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ABSTRACT
Spatio-temporal datasets are rapidly growing in size. For example, environmental variables are measured
with increasing resolution by increasing numbers of automated sensors mounted on satellites and aircraft.
Using such data, which are typically noisy and incomplete, the goal is to obtain complete maps of the
spatio-temporal process, together with uncertainty quantification. We focus here on real-time filtering
inference in linear Gaussian state-space models. At each time point, the state is a spatial field evaluated on
a very large spatial grid, making exact inference using the Kalman filter computationally infeasible. Instead,
we propose a multi-resolution filter (MRF), a highly scalable and fully probabilistic filtering method that
resolves spatial features at all scales. We prove that the MRF matrices exhibit a particular block-sparse multi-
resolution structure that is preserved under filtering operations through time. We describe connections to
existing methods, including hierarchical matrices from numerical mathematics. We also discuss inference
on time-varying parameters using an approximate Rao-Blackwellized particle filter, in which the integrated
likelihood is computed using the MRF. Using a simulation study and a real satellite-data application,
we show that the MRF strongly outperforms competing approaches. Supplementary materials include
Python code for reproducing the simulations, some detailed properties of the MRF and auxiliary theoretical
results.
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1. Introduction

Massive spatio-temporal data have become ubiquitous in the
environmental sciences, which is largely due to Earth-observing
satellites providing high-resolution measurements of environ-
mental variables on a continental or even global scale. Account-
ing for spatial and temporal dependence is very important for
satellite data, as atmospheric variables vary over space and time,
and measurements from different orbits are often complemen-
tary in their coverage.

When time and space are discretized, spatio-temporal data
are typically modeled using a dynamical state-space model
(SSM), which describes how the state (i.e., the spatial field
evaluated at a spatial grid) evolves over time and how the state
is related to the observations. Dynamical SSMs can include
information from other sources and sophisticated temporal
dynamics in terms of partial differential equations; for example,
the effect of wind on atmospheric variables can be captured by
an advection term. Such informative, physical evolution models
are crucial for producing meaningful forecasts.

We focus here on real-time or online filtering inference in
linear Gaussian SSMs, which means that at each time point
t, we are interested in the posterior distribution of the spatial
field at time t given all data obtained up to time t. The filtering
distributions in this setting are Gaussian and can in principle be
determined exactly by the Kalman filter (Kalman 1960), but this
technique is not computationally feasible for large grids. Particle
filter methods such as sequential importance (re)sampling (e.g.,
Gordon, Salmond, and Smith 1993) are asymptotically exact

CONTACT Matthias Katzfuss katzfuss@gmail.com Department of Statistics, Texas A&M University, College Station, TX 77843.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JCGS.

as the number of particles increases, but suffer from particle
collapse for finite particle size in high dimensions (e.g., Snyder
et al. 2008).

In the geosciences, filtering inference in SSMs is referred to
as data assimilation (see, e.g., Nychka and Anderson 2010, for a
review), especially when the evolution is described by a complex
computer model. Data assimilation is typically carried out via
variational methods (e.g., Talagrand and Courtier 1987) or the
ensemble Kalman filter (EnKF; e.g., Evensen 1994, 2007; Katz-
fuss, Stroud, and Wikle 2016; Houtekamer and Zhang 2016).
The EnKF represents distributions by an ensemble, which is
propagated using the temporal evolution model and updated
via a linear shift based on new observations. In practice, only
small ensemble sizes are computationally feasible, resulting
in a low-dimensional representation and substantial sampling
error.

In the statistics literature, computationally feasible filter-
ing approaches for dynamical spatio-temporal SSMs often rely
on low-rank assumptions (e.g., Verlaan and Heemink 1995;
Pham, Verron, and Christine Roubaud 1998; Wikle and Cressie
1999; Wikle et al. 2001; Cressie, Shi, and Kang 2010; Katz-
fuss and Cressie 2011; Bradley, Holan, and Wikle 2018), but
such approaches cannot fully resolve fine-scale variation (Stein
2014). Therefore, recent methods for large spatial-only data have
instead achieved fast computation through sparsity assump-
tions (e.g., Lindgren, Rue, and Lindström 2011; Nychka et al.
2015; Datta et al. 2016a; Katzfuss and Guinness 2021), and idea
that can also be used in the context of retrospective, “off-line”
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spatio-temporal analysis, in which time is essentially treated
as an additional spatial dimension and the resulting spatio-
temporal covariance function is modeled or approximated (e.g.,
Zhang, Sang, and Huang 2015; Datta et al. 2016b). However,
most sparsity-based methods cannot be easily extended to the
filtering perspective of interest here, because the sparsity struc-
ture is lost when propagating forward in time.

Here, we propose a novel multi-resolution filter (MRF) for
big streaming spatio-temporal data based on linear Gaussian
SSMs. The MRF is a highly scalable, fully probabilistic proce-
dure that results in joint posterior predictive distributions for
the spatio-temporal field of interest. In contrast to the EnKF,
MRF computations are deterministic and do not suffer from
sampling variability. In contrast to low-rank approaches, the
MRF does not rely on dimension reduction. Similar to wavelet-
based filtering methods (e.g., Chui 1992; Cristi and Tummala
2000; Renaud, Starck, and Murtagh 2005; Beezley, Mandel, and
Cobb 2011; Hickmann and Godinez 2015), the MRF can be
viewed as employing a large number of basis functions at mul-
tiple levels of spatial resolution, which can capture spatial struc-
ture from very fine to very large scales. However, as opposed
to wavelets, the MRF basis functions automatically adapt to
approximate the covariance structure implied by the assumed
SSM. These features allowed the MRF to strongly outperform
existing approaches in our numerical comparisons.

The MRF relies on a new approximate covariance-matrix
decomposition, for which the resulting matrix factors exhibit a
particular block-sparse multi-resolution structure. This decom-
position is based on the multi-resolution approximation (Katz-
fuss 2017; Katzfuss and Gong 2020) of spatial processes, which
performed very well in a recent comparison of different meth-
ods for large spatial-only data (Heaton et al. 2017). Using
advanced concepts from graph theory, we prove the perhaps
surprising property that the block-sparse structure of the MRF
matrices can be maintained under filtering operations through
time, which in turn is crucial for allowing us to show that the
MRF exhibits linear computational complexity for fixed tuning
parameters. Note that this is in contrast to other sparse-matrix
approximations, as even matrices with simple sparsity patterns
(e.g., tridiagonal matrices) do not preserve sparsity under inver-
sion. In fact, we suspect that the multi-resolution decomposition
(MRD) and its special cases are unique in terms of preserving
matrix sparsity.

We also establish a close connection between our MRD
and hierarchical matrices. Despite being relatively unknown
in statistics, hierarchical matrices (e.g., Hackbusch 2015) are
a highly popular and widely studied class of matrix approxi-
mations in numerical mathematics. We introduce this matrix
class into the statistical literature, and describe how hierarchical
matrices can be applied to SSMs based on second-order partial
differential equations, including those describing advection and
diffusion. This marks a major step forward with respect to
multiple previous hierarchical-matrix approaches for fast high-
dimensional Kalman filtering (e.g., Li et al. 2014; Saibaba, Miller,
and Kitanidis 2015; Ambikasaran et al. 2016), which were only
applicable in the simple case of a random walk. The MRF is able
to preserve important aspects of the physical model, such as
interactions between the cells of the discretization grid, which
previous approaches were forced to ignore for computational

reasons. For example, this makes the MRF suitable for trans-
port models (e.g., advection, human and animal mobility, flow),
which are ubiquitous in the geosciences.

Finally, we discuss extensions for inference on time-varying
parameters that are not part of the spatial field, using a Rao-
Blackwellized particle filter, in which the integrated likelihood
is approximated using the MRF.

The remainder of this article is organized as follows. Section 2
describes the linear Gaussian SSM and reviews the Kalman filter.
In Section 3, we present the MRF. Section 4 details key proper-
ties of the MRF, and Section 5 discusses connections to existing
approaches. Section 6 shows how the MRF can be extended
when the model includes unknown parameters. In Section 7,
we present a numerical comparison of the MRF to existing
methods. Section 8 demonstrates a practical application of the
MRF to inferring sediment concentration in Lake Michigan
based on satellite data. We conclude in Section 9. Proofs are
given in Appendix A.

A separate supplementary material document contains Sec-
tions S1–S8 with further properties, details, and proofs. At
http://spatial.stat.tamu.edu, we provide additional illustrations.
All code will be provided upon publication.

