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a  b s t  r  a  c  t  

Describing patterns of plant  phenology through  models has been critical  for  quantifying  species responses to 
climate  change and forecasting future  vegetation impacts. However, many species remain  unincluded  in  large 
analyses because they are poorly  represented in  the large public  or citizen  science datasets that  form  the founda- 
tion  of these efforts. Botanical living  collections  are often key resources that  facilitate  study of rare and sparsely 
observed species, but  alone are insufficient  to predict  species phenology  throughout  their  observed ranges. We 
investigate whether  predictions  for  rare and data-poor species observed at a single site can be improved  by lever- 
aging observations of similar  taxa observed at multiple  locations. We combined observations of oak ( Quercus ) 
budburst  and leaf out  from  one botanical  garden with  a subset of congeneric species observed in  the USA-NPN 
citizen  science dataset using Bayesian hierarchical  modeling.  We show that  including  USA-NPN observations into  
a simple thermal  time  model of budburst  and leaf out  did  not  reduce geographic bias in  model predictions  over 
models parameterized only  with  single-site observations. However, using USA-NPN data to add non-taxonomic  
spatial covariates to the thermal  time  model improved  model performance for  all  species, including  those only  
observed at a single site. Living  collections  at botanical  gardens provide  valuable  opportunities  to observe rare or 
understudied  species, but  are limited  in  geographic scope. National-scale citizen  science observations that  cap- 
ture  the spatial variability  of related or ecologically  similar  taxa can be combined with  living  collections  data to 
improve  predictions  of species of conservation concern across their  native  range. 

1.  Introduction  

Plant phenological responses to  spring temperatures and warming  
trends over recent decades is one of the clearest indicators  of climate  
change impacts on plants and ecosystems across the globe [1  , 2]  . As 
many as 78% of European cold-deciduous plant  species are now  showing 
earlier  budburst,  leaf out,  or flowering  timing  than 50 years ago [2]  . The 
mechanistic ties among plant  phenology, species reproductive  success, 
and individual  survival  have allowed  for  improved  understanding of 
climate  vulnerability  for  many temperate tree species [3  , 4]  . However, 
phenology research and climate  vulnerability  assessments are typically  
only  possible for  common temperate deciduous species in  the northern  
hemisphere where there is high  data availability  from  long-term  re- 
search, experiments, and citizen  science studies [5  , 6]  . The climate  risk  
for  species with  narrow  ranges, common in  rare and threatened taxa, 
is often more difficult  to assess [7  , 8]  and different  methods of evalu- 
ating  this  vulnerability  may provide  diverging  results [9]  . Providing  
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additional  information  to help manage rare or restricted-distribution  
plants is of interest to the botanical  garden and conservation commu- 
nities  as these taxa are generally considered to have a higher  risk  of 
being impacted by anthropogenic events [10]  , are often phylogenet- 
ically  diverse [10]  , and the identification  of threats of extirpation  to  
populations  of rare species can be helpful  in  informing  conservation 
priorities  [10–12]  . 

Data limitations  describing biological  responses to climate  and the 
environment  is a common and pervasive challenge for  robust threat  
assessments of rare species. Incorporating  the effects of climate  change 
vulnerability  into  established threat  programs such as the IUCN Red 
List is a particular  challenge for  many species due to a lack of available 
data on the effects of climate  variability  and change on individual  and 
population-scale biology  [13]  . Although  phenological observations are 
relatively  easy to make, most taxa of current  conservation concern 
are not  incorporated  into  large data networks  due to challenges of 
access and identification  that  complicate  data reliability  [14]  . For 
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example, The USA National  Phenology Network  (USA-NPN) Nature’s 
Notebook citizen  science program is one of the largest phenological 
monitoring  programs and has been used to  make species-level forecasts 
of activity  for  dozens of both  plant  and animal  species to  be used for  
both  research and management-focused audiences [15–17]  . However, 
of the 91 Quercus L. species in  the US, only  29 are included  in  the 
USA-NPN observing program, and all  except two  ( Q. engelmanii Greene, 
Q. lobata Née) are considered species of “least concern ” in  the Red 
List of US Oaks [18]  . Existing information  on phenology and climate  
responses for  rare and endemic species is often the product  of isolated 
sampling efforts,  inconsistent methodologies, and environmental  con- 
ditions  that  challenge species comparisons and extrapolation  to other 
conditions  [13  , 19 , 20]  . To address these limitations,  analytical  methods 
that  combine datasets, particularly  those that  borrow  strength from  
data-rich  related or functionally  similar  species over broader regions, 
may enhance our  ability  to  predict  phenology for  data-poor species. 

Botanical garden living  collections and herbaria are able to help 
fill  critical  data needs for  rare and restricted-distribution  species that  
are logistically  challenging to observe in situ and are typically  absent 
from  large-scale and citizen  science datasets such as the USA-NPN 
[21–23]  . Botanical gardens and arboreta have long been key sources of 
taxonomic  and phylogenetic  comparisons of traits  like  phenology across 
the diversity  of taxa grown  in  common garden environments and have 
been essential for  global  biodiversity  work  [24  , 25]  . Through just two  
years of observations, data from  botanical  gardens have highlighted  
how  phylogenetic  and trait  patterns explaining  spring leaf out  do not 
hold  for  autumn  senescence [25  , 26]  . However, the ability  of gardens 
to  address information  needs for  individual  species responses to both  
climate  variability  and change has been difficult  due to the common 
limitations  of single-site studies to describe the full  geographic or 
climatic  range of in situ individuals  making  the extrapolation  of the ex 
situ conditions  tenuous [27]  . Bolstering the comparably-narrow  climate  
and geography of botanical  collections with  the large geographic and 
environmental  extent of citizen  science phenology programs has the 
potential  to improve  the robustness of phenological  predictions  for  rare 
species in  habitats where direct  observation can be infeasible. 

