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Abstract  44 

When holding multiple items in visual working memory, representations of individual items are 45 

often attracted to, or repelled from, each other. While empirically well-established, existing 46 

frameworks do not account for both types of distortions, which appear to be in opposition. Here, 47 

we demonstrate that both types of memory distortion may confer functional benefits under 48 

different circumstances. When there are many items to remember and subjects are near their 49 

capacity to accurately remember each item individually, memories for each item become more 50 

similar (attraction). However, when remembering smaller sets of highly similar but discernible 51 

items, memory for each item becomes more distinct (repulsion), possibly to support better 52 

discrimination. Importantly, this repulsion grows stronger with longer delays, suggesting that it 53 

dynamically evolves in memory and is not just a differentiation process that occurs during 54 

encoding. Furthermore, both attraction and repulsion occur even in tasks designed to mitigate 55 

response bias concerns, suggesting they are genuine changes in memory representations. Together, 56 

these results are in line with the theory that attraction biases act to stabilize memory signals by 57 

capitalizing on information about an entire group of items, whereas repulsion biases reflect a 58 

tradeoff between maintaining accurate but distinct representations. Both biases suggest that human 59 

memory systems may sacrifice veridical representations in favor of representations that better 60 

support specific behavioral goals.   61 
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Memory is a constructive rather than a passive process. For example, people will naturally fill in 62 

gaps when recalling a story in an attempt to make the story more coherent (Bartlett, 1932; Loftus, 63 

2005; Roediger & McDermott , 1995). When people study a list of words, they often falsely recall 64 

or recognize associated words that were not on the original list (Deese, 1959; Underwood et al., 65 

1965), and later report these words as actual memories (Schooler et al., 1988). Similarly, visual 66 

memory is not analogous to taking a photo – instead, there are many systematic biases in how 67 

visual attributes are remembered after a sensory stimulus is no longer available (Alvarez, 2011; 68 

Bar, 2004; Brady & Alvarez, 2011; Fischer & Whitney, 2014; Huang & Sekuler, 2010; Koutstaal 69 

et al., 2001; Rademaker et al., 2015; Schacter et al., 2011).  70 

When people are tasked with remembering a visual item, such memories are often distorted toward 71 

existing, learned prototypes (Huttenlocher et al., 1991, 2000; Hemmer & Steyvers, 2009). Such 72 

distortion can also occur not toward pre-learned prototypes, but toward the central tendency of a 73 

group within a single presentation. For example, when people are asked to remember multiple 74 

visual items, these memories are 'attracted' to each other - that is, different objects are remembered 75 

as more similar than they really were (Brady & Alvarez, 2011; Dubé et al., 2014; Dubé & Sekuler, 76 

2015; Freyd & Johnson, 1987; Huang & Sekuler, 2010; Spencer & Hund, 2002). It has been 77 

proposed that this occurs because object-level representations are imprecise, so these unstable 78 

representations are constrained by using additional information about the properties of the set of 79 

items as a whole (i.e. group-level representation). Thus, inter-item attraction biases may be the 80 

result of weighting the representation of each individual object towards the “summary” of the set 81 

to achieve a more stable memory at the expense of maintaining distinctions between individual 82 

items (Brady & Alvarez, 2011; Huttenlocher et al., 1991).  83 

https://paperpile.com/c/g1QgGH/PKN9R+K7qvl+0g1Uc
https://paperpile.com/c/g1QgGH/PKN9R+K7qvl+0g1Uc
https://paperpile.com/c/g1QgGH/BLeIr+o2gIj
https://paperpile.com/c/g1QgGH/BLeIr+o2gIj
https://paperpile.com/c/g1QgGH/kNLhf
https://paperpile.com/c/g1QgGH/vEYj1+Z2dor+0oiVl+SQ1UX+QJEZq+7YYcf+w8fPR+S6SU5
https://paperpile.com/c/g1QgGH/vEYj1+Z2dor+0oiVl+SQ1UX+QJEZq+7YYcf+w8fPR+S6SU5
https://paperpile.com/c/g1QgGH/vEYj1+Z2dor+0oiVl+SQ1UX+QJEZq+7YYcf+w8fPR+S6SU5
https://paperpile.com/c/g1QgGH/SQ1UX+infO2+XGSIL+YjUHB+vEYj1+R9tTn+GwWWe+nv34Y+cw3Bm
https://paperpile.com/c/g1QgGH/SQ1UX+infO2+XGSIL+YjUHB+vEYj1+R9tTn+GwWWe+nv34Y+cw3Bm
https://paperpile.com/c/g1QgGH/R9tTn+SQ1UX
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Interestingly, attraction biases are not ubiquitous. Under some conditions, when multiple items are 84 

shown at once, memories for individual specific items have been shown to repel each other, being 85 

remembered as more different than they really were (Bae & Luck, 2017; Golomb, 2015; O’Toole 86 

& Wenderoth, 1977; Rademaker et al., 2015; Rauber & Treue, 1998; Suzuki & Cavanagh, 1997). 87 

However, far less research has been dedicated to understanding inter-item repulsion biases. 88 

Repulsion biases have sometimes been proposed to arise from lateral inhibition, as competition 89 

between neurons representing similar feature values may lead to representations that repel away 90 

from each other (Johnson et al., 2009; Wei et al., 2012), akin to repulsion resulting from 91 

competition during early perceptual processing (Jazayeri & Movshon, 2006; Navalpakkam & Itti, 92 

2007; Purushothaman & Bradley, 2005; Regan & Beverley, 1985; Scolari & Serences, 2009;  93 

Scolari & Serences, 2010; Smith et al., 2005).  However, while providing a possible mechanistic 94 

basis, such theories do not straightforwardly explain why repulsion biases sometimes arise and 95 

sometimes do not; nor why attraction biases occur for similar stimuli under other circumstances. 96 

Despite the importance and pervasiveness of these memory distortions, to date there have been 97 

few attempts to understand why memories sometimes attract, while at other times they repel.  98 

Because these are rarely studied together, it is still unclear whether these inter-item memory 99 

distortions that arise for simultaneously presented items are due to changes in the representations 100 

themselves, or if they instead reflect demand characteristics that lead to systematic response biases. 101 

For example, repulsion biases can emerge in continuous report paradigms if participants want to 102 

actively communicate that they know two items are different, even if participants have access to 103 

veridical representations, and most work to date has demonstrated repulsion biases only in such 104 

continuous report situations (Bae & Luck, 2017; Golomb, 2015; Rademaker et al., 2015). 105 

https://paperpile.com/c/g1QgGH/Wk7ar+A7Brd+ynQxI+V8yCp+0oiVl+TxWvn
https://paperpile.com/c/g1QgGH/Wk7ar+A7Brd+ynQxI+V8yCp+0oiVl+TxWvn
https://paperpile.com/c/g1QgGH/xIXoc+bBkrk
https://paperpile.com/c/g1QgGH/3YleL+M4aR5+Nd4qi+QywVd+pap8x+qoDDo+3wMYn
https://paperpile.com/c/g1QgGH/3YleL+M4aR5+Nd4qi+QywVd+pap8x+qoDDo+3wMYn
https://paperpile.com/c/g1QgGH/3YleL+M4aR5+Nd4qi+QywVd+pap8x+qoDDo+3wMYn
https://paperpile.com/c/g1QgGH/vEYj1+SQ1UX+pABpU+Wk7ar+0oiVl+A7Brd
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To establish when attraction biases and repulsion biases arise and whether they are properties of 106 

the memory system or a result of stimulus differences or straightforward responses biases that 107 

occur only in continuous report tasks, we present a series of experiments. First, we determine 108 

whether attraction and repulsion are simply properties of subject’s communicative intent in 109 

continuous report tasks. Second, we examine whether they arise in predictable circumstances, by 110 

manipulating task difficulty and the similarity and distinctiveness of the memoranda. While these 111 

are general issues, related to nearly all kinds of memory, we tested these ideas in a well-studied 112 

domain – visual working memory for color – where memory representations can be precisely 113 

quantified. Task difficulty was increased or decreased by changing how many items must be 114 

remembered (set size), how distinctive the colors are from each other (their proximity in color 115 

space), and encoding time and memory delay.  116 

After establishing the empirical phenomena, we adopt the perspective (in the ‘Framework’ section 117 

of the paper) that these inter-item biases for simultaneously presented items may be natural 118 

consequences of the memory system attempting to minimize memory error, and that systematic 119 

distortion can be adaptive in particular circumstances (Schacter et al., 2011). Specifically, when 120 

many items are present and memories for individual items are noisy, attraction biases are known 121 

to be optimal for minimizing error (e.g., Brady & Alvarez, 2011). In this case, relying on group-122 

level statistics provides an efficient means of retaining at least some information about all items at 123 

the expense of precisely representing information about each single item. Repulsion biases can 124 

also reduce error in some situations, making them adaptive. In particular, if items would naturally 125 

be blended or confused by our memory system (Swan & Wyble, 2014; Oberauer & Lin, 2017) – 126 

that is, if similar items would interfere with each other – then repulsion can reduce this tendency 127 

and reduce error. In this case, the goal is to distinguish highly similar or noisy representations, by 128 

https://paperpile.com/c/g1QgGH/7YYcf
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reducing the confusability between memory items. In particular, if items interfere to the extent 129 

they overlap in features, then repulsion is adaptive when items overlap in representation. In 130 

discussing this framework, we examine whether attraction and/or repulsion occur in the 131 

circumstances predicted by this framework, and not in circumstances where biases would be 132 

maladaptive to memory performance (i.e. contrary to the adaptive framework).  133 

Overall, we find that when distinctiveness between two items goes down, repulsion biases are 134 

stronger (up to the point where two items become indistinguishable, and attraction takes over as 135 

the dominant force). Repulsion biases also grow stronger with longer delays, suggesting that as 136 

memory demands increase and item representations become noisier, memories are biased to keep 137 

items individuated. In contrast, we observe attraction biases when individuating items is more 138 

difficult due to a higher memory load (in an experiment with 4 instead of 2 memory items), 139 

consistent with sacrificing single-item discriminability in order to remember at least some 140 

information about ensemble-level features. Importantly, by using a 2-alternative forced-choice 141 

paradigm we were able to test the role of demand characteristics: the results imply that repulsion 142 

biases are not the result of participants trying to communicate that they can distinguish two targets 143 

in a continuous report task. Collectively, these studies suggest that, given task-imposed constraints, 144 

attraction or repulsion biases may help to improve behavioral performance even though these 145 

biases may lead to non-veridical memories.  146 

 147 

 148 

 149 
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Experiment 1: Memory distortion vs. response strategy 150 

