172 species (!7.1% of all species in the

basin) belonging to seven orders (!46.7%), 26 families (!46.4%), and

90 genera (!17.5%) perform potamodromous migrations (Supporting

Information Table S1). Most migratory species belong to the orders

Characiformes (60.5%) and Siluriformes (29.7%).

2.2 | Scales and types

The geographical scale of fish movements in the Amazon basin is

often related to the direction of their migrations, which can be longi-

tudinal (long and medium distance) or lateral (short distance)

(Figure 1). Longitudinal migrations occur within the upstream–

downstream gradient of rivers in both directions and can connect

different parts of a river (upstream with downstream) or even the

estuary or the main river channels with the headwaters (e.g. Andes,

F IGURE 1 Illustration of the main fish migratory patterns in the Amazon basin (see Section 2 for details). The main graph represents the long-
distance migrations (several thousand kilometres) of goliath catfishes, with larvae (brown loop) drifting down (brown arrows) from their hatching
areas in the white waters of the Andean piedmont to their nursery areas in the Amazon estuary, where they will feed and grow a few years
before migrating back to their breeding areas in the Andean piedmont (large and slender yellow arrows). The blue fish rectangle illustrates the
medium-distance migrations (several hundred kilometres), exemplified by the Prochilodus spp. and Semaprochilodus spp. upstream movements
(orange arrows) and downstream movements (blue arrows) between nutrient-poor black water and nutrient-rich white-water tributaries. The
green fish rectangle illustrates the small distance lateral migrations (a few kilometres) performed by most species between main rivers and their
floodplains, comprising a wide array of both permanently (oxbow lakes) and temporarily flooded environments (forests and savannahs)
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Precambrian shields) or smaller tributaries (e.g. terra firme streams).

Lateral migrations occur among habitats of river floodplains, including

the main river channels and lakes, connecting channels, and various

vegetated habitats, such as flooded forests (Fernandes, 1997; Osorio

et al., 2011). Whereas a few species (e.g. Brachyplatystoma) perform

only long-distance longitudinal migrations, some species perform both

longitudinal and lateral migrations (e.g. Characiformes), and some per-

form mainly lateral migrations (e.g. Osteoglossiformes).

The longest longitudinal migrations known in freshwater ecosys-

tems are performed by a group of large-bodied (1–3 m) goliath

catfishes of the genus Brachyplatystoma (Barthem & Goulding, 1997;

Barthem et al., 2017; Hauser, 2018; Hauser et al., 2019). One

species, Brachyplatystoma rousseauxii, performs a trans-Amazonian

round-trip migration of up !12,000 km between its hatching areas in

the Andean piedmont of Bolivia, Colombia, Ecuador, and Peru and its

nursery in the lower Amazon and estuary in Brazil (Barthem &

Goulding, 1997; Barthem et al., 2017). In this exceptional migration,

most adult fish return to the geographical area (sub-basin) where

they were hatched (Duponchelle et al., 2016; Hauser et al., 2020), a

process called ‘natal homing’. Intermediate migrations on the scale of

hundreds of kilometres are performed by several species of the

orders Siluriformes, Characiformes, and Clupeiformes, for reproduc-

tive or feeding purposes between the floodplains and river channel,

headwaters, and tributaries (see synthesis by Araujo-Lima &

Ruffino, 2003; Diaz-Sarmiento & Alvarez-León, 2003; Figure 1).

Some of the best-documented examples of these migrations come

from the prochilodontids. Juveniles of Prochilodus nigricans are esti-

mated to travel a minimum of 500 km upstream from floodplains

towards western Amazonia (Silva & Stewart, 2017). Similarly,

Semaprochilodus spp. travel up to 250 km upstream and downstream

between nutrient-poor water where they feed and white-water river

channels where they reproduce in central Amazonia (Ribeiro &

Petrere, 1990).

Short migrations of only a few kilometres between habitats of the

main river and the floodplains are usually referred to as lateral migra-

tions. They are performed by most migratory Characiformes (Araujo-

Lima & Ruffino, 2003; Diaz-Sarmiento & Alvarez-León, 2003;

Fernandes, 1997; Goulding, 1980). Osteoglossiformes, such as

Arapaima, have been shown to move synchronically through a total of

eight distinct river floodplain habitats over the course of the flood

pulse, closely following river water levels (Castello, 2008).

2.3 | Drivers

Fish migrate for three main purposes: reproduction, feeding, and sur-

vival; however, distinguishing among these drivers is often challenging

(Lucas & Baras, 2001; McIntyre et al., 2016). In the Amazon basin, fish

migrations are intimately linked to seasonal fluctuations of the hydro-

logical regime (Goulding, 1980; Junk et al., 1989). Reproductive migra-

tions of many Characiformes species are synchronized with the rainy

season and rising waters, presumably to optimize environmental con-

ditions for the hatching of eggs, growth of larvae and juveniles, and

survival in general. Reproductive migrations can involve lateral move-

ment between main channels and floodplains, such as in some piranha

species, which lay their eggs on newly submerged vegetation

(Uetanabaro, Wang, & Abe, 1993). In longitudinal reproductive migra-

tions of Characiformes, adults of most species move downstream dur-

ing rising waters from nutrient-poor black‑ or clear-water tributaries

into white-water rivers’ mainstems to spawn (Araujo-Lima &

Ruffino, 2003; Diaz-Sarmiento & Alvarez-León, 2003; Ribeiro &

Petrere, 1990). Longitudinal reproductive migrations of most large

Siluriformes are carried out upstream, towards the Andean piedmont

(Barthem et al., 2017; Barthem & Goulding, 1997; Duponchelle

et al., 2016; Hauser et al., 2019; Hauser et al., 2020). White-water

river mainstems mainly serve as highways for larvae drifting into nurs-

ery grounds located downstream in floodplains during the high-water

season (Araujo-Lima & Oliveira, 1998; Lima & Araujo-Lima, 2004).

White-water river floodplains and the estuary are also richer in nutri-

ents and more productive than black‑ and clear-water systems, offer-

ing better conditions as nursery areas; juveniles of many migratory

fish in the Amazon are only found in these habitats (Lima & Araujo-

Lima, 2004).

Feeding migrations occur mostly during high waters, when,

through lateral movements, adults of many frugivorous species

(e.g. Serrasalmidae, Bryconidae) enter floodplains during high waters

to benefit from the newly available habitat and feed on fruits falling

from the inundated forest (Correa, Costa-Pereira, Fleming, Goulding,

& Anderson, 2015).