Phenological models that  incorporate  species-level biological  
threshold responses to  weather and climate  conditions  have been used 
to  accurately forecast phenology in  near real time  [16  , 17]  but  these 
studies and applications  typically  focus on common data-rich  taxa. 
Current phenological models range in  complexity  from  thermal  time  
models that  use a single parameter, such as a growing  degree-day 
threshold,  to more complex multivariate  models that  account for  addi- 
tional  cues such as chilling  and spatio-temporal  variability  in  light  and 
winter  temperatures [27–29]  . Multivariate  models often out-perform  
simpler  models when predicting  phenological events over large areas 
or outside of the data collection  site [28  , 30 , 31]  , but  because the data 
needed to parameterize models scales non-linearly  with  complexity,  
accurate phenology modeling  and prediction  is typically  not possible 
for  many rare or uncommon species when analyzed on their  own 
[31  , 32]  . Historically,  hierarchical  mixed models have been widely  used 
to  borrow  statistical  strength across unbalanced datasets and improve  
predictions  in  many applications,  but  they have not  yet been widely  
applied to facilitate  the use of large citizen  science datasets to improve  
modeling  for  rare and data-limited  species [13  , 14]  . 

In  this  study, we test whether  phenological models for  rare and data- 
poor species observed at a single site can be improved  by leveraging 
observations of phenologically  similar,  congeneric species from  a large, 
distributed  citizen  science dataset. We modeled leaf out  and budburst 
of seven temperate deciduous oak ( Quercus ) species using a hierarchical  
Bayesian thermal  time  model with  and without  spatial covariates to 
combine observations from  The Morton  Arboretum  (TMA)  and the 
USA National  Phenology Network  (USA-NPN). Three species were 
sparsely-observed in  USA-NPN ( <  25 sites) and were modeled using 
data from  only  TMA ( “TMA  Only  ” group)  and validated  using all  avail-  
able USA-NPN observations to  test the ability  of leveraging data from  

congeneric species to  improve  phenology models: Q. imbricaria Michx.,  
Q. montana Wiild.(syn  Q. prinus L. p.p., nom. utique rej. ), and Q. velutina 
Lam. ( Table 1 ). To test the power of using large, spatially-distributed  
datasets for  improving  predictions  far  outside of the available training  
data, USA-NPN data for  the remaining  four  congeneric species was 
included  in  models to explain  phenological  patterns over larger spatial 
scales ( “TMA  +  NPN ” group):  Q. alba L., Q. macrocarpa Michx.,  Q. 
palustris Münchh.,  Q. rubra L.. Predicted phenology for  species in  the 
TMA +  NPN group were evaluated using a random 25% of USA-NPN 
sites excluded from  model fitting  ( Table 1 ). We modeled leaf out and 
budburst phenology for  all  seven species using four  hierarchical  phe- 
nological  models: 1) TMA data only  (TMA);  2) TMA and USA-NPN data 
(COMB); 3) TMA  and USA-NPN data and a latitude  spatial covariate 
(LAT);  4) TMA and USA-NPN data and a winter  temperature spatial 
covariate (WT).  All  models and species were evaluated based on root  
mean square error  (RMSE) and spatial bias in  prediction  accuracy using 
USA-NPN observations withheld  from  model fitting.  

2.  Method  

2.1. Data sets descriptions and data cleaning 

We analyzed phenology of seven Quercus species native  to the 
Eastern U.S. observed both  at The Morton  Arboretum’s  Oak Collection  
(TMA)  and at least five  other USA-NPN sites ( Fig. 1 , Supplemental Table 
S1 & S2). Of the 16 species common to  both  TMA and USA-NPN, seven 
species met our  criteria  for  inclusion  in  our  study following  data clean- 
ing, described below.  TMA  data were collected approximately  weekly  in  
2018 and 2019 following  USA-NPN protocols [33]  . Additional  species 
are observed at TMA,  but  are not  included  in  this  study due to lack 
of available independent observations for  prediction  evaluation.  For 
USA-NPN data, leaf out and budburst individual  phenometrics [34]  for  
2008–2019 were downloaded from  Nature’s Notebook using the rnpn 
package in  R [35]  . Individual  phenometrics are calculated by USA-NPN 
and indicate  onset and end date for  phenophases such as budburst and 
leaf out [34]  . USA-NPN sites are distributed  across the United  States 
and are often concentrated in  population  dense areas ( Fig. 1 ). 

Both TMA and USA-NPN datasets were cleaned prior  to  analysis fol-  
lowing  approaches used in  other studies [36]  and TMA observations 
were removed from  the USA-NPN dataset (site 26202)  to avoid  obser- 
vation  duplication.  We restricted  our  analyses to  exclude observations of 
budburst or leaf out  presence that  had not  been preceded by an absence 
observation within  the prior  10 days, which  removed 39% of the initial  
8243 individual  budburst and leaf out USA-NPN phenometrics for  our  
study taxa. For individuals  with  multiple  budburst or leaf out entries 
per year, we used the first  instance. We also removed observations after  
the summer solstice (day of year 172)  to  restrict  observations to start- 
of-season phenophase activity.  Finally,  we excluded outliers  in  the USA- 
NPN dataset by removing  any observations outside of three standard de- 
viations  from  the mean day of year for  each phenophase for  each species. 
Final number of unique budburst  and leaf out  observations, trees, and 
sites for  both  TMA and USA-NPN can be found in  Tables S1 and S2. 

The objective of this  study was to evaluate the ability  of observa- 
tions from  related taxa in  geographically  dispersed datasets such as 
USA-NPN to  improve  predictions  for  rare or sparsely-observed species 
from  a single site. To achieve this  objective,  we categorized species 
used in  this  study into  two  groups. Species in  the “TMA  +  NPN ” group  
used observations from  both  TMA  and USA-NPN to  parameterize 
species-level effects in  all  models ( Section 3 ), while  the “TMA  Only  ”
group withheld  all  USA-NPN observations for  model validation  ( Fig. 1 ). 
Thus, the “TMA  Only  ” group  provides a means of evaluating  the likely  
prediction  error  and spatial bias for  other  species observed at sites 
such as TMA,  but  for  which  no independent prediction  evaluation  is 
currently  possible. Because our goal was to focus on the ability  to  
improve  predictions  for  rare and endemic species, we chose species 
observed in  less than 20 sites for  the “TMA  Only  ” group:  Q. velutina , 
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Table  1 
Description  of how  data from  living  collections  at The Morton  Arboretum’s  (TMA)  and The USA National  Phenology 
Network  (USA-NPN) are used in  multi-site  models of leaf out  and budburst in  our  study. For species with  observations 
at more than 20 sites ( Q. alba , Q. macrocarpa , Q. palustris , Q. rubra ; collectively  termed “TMA  +  NPN ”),  25% of USA-NPN 
sites for  each species were withheld  from  model fitting  for  model validation  while  the remaining  sites used TMA data 
in  the model fitting  process (calibration).  All  USA-NPN sites for  the remaining  three species were withheld  from  model 
fitting  to test the ability  of using congeneric observations to improve  predictions  made with  species observations from  a 
single site ( “TMA  Only  ”;  Q. imbricaria , Q. montana , Q. velutina ). 