 151 

Do memory items truly 'repel' each other when people hold in mind a small number of similar 152 

items? In Experiment 1 we sought to replicate this basic repulsion effect and to determine if 153 

previously reported biases (e.g., Bae & Luck, 2017; Golomb, 2015) are more likely to reflect 154 

memory distortions, or if they are a result of changes in response strategy to communicate an 155 

understanding of the continuous reproduction task. That is, when participants remember a pair of 156 

colors, they can communicate their awareness of the colors being distinct from one another by 157 

exaggerating the difference between the two. When cued to report one of the two remembered 158 

items on a continuous color-wheel, this strategy would result in an answer repelled away from the 159 

uncued non-target item – mimicking a repulsion bias. We directly addressed this possible response 160 

strategy by having participants remember two colored items over a brief delay (Figure 1a), after 161 

which they perform a 2-alternative forced-choice (2-AFC) task comparing the correct (cued target) 162 

color to an incorrect (distorted foil) color (Figure 1a, b). By presenting participants with the correct 163 

answer on every trial, such response biases are discouraged as they are detrimental to task 164 

performance, and an understanding of the task is best communicated by picking the correct color. 165 

To distinguish between attraction and repulsion in this 2-AFC paradigm, the incorrect foil color 166 

was distorted by 6º relative to the correct target color, and the distortion was either towards the 167 

non-target (i.e. ‘attracted’ to the non-target) or away from the non-target (i.e. ‘repelled’ from the 168 

non-target). If memories for the two colors were repelled from each other, a foil color that was 169 

distorted toward the non-target would be less often confused with the correct answer (have a higher 170 

accuracy) than a foil color that was distorted away from the non-target (have a lower accuracy).  171 

 172 

Methods 173 

https://paperpile.com/c/g1QgGH/Wk7ar+A7Brd
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The datasets from all of the current studies (plus the code used to generate the stimuli and analyze 174 

the data) are available in the OSF repository  175 

https://osf.io/qp6xk/?view_only=0559769c587c4c8294288451e8af239e 176 

Participants. 45 naïve participants were recruited from Amazon Mechanical Turk. In this and all 177 

other experiments reported, all experimental procedures were approved by the UCSD Institutional 178 

Research Board, all online participants provided written informed consent, and all reported normal 179 

or corrected-to-normal vision without color-blindness. Participants were naïve to the purpose of 180 

the study and received payment ($6 per hour) for their time. 181 

Stimuli & Procedure. All stimuli were drawn on a 500 × 500 pixels white background with a 182 

black border around it (1 pixel wide). The fixation cross was in the middle of the canvas, and 12 183 

small circular placeholders were shown around fixation, each centered at a distance of 120 pixels. 184 

Each placeholder had a radius of 20 pixels, and the inter-placeholder distances were 62 pixels 185 

(center-to-center). Placeholders were positioned such that six of them were on the left, and the 186 

other six were on the right side of fixation. Furthermore, two placeholders were always presented 187 

directly to the left and right of fixation, centered at 35 pixels from fixation. Memory items were 188 

colors selected from a subset of CIE L*a*b color space (L = 70, a = 20, b = 38, radius =60). Note, 189 

while one of the memory items was always selected randomly from this color space, the second 190 

item always differed from the first by 45º. The location probe, cueing participants which memory 191 

item to report on, was a small equilateral black triangle, 20 pixels wide and 20 pixels tall. 192 

Participants were shown two memory items for 150ms at two randomly selected placeholders in 193 

the display (out of 12 possible placeholders), with the restriction that there were always at least 2 194 

empty placeholders between the two memory items. After a 750ms delay, a location cue (arrow) 195 
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indicated which of the items was the memory target, and two response options appeared in the 196 

placeholders directly to the left and right of fixation. One of the response options was always the 197 

correct color (i.e. identical to the color that was cued), while the other option was always a foil, 198 

and participants made a 2-AFC judgment between the two response options. The foil always 199 

differed from the correct color by 6º in color space, either in the direction towards (50% of trials) 200 

or away (50% of trials) from the non-target memory item. The positions (left or right of fixation) 201 

of the correct and foil response options were completely randomized. Participants had to press “z” 202 

or “m” to select the choice presented on the left or right of fixation, respectively, before proceeding 203 

to the next trial. There were 60 trials per condition (a total of 120 trials per participant).  204 

Results 205 

As predicted by an account where repulsion is a genuine memory phenomenon, participants were 206 

better at rejecting a foil color that was distorted toward the non-target memory item than rejecting 207 

a foil color that was distorted away from the non-target memory item – an indicator of repulsion 208 

bias (t(44)=3.98; p<0.001; Figure 1c). In other words, performance was higher when a foil was 209 

distorted towards the non-target memory. This shows that repulsion biases occur even in a 2-AFC 210 

format with an objectively correct answer vs. an objectively incorrect answer, implying that 211 

repulsion is not merely the result of this particular a priori plausible response strategy.  212 
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 213 

Figure 1. Task and results from Experiment 1. a.) Participants remembered two memory items 214 

that were always 45o apart in color space. Memory items were briefly presented for 150ms at two 215 

randomly chosen placeholder locations. After a 750ms delay, participants reported the color of the 216 

target item (cued with an arrow) by choosing between two options, one always being the correct 217 

color, and the other always being an incorrect foil color that was distorted from the correct color 218 

by 6° in a direction either toward or away from the non-target color. In the example trial shown 219 

here, the correct response is shown on the left, while the foil on the right is distorted in a direction 220 
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away from the non-target color. b.) Two memory colors were selected to lie within 45o of each 221 

other in color-space (at any possible position on the color wheel). The target color (cued after the 222 

delay) was always one of the response options during the 2AFC phase of the trial (i.e. the “correct 223 

color”). The other response option was a foil color. The foil color always differed 6o from the 224 

correct target color and could be distorted towards (-6º) or away (+6º) from non-target color. c.) 225 

Participants preferred the correct color to the foil when the foil was distorted toward the non-target 226 

color, as indicated by above-chance performance (blue bar; t(44)=3.73; p=0.006). This differed 227 

significantly from trials on which the foil was distorted away from the non-target color (compare 228 

blue and red bars; t(44)=3.98; p<0.001), with a trend towards participants preferring the incorrect 229 

foil over the correct answer, as indicated by numerically below-chance performance (red bar; 230 

t(44)=-1.76; p=0.08). This is the expected result when memory for the target is distorted away from 231 

the non-target (i.e. when there is a repulsion bias). Error-bars represent + 1 within-subject SEM. 232 

Double and triple asterisks indicates p<0.01 and p <0.001 respectively.  233 

 234 

Experiment 2: Memory distortion vs. response strategy, and the role of task engagement. 235 

 236 

We next replicated and extended Experiment 1 with additional foil colors that were 25o away from 237 

the correct memory target. We added 25o foils in this second experiment to test the possibility that 238 

participants simply favored all colors distorted away from the non-target color by way of a 239 

response strategy, even though such a strategy would result in objectively incorrect performance 240 

in this task. After all, if participants meant to communicate their awareness of the two memory 241 

colors being distinct, they would prefer any foil away from the non-target over the correct answer. 242 

In this were the case, 25o foils would be favored even more than 6o foils, because they are more 243 

clearly away from non-target color. This hypothesis is schematically shown in Figure 2a (top 244 
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panel; ‘Prediction 1’). By contrast, if memories of the two colors were truly repelled from one 245 

another, and participants remembered the target item as further from the non-target than it actually 246 

was, performance should depend on the degree of foil distortion. Specifically, participants should 247 

be more likely to choose the foil (and give an incorrect answer) when it closely matches their 248 

distorted memory (e.g. the +6º foil), but more likely to choose the correct color when the distortion 249 

of the foil becomes irreconcilable with their memory (e.g. the +25o foil). This hypothesis is also 250 

schematically shown in Figure 2a (bottom panel; ‘Prediction 2’).  251 

 252 

Methods 253 

Participants. 45 new naïve participants were recruited from Mechanical Turk for Experiment 2. 254 

For the control experiment replicating Experiment 2 (Appendix Figure 1) we recruited another 255 

independent set of 45 participants from Amazon Mechanical Turk.  256 

Stimuli & Procedure. The stimuli and task were identical to Experiment 1, except that in 257 

Experiment 2 the foil could differ from the correct color by either 6º (45% of trials), 25º (45% of 258 

trials), or 180º (10% of trials). As in Experiment 1, on half of these trials the foil was in the 259 

direction toward the non-target in color space, while on the other half of trials the foil was away 260 

from the non-target in color space. Given how easily distinguishable the 180º foils were from the 261 

correct color, these trials served as catch trials. For the control experiment replicating Experiment 262 

2 (presented in Appendix Figure 1), the foil could differ from the correct color by either 6º (90% 263 

of trials), or 180º (10% of trials). In Experiment 2, there were 30 trials per main condition (total of 264 

4 main conditions, i.e. 6o vs. 25o foils, crossed with distortion away vs. toward non-target) plus 12 265 

catch trials (a total of 132 trials per participant). In the replication study of Experiment 2, there 266 

were 60 trials per condition (6o foils, with distortion away vs. toward non-target) plus 12 catch 267 
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trials (a total of 132 trials per participant).  268 

 269 

Results 270 

 271 

We replicated Experiment 1, as participants were again better at rejecting a foil color that was 272 

distorted toward compared to away from the non-target memory item (F(1,44) = 49.2; p<0.001; 273 

Figure 2b, compare blue and red bars). Interestingly, subjects more often selected foils that were 274 

6o away from the non-target color compared to the correct target color, resulting in below-chance 275 

level performance in this condition (t(44)=3.41; p=0.001; Figure 3b, compare +6º bar against chance 276 

accuracy). This is consistent with a strong degree of memory distortion, where participants prefer 277 

a repelled foil color relative to the correct answer. In contrast, subjects successfully rejected all 278 

other foils resulting in above-chance level performance (t(44)=8.70, 7.70, and 3.05; p<0.001, 279 

<0.001, and 0.004 for foils that were –25o, –6o, and +25o relative to the non-target color, 280 

respectively; Figure 2b). Thus, participants showed a clear repulsion bias that cannot be easily 281 

explained by response strategy. Instead, the data are consistent with a target memory that was truly 282 

distorted away from the non-target item by several degrees. 283 

 284 

In addition to replicating Experiment 1 and bolstering the case in favor of a true repulsion bias 285 

(and not a response strategy), we wanted to know if the degree of repulsion bias was related to the 286 

level of task engagement from our participants. To this end, Experiment 2 included foils that were 287 

180o away from the cued memory target on 10% of the trials. We termed trials with a 180o foil 288 

“catch trials”, as subjects should rarely, if ever, confuse these foils with the correct color. Thus, 289 

performance on catch trials provides a useful measure of overall task engagement and effort. 290 