2.4 | Timing and fish life stages

Migrations occur at different life stages with different durations

across the life span of Amazonian fish species. The trans-Amazonian

migration of juvenile and sub-adult B. rousseauxii from their nursery

areas (in the Amazon estuary and lower portion of the Amazon) to

their adult feeding and breeding sites (in white-water tributaries of

Bolivia, Colombia, Ecuador, and Peru) is a unique event that lasts

for about 2 years. Once there, adults can move between different

headwater tributaries, but they usually do not go back to central or

lower Amazonia (Duponchelle et al., 2016; Hauser, 2018; Hauser

et al., 2018). Another example, although this one lasts only a few

weeks, is the !400 km upstream migration of juvenile pencil catfish,

Trichomycterus barbouri, or chipi chipi, from the floodplains of the

Beni River in Bolivia towards Andean foothill forest streams and riv-

ers, where they will live as adults (Miranda-Chumacero, !Alvarez,

Luna, Wallace, & Painter, 2015). These examples are two of the

most extreme cases in the length range of Amazonian migratory

species: B. rousseauxii is one of the largest species in the Amazon

basin, reaching over 1.5 m, although its length does not usually sur-

pass 1.1 m length during its trans-Amazonian migration (Hauser

et al., 2018), whereas T. barbouri measures no more than 3.3 cm

when performing its spectacular upstream migration, which repre-

sents a much greater individual effort (Miranda-Chumacero

et al., 2015).
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Reproductive and feeding migrations performed seasonally at the

adult stage usually occur each year for most species, which potentially

spawn many times during their lives. Most migratory species in the

Amazon basin are indeed iteroparous, as opposed to the semelparous

reproductive strategy that consists of a single reproductive event dur-

ing the lifetime, as exemplified by Gymnotiformes in the Amazon

basin (Waddell et al., 2019) or more classically by some salmon spe-

cies (Lucas & Baras, 2001). Some evidence, however, suggests that

patterns of migration can change with age. In the central Amazon,

adults of Semaprochilodus spp. travel between nutrient-poor tribu-

taries and white-water rivers many times during the year. However,

some of the larger Semaprochilodus that usually reach the most west-

ern tributaries no longer perform migration with age (Araujo-Lima &

Ruffino, 2003). This is also true for some older Colossoma

macropomum that do not migrate upstream during low water and stay

in the floodplains (Goulding & Carvalho, 1982).

3 | SOCIETAL IMPORTANCE OF
MIGRATORY FISHES IN THE AMAZON BASIN

Freshwater fish have long been one of the most important protein

sources for Amazonian people. The historical and cultural importance

of migratory species, as well as their nutritional value and contribution

to food security, have been well documented (see Supporting Infor-

mation). What remains unclear is the contribution of migratory fishes

to total fish catch in the basin, although migratory Characiformes and

Siluriformes represent about 83% (46% and 37% respectively) of the

annual commercial landings of migratory and non-migratory fish spe-

cies in the Amazon basin (Goulding et al., 2019).

Owing to the absence of official fisheries statistics in most

Amazonian countries, estimates of total Amazonian fish landings are

far from complete. More than a decade ago, the total commercial fish-

eries landings in the Amazon basin, excluding the Tapajós, Xingu, and

upper Negro river basins, was estimated at 173,000 t yr−1 (Barthem &

Goulding, 2007). Using this estimate and the approximate percentage

contribution of the different Amazonian regions provided by the same

authors, the contribution of different categories of migratory fish spe-

cies in fisheries landings for the main Amazonian regions has been

estimated (Table 1). Using such data, their economic value in 2019

was also estimated from the mean price per kilogram of these species

in the different regions (Figure 2). Long-distance migratory fish,

medium-distance large-sized Siluriformes, medium-distance large-

sized Characiformes, medium-distance small-sized species, and short-

distance or resident species were distinguished, as these groups

attract different market prices.

For the portion of the fish catch that is landed in ports, migratory

species average !93% of total landings in the Amazon basin (Table 1),

but there are marked regional differences, with their contribution

peaking at over 99% in the border between Brazil, Colombia, and Peru

and being lowest in the clear-water basins draining the Precambrian

shields, such as the Tocantins River (!77%). The Amazon estuary, the

lower Amazon, upper Solimões, lower Tocantins, and the Colombian

Amazon fisheries have higher contributions of Siluriformes species in

the landings, whereas the lower Solimões, upper Amazon, middle

Negro, and middle Madeira have more contribution of the

Characiformes species (Table 1, Figure 2). The contribution of migra-

tory species to fish landings, albeit still high, is relatively lower in the

upper Madeira in Bolivia (!81%, owing to the important contribution

of the introduced Arapaima). The introduced Arapaima spp. account

for most landings of the short-distance migrating or resident species

in the upper Madeira.

According to Barthem et al. (1997), the fisheries sector in the

Brazilian Amazon generates a total annual income between US

TABLE 1 Relative contribution of the different categories of migratory fish species, per region, to total fisheries landings in the Amazon basin,
based on total Amazonian landings of 173,000 t yr−1 and the percentage contribution of each region to these total landings (Barthem &
Goulding, 2007)

Total landings (%) Mean landings LD (%) MDLS (%) MDLC (%) MDS (%) SD-R (%)

Estuary (Belém) 28 48,440 47 0.5 0.3 49.6 2.6

Lower Amazon 7 12,110 22.3 7.9 5.5 61.7 2.6

Central Amazon (Manaus) 29 50,170 9.9 12 5.1 70.2 2.8

Madeira 2 3,460 9.9 6.7 2.0 72.6 8.8

Upper Madeira 2 3,460 2.7 36.8 23.8 18.4 18.3

Purus-Juruá 4 6,920 31.2 21.7 1.4 41.6 4.2

Border area Brazil, Colombia, Peru 7 12,110 43.7 29.7 0.3 25.7 0.6

Peru 16 27,680 2.3 6.2 1.6 85.4 4.5

Tocantins 5 8,650 0 0 0 76.5 23.5

Note: For details about the data and methods, see Supporting Information Table S2.
Abbreviations: LD, long-distance migratory species correspond to goliath catfishes (Brachyplatystoma spp.); MDLC, medium-distance large-sized
Characiformes correspond to Colossoma macropomum and Piaractus brachypomus; MDLS, medium-distance large-sized Siluriformes correspond to all other
large migratory catfishes (Pseudoplatystoma spp., Zungaro zungaro, Phractocephalus hemioliopterus, Calophysus macropterus, etc.); MDS, medium-distance
small-sized correspond to most other smaller Characiformes (Prochilodus spp., Semaprochilodus spp., Brycon spp., etc.); SD-R, short-distance and resident
species (Arapaima spp., Plagioscion squamosissimus, most cichlid species, etc.).
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$100 million and US$200 million and employment for 168,000 peo-

ple, and migratory fishes are the major part of the catch. Van Damme,

Carvajal-Vallejos, Camacho, Muñoz, and Coronel (2011) estimated the

yearly monetary value of migrating fish species in the Bolivian

Amazon at about US$3 million. Here, total fisheries landings in the

Amazon basin represented >US$470 million (Figure 2). Migratory spe-

cies in all four categories (excluding short-distance migrating or resi-

dent species) average !93% of total landings and therefore account

for approximately US$436 million out of the estimated US$470 million

provided annually by landed Amazonian fisheries.