Species Data for model parameterization Data for Validation 

Q. alba TMA +  75% USA-NPN sites Random 25% sample of USA-NPN sites 
Q. macrocarpa TMA +  75% USA-NPN sites Random 25% sample of USA-NPN sites 
Q. palustris TMA +  75% USA-NPN sites Random 25% sample of USA-NPN sites 
Q. rubra TMA +  75% USA-NPN sites Random 25% sample of USA-NPN sites 
Q. imbricaria TMA All USA-NPN sites 
Q. montana TMA All USA-NPN sites 
Q. velutina TMA All USA-NPN sites 

Q. montana , Q. imbricaria (Table S1, S2). To provide  context for  the 
performance of phenology predictions  made from  the single-site TMA 
group, we randomly  excluded one-fourth  of USA-NPN sites for  each 
remaining  “TMA  +  NPN ” species ( Q. alba , Q. macrocarpa , Q. palustris , 
Q. rubra ; Tables S1, S2) for  model validation  and used the remaining  
observations in  the model calibration  and fitting  process ( Fig. 1 ). One 
additional  species, Q. ilicifolia  Wangenh., met the criteria  for  inclusion  
in  our  study as a “TMA  Only  ” validation  species, but the species 
parameters were unable to converge in  our models (described below).  

2.2. Meteorological Data 

Weather data used in  this  study was acquired for  TMA and all  
USA-NPN sites from  Daymet using the daymetr package [38]  . Daymet is 
a national  weather collection  service that  provides gridded  estimates of 
daily  weather parameters at 1 km spatial resolution  [39  , 40]  . We used 
daily  minimum  and maximum  temperatures to calculate the daily  mean 
temperature value which  was then used to  calculate accumulated grow- 
ing degree days (GDD) and winter  season mean temperature (WT).  GDD 
was calculated by subtracting  a base temperature of 5 ̊ C from  the daily  
mean temperature with  any negative values being set to  0. The GDD 
value associated with  a budburst or leaf out  event was the sum of GDD 
between January 1st and the date of that  phenological event observation 
(e.g. day of first  budburst or leaf out).  Winter  season mean temperature 
(WT)  was calculated as the mean daily  temperature from  Jan. 1st 
through  March 1st. Winter  season mean temperature at TMA was 
-3.97 ̊ C in  2018 and -5.19 ̊ C in  2019. WT of associated with  our USA- 
NPN observations had a median (range) of -0.6 ̊ C (-16.3  ̊ C - 13.3  ̊ C). 

3.  Calculation  

We used a series of four  models to  evaluate the ability  of leveraging 
additional  phenological observations of related taxa from  large data 
networks  such as USA-NPN to improve  predictions  made from  data at 
a single site, TMA.  Two models are simple thermal-time  models with  
species-level cumulative  growing  degree-day thresholds (base tempera- 
ture  5 ̊C) that  were parameterized with  two  different  datasets: 1) data for  
all  seven species from  The Morton  Arboretum  (TMA  model);  and 2) TMA 
observations for  all  seven species plus additional  observations for  four  
species from  USA-NPN (COMB model).  Because the power of big data 
such as USA-NPN often comes from  its ability  to  describe spatial varia- 
tion  in  patterns rather  than detail  for  many species [14]  , we create two  
additional  models where USA-NPN observations were used to add one 
of two  global  spatial covariates: latitude  (LAT model)  or winter  temper- 
ature (WT model).  In  all  models, the accumulated growing  degree-days 
at the time  of first  observed budburst or leaf out  for  each individual  in  
each year was used as the response variable  (GDD) and budburst and 
leaf out  were modeled separately. More detail  on all  model structures 
are described below. Models were constructed using the Gibbs sampler 

software Jags [41]  , and the rjags [42]  and coda [43]  packages. All  
models and analyses were performed  using R [44]  and Rstudio [45]  . All  
code is available in  the following  Github  repository:  https://github.  
com/MortonArb-ForestEcology/Collections  _ phenology _ vulnerability  . 

3.1. TMA thermal time model (single-site) 

Both the TMA  and COMB models are simple GDD thermal  time  mod- 
els that  differ  in  the datasets used in  parameterization  of those models. 
The TMA model ( Eq. (1)  ) used all  available observations of budburst or 
leaf out  (GDD ijl  ) from  The Morton  Arboretum  for  all  seven study species 
and included  fixed  effects to  describe species differences in  GDD thresh- 
olds for  budburst and leaf out ( 𝜇𝐬𝐩𝐩 ) and individual  precision around 
those effects ( 𝜇𝐢𝐧𝐝 ). Model structure  for  the TMA was as follows:  

𝐆𝐃 𝐃 𝐢𝐣𝐥 ∼ 𝐍 
(
𝜇𝐢𝐧𝐝 ( 𝐣𝐥 ) , 𝜏𝐨𝐛𝐬 

)
(1) 

where GDD ijl  was the accumulated GDD at the time  of phenological 
event observation ( i ) of an individual  ( j ) that  belongs to species ( l ). The 
term  𝜇𝑜𝑏𝑠 measured the overall  precision (error)  in  our  data and μind(jl)  
described individual  effects of individual  ( j ) belonging to  species ( l ). 
The term  μind ( jl ) was defined as a normal  distribution:  