Critically, if the repulsion bias is adaptive and improves memory, one would expect the degree of 291 
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repulsion to positively correlate with overall performance. In contrast, if biases arise due to lack 292 

of effort or some other non-task related factor like response strategy, we might expect repulsion 293 

bias to be negatively correlated with performance (or uncorrelated). We quantified the degree of 294 

repulsion as performance on trials with foils distorted towards the non-target (both by 6º and 25º), 295 

minus trials with foils distorted away from the non-target (both by 6º and 25º). This metric will be 296 

larger for participants with stronger repulsion. We found a moderate positive correlation between 297 

the degree of repulsion bias and overall task engagement (Pearson’s r=0.37; p=0.013; Figure 2c) 298 

supported by a bootstrapping analysis (bootstrapped mean Pearson’s r=0.37, two-tailed p=0.048; 299 

Figure 2d). This positive correlation between repulsion bias and overall task engagement was 300 

replicated in an independent set of 45 naïve subjects (Pearson’s r=0.39; p=0.009; Appendix Figure 301 

1). Thus, repulsion biases do not appear to arise solely in participants putting in low or moderate 302 

effort, instead, they are strongest in participants with the highest levels of task engagement.   303 

 304 

Overall, Experiments 1 and 2 provide evidence for a repulsion bias that cannot be explained by 305 

these straightforward, a priori reasonable communicative strategies resulting in simple response 306 

biases, or a lower amount of effort.     307 

 308 
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    309 

 310 
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Figure 2. Experiment 2 hypotheses and results. a.) The two panels show our predictions if 311 

participants were trying to strategically avoid non-target colors leading to a response bias 312 

(prediction 1, top) vs. if participants had memories that were truly distorted away from one another 313 

(prediction 2, bottom). b.) Data from 45 subjects showed a pattern consistent with true memory 314 

distortions as in prediction 2. Participants performed significantly below chance (i.e. preferred the 315 

foil over the correct response option) only when the foil was distorted 6º (but not 25º) away from 316 

the non-target color. This is in line with a true distortion of the remembered color and is indicative 317 

of participants finding that the foil more accurately reflected their memory representation. 318 

Presented with any other foil (foils distorted towards the non-target, or a foil distorted farther away 319 

from the non-target), participants chose the correct answer more often than chance. Error-bars 320 

represent + 1 within-subject SEM. c.) Degree of repulsion bias (indexed as accuracy differences 321 

between all trials with foils distorted toward and away from the non-target color) plotted against 322 

general memory performance (indexed by performance on catch trials). Each dot represents a 323 

single participant. We found stronger repulsion biases in participants with better general memory 324 

performance (Pearson’s r = 0.37     , p=0.013). Note that the position of the dots are slightly 325 

independently jittered by random noise (+/- 5%) to aid visualization of all 45 data points. The solid 326 

yellow line represents the best fit to the unjittered data. d.) Distribution plot of bootstrapped 327 

Pearson’s r between repulsion magnitude and general memory performance (5000 iterations of 328 

resampling with replacement). Single, double and triple asterisks indicate p<0.05, p<0.01 and p 329 

<0.001 respectively.  330 

It is still possible that the repulsion bias is the result of a response strategy whereby the participant 331 

is trying to signal not only an understanding of the task (leading to repulsion), but also wants to 332 
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communicate which of the two items was being recalled (leading to repulsion only for the probed 333 

item).  334 

 335 

Such an account would naturally predict a disappearance of the repulsion bias when not one, but 336 

both memory items were probed. To investigate this possibility, we reanalyze an existing open 337 

data set (Adam, Vogel, & Awh 2017) where participants were required to reproduce the colors of 338 

two memoranda in a random order. To quantify the repulsion bias, we took the absolute difference 339 

between the two stimulus colors presented and compared this to the absolute difference between 340 

the two responses participants made. In case of repulsion, response errors will be further apart in 341 

color space than the actual stimuli were. Indeed, we found that differences between the response 342 

errors were significantly larger than the stimulus differences (t(1,16) = 3.11, p<0.01). This suggests 343 

that also in a whole report task, items at set size 2 repel each other systematically.   344 

 345 

Overall, while it is never possible to rule out all possible response strategies. Some aspects of these 346 

effects could still be happening at response stages, even if they are not explainable by the response 347 

strategies we test here and that are most plausible a priori. However, we have shown they apply 348 

not only in continuous report where a single item is probed, but also in continuous report where 349 

both items are probed, and in two kinds of forced-choice tasks, including one where there is a 350 

single objectively correct answer and a single objectively incorrect answer. While different 351 

response strategies could be at work in each task, giving rise to this pattern, this work provides 352 

significant evidence in favor of a mnemonic shift account.  353 

 354 

Experiment 3: Attraction vs. repulsion. 355 

 356 
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We next sought to manipulate task factors to test if we could systematically flip distortions from 357 

repulsion to attraction, even for the same kind of stimuli. We used the same experimental paradigm 358 

as in Experiments 1 and 2, but increased the number of colors participants had to remember from 359 

2 to 4 items (see also Appendix Figure 2). Given well-documented limits on the amount of 360 

information that can be retained in working memory (e.g., Bays, 2015; Bays et al., 2009; Luck & 361 

Vogel, 1997; Ma et al., 2014), remembering 4 items should be quite challenging for the majority 362 

of participants. Our adaptive framework suggests that when it is challenging to maintain 363 

individuated representations of all memory items, a partial reliance on group-level statistics (Brady 364 

& Alvarez, 2011) or partial blending between items (Swan & Wyble, 2014; Oberauer & Lin, 2017) 365 

is optimal, because it supplements the noisy information available about each of the individual 366 

items with information from the other items. In this context, when participants are presented with 367 

a foil that is distorted towards the colors of the other items in the set (Figure 3a), they should be 368 

more likely to confuse the foil with the correct (cued) target color (i.e. show an attraction bias) – 369 

the exact opposite of the repulsion bias observed in the previous experiments. To test this, in this 370 

experiment the four to-be-remembered colors spanned 60º of color space (in 20º steps), and we 371 

always cued one of the colors on the “edge” of this set. There were 6 possible foil conditions, of 372 

which 3 were distorted towards the other non-target items, and 3 were distorted away from the 373 

other non-target items (Figure 3a). 374 

 375 

Methods 376 

Participants. A total of 72 naïve participants were recruited from Amazon Mechanical Turk. This 377 

is more than in Experiments 1 and 2 due to the increased difficulty of the task associated with the 378 

higher set size (thus requiring more power). Participants received $8 per hour for their time. 379 

https://paperpile.com/c/g1QgGH/qqF2t+Ow2SS+scQeO+Vhb3E
https://paperpile.com/c/g1QgGH/qqF2t+Ow2SS+scQeO+Vhb3E
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Stimuli & Procedure. Stimulus and task presentation was identical to Experiments 1 and 2 with 380 

the following exceptions: Participants were shown four color items for 800ms, memory item 381 

locations were random (could be any 4 placeholders out of the possible 12) with the restriction that 382 

there was always at least 1 empty placeholder between each of the memory items. The four items 383 

were remembered over a 1000ms delay. The four colors were within 60º from each other in color 384 

space, and all colors were equally spaced from one another (i.e. the shortest possible color distance 385 

between two items was 20º; see also Figure 3A). The memory target probed at the end of the delay 386 

was always one of the colors at the edge of the set. Again, the correct color was always included 387 

as one of the response options, while the foil color differed by either 10º, 20º, or 30º from the 388 

correct target color option. The foil color could be either toward the colors of the other memory 389 

items (note how a -20º foil is identical to one of the other colors in the display, and a -30º foil is 390 

exactly the mean of all 4 colors), or it could be away from the other colors. There were 20 trials 391 

per main condition (total of 6 conditions, 10º vs. 20º vs. 30º foils, and distortion away vs. toward 392 

non-target) which means a total of 120 trials per participant. 393 

 394 
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Figure 3. a.) A set of four colors were selected to lie within 60o of each other in color-space (all 395 

separated by steps of 20o) and were presented at random spatial positions (chosen from 12 possible 396 

placeholders; see Appendix Figure 2). The cued memory target color (to be reported after the 397 

delay) was always one of the colors on the edge of the set. In this diagram, the target is the 398 

memorandum with the arrow pointing at it. After a 1000ms delay, participants performed a 2-AFC 399 

memory test. One of the options was always the correct (cued) target color, while the other choice 400 

was an incorrect foil of which the color differed by either 10 o, 20 o or 30o from the correct target 401 

color. The foil could be distorted towards (-10º, -20º, or -30º) or away (+10º, +20º, or +30º) from 402 

the center of the four colors in the memory set. b.) Accuracy was lower when the task was more 403 

difficult: When subjects had to choose between the correct color and a foil color that was very 404 

similar to the correct color (for example, differed by 10º) accuracy was closer to chance compared 405 

to when subjects had to choose between the correct color and a foil that differed more from the 406 

correct color (for example, differed by 30º). Importantly, performance was worse when the foil 407 

color was distorted toward the other memory colors in the set (i.e. the blue bars are lower overall 408 

than the red bars). This indicates an attraction of the cued item towards the other non-target items. 409 

Error-bars represent + 1 within-subject SEM. Asterisks represent significance levels of differences 410 

between foils that were toward vs. away from non-target, with the triple asterisks indicating 411 

p<0.001. 412 

 413 

Results 414 

We performed a 3x2 repeated-measure ANOVA, and found a significant main effect of the 415 

distances of the foils from the target (F(2,142) = 13.14; p<0.0001), and a significant main effect of 416 

the direction of the foil (F(1,71)= 15.48; p<0.0001). There was no significant interaction 417 

(F(2,142)=1.93; p=0.15). Specifically, we found that participants were more accurate when the foil 418 
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colors were more dissimilar from the correct color, making discrimination easier: Accuracy was 419 

53%, 57.4% and 60.1% correct for foils that were 10o, 20o and 30o away from the correct color, 420 

respectively (Figure 3b, compare bars with smaller versus larger target-foil distances). 421 

Importantly, participants were also better at choosing the correct answer when the foil color was 422 

distorted away from the other non-target colors in the set (60.4% correct) compared to when the 423 

foil color was distorted toward the other non-target colors (53.2% correct; Figure 3b, compare blue 424 

and red bars). This implies an attraction bias towards the remembered non-target items, and stands 425 

in contrast to the repulsion bias found with set size 2 (in Experiments 1 and 2). Previous work has 426 

demonstrated that attraction biases in visual working memory arise from slight shifts toward the 427 

gist, and not solely from swaps or guesses based on the average color (e.g., Brady & Alvarez, 428 