Much of the fish harvested in the Amazon, however, is consumed

in river communities and is never ‘landed’ into markets, a phenome-

non common to most inland fisheries worldwide (Fluet-Chouinard,

Funge-Smith, & McIntyre, 2018). As an example, it is estimated that

almost 600,000 t yr−1 of fish are consumed throughout the Brazilian

Amazon (Isaac & Almeida, 2011) and 29,000 t yr−1 in the Colombian

Amazon (Agudelo, 2015), which together are about three times as

much as the commercial landings reported for the Amazon basin

(Barthem & Goulding, 2007). Although fish consumed in urban centres

may partly come from marine fisheries or aquaculture, these figures

indicate a strong underestimation of Amazonian catches estimated by

landing statistics (Fluet-Chouinard et al., 2018). Estimates of these

‘hidden’ subsistence fish catches vary, but they are of the same order

of magnitude, or more, as the estimates of fish landings previously

provided herein (Crampton, Castello, & Viana, 2004). Bayley (1998)

used the data from Batista, Inhamuns, Freitas, and Freire-Brasil (1998)

to re-estimate total fish catch in the Amazon basin at

!450,000 t yr−1. Although migratory species still dominate subsis-

tence catches, some sedentary species belonging to the Cichlidae and

Loricariidae families can sometimes account for half or more of the

catches (Batista et al., 1998; Castello, McGrath, Arantes, &

Almeida, 2013; Castello, McGrath, & Beck, 2011). The figures pro-

vided here offer just a glimpse of the importance of migratory fishes

to Amazonian people, but further studies with current data that also

include subsistence fisheries will help to refine quantitative estimates.

4 | THREATS TO MIGRATORY SPECIES IN
THE AMAZON BASIN

The main threats to freshwater fish in the Amazon are similar to those

menacing freshwater biodiversity and fishes worldwide: overex-

ploitation, flow and habitat modification by hydropower development,

deforestation, and climate change (Carpenter, Stanley, &

F IGURE 2 Relative economic contribution, per region, of the different categories of migratory fish species to total fisheries landings in the
Amazon basin. The mean estimated economic contributions (in millions of US$) of the region's landings are in parentheses. For details about the
data and methods, see Supporting Information Table S2
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Zanden, 2011; Dudgeon et al., 2006; Xenopoulos et al., 2005). Some

acknowledged or potential threats, such as pollution, waterways, non-

native species, or exploitation by the ornamental trade, are detailed in

Supporting Information. Importantly, most of these threats interact

synergistically, further aggravating their individual impacts (Anderson

et al., 2019; Forsberg et al., 2017; Lees, Peres, Fearnside, Schneider, &

Zuanon, 2016).

4.1 | Overexploitation

Historically, overharvesting has been the most important driver of

freshwater ecosystem degradation in the Amazon basin (Castello,

McGrath, Hess, et al., 2013), and this affects many important migra-

tory fish species. Catches of the largest, most commercial, species are

declining in most regions of the basin. This trend started with

Arapaima spp. (Veríssimo, 1895), which was overharvested to the

point of being placed in the Convention on International Trade in

Endangered Species of Wild Fauna and Flora II list of endangered spe-

cies (Castello & Stewart, 2010; Castello, Stewart, & Arantes, 2011).

Although basin-wide evidence of overfishing is still rare, many trait-

based studies over the last few decades have offered evidence for

regional overfishing of most large, high-valued species, such as the

second-largest scaled fish of the Amazon, C. macropomum (Campos,

Garcez, Catarino, Costa, & Freitas, 2015; Isaac & Ruffino, 1996), sev-

eral large catfishes such as Brachyplatystoma vaillantii, B. rousseauxii

(Agudelo et al., 2013; Alonso & Pirker, 2005; Garcia Vasquez et al.,

2009), Pseudoplatystoma tigrinum and Pseudoplatystoma fasciatum

(=Pseudoplatystoma punctifer, Isaac, Ruffino, & McGrath, 1998;

Ruffino & Isaac, 1999), and Pinirampus pirinampu (Sant'Anna, Doria, &

Freitas, 2014). Owing to their basin-wide migrations, B. rousseauxii

and B. vaillantii are particularly at risk: whereas their adult populations

are already heavily fished or overexploited in the lower (Araújo

Cruz, 2020) and upper Amazon basin (Agudelo et al., 2013; Garcia

Vasquez et al., 2009; Petrere, Barthem, Agudelo, & Gomez, 2004),

juveniles of these species at present support the largest Amazonian

industrial fishery in the lower Amazon (Alonso & Pirker, 2005;

Barthem & Goulding, 2007). Overharvesting, however, is no longer

limited to large species and was recently also suggested to affect

regionally some of the smaller Characiformes that now make up most

of the catches, such as P. nigricans (Bonilla-Castillo, Agudelo, Gómez,

& Duponchelle, 2018; Catarino, Campos, Garcez, & Freitas, 2014) or

Psectrogaster spp. (Garcia Vasquez, Vargas, Sánchez, Tello, &

Duponchelle, 2016).

The depletion of stocks of large-bodied species is the inevitable

adjustment of tropical fish communities to increasing fishing effort

(Bayley & Petrere, 1989). This common phenomenon in fisheries

worldwide, where large, long-lived species are progressively replaced

in the landings by smaller, short-lived species with higher produc-

tion/biomass ratios, is referred to as the ‘fishing down’ process

(Welcomme, 1995) or the ‘fishing down the food web’ process,

which also predicts declining trophic levels in the catches (Pauly,

Christensen, Dalsgaard, Froese, & Torres, 1998). The decline of

mean catches of the largest commercial species is already observed

in several regions of the Amazon basin: in Brazil for C. macropomum

(Barthem et al., 1997; Garcez & Freitas, 2011), Arapaima spp.

(Castello & Stewart, 2010; Cavole, Arantes, & Castello, 2015),

B. filamentosum (Petrere et al., 2004); in Peru for several of the larg-

est species, such as Arapaima spp., B. rousseauxii, C. macropomum,

and Piaractus brachypomus (Garcia Vasquez, Tello, Vargas, &

Duponchelle, 2009); and in Colombia for B. filamentosum,

B. rousseauxii, and Pseudoplatystoma spp. (Agudelo, Sánchez,

Rodríguez, Bonilla-Castillo, & Gómez, 2011). Declining mean size of

target species or increasing proportions of immature specimens in

fisheries catches are also common signs of overexploitation,

although difficult to observe because they require accurate, though

seldom available, long-term size data (Froese, 2004). Castello,

McGrath, Hess, et al. (2013) showed a strong, historical decline in

the mean lengths of harvested species between 1895 and 2007 in

the Brazilian Amazon. In the Colombian Amazon, the proportion of

immature individuals in the catches is frequently >50% for many

large catfishes, and these proportions have increased in recent

decades (Agudelo, Bonilla-Castillo, Gómez, Salvino, & Trujillo, 2012).

The same is observed for C. macropomum (Garcez & Freitas, 2011)

and Arapaima spp. (Cavole et al., 2015) in Brazil.

