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Abstract: Building robust age–depth models to understand climatic and geologic histories from
coastal sedimentary archives often requires composite chronologies consisting of multi-proxy age
markers. Pollen chronohorizons derived from a known change in vegetation are important for age–
depth models, especially those with other sparse or imprecise age markers. However, the accuracy of
pollen chronohorizons compared to other age markers and the impact of pollen chronohorizons on the
precision of age–depth models, particularly in salt marsh environments, is poorly understood. Here,
we combine new and published pollen data from eight coastal wetlands (salt marshes and mangroves)
along the Atlantic Coast of the United States (U.S.) from Florida to Connecticut to define the age
and uncertainty of 17 pollen chronohorizons. We found that 13 out of 17 pollen chronohorizons
were consistent when compared to other age markers (radiocarbon, radionuclide 137Cs and pollution
markers). Inconsistencies were likely related to the hyperlocality of pollen chronohorizons, mixing of
salt marsh sediment, reworking of pollen from nearby tidal flats, misidentification of pollen signals,
and inaccuracies in or misinterpretation of other age markers. Additionally, in a total of 24 models,
including one or more pollen chronohorizons, increased precision (up to 41 years) or no change was
found in 18 models.

Keywords: pollen; age–depth models; geochronology; Holocene; coastal wetlands

1. Introduction

The last millennium contains major environmental changes that are important for
understanding how the Earth may respond to future perturbations [1–3]. Environmental
changes include natural climatic changes from the Medieval Climate Anomaly to the Little
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Ice Age (LIA) [4,5] and the onset of modern anthropogenically-driven climate and land use
changes [6,7].

A robust, highly resolved geochronology in sedimentary archives is critical to con-
strain the timing of major environmental changes during the last millennium [8]. Every
significant advance in geochronology has produced a paradigm-shifting breakthrough in
our understanding of environmental changes from proxy records [9]. The geochronology
of proxy records of environmental change from ~50 ka to present is commonly constrained
using radiocarbon dating [10–12]. However, radiocarbon results dating to the last few
centuries often yield age estimates with multiple distinct ranges due to the highly vari-
able relative concentration of radiocarbon in the atmosphere. For example, variations
in the atmospheric 14C/12C ratio from changes in solar activity (e.g., minima in 1500,
1700, and 1815 CE) [13] and combustion of radiocarbon-free fossil fuels primarily since
the 1960s (known as the Suess effect) [14–16], cause some samples to have multiple po-
tential age-ranges [17,18]. The last few hundred years of sediment-based proxy records
can also be dated using a composite chronology including short-lived radioisotopes, such
as 210Pb [19–22] and 137Cs [23,24], and anthropogenic pollution markers [25–27] (Figure 1).
However, there are limitations imposed by sedimentary processes, sampling, and analytical
factors of 210Pb, which can generate erroneous ages [28,29]. Pollution markers of trace
metals are available after the regional onset of industrial activity [30–32] but are absent or
unknown in many regions [33–35].
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relative abundance of pollen of certain plant taxa [36,44,45]. For example, a deforestation 
chronohorizon can be estimated from a decrease in arboreal pollen and a simultaneous 
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Figure 1. Conceptual diagram of dating techniques and their age ranges highlighting the potential chronological gap
between radiocarbon dating and pollution markers that pollen chronohorizons may circumvent.

The radiocarbon calibration plateaus and oscillations that occur between 1500 and
1950 CE and the limitations of short-lived radioisotopes and pollution markers make dat-
ing phenomena like the LIA and the onset of anthropogenically-driven climate change
uncertain [17]. Pollen evidence of land-use changes that occurred during European settle-
ment along the U.S. Atlantic Coast [36,37] provides chronohorizons that can improve the
precision of age–depth models by filling this age-uncertainty gap [38–40]. Because fossil
pollen is readily preserved in coastal, lacustrine, and salt and freshwater marsh sediments,
pollen chronohorizons are applied in a variety of paleoclimate [41], relative sea level [42],
and storm [43] reconstructions. Pollen chronohorizons are derived from changes in the
relative abundance of pollen of certain plant taxa [36,44,45]. For example, a deforestation
chronohorizon can be estimated from a decrease in arboreal pollen and a simultaneous
increase in ragweed (Ambrosia) [36]. The ages of chronohorizons are estimated from per-
sonal journals, letters, and almanacs that contain information about specific changes in
vegetation [25,26,40]. However, many of the ages associated with the chronohorizons have
unknown uncertainties due to variations in the transport and preservation of pollen in
the sedimentary record [46]. Additionally, applying chronohorizons to broad regions may
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be hampered by hyperlocality, that is, vegetation changes that are restricted to a specific
location by dispersal mechanisms [47].

Here, we have collected published and unpublished pollen and chronology data (e.g.,
radiocarbon, 137Cs and pollution horizons) from sediment cores collected from eight coastal
wetlands (salt marshes and mangroves) along the U.S. Atlantic Coast. Coastal wetlands are
ecologically and economically important environments [48], which are under threat from
sea-level rise, storm surges, and eutrophication [49–52]. We investigated the applicability of
pollen chronohorizons from salt marsh and mangrove environments that have been studied
using a consistent methodology for dating, sediment sampling, and analysis [27,42,53].
We documented eight unique pollen chronohorizons with up to three chronohorizons per
study site (17 chronohorizons in total). We compared pollen chronohorizons to other age
markers (radiocarbon, 137Cs, and pollution markers) to examine their consistency with
other markers and their influence on the precision of age–depth models. We applied a
Bayesian age–depth framework (Bchron) [54], which illustrated that 13 out of 17 ages
assigned to individual pollen chronohorizons were consistent when compared with dates
derived using other age markers. Inconsistencies are likely due to hyperlocality, sediment
mixing, misinterpretation of pollen signals, and/or incorrect pollution and radiocarbon
dates. We show that the greatest influence on the precision of age models occurred at
coastal wetland sites with limited chronological data, highlighting the importance of pollen
chronohorizons and providing a better understanding of age–depth modeling in these
critical coastal environments.

2. Study Sites

We compiled pollen and chronological data from eight coastal wetlands (Figure 2a,
Table 1). We include four published records (New York, New Jersey, North Carolina,
and northern Florida) (Appendix A) and four newly analyzed records with unpublished
chronological data (Connecticut, Delaware, Maryland, and southern Florida) (Table 2). Full
site descriptions of the published and unpublished records can be found in the original
publications and Appendix B, respectively.
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Table 1. Site Descriptions. Regional vegetation identified using [55]. The site description and chronology related to other age markers can be found in the original publication.

State Location Lat. Long. Environment Type Dominant Vegetation Regional Vegetation Citation (Published Sites)

Connecticut East River Marsh, Long
Island Sound 41.28◦ −72.65◦ Salt marsh

• Spartina patens (tall form)
• Spartina patens
• Distichlis spicata
• Spartina alterniflora (short form)
• Phragmites australis
• Iva frutescens

Oak/hickory forest Pollen unpublished,
other data in [53]

New York Bronx, near Pelham Bay 40.87◦ −73.81◦ Salt marsh

• Spartina patens (tall form)
• Spartina patens
• Distichlis spicata
• Spartina alterniflora (short form)
• Phragmites australis
• Iva frutescens

Oak/hickory forest [56]

New Jersey Cape May Courthouse 39.09◦ −74.81◦ Salt marsh

• Spartina patens (tall form)
• Spartina patens
• Distichlis spicata
• Spartina alterniflora (short form)
• Phragmites australis
• Iva frutescens

Pine-
dominated forests [57]

Delaware Great Marsh Preserve,
near Lewes 38.78◦ −75.18◦ Salt marsh

• Spartina patens (tall form)
• Spartina patens
• Distichlis spicata
• Spartina alterniflora (short form)
• Phragmites australis
• Iva frutescens

Pine-
dominated forests Unpublished

Maryland
Smithsonian Environmental

Research Center,
Chesapeake Bay

38.87◦ −76.55◦ Salt marsh

• Spartina patens (tall form)
• Spartina patens
• Distichlis spicata
• Spartina alterniflora (short form)
• Phragmites australis
• Iva frutescens

Oak/hickory forest Unpublished

North
Carolina Croatan Sound 35.89◦ −75.68◦ Salt marsh • Juncus roemerianus

• Spartina alterniflora
Pine-

dominated forests [42,58]

N. Florida Nassau River,
Florida-Georgia border 30.59◦ −81.67◦ Salt marsh • Juncus roemerianus

• Cladium jamaicense
Pine-

dominated forests [27]
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Table 1. Cont.

State Location Lat. Long. Environment Type Dominant Vegetation Regional Vegetation Citation (Published Sites)

S. Florida Swan Key 25.34◦ −80.25◦ Mangrove swamp
• Rhizophora mangle
• Avicennia germinans
• Laguncularia racemosa

Tropical hardwood,
Dade pine Unpublished

Table 2. Chronological data for unpublished sites. UMV refers to lead (Pb) pollution originating from the Upper Mississippi Valley. Core date refers to the year that the core was collected.
Years before present is abbreviated as YBP with “present” defined at 1950.