𝜇𝐢𝐧𝐝 ( 𝐣𝐥 ) ∼ 𝐍 
(
𝜇𝐬𝐩𝐩 ( 𝐥 ) , 𝜏𝐢𝐧𝐝 

)
(2) 

where μspp(l) was the species effect for  each species ( l ) and 𝜏ind was 
the precision of individuals.  The species effect term,  𝜇spp ( )l  , was also 
defined as a normal  distribution:  

𝜇𝐬𝐩𝐩 ( 𝐥 ) ∼ 𝐍 
(
𝛼𝐥 , 𝜏𝐬𝐩𝐩 ( 𝐥 ) 

)
(3) 

where 𝜶l was the prior  for  each species ( l ) and 𝜇spp ( )l  was the precision 
of each species ( l ). The fixed  species effect had a uniform  prior:  

𝜏𝐥 ∼ 𝐮𝐧𝐢𝐟𝐨𝐫𝐦 ( 0 , 1000 ) (4) 

Precision parameters were given gamma priors  because gamma dis- 
tributions  are nonnegative and are conjugate to normal  distributions:  

𝜏𝐨𝐛𝐬 , 𝜏𝐢𝐧𝐝 , 𝜏𝐬𝐩𝐩 ( 𝐥 ) ∼ 𝐠𝐚𝐦𝐦𝐚 ( . 01 , . 1 ) (5) 

3.2. COMB thermal time model 

The COMB model ( Eq. (6)  ) was fit  using all  available TMA  obser- 
vations for  all  seven species and observations from  three-quarters of 
the available USA-NPN sites for  each of the four  “TMA  +  NPN ” species 
( Q. alba , Q. macrocarpa , Q. palustris , Q. rubra ). The COMB model had a 
similar  structure  as the TMA  model, but  with  an additional  hierarchical  
location  effect that  the single-site TMA model lacked without  including  
a spatial covariate in  the GDD model. The structure  for  the COMB 
model was as follows:  

𝐆𝐃𝐃 𝐢𝐣𝐤𝐥 ∼ 𝐍 
(
𝜇𝐢𝐧𝐝 ( 𝐣𝐤𝐥 ) , 𝜏𝐨𝐛𝐬 

)
(6) 
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Fig.  1.  Locations of all  The Morton  Arboretum  
(TMA)  (orange square) and USA National  Phe- 
nology  Network  (USA-NPN) observations for  
seven oak ( Quercus ) species used in  this  study. 
For species with  observations at more than 
20 sites ( Q. alba , Q. macrocarpa , Q. palustris , 
Q. rubra ; collectively  termed “TMA  +  NPN ”),  
25% of USA-NPN sites for  each species were 
withheld  from  model fitting  for  model valida-  
tion  (green triangles)  while  the remaining  sites 
used TMA data in  the model fitting  process 
(calibration;  yellow  circles). All  USA-NPN sites 
for  the remaining  three species were withheld  
from  model fitting  to test the ability  of using 
congeneric observations to improve  predictions  
made with  species observations from  a single 
site ( “TMA  Only  ”;  Q. imbricaria , Q. montana , 
Q. velutina ). Native  species ranges from  Little  
[37]  are shown in  gray. 

where GDD ijkl  was the accumulated GDD at the time  of phenological 
event observation ( i ) of an individual  ( j ) observed at site ( k ) that  
belongs to  species ( l ). The term  𝝉obs measured the overall  precision 
(error)  in  the observations and 𝜇ind ( jkl ) described individual  effects of 
individual  ( j ) at site (k)  belonging to species ( l ). The term  𝜇ind ( jkl ) was 
defined as a normal  distribution:  

𝜇𝐢𝐧𝐝 ( 𝐣𝐤𝐥 ) ∼ 𝐍 
(
𝜇𝐥𝐨𝐜 ( 𝐤𝐥 ) , 𝜏𝐢𝐧𝐝 

)
(7) 

where 𝜇loc ( kl ) was the location  effect at site ( k ) for  each species ( l ) and 
𝜏ind was the precision of individuals.  The location  effect term  ( μloc(kl)  ) 
was defined as a normal  distribution:  

𝜇𝐥𝐨𝐜 ( 𝐤𝐥 ) ∼ 𝐍 
(
𝜇𝐬𝐩𝐩 ( 𝐥 ) , 𝜏𝐥𝐨𝐜 ( 𝐤𝐥 ) 

)
(8) 

where μspp(l) was the species effect for  each species ( l ) and 𝝉 loc(kl)  was 
the precision at site ( k ) for  each species ( l ). The species effect term,  

4 



L. Fitzpatrick, P.J. Giambuzzi, A. Spreitzer et al. Climate Change Ecology 2 (2021) 100032 

μspp(l) , was also defined as a normal  distribution:  

𝜇𝐬𝐩𝐩 ( 𝐥 ) ∼ 𝐍 
(
𝛼𝐥 , 𝜏𝐬𝐩𝐩 ( 𝐥 ) 

)
(9) 

where 𝜶l was the prior  for  each species ( l ) and 𝝉spp(l) was the precision 
attributed  to  each species ( l ). The fixed  species effect had a uniform  
prior:  

𝛼𝐥 ∼ 𝐮𝐧𝐢𝐟𝐨𝐫𝐦 ( 0 , 1000 ) (10) 

Precision parameters were all  given gamma priors  because gamma 
distributions  are nonnegative and conjugate to normal  distributions:  

𝜏𝐨𝐛𝐬 , 𝜏𝐢𝐧𝐝 , 𝜏𝐥𝐨𝐜 ( 𝐤𝐥 ) , 𝜏𝐬𝐩𝐩 ( 𝐥 ) ∼ 𝐠𝐚𝐦𝐦𝐚 ( . 01 , . 1 ) (11) 

3.3. Spatial covariate models: LAT, WT 

We also created two  models that  included  similar  effects describing 
species-level sources of variation  in  GDD thresholds (TMA  model),  but 
also included  global spatial covariate effects to describe spatial varia- 
tion  in  GDD cues across the geographic extent of available observation 
data, regardless of species identity  ( Eq. (12)  ). This differed  from  the 
COMB model which  simply  added more species-specific data because 
it  used the USA-NPN data to capture the spatial extent of the USA-NPN 
data to  describe spatial variation  across the data set independent of 
species. These models used the same data inputs  as the COMB model 
in  conjunction  with  either  a latitude  or winter  temperature spatial 
covariate taken from  the location  of observation. The structure  of both  
the LAT and WT models were the same: 