4.2 | Dams

There are currently about 158 hydroelectric dams in operation or

under construction in the Amazon basin and about 351 new dams are

planned in the next 30 years, including 21 large dams below 400 m

elevation (Almeida et al., 2019). Hydropower infrastructure is arguably

the most rapidly growing threat, with important potential for altering

connectivity and biodiversity loss, including in the Andean portion of

the basin (Anderson et al., 2018; Finer & Jenkins, 2012; Forsberg

et al., 2017; Latrubesse et al., 2017; Latrubesse et al., 2021).

Hydroelectric impoundments have impacts on migratory fishes at

different scales, from local extinction of species that cannot adapt to

reservoirs and dam-tailwater conditions, to basin-wide extirpations of

migratory species (Freeman, Pringle, Greathouse, & Freeman, 2003;

Pringle, Freeman, & Freeman, 2000). The most evident effect of dams

on Amazonian fishes is the disruption of migration routes (Agostinho,

Gomes, Santos, Ortega, & Pelicice, 2016; Ribeiro, Petrere, &

Juras, 1995; Santos, 1995). Although most studies have been carried

out in the heavily fragmented Paraná and Paraguay basins, they show

that despite financial investments and engineering efforts in the con-

struction of fish passes, these are largely ineffective in the re-

establishment of routes, free upstream and downstream movements

of young and adults, and regional recruitment (Agostinho et al., 2007;

Lira et al., 2017; Pompeu, Agostinho, & Pelicice, 2012). In the Amazon

basin, otolith microchemistry analyses have provided clear evidence

that fish passes in the recently constructed Jirau and Santo Antônio

dams on the Madeira River do not currently permit upstream passage

of sub-adult B. rousseauxii returning from the lower Amazon estuary

(Hauser, 2018) and prevent former movement of Brachyplatystom
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platynemum between the upstream and downstream reaches of the

dams (Hauser et al., 2019).

Available evidence on the effect of dams mainly focuses on the

large, long-distance migratory species, which are usually most at risk

(Agostinho et al., 2016; Arantes, Fitzgerald, Hoeinghaus, &

Winemiller, 2019). For long-distance migrants, such as goliath

catfishes and other longitudinal migrants, any dam on their migration

routes will interfere by isolating their breeding areas from feeding and

nursery areas (Agostinho, Pelicice, & Gomes, 2008; Ribeiro

et al., 1995), depleting resident populations above the dams, with

unlikely long-term chances of persistence (e.g. for B. rousseauxii in the

Madeira; Hauser, 2018; Van Damme et al., 2019). Large catfish fisher-

ies usually decline upstream and downstream of dams, as was

observed above the Tucuruí dam on the Tocantins River (Ribeiro &

Petrere, 1988; Ribeiro et al., 1995). The same was observed below

(Santos, Pinto-Coelho, Fonseca, Simões, & Zanchi, 2018) and above

(Van Damme et al., 2019) the Jirau and Santo Antonio dams in the

Madeira River. The fisheries of smaller, mid-distance detritivorous and

frugivorous migratory species first increased in the river channels

upstream and downstream of the Tucuruí (Ribeiro et al., 1995) and

Peixe Angical dams in the Tocantins River shortly after their construc-

tion but declined afterwards (Monaghan, Agostinho, Pelicice, &

Soares, 2020). In the Jamari River, fisheries of migratory

Characiformes also strongly declined after construction of the Samuel

dam (Santos, 1995).

As Andean tributaries supply most (>90%) of the organic and inor-

ganic materials transported by Andean-origin lowland Amazonian riv-

ers, they control various geomorphological processes, such as river

meandering and floodplain formation in river sections downstream

(Filizola & Guyot, 2009; McClain & Naiman, 2008). Therefore, even

dams located upstream of fish migration routes can affect migratory

species by reducing sediment and nutrient supplies (Forsberg

et al., 2017) and altering the hydrological migratory cues and the

physico-chemical spawning cues to which the fish are adapted

(Agostinho et al., 2008; Bailly, Agostinho, & Suzuki, 2008; Freitas

et al., 2012; McIntyre et al., 2016). Modification of flow regimes, and

especially of flood duration, can also strongly affect recruitment and

juvenile survival in migratory species (Bailly et al., 2008). Alteration of

granulometry and geomorphology usually result in decreased abun-

dance of bottom-feeding species, such as the migratory Curimatidae,

as observed below the Samuel, Tucuruí, and Itaipu dams (Agostinho,

Júlio, & Petrere, 1994; Santos, 1995). Modifications to channel mor-

phology reduce the frequency of adjacent oxbow lakes and the con-

nectivity with the floodplain, together with reduced nutrient supply

and thus decreased primary production (Forsberg et al., 2017). This

can also have severe impacts on the mid-distance migrants that are

the primary and secondary consumers making up the bulk of fisheries

in the Amazon basin (i.e. most commercial Characiformes species;

Barthem & Goulding, 2007). For example, the collapse of the migra-

tory planktivorous Hypophthalmus spp. fishery and general decreased

catches in the lower Tocantins River were attributed to a reduction in

nutrient supply and phytoplankton biomass following the Tucuruí dam

construction (de Mérona, Juras, dos Santos, & Cintra, 2010). By

reducing variability, intensity, and amplitude of the downstream flood

pulse, and by modifying geomorphology, dams also disrupt lateral con-

nectivity between river channels and floodplains (Forsberg

et al., 2017). Migratory fishes that seasonally migrate laterally to

floodplain habitats then have fewer opportunities to colonize flooded

forest habitats that play key roles as nursery and feeding areas, ulti-

mately affecting fisheries (Castello, Bayley, Fabré, & Batista, 2019;

Castello, Isaac, & Thapa, 2015). For example, a 37% reduction in maxi-

mum flooded area in the Loreto Region, Peru, following the construc-

tion of large dams would result in an 88% decline in annual fish yield

(Forsberg et al., 2017).

Newly formed reservoirs associated with the development of

hydroelectric dam construction usually change environmental condi-

tions towards more lentic waters, which favours non-migratory spe-

cies at the expense of the former migratory species that populated

the river channels (Agostinho et al., 2008, 2016; Arantes, Fitzgerald,

et al., 2019). Another major impact of large reservoirs, such as

Tucuruí, Balbina, Samuel, or Sinop, is their strong filter effect on the

movements of larvae and juveniles of migratory species drifting down-

stream. These young stages, adapted to migrating in running, oxygen-

ated waters, are suddenly faced with huge stagnant lake-like water

bodies with low oxygen concentration caused by decomposing vege-

tation, and the presence of many predatory species they do not nor-

mally encounter, such as piranhas and predatory cichlids (Pelicice,

Pompeu, & Agostinho, 2015).