2. Spatio-Temporal SSMs and Filtering Inference

2.1. Spatio-Temporal SSM

Let xt be the nG-dimensional latent state vector of interest,
representing a (mean-corrected) spatio-temporal process xt(·)
at time t evaluated at a fine grid G = {g1, . . . , gnG } on a spatial
domain or region D. Further, let yt denote the observed nt-
dimensional data vector at time t. We assume a linear Gaussian
spatio-temporal SSM given by an observation equation and an
evolution equation,

yt = Htxt + vt , vt ∼ Nnt (0, Rt), (1)
xt = Atxt−1 + wt , wt ∼ NnG (0, Qt), (2)

respectively, for time t = 1, 2, . . .. The initial state also follows
a Gaussian distribution: x0 ∼ NnG (μ0|0, �0|0). The noise
covariance matrix Rt will be assumed to be diagonal or block-
diagonal here for simplicity (see Assumption 1 in Section 4.2.1).
No computationally convenient structure is assumed for the
innovation covariance matrix Qt . The observation noise vt and
the innovation wt are mutually and serially independent, and
independent of the state xt−1. We assume that all matrices in
(1)–(2) (and μ0|0 and �0|0) are known. The case of unknown
parameters is discussed in Section 6.

The observation matrix Ht relates the state to the obser-
vations. This enables combining observations from different
instruments or modeling areal observations given by averag-
ing over certain elements of the state vector. Here, we usually
assume point-level measurements for simplicity, although a
block-diagonal form for Ht is possible (see Assumption 1).

The evolution matrix At determines how the process evolves
over time. It can be specified in terms of a system of partial
differential equations (PDEs), may depend on other variables,
or—in the absence of further information—could simply be a
scaled identity operator indicating a random walk over time. We

http://spatial.stat.tamu.edu
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assume that the evolution is local and At is sparse (Assumption 2
in Section 4.2.2).

Note that the SSM in (1)–(2), which is a latent Markov model
of order 1, is very general and can describe a broad class of
systems. Higher-order Markov models can also be written in the
form (1)–(2) by expanding the state space. Non-Gaussian obser-
vations can often be transformed to be approximately Gaussian.
Other extensions are also straightforward, such as letting the
grid G vary over time.

2.2. Filtering Inference Using the Kalman Filter (KF)

We are interested in filtering inference on the state xt . That is,
at each time t, the goal is to find the conditional distribution of
xt given all observations up to and including time t, denoted by
xt|y1:t , where y1:t = (y′

1, . . . , y′
t)

′.
For the linear Gaussian SSM in (1)–(2), the filtering distribu-

tions are Gaussian. These filtering distributions can be obtained
recursively for t = 1, 2, . . . using the Kalman filter (Kalman
1960), which consists of a forecast step and an update step at
each time point. Denote the filtering distribution at time t−1 by
xt−1|y1:t−1 ∼ Nn(μt−1|t−1, �t−1|t−1). The forecast step obtains
the forecast or prior distribution of xt based on the previous
filtering distribution and the evolution model (2) as

xt|y1:t−1 ∼ NnG (μt|t−1, �t|t−1), μt|t−1 := Atμt−1|t−1,
�t|t−1 := At�t−1|t−1A′

t + Qt .

Then, the update step modifies this forecast distribution based
on the observation vector yt and the observation Equation (1),
to obtain the filtering distribution of xt :

xt|y1:t ∼ NnG (μt|t , �t|t),
μt|t := μt|t−1 + Kt(yt − Htμt|t−1),
�t|t := (InG − KtHt)�t|t−1, (3)

where Kt := �t|t−1H′
t(Ht�t|t−1H′

t + Rt)−1 is the nG × nt
Kalman gain matrix.

While the Kalman filter provides the exact solution to our
filtering problem, it requires computing and propagating the
nG × nG covariance matrix �t|t and decomposing the nt × nt
matrix (Ht�t|t−1H′

t + Rt) in Kt , and is thus computationally
infeasible for large nG or large nt . Therefore, approximations are
required for large spatio-temporal data.

3. The MRF

3.1. Overview

We now propose an MRF for spatio-temporal SSMs of the form
(1)–(2) when the grid size nG or the data sizes nt are large,
roughly between 104 and 109. The MRF can be viewed as an
approximation of the Kalman filter in Section 2.2.

The most important ingredient of the MRF is a novel MRD.
Given a spatial covariance matrix �, the MRD computes B =
MRD(�) such that � ≈ BB′. We will describe the MRD in
detail in Section 3.4. For now, we merely note that the MRD
algorithm is fast, and the resulting multi-resolution factor B is of
the same dimensions as � but exhibits a particular block-sparse
structure (see Figure 2(a)).

The MRF algorithm proceeds as follows:

Algorithm 1: Multi-resolution filter (MRF).
At the initial time t = 0, compute B0|0 = MRD(�0|0).
Then, for each t = 1, 2, . . ., do:

1. Forecast step: Apply the evolution matrix At to obtain
μt|t−1 = Atμt−1|t−1 and BF

t|t−1 = AtBt−1|t−1.
Carry out an MRD Bt|t−1 = MRD(St|t−1), where
St|t−1 = BF

t|t−1(BF
t|t−1)

′ + Qt , to obtain xt|y1:t−1 ∼
NnG (μt|t−1, �t|t−1) with �t|t−1 = Bt|t−1B′

t|t−1.
2. Update step: Compute Bt|t := Bt|t−1(L−1

t )′,
where Lt is the lower Cholesky triangle of
�t := InG + B′

t|t−1H′
tR

−1
t HtBt|t−1, to obtain

xt|y1:t ∼ NnG (μt|t , �t|t) with �t|t = Bt|tB′
t|t and

μt|t = μt|t−1 + Bt|tB′
t|tH′

tR
−1
t (yt − Htμt|t−1).

The terms related to the forecast and update distributions are
denoted with subscripts t|t − 1 and t|t, respectively. The key
to the scalability of this algorithm is that while �t|t−1 and �t|t
are large and dense matrices, they are never explicitly calculated
and instead represented by the block-sparse matrices Bt|t−1 and
Bt|t , respectively. Also, as shown in Section 4.2, Bt|t has the same
sparsity structure as Bt|t−1, which allows the cycle to start over
for the next time point t + 1. The forecast step and update
step will be discussed in more detail in Sections 3.2 and 3.3,
respectively.

3.2. Details of the MRF Forecast Step

Assume that we have obtained the filtering distribution
xt−1|y1:t−1 ∼ Nn(μt−1|t−1, �t−1|t−1), where �t−1|t−1 =
Bt−1|t−1B′

t−1|t−1 and Bt−1|t−1 is a block-sparse matrix. Fol-
lowing the forecast step of the standard Kalman filter, we
want to obtain the prior distribution at time t, xt|y1:t−1 ∼
Nn(μt|t−1, �t|t−1).

Because of the sparsity of At (see Assumption 2 in Sec-
tion 4.2.2), computing the forecast mean μt|t−1 = Atμt−1|t−1
and the forecast basis matrix BF

t|t−1 = AtBt−1|t−1 is fast. Then,
rather than calculating the dense nG × nG forecast covariance
matrix St|t−1 = BF

t|t−1(BF
t|t−1)

′ + Qt explicitly, we obtain
its MRD Bt|t−1 = MRD(St|t−1) as described in Section 3.4.
This implies an approximation to the prior covariance matrix
as �t|t−1 = Bt|t−1B′

t|t−1. Again, �t|t−1 does not need to be
computed explicitly, because only Bt|t−1 is used in the update
step below.

3.3. Details of the MRF Update Step

The objective of the update step is to compute the posterior
distribution xt|y1:t ∼ NnG (μt|t , �t|t) given the prior quantities
μt|t−1 and Bt|t−1 (such that �t|t−1 = Bt|t−1B′

t|t−1) obtained in
the forecast step.
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Following the Kalman filter update in (3), we have

�t|t = (InG − KtHt)�t|t−1

= Bt|t−1
(
InG − B′

t|t−1H′
t(HtBt|t−1B′

t|t−1H′
t + Rt)

−1

HtBt|t−1
)
B′

t|t−1

= Bt|t−1
(
InG + B′

t|t−1H′
tR−1

t HtBt|t−1
)−1B′

t|t−1

= Bt|t−1�
−1
t B′

t|t−1 = Bt|tB′
t|t ,

where Bt|t := Bt|t−1(L−1
t )′, Lt is the lower Cholesky triangle

of �t := InG + B′
t|t−1H′

tR
−1
t HtBt|t−1, and we have applied the

Sherman–Morrison–Woodbury formula (e.g., Henderson and
Searle 1981) to �t . As we show in Section 4.2.2, �t exhibits a
special sparsity pattern that ensures fast Cholesky factorization.