Delaware Maryland Southern Florida

Lab Code Depth (cm) Age (14C
Years)

Calibrated Age
Range (YBP) Lab Code Depth (cm) Age (14C

Years)
Calibrated Age

Range (YBP) Lab Code Depth (cm) Age (14C
Years)

Calibrated Age
Range (YBP)

R
ad

io
ca

rb
on

OS-132389 67 ± 4 260 ± 15 287–313 OS-115941 62 ± 2 95 ± 20 33–255 OS-134377 33.5 ± 1 105 ± 20 29–258
OS-132390 83 ± 4 205 ± 20 1–294 OS-114600 78 ± 2 385 ± 15 339–497 OS-132811 50.5 ± 1 350 ± 15 324–473
OS-124588 98 ± 4 335 ± 15 319–457 OS-115940 92 ± 2 240 ± 15 156–303 OS-132812 77.5 ± 1 1030 ± 20 927–963
OS-121533 113 ± 4 190 ± 20 1–285 OS-130621 97 ± 2 405 ± 15 463–503 OS-134336 91.5 ± 1 1140 ± 15 987–1066
OS-130673 114 ± 4 315 ± 15 311–434 OS-115939 110 ± 2 405 ± 15 464–503 OS-132813 98.5 ± 1 1110 ± 15 972–1053
OS-124587 126 ± 4 435 ± 15 493–512 OS-130554 117 ± 2 665 ± 15 568–665 OS-132814 107.5 ± 1 1530 ± 25 1361–1515
OS-123152 133 ± 4 590 ± 20 546–641 OS-114599 133 ± 2 850 ± 20 712–787 OS-134379 126.5 ± 1 1720 ± 20 1569–1693
OS-121534 139 ± 4 710 ± 20 656–681 OS-115938 154 ± 2 980 ± 20 805–931 OS-129823 145.5 ± 1 1800 ± 15 1647–1803
OS-123153 149 ± 4 945 ± 20 799–919 OS-114598 175 ± 2 1120 ± 20 974–1059 OS-134337 159.5 ± 1 1700 ± 15 1563–1682
OS-124589 155 ± 4 905 ± 20 765–903 OS-115937 194 ± 2 1170 ± 25 1005–1172 OS-133069 178.5 ± 1 2150 ± 20 2071–2292
OS-132391 159 ± 4 1030 ± 15 929–960 OS-114597 206 ± 2 1220 ± 20 1076–1229 OS-134690 191.5 ± 1 2330 ± 20 2333–2354
OS-121535 162 ± 4 1270 ± 25 1178–1272 OS-115936 225 ± 2 1290 ± 20 1185–1278 OS-133066 211.5 ± 1 2160 ± 15 2124–2294
OS-130880 164 ± 4 1230 ± 20 1018–1249 OS-114596 247 ± 2 1460 ± 25 1309–1389 OS-134574 236.5 ± 1 2350 ± 25 2338–2436
OS-132392 170 ± 4 1240 ± 15 1110–1251 OS-115935 265 ± 2 1650 ± 20 1529–1597 OS-129771 250.5 ± 1 2500 ± 20 2499–2715
OS-130881 176 ± 4 1190 ± 20 1065–1174 OS-115934 286 ± 2 1800 ± 20 1639–1809 OS-134380 261.5 ± 1 2580 ± 30 2546–2753
OS-130679 181 ± 4 1500 ± 15 1352–1403 OS-114595 302 ± 2 1740 ± 20 1585–1702 OS-132815 278.5 ± 1 2790 ± 20 2850–2944
OS-121536 188 ± 4 1480 ± 20 1322–1398 OS-114594 329 ± 2 1910 ± 20 1824–1891 OS-134691 297.5 ± 1 2940 ± 20 3016–3158
OS-130798 203 ± 4 1770 ± 15 1627–1713 OS-114593 348 ± 2 2050 ± 25 1947–2100 OS-132816 318.5 ± 1 2970 ± 20 3077–3203
OS-132393 205 ± 4 1600 ± 15 1420–1535 OS-130622 362 ± 2 2100 ± 15 2010–2118 OS-134692 330.5 ± 1 3180 ± 25 3367–3447
OS-130697 213 ± 4 1670 ± 20 1538–1610 OS-124303 382 ± 2 2660 ± 25 2749–2828 OS-129824 349.5 ± 1 3550 ± 20 3739–3889
OS-121537 219 ± 4 1660 ± 20 1534–1605 OS-130623 391 ± 2 2210 ± 20 2157–2306 OS-134338 361.5 ± 1 3470 ± 20 3655–3822
OS-130698 228 ± 4 1730 ± 15 1579–1693 OS-124302 410 ± 2 2180 ± 20 2135–2300 OS-134381 394.5 ± 1 3600 ± 30 3843–3975
OS-130699 238 ± 4 1860 ± 15 1737–1858 OS-130555 420 ± 2 2360 ± 20 2345–2429 OS-133068 415.5 ± 1 3870 ± 20 4237–4402
OS-132394 244 ± 4 1880 ± 20 1747–1871 OS-130624 436 ± 2 2420 ± 15 2364–2644 OS-134575 439.5 ± 1 3830 ± 20 4158–4303
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Table 2. Cont.

Delaware Maryland Southern Florida

Lab Code Depth (cm) Age (14C
Years)

Calibrated Age
Range (YBP) Lab Code Depth (cm) Age (14C

Years)
Calibrated Age

Range (YBP) Lab Code Depth (cm) Age (14C
Years)

Calibrated Age
Range (YBP)

OS-121538 248 ± 4 1650 ± 20 1529–1598 OS-124549 451 ± 2 2560 ± 20 2586–2745 OS-129772 455.5 ± 1 4260 ± 25 4825–4857
OS-132395 249 ± 4 1940 ± 15 1864–1921 OS-126364 472 ± 2 2560 ± 20 2579–2745 OS-134382 473.5 ± 1 4250 ± 25 4732–4854

OS-124301 483 ± 2 2200 ± 20 2154–2304 OS-132818 490.5 ± 1 4410 ± 25 4880–5199
OS-127727 488 ± 2 2690 ± 25 2757–2844 OS-134576 532.5 ± 1 4650 ± 20 5319–5450
OS-127728 506 ± 2 2890 ± 30 2937–3133 OS-129825 548.5 ± 1 5290 ± 20 5997–6173
OS-130625 513 ± 2 3530 ± 20 3728–3868 OS-134693 568.5 ± 1 4960 ± 25 5618–5733
OS-130626 522 ± 2 2850 ± 15 2897–2996 OS-129826 648.5 ± 1 5000 ± 20 5663–5853
OS-124300 534 ± 2 3210 ± 20 3388–3457 OS-134339 657.5 ± 1 5120 ± 25 5763–5918
OS-130632 545 ± 2 3010 ± 120 2881–3455 OS-132820 676.5 ± 1 5230 ± 25 5928–6094
OS-130556 575 ± 2 3560 ± 20 3785–3899 OS-134384 691.5 ± 1 5380 ± 30 6035–6272
OS-115933 593 ± 2 3680 ± 20 3940–4081 OS-132821 714.5 ± 1 5340 ± 25 6014–6209

OS-129827 750.5 ± 1 5370 ± 20 6045–6266

Depth
(cm)

Age
(year CE) Age Marker Depth (cm) Age

(year CE) Age Marker Depth (cm) Age
(year CE) Age Marker

O
th

er
A

ge
M

ar
ke

rs

15 ± 4 1974 ± 5 Pb Peak 0 ± 1 2014 ± 1 Core Date 4 ± 3 1970 ± 10 Ba Onset
21 ± 4 1963 ± 1 137Cs Peak 15 ± 2 1963 ± 1 Pb Decline 7.5 ± 2 1955 ± 5 As Onset
33 ± 4 1954 ± 3 137Cs Onset 17 ± 2 1954 ± 3 137Cs Peak
41 ± 4 1925 ± 5 Pb Peak 17 ± 5 1974 ± 5 137Cs Onset
43 ± 4 1890 ± 10 Zn Peak 35 ± 5 1875 ± 25 Pb Peak
47 ± 4 1880 ± 20 UMV Decline 33 ± 5 1880 ± 20 Pb Onset
48 ± 6 1875 ± 5 Pb Onset 41 ± 5 1858 ± 5 UMV Decline
49 ± 4 1858 ± 5 UMV Peak 10 ± 2 1980 ± 5 UMV Onset
53 ± 4 1827 ± 5 UMV Onset
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Köppen climate zones for the sites span from humid continental to tropical sa-
vanna [59]. The tidal range of the study sites varies from 0.18 m in New Jersey [57]
to 2.44 m in New York [56]. Sites have been influenced by anthropogenic activities, which
have altered the plant communities and, therefore, the pollen assemblages. For example,
ditching was common in many of our sites to drain the marsh [60–63]. Deforestation for
agriculture and wood supply varied in time but was common to all of our sites [26,44,64]
and is commonly used as a pollen chronohorizon [36]. Agricultural activities and impor-
tation of exotic plants such as the introduction of Casuarina in Florida [65,66], can also be
recorded in pollen records.

3. Materials and Methods
3.1. Sediment Sampling

We selected sediment cores or trenches for extraction following detailed stratigraphic
surveys of the underlying stratigraphy at each site. We recovered each core in overlapping,
50-cm long sections using an Eijelkamp Russian-type peat sampler [67]. In Connecticut,
sediment samples were recovered from an excavated trench [53]. All cores and trench
samples were placed in rigid plastic sleeves, wrapped in plastic film, and kept refrigerated
until processing in the laboratory to minimize desiccation and/or decay. One core/trench
section from each site was selected for detailed analysis that was representative of the site
stratigraphy and was deemed most likely to produce a near-continuous reconstruction of
vegetation change over the last 500 years. Site stratigraphy consisted of continuous salt
marsh peat or mangrove peat throughout the studied sections.

3.2. Chronology
3.2.1. Pollen Processing and Analysis

The processing procedure for published studies can be found in the original publica-
tions. The unpublished studies followed a similar procedure. In Connecticut, Delaware,
Maryland, and southern Florida, pollen sampling was performed at 4 cm intervals. Ex-
traction of pollen and preparation of slides followed the methods outlined in Faegri
and Iversen [68] and Bernhardt and Willard [40]. Between 100 and 500 hundred grains
were counted.

We found eight unique pollen chronohorizons based on review of proposed reference
dates in the literature, with up to three chronohorizons observed in each study site, produc-
ing a total of 17 chronohorizons (Figure 3). Table 3 includes detailed information regarding
pollen changes and estimations of their age and associated uncertainty. We subsequently
produced 24 age–depth models for the eight study sites: 17 site-specific models using
individual pollen chronohorizons combined with other types of age markers and seven
site-specific models with multiple pollen chronohorizons combined with other types of
age markers.

The eight unique pollen chronohorizons and their criteria for identification varies
among the study sites. Pollen chronohorizons vary in whether they are qualitative (i.e.,
based on increases or decreases in abundance) or semi-quantitative (i.e., a numerical change
or presence/absence) and whether the signal is local or regional. Uncertainty ranges of
pollen chronohorizons are qualitative because they are estimates of the time-lag for vegeta-
tion changes to be recorded in the sedimentary record. The eight pollen chronohorizons
can be grouped into three types: land clearance; reforestation; and introduction and loss of
taxa (Table 3).
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Table 3. Site pollen chronohorizons, their ages, and the ages predicted by NP Bchron model. 1a to 3b refers to the pollen chronohorizon identifier, with the numerical portion of the
identifier designating the type of chronohorizon: (1) land clearance; (2) reforestation; and (3) introduction and loss of taxa, and the letter portion designating the specific chronohorizon
(e.g., Chestnut blight). (Figure 4, Appendix C).