𝐆𝐃 𝐃 𝐢𝐣𝐤𝐥 ∼ 𝐍 
(
𝜇𝐢𝐧𝐝 ( 𝐣𝐥 ) +  

(
𝛼𝐢𝐧𝐝 ( 𝐣𝐤 ) +  𝛽𝐢𝐧𝐝 ( 𝐣𝐤 ) × 𝐒𝐏𝐀𝐓 

)
, 𝜏𝐨𝐛𝐬 

)
(12) 

where GDD ikjl  was the accumulated GDD at the time  of phenological 
event observation ( i ) of an individual  ( j ) observed at site (k)  belonging 
to  species ( l ). The term  𝝉obs described the overall  precision in  our data 
and μind(jl)  described taxonomic  effects of each individual  ( j ) belonging 
to  species ( l ). The term  𝜶ind(jk)  was the spatial intercept  for  each indi-  
vidual  ( j ) at site ( k ), and the term  𝜷 ind(jk)  was the spatial slope for  each 
individual  ( j ) at site ( k ). SPAT represented the spatial covariate that  
was either  the latitude  (LAT model)  or the winter  season growing  mean 
temperature (WT model)  of the observation site. The three terms μind(jl),  
𝜶ind(jk),  and 𝜷 ind(jk)  had unique hierarchies that  were defined as follows.  
As in  the TMA model, μind(jl)  , was defined as a normal  distribution:  

𝜇𝐢𝐧𝐝 ( 𝐣𝐥 ) ∼ 𝐍 
(
𝜇𝐬𝐩𝐩 ( 𝐥 ) , 𝜏𝐢𝐧𝐝 

)
(13) 

where μspp(l) was the species effect for  each species ( l ) and 𝝉 ind  was the 
precision of individuals.  The species effect term,  μspp(l) , was defined as 
a normal  distribution:  

𝜇𝐬𝐩𝐩 ( 𝐥 ) ∼ 𝐍 
(
𝛼𝐥 , 𝜏𝐬𝐩𝐩 ( 𝐥 ) 

)
(14) 

where 𝜶l was the species effect prior  for  each species ( l ) and 𝝉spp(l) 
was the precision of each species ( l ). The spatial intercept,  𝜶ind(jk)  , was 
defined as a normal  distribution:  

𝛼𝐢𝐧𝐝 ( 𝐣𝐤 ) ∼ 𝐍 
(
𝛼𝐥𝐨𝐜 ( 𝐤 ) , 𝜏𝛼 𝐢𝐧𝐝 

)
(15) 

where 𝜶loc(k)  was the location  intercept  effect at each site ( k ) and 𝝉𝜶 ind  
was the precision of the spatial intercept.  The location  intercept  effect, 
𝜶loc(k)  , was defined as a normal  distribution:  

𝛼𝐥𝐨𝐜 ( 𝐤 ) ∼ 𝐍 
(
𝛼𝐠𝐥𝐨𝐛𝐚𝐥 , 𝜏𝛼𝐥𝐨𝐜 ( 𝐤 ) 

)
(16) 

where 𝜶global was the global  intercept  effect and 𝝉𝜶 loc(k)  was the 
precision attributed  to  each site ( k ). The global  intercept  effect, 𝜶global , 
was defined as a normal  distribution:  

𝛼𝐠𝐥𝐨𝐛𝐚𝐥 ∼ 𝐍 
(
𝛼𝟎 , 𝜏𝛼𝐠𝐥𝐨𝐛𝐚𝐥 

)
(17) 

where 𝜶0 was the global intercept  prior  and 𝝉𝜶global was the precision 
of the global  intercept.  The spatial slope, 𝜷 ind(jk)  , was defined as a 
normal  distribution:  

𝛽𝐢𝐧𝐝 ( 𝐣𝐤 ) ∼ 𝐍 
(
𝛽𝐥𝐨𝐜 ( 𝐤 ) , 𝜏𝛼𝐢𝐧𝐝 

)
(18) 

where 𝜷 loc(k)  was the location  slope effect at each site ( k ) and 𝝉𝜶 ind  was 
the precision of the spatial slope. The location  slope effect 𝜷 loc(k)  was 
defined as a normal  distribution:  

𝛽𝐥𝐨𝐜 ( 𝐤 ) ∼ 𝐍 
(
𝛽𝐠𝐥𝐨𝐛𝐚𝐥 , 𝜏𝛼𝐥𝐨𝐜 ( 𝐤 ) 

)
(19) 

where 𝜷global was the global slope effect and 𝝉𝜶 loc(k)  was the precision 
attributed  to each site ( k ). The global  slope effect, 𝜷global , was defined 
as a normal  distribution:  

𝛽𝐠𝐥𝐨𝐛𝐚𝐥 ∼ 𝐍 
(
𝛽𝟎 , 𝜏𝛼𝐠𝐥𝐨𝐛𝐚𝐥 

)
(20) 

where 𝜷0 was the global slope prior  and 𝝉𝜶global was the precision of 
the global slope. Species-specific parameters were drawn  from  normal  
prior  distributions  centered at 0 with  normal  precisions: 

𝛼𝐥 ∼ 𝐍 
(
𝟎 , 𝜏𝛼𝐥 

)
(21) 

The global spatial parameters were drawn  from  normal  prior  
distributions  centered at 0 with  normal  precisions: 

𝛼𝟎 ∼ 𝐍 
(
𝟎 , 𝜏𝛼𝟎 

)
(22) 

𝛽𝟎 ∼ 𝐍 
(
𝟎 , 𝜏𝛽𝟎 

)
(23) 

All  precision parameters were given gamma priors  because gamma 
distributions  are nonnegative and conjugate to normal  distributions.  
The distributions  were: 