To obtain the filtering mean, we use the Searle set of identities
(Searle 1982, p. 151), to write the Kalman gain as

Kt = �t|t−1H′
t(Ht�t|t−1H′

t + Rt)
−1

= Bt|t−1B′
t|t−1H′

t(HtBt|t−1B′
t|t−1H′

t + Rt)
−1

= Bt|t−1(InG + B′
t|t−1H′

tR−1
t HtBt|t−1)

−1B′
t|t−1H′

tR−1
t

= Bt|t−1�
−1
t B′

t|t−1H′
tR−1 = Bt|tB′

t|tH′
tR−1

t ,

and so we have

μt|t = μt|t−1 + Kt(yt − Htμt|t−1)

= μt|t−1 + Bt|tB′
t|tH′

tR−1
t (yt − Htμt|t−1).

Thus, the MRF update step in Algorithm 1 is exact for given
μt|t−1 and �t|t−1 = Bt|t−1B′

t|t−1. Crucially, we will show
in Proposition 3 that Bt|t has the same sparsity structure as
Bt|t−1, and hence it satisfies the block-sparsity assumption at the
beginning of Section 3.2.

3.4. The MRD

We now propose an approximate MRD of a generic spatial
covariance matrix �, which is used in the forecast step of the
MRF in Algorithm 2. Specifically, we consider a vector x =(
x(g1), . . . , x(gnG )

)′ ∼ NnG (0, �), evaluated at a grid G =
{g1, . . . , gnG } over the spatial domainD. The MRD is based on a
multi-resolution approximation of Gaussian processes (Katzfuss
2017)—see Section 5.2 for more details.

3.4.1. Partitioning and Knots
The MRD requires a domain partitioning and selection of knots
at M resolutions. Consider a recursive partitioning of D into J
regions,D1, . . . ,DJ , each of which is again divided into J smaller
subregions (e.g., D2 is split into subregions D2,1, . . . ,D2,J), and
so forth, up to resolution M. We write this as

Dj1,...,jm = ∪̇J
jm+1=1 Dj1,...,jm+1 ,

(j1, . . . , jm) ∈ {1, . . . , J}m,
m = 1, . . . , M − 1.

Let Gj1,...,jm = G ∩ Dj1,...,jm be the grid points that lie in
region Dj1,...,jm , and let Ij1,...,jm = {i : gi ∈ Dj1,...,jm} be the
corresponding indices, and so I = {1, . . . , nG}.

Further, we require a hierarchy of “knot” indices, such that
Kj1,...,jm is a small set of rm indices chosen from Ij1,...,jm . It is
assumed that for each resolution m, the number of knots is
roughly the same in each subregion (i.e., |Kj1,...,jm | = rm), while
it may change across resolutions. We denote the knots at the
coarsest resolution by K0, and we use Km = ⋃

j1,...,jm Kj1,...,jm
to denote the set of all knots at each resolution m = 1, . . . , M.
Further, we define K0:m = ⋃m

l=0 Kl as the set of all knots
at resolutions 0 through m. To ensure that K0 ∪ {Kj1,...,jm :
(j1, . . . , jm) ∈ {1, . . . , J}m; m = 1, . . . , M} is a partition of
I , we sequentially choose Kj1,...,jm ⊂ (Ij1,...,jm \ K0:m−1) for
m = 1, . . . , M.

The partitioning and knot selection is illustrated in a toy
example in Figure 1. In general, the accuracy of the approxima-
tion increases with rm and decreases with J. Each rm−1 should
be sufficiently large (subject to computational constraints) to
capture the dependence between the Dj1,...,jm that is not already
captured at lower resolutions, which often means that rm can
decrease as a function of m.

While the optimal strategy for domain partitioning and
knot selection is unknown, we found the following approach
to work well in practice. We set J = 2 for one-dimensional
problems and J = 4 for two-dimensional problems, always
splitting the domain along one of the coordinates. We set N =∑M

m=0 rm according to the available computational budget (see
Section 4.2.2 for details); then, we split N into rm that are roughly
equal for most resolutions, except that we use a larger r0 at the
coarsest resolution and smaller rm for very high resolutions m.
Given the domain partitioning and the rm, each set of knots

Figure 1. Illustration of knot placement for a regular grid of nG = 80 points on a one-dimensional domain D = [0, 1] (x-axis). Recursively for m = 0, 1, . . . , M (with
M = 3 here), each region is split into J = 3 subregions (dashed lines), with rm = 2 knots per region (maroon dots). Thus, for example, D1 = [0, 1/3), D1,3 = [2/9, 1/3),
and D1,3,2 = [7/27, 8/27). Grid points used as knots at resolutions m are not plotted on finer (> m) resolutions for clarity.
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Kj1,...,jm can be chosen as a roughly uniform grid over the subre-
gion Dj1,...,jm . We used this strategy for our numerical examples
in Sections 7 and 8. Knot selection can also be accomplished
by picking points ordered earlier using a maximum-minimum-
distance ordering (e.g., Guinness 2016).

Note that because G is assumed constant over time here, we
only need to do the domain partitioning and knot selection
once (not at each time point). We assume that the elements in
xt are ordered such that if (j1, . . . , jM) 	L (i1, . . . iM), where
	L stands for lexicographic ordering, then min

(
Ij1,...,jM

)
>

max
(
Ii1,...,iM

)
.

3.4.2. The MRD Algorithm
For index sets J1 and J2, denote by �[J1,J2] the submatrix
of � obtained by selecting the J1 rows and J2 columns, and
�[J1, : ] is the submatrix of the J1 rows and all columns. Based
on grid indices {Ij1,...,jm} and knot indices {Kj1,...,jm} selected
as described in Section 3.4.1, the MRD of a spatial covariance
matrix � proceeds as follows:

Algorithm 2: Multi-resolution decomposition of �.

1. Compute W0 = �[I ,K0] and V0 = �[K0,K0].
2. For m = 0, 1, . . . , M and (j1, . . . , jm) ∈ {1, . . . , J}m:

(a) For � = 1, . . . , m, compute

W�
j1,...,jm = �[Ij1,...,jm ,Kj1,...,j�]

−
�−1∑
k=0

Wk
j1,...,jm(Vk

j1,...,jk)
−1(Vk

j1,...,j� )
′,

(4)
V�

j1,...,jm = �[Kj1,...,jm ,Kj1,...,j�]

−
�−1∑
k=0

Vk
j1,...,jm(Vk

j1,...,jk)
−1(Vk

j1,...,j� )
′. (5)

(b) Set Bj1,...,jm = Wm
j1,...,jm(Vm

j1,...,jm)−1/2.

3. Return B = MRD(�), where B = (
BM , BM−1, . . . , B0)

with Bm = blockdiag({Bj1,...,jm : (j1, . . . , jm) ∈
{1, . . . , J}m}).

The resulting matrix B is of the same size as � but has a block-
sparse structure, which is illustrated in Figure 2(a).

4. Properties of the MRF

4.1. Approximation Accuracy

The only difference between the MRF (Algorithm 1) and the
exact Kalman filter (Section 2.2) is the MRD approximation
of the forecast covariance matrix at each time point; that is,
instead of taking �t|t−1 = St|t−1, the MRF assumes �t|t−1 =
Bt|t−1B′

t|t−1 with Bt|t−1 = MRD(St|t−1). Hence, the MRF is
exact when the MRD at each time point is exact.

However, the MRD is only exact in certain special cases. One
trivial example is given by M = 0 and r0 = nG (see Section

S1). Thus, the MRF converges to the exact Kalman filter as
r0 → nG , but computational feasibility for large nG relies on
r0 � nG . More generally, the accuracy of the MRD is highest
for settings and covariance functions with a strong screening
effect (Stein 2002, 2011). Hence, another instance of exactness
is when St|t−1 is based on an exponential covariance function
on a one-dimensional domain, D ⊂ R, and we place a total of
rm = J −1 knots, one at each subregion boundary (Katzfuss and
Gong 2020, Prop. 6). Figure 1 provides an example of such knot
placement.

Finally, approximation error can also be avoided when At =
ctInG with ct ∈ R

+ and Qt = 0. In this case we can set
Bt|t−1 := √ct Bt−1|t−1, rather than employing the MRD in
the forecast step. In data assimilation, the assumption Qt = 0
is quite common, when model error is incorporated through
multiplicative inflation of the forecast covariance matrix (e.g.,
Pham, Verron, and Christine Roubaud 1998; Anderson and
Anderson 1999).