Site Pollen
Chronohorizon

Pollen Chronohorizon
Age (CE) Indicator Explanation of Chronohorizons Age and

Error, and Chosen Range for Date Analysis
Depth, Range (cm)
Bchron Age (CE)

Agreement between Pollen
Chronohorizons and

Bchron Predicted Age?

Connecticut
Land clearance:

Initial (1a)
[44,69]

1700 ± 60
Decrease in arboreal
pollen, increase in

Ambrosia

European settlement began in 1640 in
southeastern Connecticut [44] and regional
settlement and light agriculture occurred

from 1650–1740, with extensive agriculture
starting in 1750 [69]. The entire age/depth

range between the pollen sample above and
below was analyzed to determine consistency

as relevant pollen abundance changes
occurred on both sides of the depth assigned

to this chronohorizon.

62 cm, 58–66 cm
1515–1670 Yes

Connecticut

Land clearance:
Beginning of
the forestry

industry (1d)
[45,70]

1825 ± 25 Strong decrease of
arboreal pollen

1800 is the start of the cordwood industry in
Long Island [45]. It is suggested that the

forestry industry in this region was active
starting in 1800 until 1850 [70]. The entire

age/depth range between the pollen sample
above and below was analyzed to determine

consistency as relevant pollen abundance
changes occurred on both sides of the depth

assigned to this chronohorizon.

46 cm, 42–50 cm
1730–1840 Yes

Connecticut

Introduction and
loss of taxa:

Chestnut blight (3a)
[44,45]

1920 ± 10 Disappearance of
Castanea pollen

Chestnut decline due to the chestnut blight
peaked by 1920 in the region of Connecticut
located near Long Island [44,45]. Only the

portion of the age/depth range between the
assigned depth and the pollen sample above

it was used to determine consistency as
Castanea pollen dropped in abundance

between 6 and 10 cm.

10 cm, 6–10 cm
1960–1970 No
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Table 3. Cont.

Site Pollen
Chronohorizon

Pollen Chronohorizon
Age (CE) Indicator Explanation of Chronohorizons Age and

Error, and Chosen Range for Date Analysis
Depth, Range (cm)
Bchron Age (CE)

Agreement between Pollen
Chronohorizons and

Bchron Predicted Age?

New York
Land clearance:

Initial (1a)
[41,71]

1680 ± 25

Decrease in arboreal
pollen, such as Carya,
increase in Ambrosia

and Plantago

Changes in pollen relevant to initial
deforestation can be dated to

1680 ± 25 [41,71]. The entire age/depth
range between the pollen sample above and
below was analyzed to determine consistency

as relevant pollen abundance changes
occurred on both sides of the depth assigned

to this chronohorizon.

59.5 cm, 54.5–64.5 cm
1655–1800 Yes

New York

Land clearance:
Beginning of
the forestry

industry (1d)
[45,70]

1825 ± 25
Strong decrease of

arboreal pollen,
increase of Plantago

1800 is the start of the cordwood industry in
Long Island [45]. It is suggested that the

forestry industry in this region was active
starting in 1800 until 1850 [70]. The entire

age/depth range between the pollen sample
above and below was analyzed to determine

consistency as relevant pollen abundance
changes occurred on both sides of the depth

assigned to this chronohorizon.

49.5 cm, 46.5–54.5 cm
1755–1830 Yes

New York Reforestation (2a)
[72,73] 1960 ± 25 Restoration of arboreal

pollen

Timber industry activities reduced tree cover
until about 1939, and the basal area of forests

had doubled by 1985 [72,73]. The entire
age/depth range between the pollen sample
above and below was analyzed to determine

consistency as relevant pollen abundance
changes occurred on both sides of the depth

assigned to this chronohorizon.

16.5 cm, 13.5–19.5 cm
1950–1965 Yes

New Jersey
Land clearance:

Initial (1a)
[74,75]

1710 ± 50
Decrease in arboreal
pollen, increase in

Ambrosia

The area near Cape May Courthouse was
settled between 1695 and 1725 [74,75]. This

was broadened to account for lag times. The
entire age/depth range between the pollen
sample above and below was analyzed to
determine consistency as relevant pollen

abundance changes occurred on both sides of
the depth assigned to this chronohorizon.

87.5 cm, 82.5–92.5 cm
1570–1670 Yes
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Table 3. Cont.

Site Pollen
Chronohorizon

Pollen Chronohorizon
Age (CE) Indicator Explanation of Chronohorizons Age and

Error, and Chosen Range for Date Analysis
Depth, Range (cm)
Bchron Age (CE)

Agreement between Pollen
Chronohorizons and

Bchron Predicted Age?

New Jersey

Land clearance:
lowest amount of
forest cover (1c)
[25,36,37,76,77]

1800 ± 20 Quercus:Ambrosia is
less than 1.0

Many forests were clear-cut in Delaware and
New Jersey between 1750 and 1850 [76]. Coal
came into use in the region around 1820 as

firewood became scarce [77]. A date of
1840 ± 20 is suggested for lowest forest cover
in Maryland [25,36]; however, in Delaware,

records suggest that 1800 is more
appropriate [37]. Only the portion of the

age/depth range between the assigned depth
and the pollen sample below it was used to

determine consistency as relevant changes in
pollen abundance occurred exclusively

between 62.5 and 67.5 cm.

62.5 cm, 62.5–67.5 cm
1825–1850 No

Delaware

Land clearance:
Peak deforestation
for agriculture (1b)

[25,36,37]

1785 ± 15 Quercus:Ambrosia is
less than 5.0

A date of 1785 +/- 15 years is suggested
based on palynological research in the

Chesapeake [25,36]. This is supported by a
summary of contemporaneous observations
of decreasing forest cover in the Delaware

region [37]. Only the portion of the
age/depth range between the assigned depth
and the pollen sample below it was used to

determine consistency as relevant changes in
pollen abundance occurred exclusively

between 60 and 64 cm.

60 cm, 60–64 cm
1795–1815 Yes
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Table 3. Cont.

Site Pollen
Chronohorizon

Pollen Chronohorizon
Age (CE) Indicator Explanation of Chronohorizons Age and

Error, and Chosen Range for Date Analysis
Depth, Range (cm)
Bchron Age (CE)

Agreement between Pollen
Chronohorizons and

Bchron Predicted Age?

Delaware

Land clearance:
Lowest amount of

forest cover (1c)
[25,36,37,76,77]

1800 ± 20 Quercus:Ambrosia is
less than 1.0

Many forests were clear-cut in Delaware and
New Jersey between 1750 and 1850 [76]. Coal
came into use in the region around 1820 as

firewood became scarce [77]. A date of
1840 ± 20 is suggested for lowest forest cover
in Maryland [25,36]; however, in Delaware,

records suggest that 1800 is more appropriate
[37]. Only the portion of the age/depth range
between the assigned depth and the pollen

sample below it was used to determine
consistency as relevant changes in pollen
abundance occurred exclusively between

62.5 and 67.5 cm.

56 cm, 56–60 cm
1800–1820 Yes

Maryland

Land clearance:
Peak deforestation
for agriculture (1b)

[25,36]

1785 ± 15 Quercus:Ambrosia is
less than 1.0

A date of 1785 +/− 15 years is suggested
based on palynological research in the

Chesapeake [25,36]. Only the portion of the
age/depth range between the assigned depth
and the pollen sample below it was used to

determine consistency as relevant changes in
pollen abundance occurred exclusively

between 52 and 56 cm.

52 cm, 52–56 cm
1740–1805 Yes

Maryland

Land clearance:
Lowest amount of

forest cover (1c)
[25,36]

1840 ± 20 Ambrosia reaches its
highest abundance

A date of 1840 ± 20 for lowest forest cover is
suggested in Maryland [25,36]. The entire

age/depth range between the pollen sample
above and below was analyzed to determine
consistency as peak Ambrosia abundance may

have occurred on either side of the depth
assigned to this chronohorizon.

32 cm, 30–34 cm
1875–1915 No

North
Carolina

Land clearance:
Initial (1a)
[26,44,64]

1720 ± 20
Decrease in arboreal
pollen, increase in

Ambrosia

The decrease in Ambrosia pollen is an
indicator of settlement [44,64] and settlement

is associated with a date of 1720 ± 20 [26].
The entire age/depth range between the

pollen sample above and below was analyzed
to determine consistency as relevant pollen

abundance changes occurred on both sides of
the depth assigned to this chronohorizon.

70 cm, 65–75 cm
1610–1750 Yes
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Table 3. Cont.

Site Pollen
Chronohorizon

Pollen Chronohorizon
Age (CE) Indicator Explanation of Chronohorizons Age and

Error, and Chosen Range for Date Analysis
Depth, Range (cm)
Bchron Age (CE)

Agreement between Pollen
Chronohorizons and

Bchron Predicted Age?

N. Florida

Land clearance:
Railroad

expansion (1e)
[78]

1865 ± 15
Decrease in arboreal
pollen, increase in

Ambrosia

Construction of railroads in Florida began in
1854, expanded following the Civil War, and

were completed in 1881 [78]. Only the
portion of the age/depth range between the
assigned depth and the pollen sample below

it was used to determine consistency as
relevant changes in pollen abundance

occurred exclusively between
20.5 and 21.5 cm.

20.5 cm, 20.5–21.5 cm
1880–1905 Yes

N. Florida

Land clearance:
Beginning of
the forestry

industry (1d)
[27,79]

1935 ± 10
Decrease in Pinus and
Quercus, Increase in

Ambrosia

The forestry industry in Florida started in
1935 [79]. The error for this chronohorizon

should be 10 years [27]. The entire age/depth
range between the pollen sample above and
below was analyzed to determine consistency

as relevant pollen abundance changes
occurred on both sides of the depth assigned

to this chronohorizon.