4.3 | Deforestation

Deforestation is usually linked to agriculture and cattle ranching in

the Amazon basin, but it is also frequently associated with other

human activities, such as mining, hydroelectric dam construction, and

road building (Anderson et al., 2018; Forsberg et al., 2017; Lees

et al., 2016; Malhi et al., 2008). Its effects can differ within the

affected area and downstream. Deforestation in the uplands typically

increases water runoff and sediment loads carried downstream by

the rivers, altering geomorphological and biochemical processes with

consequences on soil erosion and biological productivity of aquatic

ecosystems (Coe, Costa, & Soares-Filho, 2009). Local deforestation

can have regional implications: strong deforestation in the Tocantins

and Araguaia basins resulted in increased water discharge by 25%

and shifted flood pulse timing by a month in these rivers (Coe

et al., 2009). Increased flood amplitude and decreased flood duration

caused by local deforestation tend to augment erosion in the river

channels and reduce water transparency (Winemiller, Marrero, &

Taphorn, 1996). More violent floods result in the washing out of sub-

strate and associated benthic algae and organisms on which migra-

tory detritivores feed (Flecker, 1996). Adjacent lakes also tend to

become shallower and muddier by the increased sedimentation

(Winemiller et al., 1996). Reduced water transparency directly affects

algal and zooplankton production in floodplain lakes, which are

important nursery areas for most Amazonian migratory and non-

migratory fish species (Pringle et al., 2000). In the Venezuelan
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Andean piedmont, where deforestation was particularly acute and

diminished connectivity with downstream floodplains, the abundance

of migratory fishes, including Prochilodus spp., was severely reduced

(Winemiller et al., 1996). Deforestation usually also reduces the input

of large wood in local streams, depleting fish species richness

and abundance, including many migratory species, with potential

consequences for fisheries and ecosystem functioning (Wright &

Flecker, 2004). Recent analyses of stable isotopes demonstrated that

terrestrial plant material and arthropods were the most important

items contributing to migratory fish biomass in the oligotrophic

Apaporis River floodplains in Colombia, emphasizing the importance

of seasonally flooded forests for sustaining fisheries in the Amazon

basin (Correa & Winemiller, 2018). Adverse impacts of deforestation

on fish species richness, diversity, abundance (Arantes et al., 2018;

Freitas et al., 2018), biomass and functional diversity (Arantes,

Winemiller, et al., 2019), and on fishery yield of migratory species

(Castello et al., 2018) have also been shown.

4.4 | Climate change

As they rely on multiple geographically separated habitats that are

changing at different rates and in different ways, migratory fish spe-

cies are likely to be strongly affected by climate change with potential

desynchronization of the favourable conditions between the habitats

at the start and at the destination (Lennox et al., 2019). Climate

change in the Amazon basin is expected to alter hydrological dynamics

by changing patterns of rainfall (Castello & Macedo, 2016; Malhi

et al., 2008, 2009). Increased discharge and extent of inundation are

projected in western Amazonia, with the opposite trend in the central

and eastern parts (Sorribas et al., 2016). Increased frequency and

intensity of extreme events, such as floods and droughts, are also

expected (Zed et al., 2016). One of the first studies on the potential

impacts of climate change on Amazonian fishes predicted potential

species loss of up to 12% in the Amazon and 23% for the Tocantins

basins, although there was no indication of whether or not the species

affected were migratory (Xenopoulos et al., 2005). Reduced river dis-

charge and drought have been shown to affect fish population size-

structure, community composition, and reproduction (Frederico,

Olden, & Zuanon, 2016; Röpke et al., 2017, 2019). Hydrological shifts,

and river droughts in particular, can reduce the availability of migra-

tory corridors between critical habitats, such as river channels and

floodplains, directly affecting migratory species (Röpke et al., 2017).

As water volume decreases, its temperature may increase and its oxy-

gen concentration drop, becoming detrimental or lethal for fish spe-

cies (Ficke, Myrick, & Hansen, 2007; Frederico et al., 2016). As energy

allocation in adult fish is divided between maintenance metabolism,

growth, and reproduction (Wootton, 1998), increased amounts of

energy spent in compensating for unfavourable thermal conditions

will come at the expense of energy expenditure for growth and repro-

duction, while also increasing susceptibility to disease (Ficke

et al., 2007; Freitas et al., 2012). The toxicity of pollutants to fish

tends to increase with water temperature, as does the

bioaccumulation of mercury (Ficke et al., 2007). In lentic environ-

ments, such as floodplain lakes, increased temperature could enhance

eutrophic conditions and stimulate explosive macrophyte develop-

ment, modifying food web dynamics and ultimately affecting the

fishes that depend on them (Ficke et al., 2007).

Potential shifts in the range of migratory species to cope with

expected temperature increases will be reduced or hampered by the

fragmentation of river networks that result from hydroelectric dams

and other infrastructure development in the Amazon basin (Myers

et al., 2017). This situation is likely to be worse in the Andean portion

of the basin, where most dams have been built or are planned

(Anderson et al., 2018), interacting with climate change to decrease

species ranges and prevent them from reaching suitable climatic areas

in some regions (Herrera-R et al., 2020).

Global warming and reduced oxygen are also expected to reduce

fish body size significantly owing to fundamental ecological and meta-

bolic principles (Cheung et al., 2013; Sheridan & Bickford, 2011). Declin-

ing body size could also lead to ecosystem alteration through trophic

cascade for predatory species (Estes et al., 2011) or through disruption

of carbon flows for detritivorous species (Taylor, Flecker, & Hall, 2006).

The synergistic effects of climate-driven and fishing-induced reductions

of fish size could further aggravate such potential impact.

5 | POTENTIAL ECOSYSTEM IMPACTS OF
THE LOSS OF MIGRATORY SPECIES

Most Amazonian migratory fish species have crucial ecological roles,

given their functions as apex predators, ecological engineers, or seed-

dispersal species. They often provide significant subsidies from one

component of the ecosystem to another, so that the depletion of their

stocks or populations could have different but additive and potentially

marked consequences for Amazonian aquatic food webs.

Community-level studies have emphasized the crucial ecological

role of top predators in terrestrial and aquatic ecosystems (Estes

et al., 2011; Heithaus, Frid, Wirsing, & Worm, 2008). Top-down

effects are expected in food webs when entire functional groups of

predators are depleted, as was demonstrated for several, often migra-

tory, top predatory fish species (Heithaus et al., 2008; Myers, Baum,

Shepherd, Powers, & Peterson, 2007). A similar scenario is likely to

happen with the decline of the large predatory catfish community of

the Amazon basin. ECOPATH models indicated strong cascading

effects of the removal of the largest Brachyplatystoma species, includ-

ing an important biomass increase of their fish prey with a concomi-

tant decrease in invertebrate biomass and increase in macrophyte

biomass (Angelini, Fabré, & da Silva, 2006; Lima, 2017). They also

showed that B. rousseauxii was one of the most sensitive components;

that is, responsible for major ecosystemic alteration in the case of

stock depletion. Trophic cascades are strongest where they involve

large, mobile vertebrate predators (Borer et al., 2005). There is, thus,

little doubt that the decline of large, long-distance migratory catfishes

will have profound effects on the structure and functioning of food

webs in the Amazon basin.
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Migratory fishes are known to provide trophic subsidies to differ-

ent river systems and can strongly influence the structure of local hab-

itats and communities through feeding and breeding activities (Bauer

& Hoye, 2014). Despite the existence of highly diversified migratory

fish communities, including long-distance migrations, the role of fish

movements in nutrient transport and their effects on local food webs

has received little attention so far in the Amazon basin, particularly for

large predators (Winemiller & Jepsen, 1998). There is evidence, how-

ever, that middle-sized migratory species of the family

Prochilodontidae have a significant role in Amazonian food web

dynamics. Prochilodontid fish of the genera Prochilodus and

Semaprochilodus feed on detritus, algae, and associated microorgan-

isms and are important prey for larger piscivorous species

(Hoeinghaus, Winemiller, Layman, Arrington, & Jepsen, 2006).