Aside from these special cases, the MRD and hence the MRF
are approximate. However, the MRA, which is the technique
underlying the MRD (see Section 5.2), can provide excellent
accuracy, as has been shown, for example, by Katzfuss (2017),
Katzfuss and Gong (2020), and in a recent comparison of dif-
ferent methods for large spatial data (Heaton et al. 2017). In
applications where accuracy is crucial, one could successively
increase the number of knots rm used at low resolutions until
the inference “converges.” This allows the user to trade off com-
putational cost for the quality of the approximation.

We demonstrate the MRF’s accuracy numerically in Sec-
tions 7 and 8. In practice, the SSM in (1)–(2) will usually be
an approximation to the true system, and we expect the MRD
approximation error to often be negligible relative to the error
due to model misspecification.

4.2. Computational Complexity

We now determine the computational complexity of the MRF
algorithm as a function of N = ∑M

m=0 rm under the assump-
tion that n = O(nG) = O(nt) for all t = 1, 2, . . .. The
results in this section will culminate in precise statements of
the memory complexity (end of Section 4.2.1) and the time
complexity (Proposition 6) of the MRF, which indicate that the
algorithm is highly scalable. Some of the details revealed by the
intermediate results are also useful for the design of an efficient
implementation of the MRF (cf. Section 3.4.1).

4.2.1. Sparsity and Memory Requirements
As can be seen in Algorithm 2, a multi-resolution factor is com-
posed of block-diagonal submatrices by construction. This leads
to a sparse structure and the following proposition quantifies the
number of its nonzero elements.

Proposition 1. For a covariance matrix �, each row of B =
MRD(�) has N nonzero elements.

Thus, if rm = r for m = 0, . . . , M, then each row of B
has exactly (M + 1)r nonzero elements. Figure 2(a) illustrates
this case for M = 3, J = 3 and r = 2. The MRD results
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Figure 2. Sparsity patterns for nG = 80, M = 3, J = 3, and rm = 2 for m = 0, . . . , 3. Rows and columns correspond to hierarchically arranged elements of the grid G
in Figure 1 from resolution m = 3 down to m = 0. Blocks corresponding to different resolutions are separated by dashed lines. Relating Figure 2(a) to Figure 3, we see
the transition from many sparse columns corresponding to many compactly supported basis functions (m = 3), to only two dense columns corresponding to two basis
functions supported over the entire domain (m = 0).

in a convenient structure of the inner product of the multi-
resolution factor. The following proposition formally describes
the sparsity pattern of this inner product (see Figure 2(b)), while
Proposition 3 shows its usefulness in applications to filtering
problems.

Proposition 2. Let B = MRD(�) for some covariance matrix �.
Then B′B is a block matrix with M + 1 row blocks and M + 1
column blocks. For k, l = 0, . . . , M with k ≥ l, the (M + 1 −
k, M + 1 − l)th block is of dimension |Kk| × |Kl| and is itself
block-diagonal with blocks that are rl columns wide.

The following technical assumption ensures that both Ht
and Rt are block-diagonal with blocks corresponding to indices
Ij1,...,jM within each of the finest subregions:

Assumption 1. Let i ∈ Ii1,...,iM and j ∈ Ij1,...,jM . Assume
Rt[i, j] = 0, unless (i1, . . . , iM) = (j1, . . . , jM). Further, if
Ht[i, j] �= 0, then Ht[i, k] = 0 for all k /∈ Ij1,...,jM . Finally, if
i1, i2 ∈ Ij1,...,jM and i1 < i2, then for all i3 with i1 < i3 < i2, we
have i3 ∈ Ij1,...,jM .

This assumption guarantees the key property of the MRF:
The sparsity pattern of the multi-resolution factor is pre-
served in the update step. To formalize this idea, we intro-
duce two new symbols. First, let S(G) denote the set of matri-
ces whose set of structural zeros is the same or a super-
set of the structural zeros in some matrix G. Second, we
write GL to denote the lower triangle of G, meaning that
GL[i, j] = G[i, j] if i ≥ j, and GL[i, j] = 0 otherwise. We use this
notation to formulate Proposition 3, which captures three prop-
erties of the MRF algorithm that are later used in the proofs of
Propositions 1 and 6.

Proposition 3. Let Bt|t−1, Bt|t , �t , Lt be defined as in Algo-
rithm 1. Under Assumption 1, we have

1. �t ∈ S(B′
t|t−1Bt|t−1);

2. Lt ∈ S(�L
t ) and L−1

t ∈ S(�L
t );

3. Bt|t ∈ S(Bt|t−1).

The first part of the result says that the sparsity pattern of the
precision matrix �t is equivalent to the sparsity pattern of the
inner product of the square roots of the approximate forecast
covariance matrix �t|t−1. This is important because this inner
product has a particular sparsity structure shown in Figure 2(b),
which in turn results in a Cholesky factor and its inverse with
the same sparsity structure (see part two), which can hence be
computed cheaply. The last part of the proposition then shows
that the sparsity in the forecast basis-function matrix Bt|t−1 is
preserved in the posterior or filtering matrix Bt|t , which allows
the MRF to proceed forward through time while preserving the
sparsity as detailed here.

We finish analyzing the sparsity properties with a proposition
that quantifies the number of nonzero elements in the Cholesky
factors of the precision matrix.

Proposition 4. If Lt is the lower Cholesky factor of �t , then each
column of Lt has at most O(N) nonzero elements.

Figure 2(c) illustrates the sparsity structure of L, of which we
take advantage in proving Proposition 6.

The overall takeaway from the sparsity properties discussed
above is that all matrices computed in the MRF Algorithm 1
are very sparse, with only O(nN) nonzero entries. The update
step preserves the sparsity, so that Bt|t ∈ S(Bt|t−1). Due to the
Markov structure of order 1 implied by our SSM, there is no need
to store matrices from previous time points, and so the memory
complexity of the entire MRF algorithm is O(nN).

4.2.2. Computation Time
For determining the time complexity of the MRF, we assume
that the number of knots within each subregion is constant
across resolutions (i.e., rm = r for m = 0, . . . , M) and so N =
(M + 1)r. While the efficacy of our method does not depend on
this assumption, it greatly simplifies the complexity calculations
and helps to develop an intuition regarding its computational
benefits.

Proposition 5. Given a covariance matrix �, B = MRD(�) can
be computed in O(nN2) time using Algorithm 2.
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We further assume that the evolution is local, in the sense that
the nonzero elements in any given row of At only correspond to
grid points in a small number of regions at the finest resolution
of the domain partitioning. This assumption often holds when
constructing At based on partial differential equations (e.g., see
the advection-diffusion in Section 4).

Assumption 2. Assume that the evolution matrix At is sparse
with at most O(r) nonzero elements per row, which must only
correspond to a small, constant number of subregions,

|{Ij1,...,jM : ∃j ∈ Ij1,...,jM such that At[i, j] �= 0}| ≤ c,
i = 1, . . . , n.

For example, for local evolution in two-dimensional space,
we have c ≤ 4.

Proposition 6. Under Assumptions 1 and 2, the MRF in Algo-
rithm 1 requires O(nN2) operations at each time step t.

In practice, N = (M+1)r is chosen by the user depending on
the required approximation accuracy and the available compu-
tational resources. For fixed N, the time and memory complexity
of Algorithm 1 are linear in n. If M increases as M = O(log n)

for increasing n (e.g., Katzfuss 2017) and r is held constant, the
resulting complexity is quasilinear.

4.3. Distributed Computation

For truly massive dimensions (i.e., nG = O(107) or more),
memory limitations will typically require distributing the anal-
ysis across several computational nodes. The MRF is well suited
for such a distributed environment, as information pertaining
to different subregions of the domain can be stored and pro-
cessed in separate nodes, with limited communication overhead
required between nodes. We plan to leverage these properties of
the MRF by designing an implementation of Algorithm 1 that
can be deployed in a high-performance-computation environ-
ment. We include further details in Section S2.

4.4. Forecasting and Smoothing

Forecasting is straightforward using the MRF. Given the filtering
distribution xT |y1:T as obtained by Algorithm 1, we can compute
the k-step-ahead forecast xT+k|y1:T by simply carrying out the
forecast step in Algorithm 1 k times, while skipping the update
step. More precisely, we carry out Algorithm 1 for t = T +
1, . . . , T + k, but at each time point t, we replace Step 2 by
simply setting μt|t = μt|t−1 and Bt|t = Bt|t−1. The accuracy of
such forecasts will depend heavily on the quality of the evolution
matrices At , and so a physics-informed evolution can result in
much better forecasts than simple models such as random walks.