12.5 cm, 10.5–13.5 cm
1940–1970 Yes

S. Florida

Introduction or loss
of taxa Casuarina
introduction (3b)

[65,66,79,80]

1910 ± 15 Appearance of
Casuarina pollen

This chronohorizon is defined as the
appearance of Casuarina pollen [65,66]. The

timing was determined by using
literature-derived values of 1900 [80] and

1910 +/− 15 years [79]. Only the portion of
the age/depth range between the assigned
depth and the pollen sample below it was
used to determine consistency as Casuarina

appeared between 25.5 and 29.5 cm.

25.5 cm, 25.5–29.5 cm
1750–1885 No

S. Florida

Land Clearance:
Beginning of
the forestry

industry (1d)
[27,78]

1935 ± 10 Decrease in Pinus
pollen

The forestry industry in Florida started in
1935 [78]. The error for this chronohorizon
should be 10 years [27]. Only the portion of
the age/depth range between the assigned
depth and the pollen sample above it was

used to determine consistency as Pinus
pollen dropped between 9.5 and 13.5 cm.

13.5 cm, 9.5–13.5 cm
1895–1945 Yes
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3.2.2. Radiocarbon

We performed radiocarbon analyses at all unpublished sites on identifiable plant
macrofossils from sediment cores using the National Ocean Sciences Accelerator Mass
Spectrometry (NOSAMS) facility at Woods Hole. At all sites, we extracted plant macro-
fossils (e.g., Spartina and Juncus) to reduce risk of older or younger contamination in bulk
sediments, and selected surface markers likely to be in situ. We removed contaminating ma-
terials, such as extraneous particles, from the plant macrofossils by cleaning the specimen
under a dissection microscope [57]. The radiocarbon samples also underwent acid-base-
acid pretreatment prior to analysis to further remove contaminants [57]. Radiocarbon ages
from NOSAMS were calibrated in Bchron using IntCal13 calibration data set [12,81]. Radio-
carbon chronologies of published studies are found in the original publications (Table 1).
Radiocarbon chronologies and Bchron-calibrated age ranges of unpublished studies are
found in Table 2.

3.2.3. Radionuclide 137Cs

The fallout radionuclide 137Cs (t1/2 = 30.2 years) has been extensively used to pro-
vide estimates of age with depth in a sediment column. 137Cs is an artificially produced
radionuclide present in the environment due to atmospheric fallout from atmospheric
nuclear weapons testing, reactor accidents, and discharges from nuclear facilities. Global
dispersion and fallout of 137Cs began in 1954 CE following the detonation of high-yield
thermonuclear weapons with a distinct maximum in fallout in 1963 CE [23,82,83]. These
two dates (i.e., 1954, 1963 CE) provide an initial appearance and subsurface activity maxi-
mum in accumulating sediments and are used to assign an age to a specific depth in the
sediment column.

Sediment samples were dried at 60 ◦C in an oven to determine dry bulk density and
water content. The sampling increment was 1 to 2 cm in Delaware, 2 cm in Maryland, and 1
to 2 cm in southern Florida. We measured 137Cs activities via gamma spectroscopy. Prior to
analysis, samples were homogenized, packed into standardized vessels, and measured via
gamma emissions for at least 24 h. Gamma counting was conducted on low-background,
high-efficiency, high-purity Germanium detectors coupled with a multi-channel analyzer.
Detectors were calibrated using natural matrix standards (IAEA-300, 312, 314) at the energy
of interest (661 keV) in the standard counting geometry for the associated detector.

3.2.4. Pollution Markers

We analyzed sediments for pollutants with known deposition chronologies to provide
further chronological constraints during the past ~150 years. Metal concentrations were
analyzed to identify key pollutant horizons relative to each site. While these age markers
are region specific, some examples include: (1) the peak and decline of 206Pb and 207Pb,
released from coal burning, in 1858 and 1880 CE associated with lead production in
the Upper Mississippi Valley (UMV) [35,84,85]; (2) lead (Pb) pollution associated with
manufacturing and later, with gasoline from vehicles, beginning in 1875 CE, peaking in
1974 CE, and declining in 1980 CE [86]; (3) the onset of copper (Cu) pollution, which
occurred around 1900 CE [87,88]; (4) the decline of cadmium (Cd) and nickel (Ni) pollution,
which occurred around 1975 and 1997 CE, respectively [32,57]; and (5) an arsenic (As)
peak in Florida in 1970 CE [31]. Core depths, dates, and uncertainty for relevant pollution
chronohorizons at each site are detailed in Table 2 and in Appendix A.

For published studies, the methodology for preparation of samples for pollution
markers can be found in the original publications (Table 2). Sediment samples from
unpublished sites were digested using the modified EPA method 3051 for microwave-
assisted acid digestion. First, 10 mL HNO3 were added to the 0.5 g sediment sample.
After pre-digestion for two hours at room temperature, vessels were sealed and placed
in a MiniWAVE microwave digestion system (SCP Science, Baie D’Urfé, QC, Canada).
After digestion, samples were diluted with 50 mL ultrapure DI water. An Inductively
Coupled Plasma-Mass Spectrometer (ICP-MS; Agilent 7700X, Palo Alto, CA, USA) was
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used for measurement of metal and other element concentrations in the sample digests. We
observed changes in several pollutants throughout the core to determine chronohorizons
associated with them. We used initial increases in metal concentrations in cores to identify
onset pollution chronohorizons and the highest concentrations of the metals to identify
peak pollution chronohorizons. The chronologies from radiocarbon, radionuclide 137Cs
and pollution markers of unpublished studies are found in Table 2.

3.2.5. Bayesian Inferences

We used Bchron [54] to examine (1) the accuracy of pollen chronohorizons; (2) the
impact of pollen chronohorizons on the precision of age–depth models; and (3) the impact
of pollen chronohorizons on the Bchron-predicted age–depth relationship.

Bchron is a Bayesian Chronology package that runs in R [89,90]. All available data
(i.e., including older radiocarbon dates) were included in the statistical analyses, although
we only show Bchron age–depth models from a median age of ~1500 CE to present
(Tables 1 and 2) to encompass the portion of the model that may have been impacted by
pollen chronohorizons. Age–depth models were developed for datasets with radiocarbon,
radionuclide 137Cs, and pollution age markers combined with pollen (WP) and no pollen
(NP) to assess the accuracy of the pollen chronohorizons. We set the prior probability
of outliers to 5% for radiocarbon dates [91] and 1% for other age markers. Due to the
complexity of these models, especially with respect to convergence given the multi-model
dates and outlier combinations, we ran 31 replicate runs of 100,000 iterations for each
chronology and used these to create posterior medians and 50% uncertainty intervals (UI).
We used 50% UI because these are much more robustly estimated than standard 95% or 99%
intervals [92]. We ran 31 replicate simulations in order to ensure that the Bayesian model
used by Bchron samples properly from the probability distribution (known as the posterior)
and that our results are reproducible. At convergence, when the 31 replicate simulations
produce similar outputs, the 31 replicate simulations can be treated as independent and
identically distributed samples from the age–depth posterior probability distribution.

Our strategy to determine the consistency of pollen chronohorizons required several
steps. First, we compared the age of pollen chronohorizons from journals, letters, and
almanacs to the age estimated by the Bchron NP model (Figure 4, Table 3). We then
identified the depth of the chronohorizon and compared this depth to the Bchron-predicted
age of the corresponding depth in the NP model. Finally, we concluded that a pollen
chronohorizon was consistent if its age, plus uncertainty, overlapped with the Bchron
NP reconstructed age range within the 50% UI for the sampling interval in which the
pollen chronohorizon was found. When making these comparisons, the full width of the
uncertainty assigned to each pollen chronohorizon reference date was considered in order
to account for regional variations and signal lag times (Figure 4, Appendix C).

Second, to identify the impact of pollen chronohorizons on the precision of age–depth
models, we calculated the difference between the median 50% UI width of the NP and
WP models. This was done for the individual pollen chronohorizons and for all pollen
chronohorizons combined at each site, for a total of 24 models. Due to the accumulation
model used by Bchron, pollen chronohorizons impacted the age–depth model not only at
their identified depth, but also at surrounding depths. We focused our comparison between
models on the area most influenced by the pollen chronohorizon: (a) the interval between
the pollen chronohorizons and the nearest age marker, or (b) the interval 5 cm above or
below the pollen chronohorizon of interest, whichever was larger. Comparisons including
multiple pollen chronohorizons were analyzed from the age marker above the shallowest
pollen chronohorizon to the age marker below the deepest pollen chronohorizon. We
compared the measured widths of the 50% UIs of WP and NP swaths averaged over the
defined interval to identify how pollen chronohorizons impacted the precision of age–depth
models. We reported the differences between 50% UI swaths of WP and NP models in
years and identified average differences of less than five years as representing “no change”
(Figure 5, Table 4).
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zons; shading indicates the uncertainty associated with each pollen chronohorizon. The chronohorizons are as follows: 
(3a) chestnut blight; (1d) beginning of the forestry industry; (1a) initial land clearance; (1c) lowest amount of forest cover; 
(1b) peak deforestation; and (3b) Casuarina introduction (Table 3). 
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Figure 4. Pollen stratigraphic diagrams plotted against the NP Bchron predicted ages to compare the age plus uncertainty
of the pollen chronohorizons with the ages derived from other age markers at the depth where the pollen chronohorizon
occurred for Connecticut (A), Delaware (B), Maryland (C), and Southern Florida (D). Lines indicate the pollen chronohori-
zons; shading indicates the uncertainty associated with each pollen chronohorizon. The chronohorizons are as follows: (3a)
chestnut blight; (1d) beginning of the forestry industry; (1a) initial land clearance; (1c) lowest amount of forest cover; (1b)
peak deforestation; and (3b) Casuarina introduction (Table 3).
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Table 4. Comparison of with pollen (WP) and no pollen (NP) age–depth models. Positive numbers in the columns titled “Average change of 50% UI width” represent a decrease in
precision (widening) and negative numbers represent an increase in precision (narrowing). Average changes of <5 years are considered not to have changed. In the column titled “Average
change in location of median”, positive numbers indicate that the addition of pollen caused the model to predict younger ages, while negative numbers indicate that including pollen
caused the model to predict older ages for sediments in the depth range listed.

Site Pollen Chronohorizon
Depth Range for Pollen

Chronohorizon
(cm)

Average Change of 50%
UI Width (years) Improved Precision?