Experimental in situ exclusions and enclosure of Prochilodus mariae in

Venezuela resulted in major changes in benthic organic matter and

algal and invertebrate communities, and hence in community and eco-

system attributes (Flecker, 1996; Taylor et al., 2006). These studies

demonstrated that Prochilodus are a functionally dominant engineering

species capable of structurally modifying their habitats and influencing

pathways of energy and nutrient flux in ecosystems. Prochilodontids

also perform complex large-scale migrations between different river

systems, migrating to rich floodplains during high waters for spawning

and returning to often nutrient-poor tributaries in the low water

period (Ribeiro & Petrere, 1990). As such, these migratory detritivores

play important roles in energy and biomass transfer to species higher

in the food chain, providing subsidies that allow larger piscivores to

support higher population densities than would normally be possible

in oligotrophic waters (Hoeinghaus et al., 2006; Winemiller &

Jepsen, 1998). They also allow increased ecological efficiency and the

connection of food webs over different spatial scales (Hoeinghaus

et al., 2006; Winemiller & Jepsen, 1998). Besides Prochilodus and

Semaprochilodus spp., several other migratory characiform species

feeding relatively low on the food chains, such as Anodus spp., Brycon

spp., C. macropomum, Mylossoma spp., and Triportheus spp. only repro-

duce in white-water rivers, whereas they inhabit all types of water as

adults (Lima & Araujo-Lima, 2004). This transfer of basic primary pro-

duction by migratory species from nutrient-rich white-water rivers

into oligotrophic (clear‑ or black-water) ecosystems might, therefore,

be a widespread phenomenon in the Amazon basin.

Another crucial ecological aspect of many Amazonian migratory

fishes is their frugivory and associated ability to disperse seeds

(ichthyochory) and improve their germination process, participating in

the spatial distribution and diversity of riparian forests –see Correa,

Costa-Pereira, et al. (2015) for a review. Although seed dispersal was

initially believed to be ensured essentially by birds and mammals, the

last few decades have provided strong evidence that fishes are major

participants in this process (Correa, Costa-Pereira, et al., 2015; Correa,

Winemiller, López-Fernández, & Galetti, 2007; Goulding, 1980; Horn

et al., 2011) and may have been the first vertebrate dispersers in the

Neotropics 70 million years ago (Correa, Costa-Pereira, et al., 2015).

As most tree species fruit during the high-water season, when fish

invade the flooded forest to feed, seed dispersal is likely to result from

a long process of mutually beneficial co-adaptation (Correa, Costa-

Pereira, et al., 2015; Goulding, 1980; Silva Ferreira, Fernandez

Piedade, de Oliveira Wittmann, & Franco, 2010). There are approxi-

mately 150 known frugivorous fish species from 17 families and six

orders in the Neotropics (Horn et al., 2011), most of which occur in

the Amazon basin. These fish species consume at least 566 species of

fruits and seeds from 82 plant families (Correa, Costa-Pereira,

et al., 2015). As the most effective seed dispersal agents are large-

bodied fish species, which are the most targeted by fisheries (Correa,

Costa-Pereira, et al., 2015), fish overharvesting can potentially also

threaten plant biodiversity and conservation (Correa, Araujo,

et al., 2015).

6 | CHALLENGES IN RESEARCH,
MANAGEMENT, AND CONSERVATION

Considering the diversity of fish migrations and the scales at which

they occur in the Amazon basin, conservation of migratory fish spe-

cies would ideally require the implementation of a riverscape

approach, similar to that proposed by Fausch, Torgersen, Baxter, and

Li (2002). Given the state of ecological knowledge, however, the

growing human pressures on natural resources (water, fish, and other

aquatic biota), and the lack of environmental commitment and coordi-

nation between government agencies of Amazonian countries, advo-

cating only such a comprehensive strategy would be utopic. Tackling

this challenge calls for a more pragmatic approach, setting different

levels of possible actions.

6.1 | Research

Whereas fisheries statistics have been collected historically in some

of the main fishing areas (Manaus, Santarém, Belém in Brasil,

Iquitos, Pucallpa, and Puerto Maldonado in Peru; Leticia and Puerto

Leguizamo in Colombia), many such data collection systems no

longer exist. This scarcity of data collection represents a major

challenge to conservation by preventing assessments of fish popu-

lation status. There is an urgent need to monitor fisheries activities

(landings by species, size distributions) not only in all urban centres,

but also in river fishing communities where a large portion of the

catch is consumed. Improving our knowledge on the migratory

behaviour of most species is also a prerequisite for designing

appropriate conservation measures in the face of growing human

pressures. Ecological information on routes, habitat use, timing and

environmental conditions are missing for most migratory species in

the Amazon. Several recent studies mentioned in this review are

using new otolith microchemistry or improved telemetry techniques

that bring new possibilities to complement traditional approaches

in understanding migratory patterns (see Hermann et al., in press).

The use of these techniques should be encouraged.

In addition to improved knowledge of fish migratory behaviour,

perhaps the greatest need lies in identifying management units

1096 DUPONCHELLE ET AL.



(i.e. stock definition) for all exploited taxa. Such a goal is at present

daunting, given the general scarcity of fisheries monitoring data and

population genetic studies. That scarcity is only matched by a general-

ized paucity of researchers and investments in research on Amazonian

fishes, pointing to the need to boost research via increased funding

and incentives to work on Amazonian fishes.

6.2 | Management

For fishes that are harvested for commercial or subsistence purposes,

a key challenge is ensuring compliance with existing management

limits. Management of such species is at present almost entirely based

on restrictive measures, such as minimum size of fish, gears and mesh

size limitations, closed season and areas, quotas, and control of

access. Minimum size measures are followed in fisheries with a spe-

cific target, such as the Arapaima fishery in managed lakes or the

Brachyplatystoma trawl fishery in the estuary (Barthem, da Silva,

Raseira, Goulding, & Venticinque, 2019). However, they are almost

impossible to implement in all fisheries, given their multi-gear and

multispecies nature, the vast areas involved, and the severe under-

funding and understaffing of management agencies responsible for

fisheries. For Arapaima, nearly 77% of the catch in weight in the lower

Amazon region has been estimated to be illegal (Cavole et al., 2015).