In some applications, one might also be interested in obtain-
ing retrospective smoothing distributions xt|y1:T for t < T.
These can be computed exactly by carrying out the Kalman
filter up to time T, and then carrying out recursive backward
smoothing (e.g., Rauch, Striebel, and Tung 1965), but this is
not feasible for large grids. It is challenging to extend the MRF
by deterministic backward-smoothing operations that preserve

sparsity, but it may be possible to devise a scalable MRF-
based forward-filter-backward-sampler algorithm. We intend to
investigate this modification in future work.

5. Connections to Existing Methods

In this section, we discuss in some detail the connections
between our MRF and hierarchical matrix decompositions and
basis-function approximations. Further, in Section S3, we dis-
cuss connections to multi-resolution autoregressive models,
which demonstrate that the MRF can also be interpreted as a
nested Kalman filter that proceeds over resolutions within each
outer filtering step over time.

5.1. MRD as Hierarchical Low-Rank Decomposition

Hierarchical off-diagonal low-rank (HODLR) matrices are a
popular tool in numerical analysis, and they have recently also
been applied to Gaussian processes (e.g., Ambikasaran and
Darve 2013; Ambikasaran et al. 2016). In HODLR matrices, the
off-diagonal blocks are recursively specified or approximated
as low-rank matrices. In this section, we show the connection
between the HODLR format and the MRD when J = 2.

Definition 1 (Ambikasaran et al. 2016). A matrix K ∈ R
N×N is

termed a 1-level hierarchical off-diagonal low-rank (HODLR)
matrix of rank p, if it can be written as

K =
[

K(1)
1 U(1)

1 (V(1)
1 )′

U(1)
2 (V(1)

2 )′ K(1)
2

]
,

where K(1)
i ∈ R

N/2×N/2, and U(1)
i , V(1)

i ∈ R
N/2×p. We call K

an m-level HODLR matrix of rank p if both diagonal blocks are
(m − 1)-level HODLR matrices of rank p.

If we use Hp
m to denote the set of all m-level HODLR matrices

of rank p, then it follows that Hp
m ⊂ Hp

m−1. The optimal low-
rank representation is obtained by specifying the matrices U(j)

i
and V(j)

i as the first p singular vectors of the corresponding
off-diagonal submatrix (Hogben 2006, Item 5.6.13), but this
is prohibitively expensive. Ambikasaran et al. (2016) discuss
multiple ways of approximating this low-rank representation.

We now show that the outer product of an MRD factor
is a HODLR matrix, specifically one in which the low-rank
approximations are obtained as skeleton factorizations.

Proposition 7. Let B = MRD(�), where the decomposition is
based on a partitioning scheme with J = 2 and rm = r for m =
0, . . . , M. Then, BB′ ∈ Hr

M .

The proof is given in Appendix A. It can easily be extended
to rm varying by resolution. Thus, the MRF approximation
of the prior covariance matrix, �t|t−1 = Bt|t−1B′

t|t−1, is a
HODLR matrix (Ambikasaran et al. 2016). In contrast to pre-
vious approaches using HODLR matrices for spatio-temporal
models (e.g., Li et al. 2014; Saibaba, Miller, and Kitanidis 2015),
the block-sparse MRD matrices allow the MRF to handle nondi-
agonal evolution matrices At and full-rank model-error matri-
ces Qt .



8 M. JUREK AND M. KATZFUSS

Figure 3. Basis functions obtained by interpolating the entries in each column of B = MRD(�) in Figure 2(a) using the grid from Figure 1, with � based on an exponential
covariance with range 0.3. Each basis function’s support is restricted to one of the subregions (dashed lines) at each resolution.

5.2. MRD as Basis-Function Approximation

The MRD is related to the multi-resolution approximation
(MRA; Katzfuss 2017) of a Gaussian process as a weighted
sum of increasingly compactly supported basis functions at M
resolutions. While the MRD adapts the MRA to an approximate
decomposition of a covariance matrix evaluated at a spatial
grid, � = BB′, we can similarly interpret each column of
B as a basis vector over the grid. In other words, the spatial
field x ∼ N (0, �) is approximated as x ≈ Bη, where η ∼
N (0, I) is the vector of independent standard normal weights.
By interpolating the values of the basis vectors between grid
points, we can visualize the columns of B as basis functions,
which is illustrated in Figure 3.

The basis functions obtained in this way exhibit interesting
properties. Their support is increasingly compact as the reso-
lution increases, and basis functions at low resolution capture
the large-scale structure. There are strong connections between
the MRD and stochastic wavelets, with the major difference
that the shape of the basis functions in the MRD adapts to the
covariance structure in �. This adaptation is especially useful
in the spatio-temporal context here, which requires approxima-
tion of the forecast covariance matrix St|t−1 that depends on
the data at previous time points and is hence highly nonsta-
tionary. The compact support stems from the assumption of a
block-sparse structure at each resolution in the MRD, which is
equivalent to assuming that the remainder at each resolution
is conditionally independent between subregions at that res-
olution, given the terms at lower resolutions. In general, this
assumption is not satisfied and thus produces an approximation
error, although the MRD is exact in some special cases (see
Section 4.1).

6. Parameter Inference

If there are random, time-varying parameters θ t in any of the
matrices in (1)–(2), that are distinct from the Gaussian state xt ,
we can make inference on these parameters using an approx-
imate Rao-Blackwellized particle filter (Doucet et al. 2000), in
which we use the MRF algorithm to approximately integrate out
the high-dimensional state xt at each time point. An alternative
approach, based on including the unknown parameters in the
state vector, otherwise known as data augmentation, tends to
work poorly for certain parameters and thus is less general (e.g.,
DelSole and Yang 2010; Katzfuss, Stroud, and Wikle 2020).

To derive our filter, note that we have

p(y1:T |θ1:T) =
T∏

t=1
p(yt|y1:t−1, θ1:t) =:

T∏
t=1

Lt(θ1:t),

where, after integrating out xt , we have yt|y1:t−1, θ1:t ∼
Nnt (Htμt|t−1, Ht�t|t−1H′

t + Rt) with �t|t−1 = Bt|t−1B′
t|t−1.

By applying a matrix determinant lemma (e.g., Harville 1997,
Thm. 18.1.1) to the determinant and the Sherman–Morrison–
Woodbury formula to the quadratic form in the multivariate
normal density, it is straightforward to show that the integrated
filtering likelihood at time t can be written, up to a constant, as

−2 logLt(θ1:t) = 2 log |Lt| + log |Rt| + (yt − Htμt|t−1)
′R−1

t

(yt − Htμt|t−1) − ỹ′
t ỹt , (6)

where ỹt := B′
t|tH′

tR
−1
t (yt − Htμt|t−1), and we have omitted

dependence on the parameters θ1:t for the terms on the right-
hand side.

Assuming that the priors for the θ t are given by p0(θ0) for
t = 0, and recursively by pt(θ t|θ t−1) for t = 1, 2, . . ., the particle
MRF proceeds as follows:

Algorithm 3: Particle MRF.
At time t = 0, for i = 1, . . . , Np, draw θ

(i)
0 ∼ p0(θ0) with

equal weights w(i)
0 = 1/Np, and compute μ

(i)
0|0 = μ0|0(θ (i))

and B(i)
0|0 = MRD(�0|0(θ (i)

0 )). Then, for each t = 1, 2, . . .,
do:

• For i = 1, . . . , Np:

– Sample θ
(i)
t from a proposal distribution qt(θ t|θ (i)

t−1).
– Forecast step: Compute μ

(i)
t|t−1 = At(θ

(i)
t )μ

(i)
t−1|t−1,

BF
t|t−1

(i) = At(θ
(i)
t )B(i)

t−1|t−1, and B(i)
t|t−1 =

MRD(�
(i)
t|t−1), where BF

t|t−1
(i)(BF

t|t−1
(i))′ + Qt(θ

(i)
t )).

– Update step: Compute �
(i)
t = InG +

B(i)
t|t−1

′Ht(θ
(i)
t )′Rt(θ

(i)
t )−1Ht(θ

(i)
t )B(i)

t|t−1, L(i)
t

as the lower Cholesky triangle of �
(i)
t ,

B(i)
t|t = B(i)

t|t−1((L(i)
t )−1)′, and μ

(i)
t|t = μ

(i)
t|t−1 +

B(i)
t|t B(i)

t|t ′Ht(θ
(i)
t )′Rt(θ

(i)
t )−1(yt − Ht(θ

(i)
t )μ

(i)
t|t−1).
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– Using the quantities just computed for θ
(i)
t , calculate

Lt(θ
(i)
1:t) as in (6), and update the particle weight

w(i)
t ∝ w(i)

t−1Lt(θ
(i)
1:t)pt(θ

(i)
t |θ (i)

t−1)/qt(θ
(i)
t |θ (i)

t−1).