Average Change in
Location of Median

(Years)
Location Change?

Connecticut (1a) Initial land clearance 56–66 +5 No +19 Yes

Connecticut (1d) Beginning of the forestry industry 43–56 −7 Yes +5 Yes

Connecticut (3a) Chestnut blight 5–15 <5 <5 No

Connecticut All chronohorizons 5–66 <5 +5 Yes

New York (1a) Initial land clearance 51–70 <5 −9 Yes

New York (1d) Beginning of the forestry industry 41–51 <5 <5 No

New York (2a) Reforestation 10–20 <5 <5 No

New York All chronohorizons 10–70 <5 −7 Yes

New Jersey (1a) Initial land clearance 68–94 +14 No +8 Yes

New Jersey (1c) Lowest amount of forest cover 59–69 <5 <5 No

New Jersey All chronohorizons 59–94 +9 No <5 No

Delaware (1b) Peak deforestation for agriculture 53–67 +11 No −7 Yes

Delaware (1c) Lowest amount of forest cover 53–67 +8 No −6 Yes

Delaware All chronohorizons 53–67 +16 No −18 Yes

Maryland (1b) Peak deforestation for agriculture 10–62 −5 Yes <5 No

Maryland (1c) Lowest amount of forest cover 10–62 <5 <5 No

Maryland All chronohorizons 10–62 −6 Yes <5 No

North Carolina (1a) Initial land clearance 60–80 −20 Yes +20 Yes
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Table 4. Cont.

Site Pollen Chronohorizon
Depth Range for Pollen

Chronohorizon
(cm)

Average Change of 50%
UI Width (years) Improved Precision?

Average Change in
Location of Median

(Years)
Location Change?

N. Florida (1e) Railroad expansion 15–25 <5 <5 No

N. Florida (1d) Beginning of the forestry industry 7–17 <5 <5 No

N. Florida All chronohorizons 7–25 <5 <5 No

S. Florida (3b) Casuarina introduction 8–26 −40 Yes +28 Yes

S. Florida (1d) Beginning of the forestry industry 8–26 −19 Yes <5 No

S. Florida All chronohorizons 8–26 −41 Yes +23 Yes



Water 2021, 13, 362 19 of 37

Water 2021, 13, 362 13 of 33 
 

 

 
Figure 5. Comparison of the difference in width of the 50% UI between the WP (all chronohorizon in red) and NP (blue) 
models over the interval from 1500 CE through the present (see also Figure A2). The red and blue lines are plotted trans-
parently so that lighter areas represent widths that are predicted less frequently by Bchron, while darker areas represent 
widths that are predicted more frequently. The depth of the pollen chronohorizons is plotted using colored triangles which 
correspond to Figure 3.  

Table 4. Comparison of with pollen (WP) and no pollen (NP) age–depth models. Positive numbers in the columns titled 
“Average change of 50% UI width” represent a decrease in precision (widening) and negative numbers represent an in-
crease in precision (narrowing). Average changes of <5 years are considered not to have changed. In the column titled 
“Average change in location of median”, positive numbers indicate that the addition of pollen caused the model to predict 
younger ages, while negative numbers indicate that including pollen caused the model to predict older ages for sediments 
in the depth range listed. 

Site Pollen Chronohorizon 
Depth Range for 

Pollen Chronohori-
zon*/-(cm) 

Average Change of 
50% UI Width (years) 

Improved Pre-
cision? 

Average Change in 
Location of Me-

dian (Years) 

Location 
Change? 
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Delaware (1c) Lowest amount of forest cover 53–67 +8 No −6 Yes 
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Figure 5. Comparison of the difference in width of the 50% UI between the WP (all chronohorizon in red) and NP (blue)
models over the interval from 1500 CE through the present (see also Figure A2). The red and blue lines are plotted
transparently so that lighter areas represent widths that are predicted less frequently by Bchron, while darker areas represent
widths that are predicted more frequently. The depth of the pollen chronohorizons is plotted using colored triangles which
correspond to Figure 3.

Third, to identify the impact of pollen chronohorizons on the Bchron-predicted age–
depth relationship, we compared the position of the median age–depth model for WP and
NP models, calculated based on the medians of the 31 replicate models. We determined the
difference between the median of the NP and WP models, and compared them across the
depth most influenced by the pollen chronohorizon(s) included in the model, as described
above (Figure 6, Table 4). We found the average of these differences and report where the
difference is in excess of five years as above.
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Figure 6. Median Bchron age–depth models for all study sites with 50% UIs showing the WP model in red and the NP
model in blue. These were calculated based on the median of all 31 replicates. UMV refers to lead pollution originating in
the Upper Mississippi Valley.

4. Results
4.1. Connecticut

In Connecticut, we documented three pollen chronohorizons.
(1a) Initial land clearance associated with European settlement in 1700 ± 60 CE

corresponds to a NP-predicted age range of 1515 to 1670 CE, indicating that the pollen
chronohorizon is consistent with the ages predicted by the NP Bchron age–depth model
(Figure 3, Table 3). The initial land clearance horizon increased the width of the 50% UI
swath by 5 years and changed the position of the median age–depth model by +19 years
(Figure 5, Table 4).

(1d) The beginning of the forestry industry in 1825 ± 25 CE is consistent with the
NP-predicted age range of 1730 to 1840 CE (Figure 3, Table 3). The forestry industry signal
narrowed the 50% UI swath by 7 years in the portion of the core surrounding the depth
where it was documented (Figure 5, Table 4, Appendix B) and changed the position of the
median age–depth model by +5 years (Table 4).

(3a) The chestnut blight chronohorizon in 1920 ± 10 CE is inconsistent with an NP-
predicted age range of 1960 to 1970 CE in the NP age–depth model (Figure 3, Table 3). The
chestnut blight chronohorizon did not change the width of the 50% UI swath (<5 years)
(Figure 5, Table 4, Appendix B) or the position of the median Bchron age–depth model
(<5 years) (Table 4).

Finally, we combined all three chronohorizons into a single age–depth model. The
width of the 50% UI swath did not change (<5 years) (Figure 5, Table 4) but the position of
the median age–depth model changed by +5 years (Figure 6, Table 4).
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4.2. New York

In New York, we documented three pollen chronohorizons.
(1a) Initial land clearance in 1680 ± 25 CE is consistent with the NP predicted age

range of 1655 to 1800 CE (Table 3, Appendix C). Including this chronohorizon did not
change the width of the 50% UI swath (<5 years); however, the position of the median
age–depth model changed by −9 years (Figure 5, Table 4, Appendix B).

(1d) The beginning of the forestry industry in 1825 ± 25 CE has an NP-predicted
age range of 1755 to 1835 CE, which is consistent with the other chronometers (Table 3,
Appendix C). When this chronohorizon was included in the Bchron age–depth model,
neither the width of the 50% UI swath nor the position of the median age–depth model
position changed (both < 5 years) (Figure 5, Table 4, Appendix B)

(2a) Reforestation in 1960 ± 25 CE is associated with an NP-predicted age range
of 1950 to 1965 CE, indicating that the pollen chronohorizon is consistent with other
chronometers (Table 3, Appendix C). When the reforestation chronohorizon was included
in the age–depth model, neither the width of the 50% UI swath nor the position of the
median age–depth model changed (both < 5 years) (Figure 5, Table 4, Appendix B).

When all three pollen chronohorizons were included in the Bchron age–depth model,
the width of the 50% UI swath did not change (<5 years) (Figure 5, Table 4). The position
of the median age–depth model changed by −7 years (Figure 6, Table 4).

4.3. New Jersey

In New Jersey, we documented two pollen chronohorizons.
(1a) The timing of initial land clearance in New Jersey in 1710 ± 50 CE is consistent

with the NP-predicted age range of 1570 to 1670 CE (Table 3, Appendix C). Including this
chronohorizon in the age–depth model increased the width of the 50% UI swath by 14
years and changed the position of the median age–depth model by +8 years (Figure 5,
Table 4, Appendix B).

(1c) The chronohorizon associated with the lowest amount of forest cover during a
regional wood shortage that occurred in 1800 ± 20 CE is inconsistent with the NP-predicted
age range of 1825 to 1850 CE (Table 3, Appendix C). When we included this chronohorizon
in the Bchron age–depth model, neither the width of the 50% UI swath nor the position of
the median age–depth model changed (< 5 years) (Figure 5, Table 4, Appendix B).

The inclusion of both chronohorizons in the age–depth model increased the width
of the 50% UI swath by 9 years (Figure 5, Table 4). Including these chronohorizons did
not change the position of the median age–depth model predicted by Bchron (<5 years)
(Figure 6, Table 4).

4.4. Delaware

In Delaware, we documented two pollen chronohorizons.
(1b) The chronohorizon associated with peak deforestation for agriculture in 1785 ± 15

CE is consistent with the NP-predicted age range of 1795 to 1815 CE (Figure 3, Table 3).
The inclusion of this chronohorizon increased the width of the 50% UI swath by 11 years
(Figure 5, Table 4, Appendix B) and changed the position of the median age–depth model
by −7 years (Table 4).

(1c) The chronohorizon corresponding to the lowest amount of forest cover in 1800 ± 20
CE is consistent with an NP-predicted age range of 1800 to 1820 CE in the NP model
(Figure 4, Table 3). When we included this chronohorizon in the Bchron age–depth model,
the width of the 50% UI swath increased by 8 years and the position of the median age
depth model changed by −6 years (Figure 5, Table 4, Appendix B).

The inclusion of both chronohorizons in the age–depth model increased the width
of the 50% UI swath by 9 years (Figure 5, Table 4). Including these chronohorizons also
changed the position of the median age–depth model predicted by Bchron by −18 years
(Figure 6, Table 4).
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4.5. Maryland

In Maryland, we documented two pollen chronohorizons.
(1b) The chronohorizon associated with peak deforestation for agriculture in 1785 ± 15

CE is consistent with an NP-predicted age range of 1740 to 1805 CE (Figure 4, Table 3).
Including this chronohorizon decreased the width of the 50% UI swath by 5 years but
did not change the position of the median age–depth model (<5 years) (Figure 5, Table 4,
Appendix B).