𝜏𝐨𝐛𝐬 , 𝜏𝜇𝐢𝐧𝐝 , 𝜏𝜇𝐬𝐩𝐩 ( 𝐥 ) , 𝜏𝛼𝐢𝐧𝐝 , 𝜏𝛼𝐥𝐨𝐜 ( 𝐤 ) , 𝜏𝛼𝐠𝐥𝐨𝐛𝐚𝐥 , 𝜏𝛽𝐢𝐧𝐝 , 𝜏𝛽𝐥𝐨𝐜 ( 𝐤 ) , 𝜏𝛽𝐠𝐥𝐨𝐛𝐚𝐥 , 𝜏𝛼𝐥 , 𝜏𝛼𝟎 , 𝜏𝛽𝟎 
∼ 𝐠𝐚𝐦𝐦𝐚 ( . 01 , . 1 ) (24) 

3.4. Model evaluation 

Species-scale GDD thresholds and model performance were eval- 
uated using the posterior  distributions  of parameters from  all  four  
models. To compare differences in  model-estimated GDD thresholds for  
leaf out  or budburst, we generated a 500-member posterior  distribution  
of threshold  values using the latitude  and mean winter  temperature 
for  TMA in  the spatial models. To compare differences in  GDD dis- 
tributions  among models, we used a mixed effects model with  either  
median or 95% credible interval  range as the response variable  and 
interactive  effects of model (TMA,  COMB, LAT, WT) and species group 
( “TMA  +  NPN ” or  “TMA  Only  ”)  as fixed  effects with  a random species 
intercept.  Budburst and leaf out  were analyzed separately. 

Model  performance was evaluated using root  mean square error  
(RMSE) and latitudinal  trends in  model prediction  error.  For both  
analyses, we first  used the model posterior  distributions  to calculate a 
500-member distribution  of GDD threshold  values for  each budburst 
or leaf out  for  USA-NPN observation that  was withheld  from  the model 
fitting  process ( Fig. 1 ). We then used the median GDD value to  calculate 
the day of year of predicted  budburst  or leaf out for  each observation 
using weather data from  Daymet and then calculated the residual 
difference in  days between predicted  and observed, from  which  we 
calculated RMSE and analyzed latitudinal  trends in  this residual error.  
Cross-species model effects on RMSE were analyzed similarly  to  GDD 
distribution  characteristics with  a response variable  of RMSE and inter-  
active effects of model and species group and a random species effect. 

Latitudinal  trends in  prediction  error  were used to infer  the abil-  
ity  of each model to capture spatially  nonstationary  trends in  GDD 
threshold for  leaf out and budburst.  For this  analysis, each species was 
analyzed independently  with  prediction  error  as the response variable,  
interactive  fixed  effects of latitude  and model, and a random site effect. 
In  the results, we present whether  the latitude  trend  for  each result is 
significantly  different  from  0 as well  as whether  there was any trend  
reduction  relative  to the single-site TMA model. Degrees of freedom for  
this  analysis vary  by species and can be found  in  Table S5. 

All  linear  mixed effects models used to  analyze predictive  ability  of 
the phenology models were performed using the lme function  in  the 
nlme package in  R [46]  . All  results presented are significant  at ɑ = 0.05 
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Fig.  2.  Model posterior  predictions  for  growing  degree-day thresholds (GDD) for  budburst  (A)  and leaf out  (B) at The Morton  Arboretum  (TMA).  Shaded areas 
indicate  the 95% credible  interval  for  GDD thresholds with  a base temperature of 5 ̊ C for  predictions  from  thermal-time  models using TMA data only  (TMA),  TMA 
and USA National  Phenology Network  (USA-NPN) data (COMB), TMA and USA-NPN data with  a latitude  spatial covariate (LAT), and TMA and USA-NPN data with  
a mean winter  temperature spatial covariate (WT). 

with  the TMA  model as the reference point  for  comparison for  model 
improvements unless otherwise noted. 

4.  Results  

Inclusion  of data from  USA-NPN with  and without  spatial covariates 
shifted  the mean and uncertainty  of model-estimated GDD thresholds for  
budburst and leaf out  at The Morton  Arboretum  ( Fig. 2 ). For budburst, 
the TMA  model had a mean GDD threshold of 134 (SD 8) GDD while  the 
COMB model was statistically  higher  +  42 (SD 71)  GDD ( p = 0.04; df = 18). 
The GDD thresholds from  the LAT and WT models were statistically  
similar  with  +  23 (SD 8) GDD and WT +  0 (SD 8), respectively ( p >  0.05; 
df = 18). All  leaf GDD thresholds estimated using USA-NPN data were 
lower  than those calculated by the ARB model ( p <  0.05; df = 18)  where 
the mean ARB threshold was 190 (SD 20 GDD) and model differences 
were as follows:  COMB -48 (SD 26)  GDD, LAT -34 (SD 16) GDD, and 
WT -52 (SD 13) GDD. GDD threshold  uncertainty,  as measured by the 
95% CI range, greatly  increased in  the COMB model relative  to TMA for  
the “TMA  Only  ” species group for  both  budburst  and leaf out  ( p <  0.05; 
df = 15) with  no difference in  range for  the LAT or WT models for  either  

phenophase. Budburst threshold uncertainty  increased from  39 (SD 14) 
GDD in  the TMA model to 188 (SD 284)  in  the COMB model, whereas 
leaf out  increased from  93 (SD 34) GDD to  180 (SD 285),  respectively. 