• The filtering distribution is p(θ t , xt|y1:t) =∑Np
i=1 w(i)

t δ
θ

(i)
t

(θ t)NnG (xt|μ(i)
t|t , B(i)

t|t B(i)
t|t ′).

• If desired, resample the triplets {(θ (i)
t , μ(i)

t|t , B(i)
t|t ) : i =

1, . . . , Np} with weights w(1)
t , . . . , w(Np)

t , respectively, to
obtain an equally weighted sample (see, e.g., Douc,
Cappé, and Moulines 2005, for a comparison of resam-
pling schemes).

Section S5 presents numerical experiments demonstrating
the accuracy of Algorithm 3 and its advantage over a low-rank
particle filter. While a general discussion of the many aspects of
prior choice and particle filtering is difficult, our particle MRF
can often provide a close approximation to a Rao-Blackwellized
particle filter, for which there exists a big body of literature
describing its application in different settings. For example,
Martín-Fernández et al. (2014) demonstrated how such a filter
can be used to analyze ecological systems, Martín-Fernández
and Lanzarone (2015) employed it in the context of a heat-
transfer model, and Doucet et al. (2013) discussed its extension
to dynamic Bayesian networks.

7. Simulation Study

We used simulated data to compare the performance of the MRF
with several filtering methods:

KF: The Kalman filter (see Section 2.2) provides the exact
filtering distributions, but has O(n3) time complexity at each
time point.
MRF: The multi-resolution filter proposed here in Section 3,
with O(nN2) time complexity, where N = ∑M

m=0 rm.
EnKF: An ensemble Kalman filter with stochastic updates
(e.g., Katzfuss, Stroud, and Wikle 2016, sec. 3.1). We set the
ensemble size to N and use Kanter’s function (Kanter 1997)
for tapering such that the resulting matrix has N nonzero
entries per row. This results roughly in O(nN2) time com-
plexity (e.g., Tippett et al. 2003).
LRF: A low-rank-plus-diagonal filter that can be viewed as a
spatio-temporal extension of the modified predictive process
(Finley et al. 2009) and as a special case of a fixed-rank filter
(Cressie, Shi, and Kang 2010). Moreover, it can be viewed as
a special case of the MRF (hence allowing for ease of com-
parison) with M = 1 resolutions and N knots at resolution
0, where each grid point is in its own partition at resolution
1, resulting in a time complexity of O(nN2).
MRA: The MRA (Katzfuss 2017) is a spatial-only method.
It can essentially be viewed as a special case of the MRF, for
which the filtering distribution at each time t is obtained by
assuming that only yt and no data at previous time points are
available. It has the same O(nN2) complexity as the MRF.

While the KF provides the exact filtering distributions, it is only
computationally feasible due to the deliberately small problem
size chosen here. All other methods attempt to approximate the
exact KF solution, but have the advantage of being scalable to
much larger grid sizes. For a fair comparison, all approximate
methods used the same N, which trades off approximation accu-
racy and computational complexity. Further, we acknowledge
that the EnKF was designed for nonlinear evolution in opera-
tional data assimilation, and it is thus more widely applicable
than the other methods.

We used two criteria to compare the performance of
the approximate filters: the Kullback–Leibler (KL) divergence
between the true and approximated filtering distribution of
the state vector (i.e., the joint distribution for the entire spa-
tial field), and the ratio of the root mean squared prediction
error (RMSPE) achieved by each approximate method relative
to the RMSPE of the KF. Detailed definitions of the criteria
can be found in Section S4.1. Lower is better for both cri-
teria, with optimal values of 0 for the KL divergence and 1
for the RMSPE ratio. In addition, Section S4.4 examines the
performance of all methods in terms of the confidence-interval
coverage. All quantities were averaged over 50 simulated
datasets.

7.1. One-Dimensional Circular Domain

In our first simulation scenario, we considered a diffusion-
advection model on a one-dimensional domain consisting of
a circle with a unit circumference. After discretizing both the
spatial and the temporal dimensions using nG = 80 and T = 20
regularly spaced points, respectively, we obtained a linear model
as in (1)–(2), where At was a tri-diagonal matrix and Qt =
σ 2

w
[
Mν,λ(si, sj)

]
i,j=1,...nG

was based on a Matérn correlation
functionMν,λ(·, ·) with smoothness ν and range λ. At each time
point, we randomly selected nt observed locations, so that Ht
is a subset of the identity, and we set Rt = σ 2

v Int . A detailed
description of the simulation, including examples of process
realizations, is given in Section S4.2.

Because of the many possible choices of parameters, we first
established baseline settings that we considered relevant for
practical applications, and then examined the effects of chang-
ing them one by one. The resulting simulation scenarios are
detailed in Table 1. For the MRD, we set M = 3, J = 3, and
rm = 2 for all m, and so we used N = (3 + 1)2 = 8 for EnKF,
LRF, and MRA.

As shown in Figure 4, the MRF performed best in all four
scenarios, both in terms of the KL divergence and the RMSPE
ratio.

Table 1. Settings used in the one-dimensional simulation.

nt/nG ν λ σ 2
w σ 2

v

Baseline 0.3 0.5 0.1 0.5 0.05

Smooth 0.3 1.5 0.1 0.5 0.05
Dense obs. 0.8 0.5 0.1 0.5 0.05
Low noise 0.3 0.5 0.1 0.5 0.01

NOTE: Bold values indicate changes with respect to the baseline.
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Figure 4. Filter scores for different parameter settings; one-dimensional domain. Note that we used different scales on the vertical axis for each plot, with a logarithmic
scale for the KL divergence.

7.2. Two-Dimensional Domain

We also considered a diffusion-advection model on a unit
square, and we discretized it on a regular grid of size nG =
34 × 34 = 1156. As before, we used T = 20 evenly spaced
time points. Writing the model in the linear form (1)–(2),
At was a sparse matrix with nonzero entries corresponding
to interactions between neighboring grid points to the right,
left, top, and bottom. A detailed description of the simula-
tion, including examples of process realizations, is given in
Section S4.3.

Similar to the one-dimensional case, we first considered
baseline parameter settings and then we changed some of them,
one at a time (see Table 2). The MRD used M = 4 and,
similar to Katzfuss (2017) we changed Jm across resolutions m:
(J1, . . . , J4) = (2, 4, 4, 4). We also varied the numbers of knots
rm used at each resolution: (r0, . . . , r4) = (16, 8, 6, 6, 6). Thus,
to achieve a fair comparison, we used N = 42 for EnKF, LRF,
and MRA. As shown in Figure 5, MRF again performed best in
all four scenarios.

Table 2. Settings used in the two-dimensional simulation.

nt/nG ν λ σ 2
w σ 2

v

Baseline 0.1 0.5 0.15 0.5 0.25

Smooth 0.1 1.5 0.15 0.5 0.25
Dense obs. 0.3 0.5 0.15 0.5 0.25
Low noise 0.1 0.5 0.15 0.5 0.1

NOTE: Bold values indicate changes with respect to the baseline.

8. Sediment Movements in Lake Michigan

We also conducted filtering inference on sediment concentra-
tion in Lake Michigan over a period of one month, March
1998, based on satellite data. Such inference can be used by
hydrologists to increase their understanding of sediment trans-
port mechanisms and fine-tune existing domain-specific mod-
els. We used data from Stroud et al. (2010), which are publicly
available online at the journal’s page, and closely followed their
earlier study of this problem in the context of spatio-temporal
smoothing. Unless specified otherwise, we used the same model
and parameter settings that were carefully determined for this
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Figure 5. Filter scores for different parameter settings; two-dimensional domain. Note that we used different scales on the vertical axis for each plot, with a logarithmic
scale for the KL divergence.

application in collaboration with domain experts in Stroud et al.
(2010). Hence, we focused on inferring the state of the spatial
field based on Algorithm 1, and we did not need the particle
MRF in Algorithm 3. We briefly summarize the general frame-
work below and indicate the few modifications we introduced.

The lake area was divided into nG = 14,558 grid cells
of size 2 km × 2 km each. We use xt to denote the sediment
concentrations at the nG cells at time t. The time dimension was
discretized into 409 intervals. The sediment transport model
was assumed to be xt = Atxt−1 + ρt + wt , where At describes
the temporal evolution based on a hydrological PDE model
provided to us by Stroud et al. (2010), ρt is a vector with external
inputs representing the influence of water velocity and bottom
sheer stress, and the model error wt is assumed to follow a
N (0, Qt) distribution with covariance matrix Qt = (σ 2

ω�t�
′
t)◦

T, where ◦ denotes element-wise multiplication. All matrices
�t have dimensions nG × 5 and reflect the spatial structure of
the error in the original study, while T is taken to be a tapering
matrix based on a Kanter covariance function with a tapering
radius that leaves about 200 nonzero elements in each row. We
used σω = 0.063, as in the original study.