(1c) The chronohorizon associated with the lowest amount of forest cover occurred in
1840 ± 20 CE and is inconsistent with the NP Bchron predicted age range of 1875 to 1915
CE (Figure 4, Table 3). When this chronohorizon was included in the age–depth model,
neither the width of the 50% UI swath nor the position of the median age–depth model
changed (both < 5 years) (Figure 5, Table 4, Appendix B).

The inclusion of both chronohorizons in the age–depth model decreased the width
of the 50% UI swath by 6 years (Figures 5 and 6, Table 4). The inclusion of these chrono-
horizons did not change the position of the median age–depth model predicted by Bchron
(Figures 5 and 6, Table 4).

4.6. North Carolina

We documented one pollen chronohorizon in North Carolina.
(1a) Initial land clearance in North Carolina occurred in 1720 ± 20 CE, which is

consistent with the NP-predicted age range of 1610 to 1750 CE (Table 3, Appendix C). The
inclusion of the initial land clearance chronohorizon decreased the width of the 50% UI
swath by 20 years and changed the position of the median age–depth model by +20 years
(Figures 5 and 6, Table 4, Appendix B).

4.7. Northern Florida

We documented two pollen chronohorizons in northern Florida.
(1e) A chronohorizon associated with land clearance for railroad expansion in 1865 ± 15

CE is consistent with the NP-predicted age range of 1880 to 1905 CE (Table 3, Appendix C).
When this chronohorizon was included in age–depth models, neither the width of the 50% UI
swath nor the position of the median age–depth model changed (both < 5 years) (Figure 5,
Table 4, Appendix B).

(1d) The chronohorizon associated with the beginning of the forestry industry in
1935 ± 10 CE is associated with an NP-predicted age range of 1940 to 1970 CE, which is
consistent between the pollen chronohorizon and other age markers (Table 3, Appendix C).
When this chronohorizon is included in the age–depth model, neither the width of the
50% UI swath nor the position of the median age–depth model changed (both < 5 years)
(Figure 5, Table 4, Appendix B).

The inclusion of both chronohorizons in the age–depth model did not change the width
of the 50% UI swath (<5 years) (Figure 6, Table 4). Additionally, including the combined age
markers did not change the position of the median age–depth model (<5 years) (Figure 5,
Table 4).

4.8. Southern Florida

We documented two pollen chronohorizons in southern Florida.
(3b) The chronohorizon associated with the introduction of Casuarina pollen in 1910 ± 15

CE is inconsistent with the NP-predicted age range of 1750 to 1885 CE (Figure 4, Table 3).
When the Casuarina chronohorizon was included, it decreased the width of the 50% UI swath
by 40 years (Figure 5, Table 4) and changed the position of the median age–depth model by
+28 years (Table 4).

(1d) The chronohorizon associated with the beginning of the forestry industry resulting
in the removal of Dade Pines from the Keys in 1935 ± 10 CE is consistent with the NP-
predicted age range from 1895 to 1945 CE (Figure 4, Table 3). When we included this
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chronohorizon, it decreased the width of the 50% UI swath by 19 years but did not change
the position of the median age–depth model (<5 years) (Figure 5, Table 4, Appendix B).

The inclusion of both chronohorizons greatly improved the Bchron age–depth model
(Figure 6, Table 4): the width of the 50% UI swath decreased by 41 years. Additionally,
the position of the median age–depth estimate changed by +23 years (Figure 5, Table 4,
Appendix B).

5. Discussion

Pollen assemblages have been applied as chronometers throughout the Holocene [40],
particularly during the last 500 years where the timing of events such as initial land clear-
ance, industrial forestry, and recent importation or losses of taxa, help define anthropogenic
alterations of the environment [25,40,44,79]. However, the application of pollen chronohori-
zons should proceed with caution in salt marsh environments, due to hyperlocality [40,63],
sediment mixing [93–95], misinterpretation of pollen signals [74,75,96,97], and/or incorrect
pollution and radiocarbon dates [98–101].

5.1. Validation of Pollen Chronohorizons

We validated the consistency of the pollen chronohorizons with other age markers
by comparing the age ranges of pollen reference dates with Bchron age–depth models
without pollen. While the majority of pollen chronohorizons were consistent with other
age markers, four were inconsistent. Thirteen out of 17 pollen chronohorizons applied
to cores were consistent with the chronology produced using the NP Bchron age–depth
model (Table 3). Four pollen chronohorizons applied to cores were inconsistent with the NP
chronology: the lowest amount of forest cover in Maryland; chestnut blight in Connecticut;
the appearance of Casuarina in southern Florida; and the lowest amount of forest cover in
New Jersey (Figure 4, Appendix C).

Pollen chronohorizons may be assigned an incorrect reference date due to hyperlocal-
ity (location-specific vegetation changes) and variations in regional signals [26,40,44,64,102].
The dispersal methods used by pollen can influence whether a signal is local or regional.
Wind dispersal mechanisms are governed by atmospheric flow dynamics, landscape het-
erogeneity and climate, and differ among and within taxa because not all pollen grains are
created equal [40,68,103,104]. It is well known that Pinus can be transported hundreds of
kilometers [105], but models have shown that Ambrosia can also be transported hundreds
of kilometers, suggesting that the Ambrosia pollen that we see in our cores may be local or
regional [106,107]. In contrast, the pollen of Plantago and many other land-cover plants are
transported only tens of meters. Therefore, when identifying a chronohorizon, the distance
from the reference site should be considered when choosing which taxa to use [68,107].
Pollen transportation distances and production can also lead to specific, small localities
having different timing or signals for chronohorizons, or hyperlocal effects [40,63]. There-
fore, palynological changes may have occurred at different times at our study sites than at
the reference location, resulting in hyperlocal effects [25,26,40].

Hyperlocality may also have affected the consistency of the lowest forest cover chrono-
horizon in Maryland. In our study, we applied a date of 1840 ± 20 for the lowest amount
of forest cover, which is associated with peak Ambrosia [36]; however, this date was incon-
sistent with our NP-predicted age range of 1890–1910 at the depth where we observed
this chronohorizon. In another study of Maryland pollen, the first peak of Ambrosia was
found to correspond to peak lumber production between 1880 and 1920 [108]. This date is
consistent with our NP-predicted date. Our date may be related to differences in the sam-
pling locations because different parts of the Chesapeake Bay were deforested at different
times [25].

In Connecticut, a large decline in chestnut pollen abundance occurs at 10 cm (Ap-
pendix C). Based on typical regional interpretations, this decline would be given a date of
1920 ± 10 CE [44,45], due to the appearance of chestnut blight in New York City in 1904
and subsequent spread throughout the northeastern U.S. within 50 years [109]; however,
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this date is inconsistent with our other chronometers. In Bridgeport and New Haven,
Connecticut, proximal to our site, Japanese chestnut trees were a popular ornamental on
estates, and their pollen, which is very similar to that of American chestnut, may have
obscured the decline in native chestnut due to blight [110–112]. During the 1960s, the
ornamental chestnut trees were cut down during suburbanization [113,114]. Therefore, it is
possible that the hyperlocal signal associated with ornamental chestnuts and their removal
obscured the chestnut blight signal, dating chestnut decline at 10 cm in Connecticut as
approximately 1960, which is consistent with 137Cs peak, gasoline-related Pb minimum, Pb
peak, and Hg peak (Table 1).

Pollen signals can also be misinterpreted due to the effects of sediment mixing and
bioturbation. Salt marsh and mangrove environments are subject to mixing and bioturba-
tion, which can cause smearing of signals used to construct chronologies [93,94]. In the
case of bioturbation, plants or animals mix sediments through their growth, burrowing,
or searching for food, resulting in signal peaks being smeared upward [94,95]. This is
particularly true in mangrove environments, which are significantly impacted by the ac-
tivities of root growth and crabs [115]. Salt marshes and mangrove environments are also
subject to reworking due to tidal activity and storms [43,88,95]. For example, there is visual
evidence of tidal and storm reworked sediments within the salt marsh stratigraphy of
Connecticut from [53]. Sediment mixing may be responsible for the difficulties in selecting
chronohorizons associated with initial land clearance and start of the forestry industry. The
abundance of Ambrosia is high at the base of the Connecticut core, which is unexpected
due to the paleobotanical history of the area, but may be due to mixing in the core [44,45].
Finally, mixing of the pollen signal may occur from the erosion of older pollen from one
site and redeposition in another, causing an older chronohorizon to appear in a younger
section of core than expected [116].

Pollen chronohorizons may be inconsistent with other chronometers due to mis-
interpretation in identifying pollen signals. Quantitative chronohorizons are based on
specific numerical cutoffs [36], such as the first or last appearances of Casuarina or Cas-
tanea [44,45,65,66]. Therefore, quantitative chronohorizons should be more readily identifi-
able than qualitative chronohorizons that are based on unspecified increases or decreases in
pollen relative abundance. For a qualitative increase, the percent abundance of the pollen
species in question often varies before the increase, making choosing the correct depth
more difficult (Appendix C) [74,75]. Additionally, there may be multiple interpretations for
a given pollen chronohorizon. For example, the qualitative chronohorizon associated with
initial land clearance in New Jersey could be interpreted at either 87.5 cm or 62.5 cm. We
interpret the highest peak in Ambrosia at 87.5 cm as being associated with initial land clear-
ance [36], whereas the pollen signals at 62.5 cm of increasing Ambrosia pollen, a sustained
decrease in Quercus pollen, and the appearance of Plantago pollen are more consistent
with the near-complete deforestation associated with lowest forest cover [36,37,76,78].
While both interpretations could be made, our interpretation is consistent with the other
chronometers as the NP age range associated with 87.5 cm (1570 to 1670 CE) matches the
reference date for initial land clearance in New Jersey of 1710 ± 50 years while the NP age
range associated with 62.5 cm (1825 to 1870) does not.

A further issue that impacts both qualitative and quantitative chronohorizons is
related to selecting the observed depth at which a pollen chronohorizon occurs—the event
leading to the observation may have occurred between sampling depths. Depending on
the sedimentation rate, a different sampling interval may impact the consistency of the
pollen chronohorizons [96,97]. Sampling frequency can also affect the depth to which a
chronohorizon is assigned [117,118]. Since pollen chronohorizons are assigned to depths
where pollen is counted, a more frequent sampling interval will result in a more precise
assignment of depth to a chronohorizon.