2011). Consistent with this, we found little evidence for swaps and guesses in our data as well: In 429 

particular, the -20º foil was the same color as one of the non-target items; and the -30º foil was the 430 

mean of all colors in the set. Nevertheless, neither the -20º nor the -30º foils were selected as often 431 

as -10º foil – indicative of only a slight attraction toward the other colors. 432 

Experiment 4: Biases depend on the degree of distinctiveness between items. 433 

In a fourth experiment (Figure 4a) we sought to determine if reducing the distinctiveness between 434 

items (by making items increasingly similar or noisy) impacts the amount of repulsion bias in a 435 

manner consistent with our framework. In particular, if the memory system naturally blends 436 

together similar items (as in the models of Swan & Wyble, 2014; Oberauer & Lin, 2017), then two 437 

items that are recognizably distinct (i.e., can still be told apart) but still similar enough to likely be 438 

blended, repulsion should arise (see ‘Framework’ section). To this end, we asked participants to 439 

remember 2 colors, and we independently manipulated both memory encoding time (50, 150 and 440 

500ms) and distance in feature space between the two colors (0o, 20o, 45o, 90o and 135o). If less 441 

https://paperpile.com/c/g1QgGH/SQ1UX
https://paperpile.com/c/g1QgGH/SQ1UX
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easily distinguishable colors need to be differentiated from one another in order to improve 442 

behavioral performance, a higher degree of similarity between the 2 memory items should result 443 

in a stronger repulsion bias – but critically, there should be an exception for colors that are so 444 

similar that they are perceived as the same color and are thus put into a single ‘chunk’ or group. 445 

Furthermore, the color distance that creates maximal repulsion should depend on how precise the 446 

representations are: Two very precise representations at a given color distance may not require 447 

repulsion to be differentiated, while two more imprecise representations at that same color distance 448 

could be more easily differentiated with repulsion. In other words, when two memory 449 

representations are not too similar or too distinct, the magnitude of repulsion bias will depend on 450 

the precision of the memories. Repulsion bias might be necessary if the memory representations 451 

are relatively less precise. Representational precision should vary with encoding time (i.e. memory 452 

should be more precise at longer encoding times). Since Experiments 1 and 2 suggest that repulsion 453 

biases reflect changes in encoding and memory as opposed to response strategy, here we used a 454 

continuous report task where subjects had to report the remembered color by choosing from a 455 

continuous 360o color-wheel. The use of a continuous report task allowed us to generalize our 456 

findings beyond the 2-AFC paradigm, and to gain insight into how memory biases manifest in 457 

response error distributions.  458 

Methods 459 

Participants. 24 healthy volunteers (15 female, mean age of 19.75 ± 1.52) from the University of 460 

California San Diego (UCSD) community participated in the experiment in person. All procedures 461 

were approved by the UCSD Institutional Research Board and all participants provided written 462 

informed consent, and reported normal or corrected-to-normal vision without color-blindness. 463 

Participants were naïve to the purpose of the study and received partial course credit for their time.  464 
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Stimuli & Procedure. Stimuli were rendered on a CRT monitor with a 60-Hz refresh rate and a 465 

screen size of 40 x 30 cm. Stimuli were generated using MATLAB and the Psychophysics toolbox 466 

(Brainard, 1997; Pelli, 1997). Participants were instructed to maintain fixation throughout, aided 467 

by a white central fixation dot (0.5º diameter) presented on a dark-gray background of 2.37 cd/m2. 468 

Memory items were colors randomly selected from a subset of CIE color space (L = 70, a = 20, b = 469 

38, radius =60), as was done in the previous three experiments. Sixteen white placeholders (4.3º 470 

radius, 0.2º thick line) were positioned around the fixation point (centered at 10.5º from fixation). 471 

The locations of the two memory targets were selected at random with the exception that (1) they 472 

were always presented in the same hemifield to maximize inter-item competition (Alvarez & 473 

Cavanagh, 2005; Cohen et al., 2016; Störmer et al., 2014) and (2) there were always 2 empty  474 

placeholders between the two memory items (i.e. they were spaced ~4º apart, center-to-center).  475 

 476 

On each trial (Figure 4a), two colored stimuli were presented for either 50ms, 150ms or 500ms 477 

and participants had to remember the colors as precisely as possible. The colors of the two memory 478 

items could be either 0º, 20º, 45º, 90º or 135º apart in color space (with + 3º random jitter). After 479 

a 750ms delay, one of the two colors was probed via a spatial cue (the rim of the placeholder in 480 

one location got thicker). Along with the spatial probe, a randomly oriented color-wheel (with 10º 481 

radius, 1º wide) was presented around fixation, and a crosshair appeared at the fixation point. 482 

Participants used the mouse to move the crosshair to the hue on the color-wheel that most closely 483 

resembled the remembered color at the probed location. The next trial began ~1s after participants 484 

clicked the mouse and this procedure was repeated 96 times per experimental condition (i.e. a total 485 

of 1440 trials per participant). Presentation of the 5 different color distances and 3 different 486 

encoding times was fully counterbalanced. 487 

https://paperpile.com/c/g1QgGH/n0Vn1+Mb9wM
https://paperpile.com/c/g1QgGH/IDMbR+Px0vO+RyyhL
https://paperpile.com/c/g1QgGH/IDMbR+Px0vO+RyyhL
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Analyses. We calculated the difference between the cued target color and the reported color 488 

(reportedº – targetº) on each trial. To investigate the systematic relationship between the cued color 489 

and the non-target color, we flipped the sign of the error such that the non-target color was always 490 

counter-clockwise to the cued target in the error distribution. The circular standard deviation was 491 

used to quantify subjects’ response precision (i.e. larger deviations indicate less precision). Biases 492 

in subjects report were quantified by computing the proportion of responses on the “clockwise” 493 

side of the error distribution (i.e. the side opposite to that of the non-target). We centered this bias 494 

onto 0 to get a percentage score for the bias as follows (see also Figure 4b):  495 

𝑏𝑖𝑎𝑠 =
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 𝑎𝑤𝑎𝑦 ∗ 100

𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
− 50 496 

We expect this bias metric to be roughly 0% if no biases exist, >0% if there is repulsion away from 497 

the non-target, and <0% if there is attraction toward the non-target. Note that this metric reflects 498 

relative repulsion/attraction biases rather than being an absolute metric, since potential “swap” 499 

errors (where the target and non-target colors are confused, and a subject mistakenly reports the 500 

non-target) would be counted as “attraction”. Thus, this metric is conservative to the extent that 501 

potential swap errors would inflate attraction biases and underestimate repulsion biases. To 502 

benchmark our model-free metrics of memory precision and bias, we also fit a von Mises (circular 503 

analogue of a normal distribution) to our error distributions using 2 parameters: standard deviation 504 

(vmSD) and bias (µ). We used repeated-measures analysis of variance to evaluate the impact of 505 

encoding time and color similarity on both the model-free (circular standard deviation and 506 

percentage bias metric) and estimated (vmSD and µ) parameters. 507 

Results 508 
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We confirmed that memory precision was higher at longer encoding times, with circular standard 509 

deviations of 26.5º, 25.0º, and 22.0º for encoding times of 50, 150 and 500ms, respectively 510 

(F(2,46)=65.17, p<0.001). Memory precision also differed as a function of color distance, with 511 

circular standard deviations of 17.4º, 21.4º, 25.3º, 29.1º and 29.4º for color distances of 0º, 20º, 512 

45º, 90º and 135º, respectively (F(4,92)=69.49, p<0.001), showing increasingly noisy responses as 513 

two colors differed more.  514 

To quantify the repulsion bias, we used our model-free bias metric (as discussed above), where 515 

values >0 indicate repulsion, and values <0 indicate attraction. We found differences in repulsion 516 

at longer encoding times, with biases of 0.8%, 3.4% and 2.4% for encoding times of 50, 150 and 517 

500ms, respectively (F(2,46)=9.19, p<0.001; compare the 3 panels on the left in Figure 4c). The 518 

amount of repulsion also differed as a function of distance in color space between the two memory 519 

items, with biases of -2.2%, 3.8%, 7%, 3% and -0.6% for color distances of 0º, 20º, 45º, 90º and 520 

135º, respectively (F(4,92)=13.14, p<0.001; compare values along the x-axis in the left panels in 521 

Figure 4c). 522 

Importantly, there was an interaction between encoding time and color distance (F(8,184)=3.78, 523 

p<0.001; Figure 4c). For example, the strongest repulsion bias shifted from 45º at the shortest 524 

encoding time (50ms) to 20º at the longest encoding time (500ms). This is in line with the idea 525 

that the maximum amount of repulsion depends on both color distance and representational 526 

precision. Note how two very similar colors presented at very short encoding times show a 527 

decreasing amount of repulsion (with repulsion disappearing when two items were 20º apart and 528 

shown for only 50ms). This pattern likely emerges because people are no longer able to individuate 529 

the two items, as shown in a control experiment (Appendix Figure 3). Interestingly, the repulsion 530 

of two memory representations away from one another is not a simple lateral shift, but instead 531 
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leads to significantly skewed response distributions (Appendix Figure 4).  532 

Together, these results are consistent with our framework and suggest that representations are 533 

biased to become more distinctive in order to maintain individuated representations (although in 534 

the limit people need to be able to dissociate item colors during encoding before any repulsion can 535 

occur). This means that with shorter encoding times we see maximal repulsion when two items are 536 

sufficiently distant in feature space (i.e. at 45º but not 20º). It also means that when longer encoding 537 

time leads to representations that are more precise, items must be very similar (i.e. differ by 20º in 538 

color space) to achieve maximum repulsion.  539 

 540 
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Figure 4. a) In Experiment 4, participants remembered two memory items that were either 0o, 20o, 541 

45o, 90o or 135o apart in color space (each with + 3º of jitter), and that were briefly presented for 542 

either 50ms, 150ms or 500ms. Participants reported the color of the cued item (indicated by a 543 

thicker outline at one of the placeholder locations) by choosing the remembered color on a color-544 

wheel. b) While non-targets could have a color that was either counterclockwise or clockwise in 545 

feature-space relative to the cued color, error distributions were constructed (for each subject and 546 

condition) by always plotting the non-target color as counter-clockwise from the cued color. This 547 

cartoon depicts one such error distribution. Attraction and repulsion biases were operationalized 548 

as the difference in the percentage of responses that were toward (dark gray shading) vs. away 549 

from (light gray shading) the non-target color. c.) The 3D bar plot (right) shows repulsion as a 550 

function of both encoding time (z-axis) and inter-item distance in color space (x-axis). Repulsion 551 

at each encoding time is replotted in the three sub-panels (left) to show the within-subject standard 552 

error (+1 SEM) for each condition, and to show the data from trials with a 0o inter-item difference 553 