The data comprise 10 satellite measurements of remote-
sensing reflectance (RSR) at the frequency of 555 nm taken
over the southern basin of Lake Michigan, modified in a way
that accounts for the effects of the cloud cover. The observed
value at each grid point was assumed to be the first-order Taylor
expansion of h(c) = θ0 + θ1 log(1 + θ2(c + θ3)) taken around
the initial mean of the sediment concentration at time t =
0. We took the parameter vector θ = (θ0, θ1, θ2, θ3) to be
(0.003, 0.054, 0.474, 0.55), the same as in Stroud et al. (2010).
Using yt to denote the vector of observations at time t after
removing a time-varying instrument bias and accounting for
constant terms in the Taylor expansion, we assumed yt = Htxt+
vt as in (1), where Ht had only one nonzero element in each row,
vt ∼ N (0, Rt), and Rt = σ 2

v I was diagonal, where σv = 0.007,
as in Stroud et al. (2010).

Because of the moderate size of the spatial grid, we were able
to compute the exact Kalman filter solution. We set M = 5,
J = 4, and (r0, . . . , r5) = (16, 8, 8, 8, 4, 4) for the MRF, which
implied that N = ∑

m rm = 48 for the other approximation
methods in Section 7. The tapering range used in EnKF was
selected such that the tapering matrix had only 5 nonzero
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elements per row, which corresponds to the setting used by
Stroud et al. (2010). While this is inconsistent with the compar-
ison principles outlined in Section 7, it made the EnKF perform
better in this case.

As the true concentrations were unknown, we compared
the approximate filtering means to the exact means obtained
by the Kalman filter, using the root average squared difference(∑

t
∑

i(μ̂t[i]−μKF
t [i])2)1/2 between the approximate filtering

Table 3. Root average squared difference (RASD) between approximate and exact
filtering means for sediment concentration.

MRF EnKF LRF MRA

RASD 0.08 0.22 0.42 0.72

means μ̂t[i] and the KF means μKF
t [i], averaged over all times t

and grid points i. The results, reported in Table 3, show the MRF

Figure 6. Satellite data (in log RSR) and exact Kalman filtering means of sediment concentrations (in mg/L), along with differences of approximate filtering means to the
Kalman filter. We display the results for the southern basin of the lake only, where differences between the methods are most pronounced.
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outperforming all other approximate methods. To visually verify
these results, we also present satellite data and sediment con-
centration estimates for three selected time points in Figure 6.
A video with all time points can be found at http://spatial.stat.
tamu.edu.

For a grid of the size nG considered here, a single step of
the MRF took roughly 5% of the time required by the exact
Kalman filter (on a laptop with 8GB of memory and Intel(R)
Core(TM) i7-3630QM CPU @ 2.40GHz). More importantly,
the MRF scales well to even larger grid sizes (see Section 4.2),
while exact calculations will quickly become infeasible due to
memory constraints. Exact computation times and memory
limitations will, of course, depend heavily on the computational
environment.

9. Conclusions and Future Work

We introduced the MRF, a new filtering method for linear
Gaussian spatio-temporal SSMs, which relies on a block-sparse
multi-resolution matrix decomposition. We proved that the
sparsity can be preserved under filtering through time, ensuring
scalability of the MRF to very large spatial grids. In our com-
parisons, the MRF substantially outperformed existing methods
that can be used to approximate the Kalman filter. We also suc-
cessfully applied the MRF to inferring sediment concentration
in Lake Michigan.

Spatio-temporal processes typically exhibit highly compli-
cated structures that make exact inference intractable, especially
in high dimensions. We believe that it is often better to conduct
approximate inference for a realistic, intractable model, rather
than carrying out “exact” inference for a crude simplification
(e.g., a low-rank version) of the model. While it might be chal-
lenging to precisely quantify the approximation accuracy in the
former case (e.g., for the MRF), approximate inference can give
better results than exact inference in a simplified model, which
often completely ignores the error incurred by simplifying the
model.

While we have focused on spatio-temporal data here, our
methods are also applicable to general SSMs of the form (1)–
(2) that do not correspond to physical space and time, as long as
some distance between the elements of each state vector can be
specified.

Potential future work includes extensions to non-Gaussian
data, nonlinear evolution, and smoothing inference. We are also
developing a user-friendly implementation of the MRF with
sensible default settings for the number of knots and domain
partitioning.

Appendix A. Proofs

We now provide proofs for the propositions stated throughout the
article. We simplify notation by dropping most time subscripts; to
avoid confusion, we denote Bt|t−1 by B, and Bt|t by B̃. In Section
S8, we provide lemmas with proofs that are used in the proof of
Proposition 3 here. Sections S6 and S7 contain additional technical
concepts used in the lemmas, including a review of basic ideas from
graph theory, hierarchical-matrix theory, and some illustrative figures.
Finally, throughout this appendix, if G is a square matrix, we use GL

and GU to denote its lower and upper triangles, respectively.

Proof of Proposition 1. Recall that B =
(

BM , BM−1, . . . , B0
)

. This lets

us write the ith row of B as B[i, :] =
(

BM[i, :], BM−1[i, :], . . . , B0[i, :]
)

.
By construction, each block Bm is block-diagonal and such that for m ≤
M, each segment Bm[i, :] has only rm nonzero elements. Because each
row of B is composed of M + 1 blocks Bm[i, :] for m = 0, . . . , M, this
ends the proof.

Proof of Proposition 2. Direct calculation shows that B′B is a block
matrix consisting of (M + 1) × (M + 1) blocks with (M − k + 1, M −
l + 1)th block (Bk)′Bl. Since for each j the matrix Bj has dimensions
nG ×|Kj| it follows that (Bk)′Bl is of size |Kk|× |Kl|. Note that Bk and
Bl are block-diagonal with blocks of size |Ij1,...,jk |×rk and |Ij1,...,jl |×rl,
respectively. Assuming without loss of generality that k ≤ l, we have
that

Ij1,...,jk =
J⋃

jk+1=1
· · ·

J⋃
jl=1

Ij1,...,j� ,

�⇒ |Ij1,...,jk | =
J∑

jk+1=1
· · ·

J∑
jl=1

|Ij1,...,j� |. (7)

Thus, Bl can be viewed as a block-diagonal matrix with blocks of
height |Ij1,...,jk |. We can also determine their width to be wj1,...,jk =∑J

jk+1=1 · · · ∑J
jl=1 |Kj1,...,jk,jk+1,...jl |. This means (Bk)′Bl is the prod-

uct of two block-diagonal matrices with matching block sizes. There-
fore, the product will be also block-diagonal with blocks of dimensions
wj1,...,jk × rk.

Proof of Proposition 3.

1. Observe that under Assumption 1, R−1 and H are block-diagonal
with blocks of matching dimensions. Since R−1 has square blocks,
we conclude that H′R−1 ∈ S(H′). Thus, if R̃−1 := H′R−1H, then
R̃−1 ∈ S(H′H). The latter is a block-diagonal matrix with square
blocks of size |Ij1,...,jM |.

Next, we demonstrate that B′R̃−1B ∈ S(B′B). First, as R̃−1 is
block-diagonal, the (M + 1 − k, M + 1 − l)th block of B′R̃−1B is
given by (Bk)′R̃−1Bl.

Now, for each 0 ≤ k ≤ M, Bk is a block-diagonal matrix
with blocks of size |Ij1,...,jk | × rk, but R̃−1 has blocks of size
|Ij1,...,jM |×|Ij1,...,jM |. However, recalling (7), blocks of R̃−1 can also
be viewed as having dimensions |Ij1,...,jk | × rk. Because this implies
that (Bk)′R̃−1 ∈ S(Bk)′, we have (Bk)′R̃−1Bl ∈ S((Bk)′Bl) and
hence (B)′R̃−1B ∈ S(B′B). Finally, we conclude that � ∈ S(B′B),
because � = InG + B′R̃−1B and all diagonal elements of B′B are
nonzero.

2. According to Khare and Rajaratnam (2012, Thm. 1), for any positive
definite matrix S, the sparsity pattern in the Cholesky factor and
its inverse are the same as that of the lower triangle of S, if (a) the
pattern of zeros in S corresponds to a homogeneous graph, and (b)
the order of the vertices of the graph implied by the order of the
rows is a Hasse-tree-based elimination scheme. Lemmas S1 and S2
in Section S8 show that these two conditions are met for B′B. These
lemmas, together with Part 1 above, imply that L ∈ S(�L) and
L−1 ∈ S(�L).