In  all  cases, the inclusion  of USA-NPN data with  spatial covariates 
in  phenology models reduced budburst and leaf out  prediction  RMSE 
( Fig. 3 ). Model improvements did  not vary  among “TMA  +  NPN ” and  
“TMA  Only  ” species groups (df  = 15),  but  RMSE across all  models 
was higher  for  the “TMA  Only  ” group  for  both  budburst and leaf out  
(df  = 23). “TMA  +  NPN ” species had a mean RMSE of 16 (SD 5) days 
for  budburst and 14 (SD 3) days for  leaf out,  whereas “TMA  Only  ”
species had a mean RMSE of 23 (SD 8) days for  budburst and 22 (SD 
7) days for  leaf out.  Patterns of RMSE between TMA and COMB models 
varied among species and phenophases ( Fig. 3 ). When performance was 
analyzed across all  species, there was no statistical  difference in  RMSE 
between those two  models for  budburst (df  = 18), but  the COMB model 
had higher  RMSE (3 SD 4 days) for  leaf out  ( p = 0.03, df = 18). Both 
the LAT and WT models displayed significant  improvements in  model 
performance as measured by RMSE. Budburst RMSE was reduced by 
41% by the LAT model (10 SD 5 days) and 28% by the WT model (7 SD 
3 days) compared to  the TMA model. RMSE improvements in  the two  
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Fig.  3.  (in  color):  Root mean square error  (RMSE, in  days) for  predicted  budburst  (A)  and leaf out  (B) from  thermal-time  models using The Morton  Arboretum  data 
only  (TMA),  TMA and USA National  Phenology Network  (USA-NPN) data (COMB), TMA and USA-NPN data with  a latitude  spatial covariate (LAT), and TMA and USA- 
NPN data with  a mean winter  temperature  spatial covariate (WT). For species whose GDD thresholds were modeled using TMA and USA-NPN data ( “TMA  +  NPN ”),  
RMSE was calculated on a random subset of 25% of USA-NPN sites excluded from  model calibration  whereas RMSE for  “TMA  Only  ” species were calculated using 
all  available  USA-NPN observations. 

spatial models were more modest for  leaf out,  which  had overall  lower  
RMSE than budburst in  the TMA model (19 SD 5 days for  leaf out  versus 
24 SD 7 days for  budburst).  For leaf out,  RMSE was reduced by 29% (6 
SD 3 days) in  the LAT model and 17% (3 SD 2 days) in  the WT model. 

There was a significant  latitudinal  trend  in  the single-site TMA 
model error  for  six of seven species for  budburst and five  species for  
leaf out  ( Fig. 4 , Table S5). Across all  species, the mean latitudinal  trend  
in  model error  for  the TMA model was -3.6 (SD 2.2)  days per degree 
latitude  for  budburst and -3.4 (SD 2.1)  days per degree latitude  for  
leaf out,  indicating  that  models predicted later  budburst than observed 
at southern latitudes  and earlier  than observed at northern  sites. No 
statistically  significant  latitudinal  trend  was found in  any models or 
phenophase predictions  for  Q. montana , which  had a relatively  small 
latitudinal  distribution  compared to  the other  species ( Fig. 1 , Fig. 4 ). 
Furthermore,  the addition  of data from  USA-NPN alone, without  a 
spatial covariate, only  reduced the trend  in  prediction  error  for  Q. 
velutina budburst, which  had a statistically  significant  trend  of -2.3 (SE 
1.1)  days per degree latitude  in  the TMA model to a nonsignificant  trend  
of -1.1 (SE 1.1)  days per degree latitude  in  the COMB model (Table 
S5). Of the “TMA  Only  ” species, only  Q. velutina , which  had the largest 

latitudinal  range ( Fig. 1 , Fig. 4 ), showed significant  improvement  in  
latitudinal  error  trends in  both  LAT and WT spatial covariate models 
(Table S5). However, the LAT and WT models reduced latitudinal  error  
trends in  all  “TMA  +  NPN” species ( Fig. 4 , Table S5). Across all  species, 
the LAT model reduced latitudinal  trends by a mean of 3.2 (SD 0.1)  
days per degree latitude  for  budburst and 3.4 (SD 0.3)  days per degree 
latitude  for  leaf out.  The WT model showed less improvement  than LAT 
with  mean trend  reductions of 1.3 (SD 0.7)  days per degree latitude  for  
budburst and 1.8 (SD 0.8)  days per degree latitude  for  leaf out.  

5.  Discussion  

Living  botanical  collections and data originating  from  citizen  
science networks offer  complementary  strengths that  can be combined 
to improve  phenology predictions  for  data-poor species, including  
rare species whose vulnerability  to climate  change is often difficult  
to study. Phenology monitoring  programs at botanical  gardens and 
arboreta are often able to observe hundreds of taxa from  across the 
world,  including  rare and data-poor species that  have been collected 
specifically  for  ex situ study and conservation [25  , 47]  . In  our study, we 
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Fig.  4.  (in  color):  Latitudinal  trends in  model prediction  error  from  four  thermal-time  models of leaf out  and budburst:  The Morton  Arboretum  data only  (TMA),  
TMA and USA National  Phenology Network  (USA-NPN) data (COMB), TMA and USA-NPN data with  a latitude  spatial covariate (LAT), and TMA and USA-NPN data 
with  a mean winter  temperature spatial covariate (WT). Points indicate  the difference  between predicted  and observed for  USA-NPN observations not  used in  the 
model fitting  process. For the four  “TMA  +  NPN ” species ( Q. abla , Q. macrocarpa , Q. palustris , Q. rubra ) points and latitudinal  trends shown are for  a random  subset 
of 25% of sites available  in  the USA-NPN datasets. The three remaining  species ( Q. imbricaria , Q. montana , Q. velutina ) only  used data from  The Morton  Arboretum  
in  the model fitting  process and all  available  USA-NPN data was used for  model evaluation.  

have leveraged this  diversity  by jointly  modeling  the GDD thresholds 
for  leaf out  and budburst for  multiple  congeneric species. However, 
relatively  high  RMSE and strong latitudinal  trends from  our  TMA model 
compared to  others demonstrates the common limitation  of single-site 
studies in  being able to predict  responses outside of the limited  range 
of conditions  captured in  the training  data [48  , 49]  . Conversely, the 
geographically  dispersed nature of citizen  science datasets leads them 
to  better  capture the observations for  individual  species throughout  

their  native  ranges than is possible with  datasets focused on a single or 
even a few intensive sites ( Fig. 1 ). The broad geographic distribution  of 
these datasets is often mirrored  by broad representation of organismal 
types and phylogenetic  clades, although  individual  clades or functional  
groups such as Quercus may be sparsely represented relative  to their  
global taxonomic  richness [34  , 50]  . 