(not shown in the 3D bar plot) where no repulsion or attraction should exist. Overall, repulsion 554 

biases were more prevalent when the two memory colors were more similar. Especially when 555 

encoding time increased, and responses become more precise, did the remembered colors need to 556 

be very similar to observe maximal repulsion. Single, double and triple asterisks indicate p<0.05, 557 

p<0.01 and p <0.001 respectively (tested against no-bias; uncorrected for multiple comparisons).  558 

Note that the above analyses, based on non-parametric quantifications of precision and bias, were 559 

confirmed with an additional analysis based on the standard deviation and bias parameters of a 560 

von Mises distribution fit to the error distributions (Appendix Figure 5). 561 

 562 
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In Experiment 2 we had found that the degree of repulsion bias was related to the level of task 563 

engagement (Figure 2c). This indicated that a lack of effort was not the source of the repulsion 564 

biases found in that experiment. To make sure this finding was not due to the specific 2AFC or 565 

online nature of Experiment 2, we also analyzed the data from the current experiment, which was 566 

collected in the lab using a continuous report paradigm. Here, baseline performance was quantified 567 

by the circular standard deviation of each subject (with lower circular standard deviation indicating 568 

better performance), while bias was quantified by the percentage of responses away from non-569 

target color (values >0 indicating repulsion). We found strong negative correlation between 570 

circular standard deviation and bias (Pearson’s rho = -0.81, p<0.001, Bayes factor = 3872; Figure 571 

5) supporting and extending our findings from Experiment 2. In the current analysis, the 572 

correlation is very prominent, possibly owing to the high number of trials (1440) per subject.  573 

Participants with better performance (smaller circular deviation) tended to have stronger repulsion 574 

bias (responses away from non-target colors were higher than 0), showing that repulsion biases 575 

are strongest in participants with the highest levels of task engagement. 576 

 577 

 578 
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Figure 5. A strong negative correlation between bias (y-axis) and memory performance (as 579 

indexed by the circular standard deviation on the x-axis) demonstrates that repulsion is stronger 580 

in participants whose performance is better. This replicates the correlation between task 581 

performance and magnitude of repulsion biases in Experiment 2 (Figure 2c; and see also a 582 

replication experiment in Appendix Figure 1), and clearly demonstrates that a lack of effort 583 

cannot explain repulsion biases.  584 

 585 

Experiment 5: Repulsion biases grow with longer delays 586 

 587 

Finally, we tested whether repulsion biases become stronger with increasing memory noise. In 588 

Experiments 1–4, biases emerging during encoding cannot be dissociated from those emerging 589 

during the delay. Therefore, here we focus on memory noise that arises during the delay. To 590 

manipulate memory noise, we compared performance across different memory delay durations. 591 

Note that while some have argued that memory noise does not change as a function of delay 592 

interval (e.g., Huang & Sekuler, 2010; Magnussen & Greenlee, 1992; Regan & Beverley, 1985; 593 

Zhang & Luck, 2009, 2011), subsequent studies have since demonstrated that, with adequate 594 

power, representations do become noisier over time (Rademaker et al., 2018; Shin et al., 2017). 595 

We reasoned that if repulsion bias functions to keep two memory representations distinct, then this 596 

repulsion bias should grow stronger as the memory delay (and thus memory noise) increases. 597 

Alternatively, it is possible that when the two representations become increasingly noisy over time, 598 

responses may instead become biased toward the average of the two colors, and thus repel less, or 599 

even attract. We tested these predictions in an experiment where we manipulated delay duration 600 

(250ms, 750ms, or 5000ms; see Appendix Figure 6 for stimulus presentation details) as 601 

participants remembered two items. Encoding time was fixed at 250ms, and color distance between 602 

https://paperpile.com/c/g1QgGH/pap8x+XXJ3o+vEYj1+8Cqez+ZWnZW
https://paperpile.com/c/g1QgGH/pap8x+XXJ3o+vEYj1+8Cqez+ZWnZW
https://paperpile.com/c/g1QgGH/Ifen7+QwxGs
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the two items was fixed at 45º (i.e., values that yielded the largest repulsion bias in Experiment 4). 603 

Subjects recalled the target color using a continuous report paradigm. We quantified bias in a 604 

model-free manner as in Experiment 4. 605 

 606 

Methods 607 

Participants. A total of 60 naïve participants were recruited using Amazon Mechanical Turk. For 608 

the control experiment (presented in Appendix Figure 7), an additional 50 naïve participants were 609 

recruited from Amazon Mechanical Turk. All participants provided their informed consent, and 610 

were paid approximately $8 per hour for their time. Five participants out of 60 were excluded 611 

because of poor baseline performance (mean circular standard deviation more than 70º which was 612 

> 2 SD of the group). For the control experiment, 3 participants were excluded for the same reason. 613 

 614 

Stimuli & Procedure. Stimuli and task procedures were identical to Experiments 1–2 (i.e., two 615 

stimuli at a 45º color distance were briefly shown at two of 12 placeholders on the screen and 616 

remembered over a delay before responding) with the following exceptions: There were no 617 

placeholders next to fixation, instead, there was always a light gray circle visible (237 pixel radius, 618 

2 pixels wide, #d3d3d3 hex color) outside of the placeholders (see Appendix Figure 6). This grey 619 

circle turned into a randomly rotated color wheel during the response period (color wheel of the 620 

same dimensions as the grey circle). The two memory stimuli were presented for 250ms and 621 

participants remembered the color of each stimulus for a 250ms, 750ms, or 5000ms delay period. 622 

After the delay, one of the two colors was probed, and participants reported the cued color by 623 

moving a white circle along color wheel (i.e. via a continuous recall procedure as in Experiment 624 

4). This procedure was repeated 60 times for each of the 3 delay period conditions (i.e., 180 trials 625 
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per participant in total). For the replication experiment (Appendix Figure 7), the procedure was 626 

identical, with the exception that stimuli were only presented for 150ms (instead of 250ms). 627 

 628 

Results 629 

 630 

First, we found that the width of recall error distributions significantly differed across the three 631 

memory delays (Figure 6a), with circular standard deviations of 33.8º, 34.5º and 38.6º for delays 632 

of 250ms, 750ms and 5000ms, respectively (F(1,54)=38.33, p<0.001). This is consistent with the 633 

notion that there is an increase in memory noise as items have to be remembered over longer 634 

delays. We also found that the repulsion bias grew monotonically with delay duration, from 2.5%, 635 

to 3.6%, and 5.6% for delays of 250ms, 750ms and 5000ms, respectively (Figure 6b and 6c; F(1,54) 636 

=5.36, p=0.025), suggesting larger repulsion biases with increasing delay duration. This effect was 637 

replicated in a control experiment using an independent set of subjects (Appendix Figure 7) and 638 

cannot be explained by changes in swap rate with delay (i.e., swaps happen when subjects 639 

mistakenly report the non-target color instead of the target color; see Appendix Figure 8).  640 

 641 

Thus, when two similar (but dissociable) items have to be remembered, we observe repulsion. As 642 

the items are held in memory for increasingly longer durations, they repel further apart as they 643 

become noisier (we do not observe a switch to attraction biases). The increase in repulsion with 644 

longer delays suggests that the repulsion bias is at least partly related to the storage of information 645 

in memory, and is not purely due to perceptual factors or response strategies.     646 
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  647 

 648 

Figure 6. a.) At increasing delays, error distributions become wider (larger circular standard 649 

deviation), indicating increasing memory noise. The distributions also reveal a high number of 650 

responses biased away from the non-target. b.) The proportion of responses biased away from the 651 

non-target, when quantified for the three delay-duration conditions, revealed a repulsion bias that 652 

grew monotonically stronger as the delay time increased. Error-bars represent + 1 within-subject 653 

SEM. Double and triple asterisks indicate p<0.01 and p <0.001 respectively (tested against no-654 

bias; uncorrected for multiple comparisons). c.) To assess the increase of repulsion bias with delay, 655 

one can fit a line through the three points in (b) and calculate the slope – a positive slope indicating 656 

an increasing repulsion. Shown here is a distribution plot of bootstrapped slopes (5000 iterations 657 

of resampling with replacement). The single asterisk indicates p<0.05. This confirms a statistically 658 

robust effect, with repulsion bias growing as a function of delay duration. 659 

An adaptive framework 660 
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In five main experiments (and three control experiments), we found that memory representations 661 

were repelled from each other when the memoranda were highly similar (Experiments 1–2), when 662 

memory representations were noisier (Experiment 4), and more when representations were 663 

remembered over longer delay intervals (Experiment 5). We confirmed that these effects do not 664 

simply reflect straightforward demand effect or straightforward response biases, and they hold 665 

across different experimental paradigms. Moreover, we showed that participants with excellent 666 

performance and task engagement showed large repulsion biases, suggesting that these biases do 667 

not simply reflect a lack of effort to precisely remember the colors. Finally, when memory load 668 

increased and it was harder for participants to maintain individuated representations, memory 669 

biases reversed from repulsion to attraction (Experiment 3).  670 

In this framework, we focus specifically on memory biases between amongst two or more 671 

simultaneously presented memory stimuli – which is different from categorical biases and the 672 

serial dependence effect. Overall, the experiments we presented here argue against the idea that 673 

some studies find attraction biases and some find repulsion biases purely as an artifact of using 674 

different stimuli. They also argue against the idea that such biases arise primarily from some form 675 

of motor-response strategies.  676 

We instead suggest they these inter-item biases can be thought of as adaptive distortions by our 677 

memory system, designed to reduce error. The broad framework we adopt is that visual working 678 

memory faces at least two distinct problems. First, the capacity of working memory is limited, and 679 

when more items must be stored, they are stored with more noise (Bays & Husain, 2008; Ma et 680 

al., 2014; Zhang & Luck, 2008). In such cases, summary statistics or other ways of blending across 681 

items can be used to somewhat improve memory of individual items (Brady et al., 2011; Brady & 682 

Alvarez, 2015; Lew & Vul, 2015). The second problem is that access to memories is not automatic 683 

https://paperpile.com/c/g1QgGH/0hg5+uTBh+Ow2SS
https://paperpile.com/c/g1QgGH/0hg5+uTBh+Ow2SS
https://paperpile.com/c/g1QgGH/8zVBG+QNPX7+PbIZe
https://paperpile.com/c/g1QgGH/8zVBG+QNPX7+PbIZe
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and not independent of cues and context. Instead, there can sometimes be confusion between items 684 

that arises when items are similar in context and features. Indeed, prominent process models of 685 

working memory that focus on feature-location binding predict that items are automatically 686 

blended if they are similar (Swan & Wyble, 2014; Lin & Oberauer, 2017). Avoiding such 687 

confusion is important to reducing error when such blending is not optimal (e.g., when item 688 

representations are not noisy, but are similar and so likely to be blended).  689 