Finally, the other age markers may be based on erroneous dates, while the pollen date
is accurate. Erroneous dating of other age markers could occur if a pollution marker or 137Cs
peak was mobilized by groundwater [98–100,119]. For example, 137Cs bonds well with
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clay-sized sediment, but adheres less to organic particles, and therefore may be relatively
mobile in organic salt marshes [99,120], particularly those high in humic acids, which
keep 137Cs in its dissolved form [121–123]. However, in the published studies (Table 1),
20th century pollution markers and 137Cs peaks were used to reconstruct historical sea-
level variability. The reconstructions were validated by instrumental tide gauge data,
suggesting that these markers were in situ. Radiocarbon dates may also be erroneous
through incorporation of either older carbon during sediment accumulation or younger
carbon after deposition [101]. Contamination by younger carbon occurs as the result of
root penetration or downward movement of humic acids [101,124]. However, all of our
radiocarbon samples were prepared with careful screening procedures in an attempt to
remove these contaminants.

5.2. Application of Pollen Chronohorizons to Improve the Age–Depth Model

Bchron’s Bayesian probability model, like all Bayesian models, has the property that
increasing the data quantity (and quality) by incorporating pollen chronohorizons reduces
the uncertainty in the resulting model [90,125]. Inclusion of a pollen chronohorizon in
agreement with other age markers improves the confidence in the model [90,126] and
allows the model to choose the most probable and perhaps accurate path [90,126]. For
example, in North Carolina, the pollen chronohorizon associated with initial land clearance
was consistent with the other age markers and was, therefore, able to help Bchron identify
a different and more precise path by 20 years between the deepest pollution age marker
and the shallowest radiocarbon date (Figure 6, Table 4).

Pollen chronohorizons also influence the precision of the age–depth models. The
width of the 50% UI increased in six of the 24 models, decreased in seven models, and
in 11 models had little or no change in precision (Table 4). Increases in precision ranged
from five to 41 years. Several large increases (>10 years) in precision were evident with the
addition of the following pollen chronohorizons: initial land clearance in North Carolina,
the beginning of the forestry industry in southern Florida, the appearance of Casuarina in
southern Florida, and all age markers combined in southern Florida (Figure 5). In each
of these models, the pollen chronohorizons are located in a temporally restricted portion
(the portion with few age markers) of the core between pollution markers and radiocarbon
dates or near poorly constrained radiocarbon dates. The radiocarbon dates commonly have
2σ age ranges between ~30 to >300 years (Tables 1 and 2). In this temporally restricted
region, pollen chronohorizons are particularly important as they provide dated depths in a
portion of the core that is otherwise difficult to reconstruct [6,38–40,127]. In the age–depth
model from North Carolina, for example, the inclusion of the initial land clearance pollen
chronohorizon between the youngest radiocarbon date and the oldest pollution age marker
increased the precision by narrowing the 50% UI of the age–depth model by an average of
20 years (Figures 4 and 5).

Pollen chronohorizons increased the 50% UI width (i.e., decreased precision) in six
cases by 5 to 16 years (Figure 5, Table 4). Two of these models included at least one
inconsistent chronometer (initial land clearance and combined age markers in New Jersey)
(Table 4). We do not, however, advise discarding pollen chronohorizons that do not improve
precision unless they can be quantitatively determined to be an outlier.

Additionally, pollen chronohorizons sometimes have conflicting results (i.e., consistent
chronohorizons fail to improve model precision or inconsistent chronohorizons improve
model precision). For example, the overlap between the peak deforestation chronohorizon
uncertainty in Delaware and the NP age range for its corresponding depth is only six years,
which may lead to it decreasing precision in the model (Table 3). In New York, the pollen
chronohorizon associated with reforestation occurs around 1960 [73], a time where several
other age markers are also present, such as dates associated with 137Cs onset and peak
in 1954 and 1963, respectively, and a minimum in gasoline-related Pb isotopes in 1965
(Figure 6) [30,82]. Because there is sufficient time control in this section of core even without
pollen included, Bchron is already able to produce narrow 50% UIs, and the inclusion of
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pollen chronohorizons cannot greatly improve upon the already precise model. Finally,
an inconsistent pollen chronohorizon may improve the precision of the age–depth model
when it occurs in a data poor area, such as the Casuarina introduction chronohorizon in
southern Florida, suggesting a change in sedimentation rate that was not accounted for
due to the sparsity of chronometers when pollen was excluded (Figures 5 and 6).

5.3. Improving Pollen Chronohorizons

To further improve age–depth models, pollen chronohorizons could be developed
or adapted. For example, a new pollen chronohorizon could be developed based on the
increase in Iva pollen. At our Connecticut site, there is an increase in Iva pollen at 34 cm at
which corresponds to an age of 1865 to 1879. A similar increase is seen in New Jersey at
36 cm to 37 cm (1900 to 1916) and New York at 16 cm to 17 cm (1939 to 1946). A possible
explanation for the increase in Iva is ditching to drain salt marshes so that they could be
farmed or as a method of mosquito control [63]. The ditching and draining decreased
flooding and improved the marsh-upland edge habitat preferred by Iva [128]. Ditching of
salt marshes began in the late 1800s through early 1900s in Connecticut [61,63], in 1907 in
New Jersey [60,129], and in 1913 near New York City (Miller, 2001). Additional sources
could be used to constrain the specific timing of historical increases in ditching and other
land-use changes in tidal wetlands.

6. Conclusions

We have collected published and unpublished pollen and chronology data (e.g., radio-
carbon, 137Cs, and pollution horizons) from coastal wetlands along the U.S. Atlantic Coast
to determine if pollen chronohorizons are consistent with other chronometers and if includ-
ing pollen chronohorizons improves the precision of age–depth models. We reviewed the
vegetation histories and regional literature to identify eight unique pollen chronohorizons
with a maximum of three chronohorizons per study region. The eight pollen chronohori-
zons were applied to 24 age–depth models for the eight study regions (17 models using
individual chronohorizons and seven models with combined age markers).

We found that the ages assigned to 13 out of 17 applications of individual pollen
chronohorizons were consistent when compared with dates derived by the NP Bchron
chronology. In four applications, the pollen chronohorizons were inconsistent in Con-
necticut (Chestnut blight) and Maryland (lowest forest cover) due to hyperlocality of
pollen chronohorizons, in Connecticut (land clearance) due to sediment mixing, and in
New Jersey (land clearance) due to misinterpretation of the pollen signals, and/or incor-
rect pollution and radiocarbon dates. A possible solution to the inconsistency of pollen
chronohorizons is to down-weigh in Bchron and other Bayesian age–depth models using
outlier probabilities [130], which has been previously applied to erroneous radiocarbon
dates [131,132].

We also assessed if the pollen chronohorizons improved the precision of the age
depth models by comparing the median WP and NP 50% UIs. In seven out of the total
of 24 models, inclusion of one or more pollen chronohorizons in the age–depth model
improved the precision by up to 41 years. In six of 24 models, the WP model reduced
the precision. Precision was most improved with the addition of pollen chronohorizons
at sites with insufficient data, such as the land clearance pollen chronohorizon in North
Carolina and the pollen chronohorizons observed in southern Florida, and where pollen
chronohorizons were consistent with other age markers, such as the start of the forestry
industry in Connecticut. Reductions in precision were often due to wide uncertainty
ranges for pollen chronohorizons and inconsistency of pollen chronohorizons with other
age markers, such as the initial land clearance chronohorizon in New Jersey. Overall, the
inclusion of pollen chronohorizons in age–depth models pertaining to salt marsh and
mangrove environments can be helpful in situations where other types of age markers
are sparse or have large age uncertainties. Sedimentary environments which contain
abundant pollen with a known vegetation history are excellent candidates for this approach,
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particularly if other dates are lacking, unavailable, or uncertain. Including one or more
pollen chronohorizons in such cases improves the robustness of the age–depth model.
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Appendix A

Table A1. Chronological data for published sites. UMV refers to lead (Pb) pollution originating from the Upper Mississippi Valley. YBP = years before present.

Connecticut [48] New York [51] New Jersey [52]

Lab Code Depth (cm) Age (14C
Years)

Calibrated Age
Range (YBP) Lab Code Depth (cm) Age (14C

Years)
Calibrated Age

Range (YBP) Lab Code Depth (cm) Age (14C
Years)

Calibrated Age
Range (YBP)

R
ad

io
ca

rb
on

OS-88674 56 ± 2 175 ± 30 3–284 OS-102551 60 ± 1 165 ± 25 6–280 14C10 76 ± 1 120 ± 30 18–265
OS-86561 66 ± 2 345 ± 25 318–480 OS-108259 70 ± 1 380 ± 30 325–500 14C12 82 ± 1 230 ± 25 1–305
OS-86562 78 ± 2 550 ± 30 523–633 OS-108260 81 ± 1 285 ± 25 294–432 14C4 86 ± 1 250 ± 40 4–431
OS-89141 90 ± 2 835 ± 25 696–786 OS-102552 95 ± 1 770 ± 30 672–733 14C11 94 ± 1 285 ± 30 289–447
OS-86567 111 ± 2 1080 ± 30 936–1053 OS-115123 105 ± 1 695 ± 20 574–676 14C8 111 ± 1 400 ± 25 336–505
OS-86616 146 ± 2 1300 ± 25 1186–1284 OS-109016 123 ± 1 1420 ± 30 1294–1369 14C5 122 ± 1 520 ± 40 508–29
OS-86560 156 ± 2 1490 ± 25 1323–1410 OS-115122 127 ± 1 1120 ± 15 979–1056 14C1 135 ± 1 770 ± 30 672–733
OS-89764 158 ± 2 1490 ± 30 1317–1480 OS-102598 137 ± 1 1180 ± 35 996–1213 14C2 145 ± 1 865 ± 25 720–890
OS-89059 165 ± 2 1570 ± 25 1406–1525 OS-102553 155 ± 1 1560 ± 25 1396–1522 14C6 160 ± 1 960 ± 40 785–936
OS-88962 184 ± 2 1790 ± 25 1629–1807 OS-102554 161 ± 1 1630 ± 35 1419–1605 14C3 171 ± 1 1100 ± 30 946–1061