Spawn-at-least-once limits, such as size and season limits, are among

the most important management measures because they ensure stock

recruitment (Myers & Mertz, 1998). The usefulness of a closed season

is debated in the Amazon. It is often associated with monetary com-

pensation for fishers in Brazil, which can have adverse effects as a

measure to protect fish stocks (Corrêa, Kahn, & Freitas, 2014). Owing

to the complexity of many species' migratory behaviour, the choice of

the closed season is complicated and considered of little value in cen-

tral Amazon fisheries, where most commercial fish species reproduce

during the flooding period and are much less accessible to fishing

gears than during the low water period (Barthem et al., 2019; Ribeiro

& Petrere, 1990). Yet, previous studies on overfished stocks of

Amazonian migratory species have suggested that compliance with

existing size and season limits would enable those stocks to recover

(Castello et al., 2019; Castello, Stewart, & Arantes, 2011; Isaac &

Ruffino, 1996). Recently, a 5-year complete fishing interdiction for

C. macropomum was proposed to foster stock recovery (Barthem

et al., 2019).

Over the last three to four decades, community-based manage-

ment (CBM) has grown to encompass numerous communities in

virtually all rivers of the Amazon and represents a major conservation

movement. CBM has proved an effective tool for mitigating threats

on some migratory species, such as P. nigricans (Anderson, Montoya,

Soto, Flores, & McClain, 2009), C. macropomum (Arantes &

Freitas, 2016), and especially on Arapaima. There are now !500 fish-

ing communities implementing CBM for Arapaima in the Amazonas

state alone (Campos-Silva, Hawes, & Peres, 2019). Where studies

have been made, populations of Arapaima and of other migratory

species have recovered from overexploitation by increasing

abundance (Campos-Silva et al., 2019; Campos-Silva & Peres, 2016;

Castello et al., 2019). Catch per unit effort is also generally higher in

lakes with CBM than in lakes without, as is mean body length of

target species, including long-distance migratory species, even though

these management schemes are at the small, local scale (Almeida,

Lorenzen, & McGrath, 2009; Castello, Stewart, & Arantes, 2011). As

CBM often involves conservation of floodplain habitats, it provides

benefits to migratory species that depend on these (Isaac et al., 1998).

Limiting fishing and implementing reserves in the floodplains, where

most migratory species spend a critical part of their lives, could also

be a complementary solution (Barthem et al., 1997). The conservation

of migratory fishes therefore requires strengthening and further

supporting the development not only of CBM schemes but also of

centralized government agencies.

A detailed, integrated management system for goliath catfishes

(B. rousseauxii and B. vaillantii) has previously been proposed for Brazil

(Fabré, Barthem, Carvalho, & Angelini, 2005), including the estuary

where most exploited individuals are immature, but only very few of

the recommendations have been implemented so far. For long-lived

migratory species, the effects of overfishing could be reduced by

using simple indicators that have been proposed as alternatives to

conventional stock assessment models: the median length of catches,

the proportion of mature individuals in the catches, the proportion of

fish caught at the optimum length, and the percentage of old, large

individuals (‘mega-spawners’; Froese, 2004). The proportion of these

mega-spawners in the catches draws on the increasing evidence that

in long-lived, late-maturing species, large, old fish play major roles in

the persistence of a population (Berkeley, Chapman, & Sogard, 2004;

Birkeland & Dayton, 2005; Froese, 2004). Ideally, there should be no

single mega-spawner in the catches. However, in complex multi-

species fisheries, such as those of the Amazon basin, mesh-size regu-

lation would not be effective in reducing the upper size limit of catch

for many species. Keeping a proportion of 30–40% of megaspawners

in fisheries landings, which reflects a healthy stock (Froese, 2004),

might be a more practical solution. In Peru (Garcia Vasquez A.,

unpublished data), and in some locations in Colombia too, the largest

Brachyplatystoma specimens are angled by hook and line, which may

allow specific management strategies to achieve this goal. Again, this

would require the implementation, in all countries, of appropriate fish-

eries statistics (catch and effort), including length monitoring on a few

selected target species, to assess the effect of the proposed solutions.

The targeted species could change every 2 years to provide robust

statistics for monitoring the stock health every 4–6 years for each

large target species.

The ecosystem-based fisheries management that is internationally

proposed for marine resources (Pikitch et al., 2004) might also help

conserve medium‑ and long-distance migratory fish species in the

Amazon. Ecosystem-based fisheries management has two main goals:

satisfying societal and human needs for food and economic benefits

while conserving the structure, diversity, and functioning of ecosys-

tems. Such an approach has been promoted in the Amazon through

two main mechanisms: CBM (see earlier) and basin-wide management.

The basin-wide approach to ecosystem-based fisheries management
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uses iconic long‑ and medium-distance migratory goliath catfishes

and characin species. Goulding et al. (2019) proposed using the partic-

ular life histories of these migratory species to link crucial spawning,

feeding, and nursery habitats across vast environmental connectivity

gradients in the Amazon basin: from Andean tributaries, lowland riv-

ers, and their floodplains down to the Amazon estuary. They advo-

cated that the basin scale is the appropriate framework for

ecosystem-based management of fisheries in the Amazon and its wet-

lands and emphasized the need to maintain hydrological connectivity

in the Amazon basin. This can only be achieved through the recogni-

tion of the crucial importance of freshwater ecosystems and their

connectivity at the whole Amazon basin scale, which implies trans-

frontier coordination. Harmonized management of transboundary

waters is recognized as a priority (Castello, McGrath, Hess, et al.,

2013; Pelicice et al., 2017), and the Amazon Cooperation Treaty

Organization might be the right place to propose solutions

(Latrubesse et al., 2017).

6.3 | Conservation

Not even the best available research and fisheries management

framework can alone conserve Amazon migratory fishes in the face of

current trends of deforestation, climate and hydrological change, and

construction of dams. There is an urgent need to minimize, and to the

extent possible avoid, the adverse impacts that such trends are pro-

ducing. As discussed elsewhere, however, there are no basin-wide

coordinated efforts to assess and manage the progression of such

threats on aquatic ecosystems of the Amazon. There are policies rele-

vant for aquatic conservation in most countries of the basin, including

protected areas, regulation on forests in private properties, water

resource management, and environmental licensing of hydropower

dams. Together, however, these policies have limited capacity to curb

current trends, largely because they ignore the role of hydrological

connectivity in freshwater ecosystem structure and functioning

(Anderson et al., 2019; Castello & Macedo, 2016; Leal et al., 2020).