We do not attempt to make a precise quantitative model that could be fit to performance on our 690 

tasks. However, it is useful to formalize these ideas to see if it is plausible that reducing error is 691 

the overall goal of attraction and repulsion, and to ask whether the factors that affect the magnitude 692 

of each problem determine when we should expect attraction and repulsion to be strong or weak. 693 

We do that here. 694 

Attraction. For the purposes of considering attraction, we assume that the information subjects 695 

have about the display is (1) information about the entire set of colors (i.e., participants know if 696 

the items were all red), and (2) information about each specific item, with, for now, the simplifying 697 

assumption that there is no confusion as to which color goes with which item (i.e., when a subject 698 

remembers the color of the ith item, they never mistakenly retrieve the color of the  jth item). Given 699 

these assumptions, we can predict if memory distortions would be optimal to minimize error if 700 

subsequently asked to report the feature associated with an individual item. 701 

In general, the observer has an estimate of the mean (µ0) and the uncertainty (σ0) about the color 702 

of the entire set of colors – i.e., the ensemble – and a noisy estimate of the color of a given item 703 

(with mean xi, and uncertainty σi). This gives rise to a hierarchical situation because the color of 704 

each item is part of the overall set of colors. Given this hierarchy, the optimal error-minimizing 705 
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color to assign to an item follows from hierarchical Bayesian models, which for the simplest case 706 

of two nested normal distributions is:  707 

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =  
𝜎𝑖

2

𝜎𝑖
2  +  𝜎0

2 𝜇0 +  
𝜎0

2

𝜎𝑖
2  +  𝜎0

2 𝑥𝑖 708 

 709 

That is, remembering and reporting colors according to this rule results in less error on average 710 

than reporting based only on your memory of an individual item (i.e., reporting only xi). However, 711 

the cost for this increased accuracy is distortion: following this rule results in attraction toward the 712 

mean color of the set. Intuitively, this distortion actually increases performance because if there is 713 

a noisy sample of a given color that is green-ish blue, but the mean of the entire set of colors is 714 

yellow-ish-green, it is more likely the sample was inaccurate by being too blue as opposed to being 715 

too green (Figure 7a). Thus, when taking into account information from both levels, the optimal 716 

color to report is slightly greener than the actual sample associated with that one color alone. That 717 

is, reporting colors in this way is actually more accurate – resulting in less error on average – than 718 

reporting the color you believe an item to be without pulling it toward the average of the set (Brady 719 

& Alvarez, 2011; Huttenlocher et al. 2000).  720 

 721 
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Figure 7. a) Attraction is the error-minimizing thing to do when you have uncertainty about an 722 

individual item, but know how that item related to the entire set. Blending the information about 723 

the individual item with the information about the other similar items improves performance in 724 

this circumstance. Intuitively, this distortion actually increases performance because if there is a 725 

noisy sample of a color that is green-ish blue, but the mean of the entire set of colors is yellow-726 

ish-green, it is more likely the sample was inaccurate by being too blue as opposed to inaccurate 727 

by being too green. Thus, when taking into account information from both individual item and 728 

group levels, the optimal color to report is slightly greener than the actual sample. b) The amount 729 

of attraction that is optimal depends on several factors, but it most clearly depends on the 730 

uncertainty about the individual item you are probed on: The more uncertain you are about its 731 

color (the wider the normal distribution associated with it), the more attraction is optimal.  732 

Three aspects of the optimizing equation above are relevant for attraction in a typical working 733 

memory tasks. For a given set size, more uncertainty about each item will lead to a greater reliance 734 

on information about the entire set as opposed to information about the specific item (as σi goes 735 

up, you weigh xi less and µ0 more, Figure 7b). Thus, in general, manipulations that increase 736 

uncertainty about individual items, such as decreasing encoding time or increasing delay time 737 

(Rademaker et al., 2018; Shin et al., 2017; Schurgin et al., 2020), should result in more attraction 738 

if all else is held equal.  739 

The second relevant factor is related to the clustering of individual item values in feature space. 740 

Consider a display with a single well-formed cluster of colors that are all some shade of yellow-741 

https://paperpile.com/c/g1QgGH/QwxGs+Ifen7
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ish green, as illustrated in Figure 71. If all the items are part of this single cluster, then as the colors 742 

get more similar to each other, the uncertainty (σ0) associated with the group mean will go down 743 

and the group color will have a bigger influence on the optimal decision. When σ0 gets very small, 744 

as would happen if the colors were all very similar, this factor assigns nearly all the weight to the 745 

group color and none to individual items, regardless of the uncertainty associated with the 746 

individual items.  747 

A final relevant factor for attraction is that increases in memory set size don’t just increase the 748 

uncertainty associated with each item (i.e., drive up σi, which would increase attraction). Instead, 749 

larger set sizes also lead to more precise estimates of the mean and less uncertainty about the entire 750 

set of colors (µ0 and σ0), since there are more samples to constrain these values. Thus, if the items 751 

are relatively tightly clustered on the color wheel at all set sizes, then, as set size goes up, your 752 

certainty about the color of the whole set (the ensemble color) goes up (in the same way that having 753 

more trials would decrease the standard error of your estimate of the mean in a typical experimental 754 

setting). This decreases σ0, exacerbating the attraction effect even more than just increasing σi 755 

alone.  756 

As a result, at larger set sizes, and particularly when the items are tightly clustered in feature space, 757 

this framework predicts a stronger attraction effect than at smaller set sizes, even with similar 758 

clustering. This follows because there are two factors driving attraction – as set size goes 759 

up, certainty about the average color of the set goes up, and the item representations themselves 760 

get noisier. In contrast, for small set sizes, only in very noisy individual-item conditions or in 761 

 
1 Of course, more complex scenarios exist: i.e., if 3 items are red-ish and 3 are blue-ish on a display of 6 items, 
participants may form 2 clusters and items may be selectively attracted toward the cluster they are part of (Chunharas 
& Brady, 2019), but we set that aside here for simplicity. 
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conditions where the set of items are so similar that σ0 is much smaller than σi – would the 762 

framework predict any appreciable attraction effects, even though such attraction effects should 763 

be robust in displays at higher set sizes when there is clustering of the features.  764 

Repulsion. In contrast to attraction effects, which should be amplified at large set sizes, our 765 

framework suggests that repulsion biases should be error-reducing primarily at small set sizes 766 

when items are highly confusable.  767 

When considering attraction biases, our model assumed that when subjects seek to retrieve 768 

information about color i, they can successfully retrieve only information about color i (i.e., xi 769 

reflects only color i). However, human memory in general is based on cued-retrieval: content-770 

based access rather than direct access (Gallistel & King, 2011). That is, unlike a computer, which 771 

stores an item in a given spot in RAM and then accesses that exact address again later, human 772 

memories are retrieved by matching operations based on content. As a result, more similar 773 

memories are more likely to be confused at retrieval or to interfere with each other. While widely 774 

recognized in long-term memory (e.g., Criss, Malmberg & Shiffrin, 2011), this aspect of memory 775 

retrieval is typically also present in models of visual working memory when they focus on cued-776 

retrieval (Swan & Wyble, 2015; Oberauer & Lin, 2017).  777 

Importantly, such models of memory blend together the representation of different items all the 778 

time because of interference between memory representations, as a natural consequence of cued 779 

retrieval. For example, when storing just two item similar items, the “binding pool” model of Swan 780 

and Wyble (2015) predicts that the two items will be attracted to each other significantly (see 781 

Figure 8). As we have seen, however, this is not in any way optimal: with strong memories, and 782 

few items to give rise to a tight ensemble distribution, attraction will not reduce error.  783 

https://paperpile.com/c/g1QgGH/pABpU
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Thus, in this scenario, an adaptive system must balance the need to avoid overlap between item 784 

representations and the need to maintain an accurate memory. If the representations are encoded 785 

veridically, they will have significant interference and be blended inappropriately. If they are 786 

represented as more distinct from each other than they really were, this will come with its own 787 

reduction in accuracy although it will also reduce inappropriate blending. The memory system 788 

must strike a balance, with systematic repulsion to offset the blending that would otherwise occur, 789 

but not so much repulsion that it impairs accuracy overall. We can simulate this in the Binding 790 

Pool model (with all of the default parameters) simply by adding an attraction or repulsion step to 791 

the encoding process, and seeing what happens to (1) the resulting bias, and (2) error. In the binding 792 

pool model, the error minimizing amount of repulsion for storing 2 items that are 15 degrees apart 793 

in color space is ~5 deg (Figure 8). More repulsion is required to minimize error when items are 794 

more similar and/or when items are represented with more uncertainty.  795 

 796 

Figure 8. a) Schematic of the Binding Pool model, reproduced from Swan and Wyble (2014). In 797 

this model, each stimulus evokes an activation in a set of feature layers (here: color, location, and 798 
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orientation). These features are then encoded into a shared binding pool layer and tied to a 799 

particular ‘token’. When provided a cue at test (like the item location) the associated token can be 800 

activated and the color or orientation retrieved. Notably, the binding pool layer, which is shared 801 

between all items and the source of the capacity limits of the system, also results in the items 802 

features being necessarily blended (e.g., Swan & Wyble, 2014, Figure 11), even when only 2 items 803 

are represented. Thus, by default, this model, like many others, always predicts attraction between 804 

memory representations. b) We simulated what would happen if repulsion was added to the 805 

encoded information in the binding pool model, to provide a concrete case study for how repulsion 806 

could be used to overcome the blending inherent in a model such as the Binding Pool model, and 807 

reduce overall error. In particular, we asked the model to store and recall 2 items that were 15º 808 

apart in color space. As part of the encoding stage, we added an additional step that introduced 809 

repulsion of the colors of the two items before they were put in the binding pool. In 100 simulations 810 

of the model at each of 9 levels of additional attraction or repulsion added at encoding, we 811 

calculated the model’s error. We found that error was minimized when the items were repelled 812 

away from each other by ~5º before being entered into the binding pool layer.  813 

Summary: attraction and repulsion. Our adaptive framework holds that attraction biases (when 814 

memory is very noisy) can be understood as optimal using a straightforward hierarchical Bayesian 815 

integration model. Effectively, attraction biases arise because integrating summary statistic 816 

information results in reduced error even if it results in systematic distortion (Brady & Alvarez, 817 