14C13 180 ± 1 1120 ± 25 969–1069
14C7 194 ± 1 1190 ± 35 1008–1225
14C9 208 ± 1 1350 ± 30 1193–1307

Depth
(cm)

Age
(year CE) Age Marker Depth (cm) Age

(year CE) Age Marker Depth
(cm)

Age
(year CE) Age Marker

O
th

er
A

ge
M

ar
ke

rs

1 ± 4 1980 ± 5 Gas Pb Peak 5 ± 2 1980 ± 5 Gas Pb Peak 4.5 ± 4 1997 ± 5 Ni Peak
3 ± 4 1970 ± 5 Hg Peak 7 ± 2.5 1963 ± 1 137Cs Peak 21 ± 4 1980 ± 5 Gas Pb Peak
4 ± 4 1963 ± 1 137Cs Peak 11 ± 2 1974 ± 5 Pb Peak 21 ± 4 1974 ± 5 Pb Peak
9 ± 6 1974 ± 5 Pb Peak 11 ± 2 1970 ± 5 V Peak 36.5 ± 12 1969 ± 11 Ni Onset

13 ± 6 1965 ± 5 Zn Peak 11 ± 1.5 1954 ± 2 137Cs Onset 29 ± 4 1965 ± 5 Gas Pb Min
19 ± 6 1935 ± 6 Great Depression Pb Min 13 ± 6 1970 ± 5 Cu Peak 17 ± 2 1963 ± 1 137Cs Peak
21 ± 4 1905 ± 5 Hg Peak 17 ± 6 1965 ± 5 Gas Pb Min 24.5 ± 4 1963 ± 7 Cd Peak
22 ± 6 1880 ± 20 UMV Decline 21 ± 4 1937 ± 5 Peak Incin. 28.5 ± 4 1956 ± 13 Zn Peak
31 ± 6 1900 ± 5 Cu Onset 27 ± 2 1933 ± 6 Great Depression Pb Min 29 ± 4 1948 ± 15 Pb Min
33 ± 6 1925 ± 5 Pb Peak 33 ± 2 1900 ± 5 Cu Onset 33 ± 4 1925 ± 5 Pb Peak
33 ± 4 1865 ± 10 Hg Onset 39 ± 2 1925 ± 5 Pb Peak 32.5 ± 4 1900 ± 10 Cu Onset
37 ± 6 1858 ± 5 UMV Peak 41 ± 8 1857 ± 5 UMV Peak 44.5 ± 8 1890 ± 10 Zn Onset
43 ± 6 1875 ± 5 Pb Onset 51 ± 2 1827 ± 5 UMV Onset 45 ± 4 1880 ± 5 UMV Decline
43 ± 6 1827 ± 5 UMV onset 49 ± 4 1875 ± 5 Pb Onset

59 ± 4 1857 ± 5 UMV Peak
69 ± 4 1827 ± 5 UMV Onset
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Table A1. Cont.

North Carolina [42,53] Northern Florida [27]

Sample
Code Depth (cm) Age

(14C Years)
Calibrated Age

Range (YBP) Lab Code Depth (cm) Age
(14C Years)

Calibrated Age
Range (YBP)

R
ad

io
ca

rb
on

HP14C1 60 ± 2 203 ± 11 0–286 OS-99682 27 ± 1 185 ± 20 2–284
HP14C2 80 ± 2 338 ± 10 321–455 OS-94713 33 ± 1 380 ± 35 322–501

RC1 87 ± 2 315 ± 25 309–457 OS-96816 41 ± 1 515 ± 25 513–610
RC2 99 ± 2 535 ± 30 517–627 OS-94715 51 ± 1 850 ± 30 699–884
RC3 114 ± 2 725 ± 25 658–692 OS-96817 64 ± 1 1100 ± 25 956–1055
RC4 120 ± 2 755 ± 30 667–727 OS-99683 74 ± 1 1400 ± 25 1289–1342
RC5 135 ± 2 900 ± 50 714–918 OS-96497 82 ± 1 1660 ± 25 1529–1612
RC6 144 ± 2 910 ± 30 750–910 OS-96495 91 ± 1 1830 ± 40 1640–1860
RC7 158 ± 2 1000 ± 25 812–957 OS-94640 110 ± 1 2280 ± 30 2179–2345
RC8 168 ± 2 1080 ± 30 937–1053 OS-96501 125 ± 1 2420 ± 25 2361–2673
RC9 189 ± 2 1190 ± 30 1017–1216
RC10 204 ± 2 1520 ± 40 1330–1518
RC11 217 ± 2 1600 ± 25 1417–1545
RC12 228 ± 2 1730 ± 35 1563–1711
RC13 248 ± 2 1920 ± 45 1742–1970
RC14 258 ± 2 2090 ± 35 1973–2143
RC15 268 ± 2 2120 ± 25 2012–2157
RC16 285 ± 2 2620 ± 45 2551–2833
RC17 299 ± 2 2420 ± 35 2360–2683

Depth
(cm)

Age
(year CE) Age Marker Depth (cm) Age

(year CE) Age Marker

O
th

er
A

ge
M

ar
ke

rs

18 ± 1 1996 ± 2 Bomb Spike 14C 3 ± 4 1998 ± 3 Cu Peak
19 ± 1 1989 ± 2 Bomb Spike 14C 5 ± 4 1980 ± 5 Pb Gas Peak
21 ± 1 1987 ± 2 Bomb Spike 14C 9 ± 4 1963 ± 1 137Cs Peak
23 ± 1 1988 ± 1 Bomb Spike 14C 9 ± 4 1972 ± 6 Cu Peak
23 ± 4 1963 ± 1 137Cs Peak 11 ± 4 1974 ± 5 Pb Peak
26 ± 1 1974 ± 1 Bomb Spike 14C 11 ± 4 1965 ± 5 Pb Gas Min
28 ± 1 1957 ± 1 Bomb Spike 14C 16 ± 6 1900 ± 10 Coal Pb Peak
29 ± 1 1958 ± 1 Bomb Spike 14C 17 ± 4 1935 ± 6 Great Depression Pb Min

17 ± 4 1900 ± 10 Cu Onset
19 ± 4 1925 ± 5 Pb Peak
23 ± 4 1875 ± 5 Pb Onset
23 ± 4 1870 ± 10 Coal Pb Onset
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Appendix B

B.1. Southern Delaware

The southern Delaware site is located in the Great Marsh, northwest of Lewes, DE
(38.78, −75.18). It is 20 km2 in area and is separated from the Delaware Bay by a sand
barrier [133]. The tidal range is 1.4 m and tides are semi-diurnal (NOAA tide gauge, Station
ID: 8557380). The tidal range has been influenced by anthropogenic activities, such as
ditching and deforestation since the 1930s [37,134]. The southern Delaware site has a
vertical zonation of plants: the low marsh is dominated by Spartina alterniflora tall form;
the high marsh by Spartina alterniflora short form, Spartina patens, and Distichlis spicata;
and the transition to freshwater upland by Phragmites australis, Iva frutescens, and Baccharis
halimifolia. The climate at this site is warm temperate, and it has hot, humid summers [135].
The monthly average highs and lows range between 45 and −2 ◦C in January to 30 and
20 ◦C in July [136]. There is an average of 117 cm of precipitation at the southern Delaware
site per year [136].

B.2. Maryland

The Maryland site is located in the Kirkpatrick salt marsh (38.87, −76.55). This
salt marsh is located at the Smithsonian Environmental Research Center (SERC), near
Mayo, Maryland and is on the northern Chesapeake Bay. It encompasses approximately
70 hectares of brackish marsh. The Maryland site is microtidal, with wind-influenced
tides of less than 0.3 m. This site is dominated by Phragmites australis, Spartina alterniflora,
and Distichlis spicata, with patches of Spartina patens. The wetland cored for the Maryland
site is used for a variety of long-term environmental experiments by SERC [137]. The
climate at the Maryland site is warm temperate [135]. The average monthly high and low
temperatures at this site range between 7 and −2 ◦C in January to 32 and 22 ◦C in July [136].
At the Maryland site, 120 cm of precipitation per year on average [136].

B.3. Southern Florida

The southern Florida site is located on Swan Key in the Florida Keys (25.34, −80.25).
This site is a microtidal mangrove swamp with a great diurnal range of 0.44 m (NOAA
tide gauge, Station ID: 8723467). The mangrove swamp is dominated by three species of
mangroves: Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa. The climate
at the southern Florida site is classified as a tropical savannah climate, with wet and dry
periods throughout the year [59]. The average high is 28 ◦C and the average low is 21 ◦C
with 145 cm of precipitation per year [136].
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Figure A1. Pollen stratigraphic diagrams for published data plotted against the NP Bchron pre-
dicted ages to compare the age plus uncertainty of the pollen chronohorizons with the ages de-
rived from other age markers at the depth where the pollen chronohorizon occurred for New York 
(A), New Jersey (B), North Carolina (C), and Northern Florida (D). Colored lines indicate the pol-
len chronohorizons; colored shading indicates the uncertainty associated with each pollen 

Figure A1. Pollen stratigraphic diagrams for published data plotted against the NP Bchron predicted
ages to compare the age plus uncertainty of the pollen chronohorizons with the ages derived
from other age markers at the depth where the pollen chronohorizon occurred for New York (A),
New Jersey (B), North Carolina (C), and Northern Florida (D). Colored lines indicate the pollen
chronohorizons; colored shading indicates the uncertainty associated with each pollen chronohorizon.
The colors refer to Figure 3. The chronohorizons are as follows: (2a) reforestation; (1d) beginning of
the forestry industry; (1a) initial land clearance; (1c) lowest amount of forest cover; and (1e) railroad
expansion (Table 3).
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Figure A2. Comparison of the difference in width of the 50% UI between the WP (red) and the NP 
(blue) models for each of the individual chronohorizon models over the interval from 1500 CE 
through the present. The red and blue lines are plotted transparently so that lighter areas represent 
widths that are predicted less frequently by Bchron, while darker areas represent widths that are 
predicted more frequently. 

 

Figure A2. Comparison of the difference in width of the 50% UI between the WP (red) and the NP (blue) models for each
of the individual chronohorizon models over the interval from 1500 CE through the present. The red and blue lines are
plotted transparently so that lighter areas represent widths that are predicted less frequently by Bchron, while darker areas
represent widths that are predicted more frequently.
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