Although, to some extent, the numerous protected areas can be

seen as the paradigm in Amazon conservation, they were primarily

designed to preserve terrestrial ecosystems and are largely ineffective

in protecting aquatic ecosystems and biota (Azevedo-Santos

et al., 2019; Castello, McGrath, Hess, et al., 2013; Frederico, Zuanon,

& De Marco, 2018; Leal et al., 2020). This situation also holds true for

the Andean portion of the basin (Anderson et al., 2019), where the

breeding grounds of many migratory species are located. There are

very few aquatic reserves in the Amazon basin (e.g. Mamirauá and

Piagaçu-Purus in Brazil and Pacaya-Samiria in Peru), but these have

proved effective in replenishing the populations of overexploited

migratory species such as Arapaima or C. macropopum (Arantes &

Freitas, 2016; Ortega & Hidalgo, 2008). Nevertheless, important habi-

tats for the life cycle of migratory fishes, such as spawning, nursery,

and feeding areas, are currently not protected. The white-water river

floodplains are the most important habitats for commercial migratory

fish species, but less than 1% are under integral protection and 15%

are under some level of management (Goulding et al., 2019). Encoun-

ters between white-water and clear-water or black-water tributaries

are other very important areas for migratory species that might war-

rant inventory and protection (Barthem et al., 2019). The Amazon

estuary, which holds crucial nursery areas for goliath catfishes, should

also be a major target for conservation; but again, most of the detailed

recommendations provided in the integrated management system

proposed by Fabré et al. (2005) are not implemented. Owing to the

connected nature of river networks, reserves, even when they are

effective at preserving freshwater biota, remain highly susceptible to

human activities occurring upstream in the catchment, such as dam-

ming, deforestation, and pollution (Fausch et al., 2002). Human distur-

bances downstream can also have effects far upstream, through the

action of migratory species (Fausch et al., 2002).

New studies have evaluated whether it is possible to create new

protected areas (Azevedo-Santos et al., 2019; Frederico et al., 2018)

or re-draw protected-area boundaries to improve protection of fresh-

water ecosystems. Creation of chains of protected areas could help

maintain most migratory species by protecting them from harvest and

protecting their habitats in various locations across the basin

(Barthem et al., 1997; Bayley & Petrere, 1989; Crampton et al., 2004;

Hurd et al., 2016). A recent study demonstrated that taking into

account both terrestrial and freshwater biodiversity data for conserva-

tion planning could greatly improve benefits for freshwater biodiver-

sity (including fish), with only negligible losses for terrestrial

biodiversity (Leal et al., 2020). However, although the need for such

re-evaluations is clear, to our knowledge there is no effort to enable

them. In fact, many protected areas in the Amazon have been and

continue to be reclassified and degazetted (Anderson et al., 2018),

further limiting their effectiveness with respect to migratory fishes.

6.4 | Considerations about hydropower
development in the Amazon basin

One of the most important issues highlighted in this review, as in pre-

vious studies (Anderson et al., 2018; Castello, McGrath, Hess, et al.,

2013; Hurd et al., 2016), is the urgent need to preserve natural flow

regimes and connectivity among river basins and between river chan-

nels and their floodplains. However, even the best fisheries regula-

tions, provided they are enforced, will not be effective if dams disrupt

flow regimes and connectivity. Dams also promote deforestation,

which in turn further favours climate change. As the main driver dis-

rupting connectivity is the construction of dams, the conservation of

the Amazon’s aquatic biota – of migratory fishes in particular, and of

the many ecosystem services they provide – requires regional recon-

sideration of the sustainability of large-scale hydroelectric develop-

ment in the Amazon basin and halting hydropower expansion. There

are cleaner, cheaper alternative energy sources for Amazonian coun-

tries that are likely to become even more cost-effective in the near

future with technological development and under the projected

changes in climate (Kahn, Freitas, & Petrere, 2014). Dam development

in the Amazon basin, when unavoidable, should at least be carried out
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considering spatially explicit prioritization methods that trade-off

energy power and biodiversity loss under different scenarios (Almeida

et al., 2019; McIntyre et al., 2016; Ziv, Baran, Nam, Rodríguez-Iturbe,

& Levin, 2012) in order to lower environmental costs. In river basins

already affected by dams, accumulated evidence emphasizes the

imperative necessity of preserving free-flowing tributaries for

maintaining reproduction of migratory fish (Casarim, Prado, Loures, &

Pompeu, 2018; Marques, Dias, Perbiche-Neves, Kashiwaqui, &

Ramos, 2018).

In the Amazon basin, environmental impact studies prior to

building infrastructure were usually not conducted for existing

dams because these were built before baseline data were available

(Castello, McGrath, Hess, et al., 2013). As for the newly erected

ones, such studies are seldom properly done, with insufficient plan-

ning, funding, and realization time. In addition, environmental

impact studies should be carried out by renowned public universi-

ties and research institutes instead of private consulting firms in

order to ensure the independence of results from conflicting inter-

ests. For hydropower plants already constructed, such as the

Madeira or Tocantins dams, there is an urgent need to modify fish-

way technology to ensure a safe passage for migratory fish species

while blocking the colonization of invasive species. This can only

be achieved through coordination of researchers, engineers, and

dam operatives to develop ad hoc technologies adapted to Amazo-

nian species. In other parts of the world, many recent research

efforts have focused on reducing the fragmentation effect of dams

by devising selective fish passage systems that exploit species dif-

ferences in physical ability, spawning behaviour, and sensitivity to

various sensory stimuli (Birnie-Gauvin, Franklin, Wilkes, &

Aarestrup, 2019; Lennox et al., 2019; Silva et al., 2018). In the

Amazon basin, where such technology is not available and where

fish pathways are currently ineffective, governments should foster

strong investments in research and engineering projects focusing

on similar approaches. This, in turn, requires promoting and financ-

ing further research on the ecology of many migratory species as

such knowledge is an unavoidable prerequisite to successful fish-

ways (Pompeu et al., 2012; Silva et al., 2018) and to the establish-

ment of conservation measures (Barthem et al., 2019).

F IGURE 3 Examples of species belonging to the three main categories of migrations (most of which are cited in the text). (1) Long-distance
migrations: (a) Brachyplatystoma filamentosum, (b) Brachyplatystoma rousseauxii, (c) Brachyplatystoma platynemum, (d) Brachyplatystoma vaillantii,
(e) Brachyplatystoma juruense, (f ) Brachyplatystoma tigrinum. (2) Medium-distance migrations: (g) Semaprochilodus insignis, (h) Trichomycterus
barbouri, (i) Prochilodus nigricans, (j) Calophysus macropterus, (k) Hypophthalmus fimbriatus, (l) Brycon amazonicus, (m) Phractocephalus hemioliopterus,
(n) Schizodon fasciatus, (o) Colossoma macropomum, (p) Piaractus brachypomus, (q) Pellona flavipinis, (r) Pseudoplatystoma tigrinum. (3) Short-distance
migrations: (s) Arapaima sp., (t) Plagioscion squamosissimus, (u) Pygocentrus nattereri. For the sake of available space and visibility of small species,
large species reaching over 1 m lengths (a, b, l, q, r, s) are not represented to their maximum length, unlike small and medium species. The scale
does not apply to T. barbouri (h), given its very small size at migration (!30 mm). Photo credits: (a), (d), (e) García Dávila et al. (2018); (b) Fernando
Carvajal-Vallejos; (c), (f), (i), (j), (l), (m), (o), (p), (r) Aldo Echeverria; (h) Guido Miranda (WCS); (g), (k), (n), (t)–(w) Arantes, Winemiller, et al. (2019); (q),
(s) Daniel Barroso
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