2011; Huttenlocher et al., 2000). This framework makes a clear set of predictions about when 818 

attraction should occur: when items are clustered in color space and individual items are associated 819 

with a higher degree of uncertainty than the ensemble color. In practice, this ends up happening 820 

primarily when set size is high, or when set size is low but items are very similar relative to the 821 

https://paperpile.com/c/g1QgGH/SQ1UX+GwWWe
https://paperpile.com/c/g1QgGH/SQ1UX+GwWWe
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item-level uncertainty. In contrast, repulsion bias can be understood as balancing the avoidance of 822 

overlapping representations with the need for accurate representations. Insofar as overlap is present 823 

and attraction is not adaptive, this model predicts that items should repel from each other. At low 824 

set sizes, this means that repulsion is expected whenever items are similar enough, and uncertainty 825 

high enough, that the memory representations overlap substantially. At high set sizes, the extent 826 

to which repulsion will be useful in lowering error is severely reduced by the crowding of the 827 

feature space with other items, and the fact that attraction and repulsion pull in different directions, 828 

with attraction likely being dominant. Overall, we believe this adaptive framework can providing 829 

a guiding theory for conceiving of when attraction and repulsion arise in memory. 830 

General Discussion 831 

Our memory is susceptible to systematic distortions. Even across short periods of time, specific 832 

memories become affected by the overarching categories that memory items belong to (categorical 833 

biases) or by information viewed in the immediate past (serial dependence). The research 834 

presented here focused on a different kind of distortion: inter-item distortions that occur in memory 835 

when we try to hold multiple items in mind. When encoding and remembering multiple items at 836 

once, mnemonic representations can be subject to systematic distortions that can make items either 837 

more separable (repulsion biases) or more similar (attraction biases). While both types of inter-838 

item distortion are well documented, it is not clear when repulsion or attraction will occur as a 839 

function of the type of information being remembered and current task demands. Here, we 840 

examined when each type of bias arises. We found that memory representations were repelled 841 

away from each other when the memoranda were highly similar (Experiments 1–2), when memory 842 

representations were noisier (Experiment 4), and when representations were remembered over 843 

longer delay intervals (Experiment 5). We confirmed that these effects do not simply reflect 844 
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straightforward response strategies, and occur in many distinct tasks, and we showed that high-845 

performing participants showed larger repulsion biases which suggests that these biases do not 846 

simply reflect a lack of effort to precisely remember the colors. Finally, when memory load 847 

increased and it was harder for participants to maintain individuated representations, memory 848 

biases reversed from repulsion to attraction (Experiment 3).  849 

Past work has found evidence for attraction biases (Brady et al., 2011; Brady & Alvarez, 2011, 850 

2015; Dubé et al., 2014; Dubé & Sekuler, 2015; Huang & Sekuler, 2010; Lew & Vul, 2015; Lorenc 851 

et al., 2018; Utochkin & Brady, 2020), repulsion biases ( O’Toole & Wenderoth, 1977; Rauber & 852 

Treue, 1998; Suzuki & Cavanagh, 1997; Scotti et al., 2021), or both (Bae & Luck 2017; Rademaker 853 

et al 2015; Golomb 2015). Our model and empirical work identifies several key factors that drive 854 

these effects and provides evidence that both can arise even in similar paradigms. This is important, 855 

as using highly comparable paradigms and memory for a single feature (color) argues against the 856 

more mundane explanation that differences in stimulus features (such as orientation in Bae & 857 

Luck, 2017; Dubé & Sekuler, 2015; Huang & Sekuler, 2010; Lorenc et al., 2018; Utochkin & 858 

Brady, 2020, spatial location in Lew & Vul, 2015; Suzuki & Cavanagh, 1997, motion direction in 859 

Kang & Choi, 2015, or color in Brady & Alvarez, 2015; Golomb, 2015) lead to attraction in some 860 

studies and repulsion in others.  861 

Here, we tested the general account that when subjects were trying to encode items in a memory 862 

display, repulsion and attraction were driven largely by the inter-item relationship between 863 

memoranda. We proposed a way to conceive of these biases and when they arise based on adaptive 864 

framework. In particular, we suggested that these biases may be natural consequences of the 865 

memory system attempting to minimize memory error, if systematic distortion is adaptive in 866 

particular circumstances (Schacter et al., 2011). When many similar items are present and so 867 

https://paperpile.com/c/g1QgGH/cw3Bm+infO2+QNPX7+SQ1UX+Wk7ar+0rCmK+vEYj1+8zVBG+PbIZe+JBwQZ
https://paperpile.com/c/g1QgGH/cw3Bm+infO2+QNPX7+SQ1UX+Wk7ar+0rCmK+vEYj1+8zVBG+PbIZe+JBwQZ
https://paperpile.com/c/g1QgGH/cw3Bm+infO2+QNPX7+SQ1UX+Wk7ar+0rCmK+vEYj1+8zVBG+PbIZe+JBwQZ
https://paperpile.com/c/g1QgGH/cw3Bm+infO2+QNPX7+SQ1UX+Wk7ar+0rCmK+vEYj1+8zVBG+PbIZe+JBwQZ
https://paperpile.com/c/g1QgGH/Wk7ar+ynQxI+V8yCp+0oiVl+TxWvn+A7Brd
https://paperpile.com/c/g1QgGH/Wk7ar+ynQxI+V8yCp+0oiVl+TxWvn+A7Brd
https://paperpile.com/c/g1QgGH/Wk7ar+ynQxI+V8yCp+0oiVl+TxWvn+A7Brd
https://paperpile.com/c/g1QgGH/Wk7ar+ynQxI+V8yCp+0oiVl+TxWvn+A7Brd
https://paperpile.com/c/g1QgGH/cw3Bm+vEYj1+Wk7ar+0rCmK+JBwQZ
https://paperpile.com/c/g1QgGH/cw3Bm+vEYj1+Wk7ar+0rCmK+JBwQZ
https://paperpile.com/c/g1QgGH/cw3Bm+vEYj1+Wk7ar+0rCmK+JBwQZ
https://paperpile.com/c/g1QgGH/TxWvn+PbIZe
https://paperpile.com/c/g1QgGH/R4LfF
https://paperpile.com/c/g1QgGH/QNPX7+A7Brd
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memories for individual items are noisy, attraction biases are known to be optimal for minimizing 868 

error (e.g., Brady & Alvarez, 2011). Repulsion biases can also reduce error in some situations, 869 

making them adaptive. In particular, if the items would naturally be blended or confused by our 870 

memory system (Swan & Wyble, 2014; Oberauer & Lin, 2017), then repulsion can reduce this 871 

tendency and reduce error when we have strong and distinct item memories. Importantly, these 872 

biases are not simply inherited from perceptual processing: as noise accumulates in memory over 873 

time (reducing the signal-to-noise if memory items), and the need to keep memoranda distinct 874 

grows, a corresponding increase in the repulsion bias is observed. Importantly, very recent work 875 

(performed since the first presentation of the experiments in the current paper) has confirmed 876 

various key aspects of our framework: As memories get weaker, biases switch from repulsion to 877 

attraction (Lively, Robinson, & Benjamin, 2021), and repulsion biases increase with longer 878 

memory delays (Scotti et al., 2021). 879 

Based on these results, the degree and type of bias likely depends on the overall discriminability 880 

of a stimulus feature under investigation (such as color, space, orientation, etc.): If features are 881 

very readily discriminable, then repulsion will only occur when two items are very similar. Poorly 882 

discriminable features will need to differ more before they are susceptible to repulsion. In other 883 

words, the data suggest that the extent and type of bias will directly map onto the just-noticeable-884 

differences (JND) of a given stimulus feature (and of individual subjects). Using JND as a standard 885 

unit might be an interesting approach that allows us to compare the various effects previously 886 

reported. Even though we tried to use the same stimulus feature and investigate various task 887 

manipulation in this paper, it is still not easy to compare the results with previously reported 888 

findings where many interesting inconsistencies are waiting to be explored.   889 
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Even though our experiments were designed to rule out specific forms of response strategy, it is 890 

still possible that our findings could be explained by other response strategies that closely resemble 891 

the framework proposed here. For one example, it is possible that foils in Experiments 1 and 2 892 

were too similar to the true answer, and that subjects might choose between the two response 893 

options by the process of elimination (i.e., “I did not know which one was the target color so I am 894 

going to choose the one that is less similar to the non-target”). In this hypothetical case, it is still 895 

unclear how the subject would know which response option is less similar to non-target without 896 

knowing which one is more similar to the target – making it a possible but implausible strategy. 897 

We would like to note how recent neuroscience studies have demonstrated that memory 898 

representations drift over time (Compte, Brunel, Goldman-Rakic, & Wang, 2000) – a process 899 

which is not likely to be susceptible to response strategies.  900 

Mechanisms of memory biases. Attraction biases can occur both in absolute stimulus space (e.g., 901 

towards particularly salient colors (Bae et al., 2015)) or arise from the similarity between items in 902 

an individual display (as in the current work). These attraction biases are straightforwardly 903 

explained as arising from gist-based or ensemble-based representations, and a combination of these 904 

global representations with item specific representations. Many models claim that attraction biases 905 

are the result of weighting the representation of each object towards the “summary” of the set to 906 

achieve a more stable memory at the expense of maintaining distinctions between individual items 907 

(Brady & Alvarez, 2011), or via blending items together if they are similar (e.g., Swan & Wyble, 908 

2014; Oberauer & Lin, 2017). The category learning literature has carefully demonstrated that this 909 

is in general an adaptive strategy that serves to minimize error (Huttenlocher et al., 2000). 910 

Repulsion biases have traditionally been more difficult to understand. Previous studies have shown 911 

that repulsion biases occur when two items are task-relevant and proximal in feature space 912 

https://paperpile.com/c/g1QgGH/At5OT
https://paperpile.com/c/g1QgGH/SQ1UX
https://paperpile.com/c/g1QgGH/GwWWe


45 
 

(Rademaker et al., 2015; Bae & Luck, 2017, Golomb 2015). However, the benefits of repulsion 913 

biases are still unclear. Here, we suggest that repulsion biases serve to maximize distinctiveness 914 

between items, when individual item representations are strong but items are similar enough to be 915 

more difficult to distinguish. This helps reduce blending between items that naturally occurs in the 916 

memory system (Swan & Wyble, 2013; Oberauer & Lin, 2017). Any factor that affects 917 

distinctiveness in memory should thus impact the degree of repulsion biases (e.g., encoding time, 918 

feature similarity, memory delay). Interestingly, previous work has frequently found repulsion not 919 

only between items, as in the current work, but in absolute terms as well. For example, when asked 920 

to remember an orientation that is near, but not quite at, vertical, people will systematically report 921 

the orientation as further from vertical than it really was (Jastrow, 1892; Smith, 1962). One 922 

framework that has been useful to understand these absolute biases is to dissociate the physical 923 

space of the stimuli (e.g., absolute orientation) from the psychological representation of the stimuli 924 