The ability  of large, spatially  distributed  datasets, including  those 
from  citizen  science, to improve  phenological predictions  is not  inherent  
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and additional  steps to describe other  sources of variability  in  observa- 
tions is essential for  improved  model performance. The noise introduced  
into  models from  spatially  broad citizen  science data without  the in-  
clusion of spatial covariates can increase model parameter uncertainty  
( Fig. 2 ) as well  as overall  error  in  many instances ( Fig. 3 ). The lack of 
consistent improvements  in  COMB model performance, as measured 
by RMSE ( Fig. 3 ) and latitudinal  error  trends ( Fig. 4 ), indicate  that  the 
power of citizen  science phenology networks,  such as USA-NPN, stems 
from  its ability  to allow  for  more complex model fitting  that  captures 
spatio-temporal  variation  in  phenological patterns rather  than through  
an intrinsic  power of adding more data. Our results demonstrate that  
consideration of spatial nonstationarity  in  phenological cues [48  , 51]  
and the incorporation  of data able to describe those patterns are 
essential for  accurate inference and prediction  of biological  responses 
to  climate  variability  and change over large areas ( Fig. 3 , Fig. 4 ). 

As climate  change threatens global biodiversity  and the particular  
challenges of long-lived  organisms such as trees increase in  their  
immediacy  [52  , 53]  , arboreta and botanical  gardens provide  critical  op- 
portunities  to study the biology  and climate  responses of rare, endemic, 
and data-poor species that  are often infeasible to study in  their  natural  
habitats. This study restricted  its analyses to  taxa with  robust data 
available through  USA-NPN for  prediction  evaluation,  but  botanical  
gardens often include  the opportunity  to compare dozens or hundreds 
of taxa commonly  under-represented in  traditional  “big  data ” networks  
[22  , 23]  , and particularly  networks that  require  repeat observations such 
as USA-NPN [14]  . For example, contribution  of TMA  observations to 
the USA-NPN creates a 50% increase in  the number of Q. palustris trees 
observed in  a national-scale dataset (Tables S1, S2). However, data from  
a single location  alone is often limited  in  its ability  to  describe species’ 
responses to weather over a wide  spatio-temporal  range of climate  vari-  
ability  [30  , 31 , 48]  , and thus coordination  and participation  with  larger 
networks  remains essential to  phenology and climate  change research. 

Large scale citizen  science networks  such as USA-NPN are es- 
sential for  climate  change research and conservation as one of the 
few approaches for  gathering individual  and species-scale data over 
continental  geographic extents. Data maintained  by the USA-NPN have 
been used to make species-level forecasts of activity  for  dozens of both  
plant  and animal  species to  be used for  both  research and management- 
focused audiences [15–17]  . However, only  a fraction  of species present 
in  citizen  science programs such as USA-NPN have sufficient  data den- 
sity  to parameterize robust phenological models [54]  . We used a rela- 
tively  simple thermal  time  phenological model in  our  study because the 
“TMA  Only  ” species group that  was representative of sparsely observed 
or rare species did  not have sufficient  data to  parameterize multiple  
species-level phenological cues such as winter  chilling  or daylength 
requirements [27  , 28]  . A more complex and explicit  representation of 
the biological  or ecological relationships among species from  TMA and 
those in  USA-NPN based on traits  or phylogenetic  relatedness may 
provide  continued  pathways for  improvement  [10  , 32 , 55 , 56]  . However, 
when spatially  broad citizen  science data are used without  attempts to 
capture spatial nonstationarity,  the additional  observations do not  im-  
prove predictive  ability.  This lack of improvement  was demonstrated in  
our  study where model RMSE and latitudinal  trends in  prediction  error  
were similar  between the TMA model parameterized with  only  two  
years of data from  a single site and the COMB model using both  TMA 
and USA-NPN data ( Fig. 3 , Fig. 4 ). In  fact, without  additional  measures, 
undescribed sources of variation  within  sparse data can create addi- 
tional  challenges for  model fitting,  as seen with  Q. montana in  the COMB 
model ( Fig. 3 ). In  this instance, TMA is not within  the native  range of 
Q. montana and has the greatest difference in  latitude  between TMA 
and USA-NPN observations ( Fig. 1 , Tables S1, S2). The lack of spatial 
overlap between TMA  observations made outside Q. montana ’s native  
range and the USA-NPN validation  observations increased uncertainty  
in  latitudinal  trends, leading to a lack of improvement  in  spatial trends 
in  phenology prediction  ( Fig. 4 , Table S5), even though  Q. montana had 
a similarly  reduced RMSE as the other species in  this study ( Fig. 3 ). 

Thus, while  hierarchical  modeling  is a powerful  approach to  improve  
phenology predictions  for  rare or data-poor species, those with  high  un- 
explained variation  will  remain challenging without  more robust data. 

Phenology predictions  for  rare and sparsely observed species can be 
improved  by combining  information  from  single sites, including  botani-  
cal living  collections outside of a species range, with  observations of sim- 
ilar  taxa in  geographically  broad citizen  science networks.  Ideally,  ob- 
servations that  capture the full  environmental  diversity  of each species 
of interest would  be available for  predicting  responses to  current  and fu- 
ture  global  change, but  the logistical  challenges of obtaining  individual-  
and species-scale data for  rare species make this  an unrealistic  goal. 
“Big  data ” approaches for  characterizing  phenology such as citizen  sci- 
ence and remote sensing have the potential  to partially  address spatial 
variation  in  phenology at continental  and global extents [57–59]  . How- 
ever, the ecology of many species with  restricted  distributions,  includ-  
ing those of conservation concern, remain poorly  described and unad- 
dressed through  “big  data ” [14]  . Living  collections monitoring  programs 
reduce logistical  hurdles for  observing rare species and provide  ac- 
cess necessary for  the frequent observations needed to  describe phenol- 
ogy for  individual  species. Using hierarchical  modeling  approaches that  
combine detailed species observations from  even a single site with  com- 
parable data for  related or ecologically  similar  taxa that  capture spatial 
variability  can be a powerful  tool  for  borrowing  strength across research 
approaches. Through a combination  of two  approaches to phenological 
monitoring  with  known  limitations,  botanical  garden observations and 
citizen  science observations can be combined to  provide  key informa-  
tion  necessary to better  understand and predict  the responses of rare and 
sparsely-observed species to climate  variability  and change across space. 
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