3. Observe that �−1 = (LL′)−1 = (L−1)′L−1. Thus, (L−1)′ is the
Cholesky factor of �−1. Moreover, by Part 2, (L−1)′ ∈ S((B′B)U).
This allows us to define blocks L̃m,k such that

(L−1)′ =

⎡⎢⎢⎢⎣
L̃M,M . . . L̃M,1 L̃M,0

...
. . .

...
...

0 . . . L̃1,1 L̃1,0

0 . . . 0 L̃0,0

⎤⎥⎥⎥⎦ =
[

L̃m,k
]

m,k=M,...,0
,

http://spatial.stat.tamu.edu
http://spatial.stat.tamu.edu
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where each L̃m,k ∈ S((Bm)′Bk) for m ≥ k and is zero when m <

k. This means that for each m, k with m ≥ k, we can consider the
sparsity of Bm(Bm)′Bk instead of BmL̃m,k.

Recall that Bk is block-diagonal with blocks of size |Ij1,...,jk |×rk.
Similarly, Bm has blocks that are |Ij1,...,jm | × rm. However, since
k ≤ m, using (7) we can also see Bm as a block-diagonal matrix
whose blocks have dimensions |Ij1,...,jk | × rk (cf. proof of Proposi-
tion 2). This implies that Bm(Bm)′ ∈ S(Bk(Bk)′), which means that
Bm(Bm)′Bk ∈ S(Bk) and hence BmL̃m,k ∈ S(Bk).

Finally, we observe that

B · (L−1)′ = [
BM BM−1 . . . B0] ·

⎡⎢⎢⎢⎣
L̃M,M . . . L̃M,1 L̃M,0

...
. . .

...
...

0 . . . L̃1,1 L̃1,0

0 . . . 0 L̃0,0

⎤⎥⎥⎥⎦
= [

B̃M B̃M−1 . . . B̃0] ,

where B̃k = ∑M
m=k BmL̃m,k. Since we showed that BmL̃m,k ∈

S(Bk), this means that B̃k ∈ S(Bk).

Proof of Proposition 4. By Proposition 3, Parts 1 and 2, L ∈ S((B′B)L).
Therefore, it suffices to show that cj = (B′B)L[:, j], the jth column
of (B′B)L, has O(N) nonzero elements for each j. Notice that cj =
(0, . . . , 0, ck,k

j , . . . cM,k
j )′ where ck,l

j = ((Bk)′Bl)[:, j], the jth column of
(Bk)′Bl. Because l ≥ k, each of the Bk(Bl)′ matrices is block-diagonal
with blocks of height |Kj1,...,jk |. The vector ck,l

j intersects exactly one of
such diagonal blocks, and so the total number of nonzero elements in
c is at most N = ∑

m rm.

Proof of Proposition 5. Observe that it is enough to consider only the
complexity of operations in (4) because Vl

j1,...,jm can be obtained by
selecting appropriate rows from Wl

j1,...,jm . Given matrix �, we only
need to calculate the second term in (4). First, note that calculating
Wl

j1,...,jm for all (j1, . . . , jm) is the same as computing Wl
j1,...,j� for all

l, and then, for each (j1, . . . , jm), selecting the rows corresponding to
Ij1,...,jm . Thus, we show the complexity of calculating all Wl

j1,...,j� .
Assume that all Wk

j1,...,j� for k < l are already given and consider the
summation term. Each of its components takes O(|Ij1,...,j� |r2 + r3 +
r3 + r3) = O(|Ij1,...,j� |r2) to compute. Because for any given l, there
are at most M terms under the summation, their joint computation
time is O(M · |Ij1,...,j� |r2). For a given l, these calculations have
to be performed for each set of indices Ij1,...,j� . Thus, obtaining all
Wl

j1,...,j� requires O(M ·∑j1,...,j� |Ij1,...,j� |r2) = O(M ·nr2) time. Now
notice that Ij1,...,jm ⊂ Ij1,...,j� . Therefore, once we have Wl

j1,...,j� , we
obtain Wl

j1,...,jm by selecting appropriate rows from Wl
j1,...,j� . Finally,

iterating over l = 0, . . . , M means that the total cost of Algorithm 2 is
O(M2nr2) = O(nN2).

Proof of Proposition 6. The forecast step requires calculating μt|t−1 =
Atμt−1|t−1 and BF

t|t−1 = AtBt−1|t−1, which can be obtained in
O(nr) and O(nrN) time, respectively, due to the sparsity structures of
Bt−1|t−1 (see Proposition 1) and At (Assumption 2).

By Proposition 5, the MRD of a given covariance matrix � requires
O(nN2) operations. Here, � = �t|t−1 is not given, but each (i, j)
element must be computed as

�t|t−1[i, j] = (BF
t|t−1[i, : ])(BF

t|t−1[j, : ])′ + Qt[i, j].

This does not increase the complexity of the MRD, because the MRD
requires only O(nN) elements of �t|t−1, each of which can be com-
puted in O(N) time due to the sparsity structure of BF

t|t−1. Thus, the
entire forecast step can be performed in O(nN2) time.

In the update step, we must compute �̃, L−1 = �̃
−1/2, and

Bt|t = Bt|t−1(L−1)′. Under Assumption 1, H and R are block-diagonal
matrices with at most JM blocks of size O(r×r) each. Thus, calculating
R̃ := H′R−1H requires O(JMr3) = O(nr2) operations. The resulting
matrix is block-diagonal with blocks of size O(r×r), conformable with
the blocks of Bt|t−1. Given R̃, the cost of calculating �̃ is dominated
by multiplying Bt|t−1 by R̃. By Proposition 1, each row of Bt|t−1
has N nonzero elements, so in view of the structure of R̃ determined
above, it takes O(nN2) operations to obtain the product Bt|t−1R̃ and,
consequently, to calculate �̃.

The complexity of computing a Cholesky factor is on the order of
the sum of the squared number of nonzero elements per column (e.g.,
Toledo 2007, Thm. 2.2). Thus, computing L requires O(nN2) time,
because L has O(N) elements in each of its n columns (Proposition 3).
Computing L−1 can be accomplished by solving a triangular system of
equations for each column of L−1. Using Proposition 4, we conclude
that each of these systems will have only O(N) equations and thus can
be solved in O(N2) time (Kincaid and Cheney 2002, chap. 4.2). As we
need to compute n columns, the total effort required for obtaining L−1

is O(nN2).
Finally, recall that both Bt|t−1 and L−1 have O(N) elements in each

row and that, by Proposition 3, their product, Bt|t , has only O(nN)

nonzero elements. Because each of these elements can be computed in
O(N) time, the total computation cost of this step is O(nN2).

To summarize, all three matrices necessary in the update step can
be obtained in O(nN2) time. Thus, we showed that both steps of
Algorithm 1 require O(nN2) time, which completes the proof.

Proof of Proposition 7. For m = 1, . . . , M, define B0:m =
(Bm, . . . , B0) as the submatrix of B consisting of the column blocks
corresponding to resolutions 0, . . . , m. To show that BB′ ∈ Hr

M , we
prove by induction over m = 1, . . . , M that (B0:mB0:m)′ ∈ Hr

m. For

m = 1, we have B0:1 =
[

B1 0 B01
0 B2 B02

]
, where B01 and B02 are

each r columns wide. Thus,

B0:1(B0:1)′ =
[

B01B′
01 + B1B′

1 B01B′
02

B02B′
01 B02B′

02 + B2B′
2

]
and so B0:1(B0:1)′ ∈ Hr

1.
Now, assume that B0:m−1(B0:m−1)′ ∈ Hr

m−1. We have

B0:m(B0:m)′ =
m∑

j=0
Bj(Bj)′ =

m−1∑
j=0

Bj(Bj)′ + Bm(Bm)′

= B0:m−1(B0:m−1)′ + Bm(Bm)′.

Next observe that for any k, the matrix Bk is block-diagonal,
which means that Bk(Bk)′ is also block-diagonal with dense blocks
Bk(Bk)′[Ij1,...,jk ,Ij1,...,jk ]. However, recursive partitioning of the
domain means that Ij1,...,jk−1 ⊃ Ij1,...,jk . Therefore, if k > j, then
blocks of Bk(Bk)′ are nested within the blocks of Bj(Bj)′. Since this
holds also for k = m − 1 and j = m, it means that B1:m(B1:m)′ ∈
Hr

m.

Supplementary Materials

Extensions and further details referenced in the article using the “S” prefix.
(supplement.pdf)
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Python code which can be used to reproduce numerical simulations.
(MRFcode.zip)
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