(e.g., people may over-weight certain values in a systematic manner). A clear example of a warped 925 

psychological space is the massive overrepresentation of vertical and horizontal orientations, 926 

presumably to efficiently code environmental regularities (Girshick et al., 2011; Wei & Stocker, 927 

2015). Accounting for this selective over-representation of certain stimulus values in 928 

psychological space can explain biases like repulsion from cardinal axes, and the reason why these 929 

biases tend to arise in parts of stimulus space where discrimination thresholds are lowest (e.g., the 930 

most overrepresented stimulus values) (Wei & Stocker, 2015, 2017).  931 

This conception of psychological space is designed to address long-term biases that are likely 932 

crystalized in the neural architecture of the visual system, whereas the biases we examined in the 933 

current work are more dynamic. Despite the apparent disconnect, a common mechanism such as 934 

the warping of psychological space may be at play in both stable long-term phenomena and in 935 

https://paperpile.com/c/g1QgGH/cbzOK+upvok
https://paperpile.com/c/g1QgGH/3iNSo+RRVIR
https://paperpile.com/c/g1QgGH/3iNSo+RRVIR
https://paperpile.com/c/g1QgGH/3iNSo+ggXAf
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more dynamic short-term regimes. In the current work, this would mean that a strong 936 

representation of an item “stretches” the psychological representation of stimulus space near that 937 

item, resulting in repulsion of other items in a manner similar to how cardinal orientations repel 938 

nearby items. This is consistent with other short-term effects: For instance, spatial judgments are 939 

distorted by top-down factors such that there is repulsion bias away from currently attended 940 

locations (Suzuki & Cavanagh, 1997). Attention, which leads to well-documented changes in 941 

visual sensitivity (i.e., lower discrimination thresholds, see Carrasco, 2011), may also adaptively 942 

bias perception and memory on demand, as biases typically manifest when discrimination 943 

thresholds are low across a variety of visual features such as orientation, motion direction, spatial 944 

frequency, and visual speed (see Zhang & Luck 2011 for a summary). Thus, attention amplifying 945 

discrimination at a single color may strengthen the representational space there, resulting in 946 

repulsion. In sum, conceptions of psychological space, and how it is distorted when particular sets 947 

of stimuli are over-represented, may be a useful framework for considering biases at all possible 948 

time scales (see also Schurgin et al., 2020, for details on the widely applicable utility of this 949 

concept).  950 

What might be the neural substrates of biased representations? When a task requires focal attention 951 

to a small set of items to remember – as is the case in paradigms that create repulsion bias – the 952 

discriminability of the relevant items can be improved by biasing responses in early visual cortex 953 

to maximize the separability of their corresponding neural representations. For example, attention 954 

to highly similar features, akin to remembering two highly similar colors in Experiments 1, 2, and 955 

5, has been shown to modulate neurons tuned just away from the attended features. This ‘off-956 

target’ gain can improve performance because neurons tuned away from the attended features 957 

undergo the largest change in firing rates because the two features fall along the steepest part of 958 

https://paperpile.com/c/g1QgGH/TxWvn
https://paperpile.com/c/g1QgGH/EPTRt
https://paperpile.com/c/g1QgGH/y7dG
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their bell-shaped tuning curves. In turn, this off-target gain gives rise to systematic biases in 959 

behavioral reports such that people see stimuli as repelled from the actual feature values (Jazayeri 960 

& Movshon, 2007; Navalpakkam & Itti, 2007; Scolari & Serences, 2009). Such repulsion would 961 

be expected if the off-target gain happening in early visual cortex was interpreted as a veridical 962 

representation of the world at higher stages of processing. While previous work in this domain has 963 

focused on selective attention to continuously present stimuli, a similar type of modulation in the 964 

domain of working memory might give rise to repulsive biases in mnemonic representations. 965 

Indeed, repulsion biases grow with delay only when a memory is actively held in mind (but 966 

disappears when an attention-demanding task is performed during the delay), suggesting that the 967 

repulsion bias is not a product of some passive process, but instead requires active maintenance 968 

(Scotti et. al., 2021). While speculative, this type of adaptive neural modulation may map onto the 969 

psychological space framework, such that changes in the discriminability of stimuli in early visual 970 

cortex – either due to a lifetime of experience or to dynamic changes in the focus of attention – 971 

lead to a warping of perception and memory. 972 

  973 

https://paperpile.com/c/g1QgGH/M4aR5+Nd4qi+LMnox
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 1191 
Appendix Figure 1. Results from a control experiment (N=45) replicating Experiment 2: In this experiment, only 1192 
foils distorted by 6º relative to the correct color were used (towards and away from the non-target – similar to Exp. 1193 
1), while we also included 10% of catch trials (similar to Exp. 2). Participants were an entirely new and independent 1194 
set of 45 naïve Amazon mechanical Turk workers. a.) The degree of repulsion bias (indexed as the difference in 1195 
accuracy between trials with foils distorted toward, and trials with foils distorted away from the non-target color), 1196 
plotted against people’s general level of engagement with the memory task (indexed by performance on catch trials). 1197 
Each dot represents a single subject.  These data demonstrate stronger biases away from the non-target color in 1198 
participants with higher levels of task engagement. b.) We bootstrapped the data in (a.) 5000 times: on each bootstrap 1199 
we sampled 45 subjects with replacement, and re-calculated the correlation between repulsion bias and general task 1200 
engagement. This gives a distribution of bootstrapped Pearson’s r, which is depicted in the violin plot. The dot in the 1201 
middle indicated the mean bootstrapped correlation (r = 0.39). The double asterisks indicate a p-value of p<0.01.  1202 
 1203 
  1204 
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 1205 
 1206 
Appendix Figure 2. Task progression in Experiment 3: Participants had to remember a set of four colors (shown at 1207 
randomly selected locations from a set of 12 possible locations, with at least one empty placeholder between items). 1208 
The four colors were presented for 800ms, after which participants remembered them during a 1–second memory 1209 
delay. Subsequently, participants saw a location cue (triangle) indicating which memory item to respond to, as well 1210 
as two response options presented directly left and right of fixation. Participants chose between the correct (cued) 1211 
color and a foil color. 1212 
 1213 
 1214 
 1215 
 1216 
  1217 
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 1218 

 1219 
 1220 
Appendix Figure 3. Results from a same-different color discrimination task as a control for Experiment 4. This 1221 
control experiment probed whether two colors can or cannot be perceptually discriminated at various encoding times 1222 
and color distances: Two colors that were either exactly the same (50% of trails) or differed by 20o, 45o, or 90o in CIE 1223 
l*a*b* color space (50% of trials) were simultaneously presented for either 50ms (blue), 150ms (orange), or 500ms 1224 
(green). Participants on Amazon mechanical Turk (18 in total) reported whether the two colors were the same or 1225 
different. Each participant completed 90 trials in total. The 3D bar plot (right) shows accuracy as a function of 1226 
encoding time and color distance. Repeated-measures ANOVA’s demonstrate both main effects of encoding time 1227 
(F(2,34)=36.7, p<0.001), color distance (F(3,51)=212.5, p<0.001) and an interaction (F(6,102)=9.32, p<0.001). This means 1228 
that participants could not tell two colors apart when they were presented very briefly and were very similar to one 1229 
another (i.e., encoding time of 50ms and color distance of 20o). The inability of subjects to tell two very similar colors 1230 
apart at very short encoding times explains why repulsion biases were not found in these extreme cases.  1231 
  1232 
  1233 
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 1234 
 1235 

 1236 
Appendix Figure 4. Asymmetry of Experiment 4 error distributions: a) An example error distribution from all 24 1237 
participants combined, in the condition showing the strongest repulsion bias (i.e. encoding time of 150ms and color 1238 
distance of 45o). First, note how the peak of the error distribution is not aligned with the cued color, but instead is 1239 
shifted away from the non-target color. Second, note how the shape of the distribution is asymmetrical, with the side 1240 
away from the non-target being steeper. b) Due to the possible presence of non-target responses (i.e. where a subject 1241 
mistakenly reports the color of the non-target instead of the target), we did not wish to measure skewness using circular 1242 
skewness measures on the raw response distribution. Instead, we first derived a kernel density estimator (KDE). The 1243 
peak of the distribution (x) was defined as the degree of error with maximum probability. The skewness was defined 1244 
by the log ratio between the angle toward (θ1) vs. away (θ2) from the non-target color at half maximum height of the 1245 
KDE (log(θ1/θ2)). c) A scatter plot showing the relationship between skew and peak. Each dot represents skew and 1246 
peak on one bootstrapping iteration (of 5000 total iterations) calculated by randomly resampling the data from 24 1247 
participants with replacement (data from the condition shown in a.). The horizontal zero line represents scenarios with 1248 
no shift in the distribution peak, while the vertical zero line represents scenarios without any skew (thus, the 0,0 point 1249 
represents a perfectly symmetrical distribution). We found both a systematic shift of the peak (p<0.001 from 1250 
bootstrapping) as well as skew (p<0.01 from bootstrapping). Furthermore, the shape of the dot cloud shows that 1251 
stronger repulsion is associated with a stronger skew (r=0.45; p<0.001). To test the validity of the metrices, we 1252 
reanalyzed the same data with randomized signed errors and plotted in grey color. The randomized signed errors 1253 
distribution centers at zero in both skew (x-axis) and bias (y-axis) suggesting that the significant bias and skew were 1254 
not spurious.  1255 
 1256 
 1257 
 1258 
 1259 
  1260 
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 1261 
 1262 
Appendix Figure 5. Parametric vs. non-parametric quantifications of memory precision and bias in Experiment 4. 1263 
For this experiment we non-parametrically quantified memory precision as the circular standard deviation (with 1264 
smaller standard deviations indicating higher precision) and we quantified biases as the difference in the percentage 1265 
of responses that were toward vs. away from the non-target color (with a negative bias indicating attraction, and 1266 
positive bias indicating repulsion). To validate these measures, we also parametrically fit the data using a von Mises 1267 
distribution with two independent parameters to reflect memory precision (vmSD) and bias (mu). We found a high 1268 
agreement between parametric vs. non-parametric measurements (Pearson’s r = 0.99 and 0.76, for precision and bias, 1269 
respectively; both p<0.001). The correspondence between these measures is shown in the scatter plots at the bottom 1270 
of this figure. Furthermore, we repeated our statistical analyses with the parametric von Mises parameter estimates 1271 
(tables in the top of this figure), showing significant differences in memory precision as a function of encoding time 1272 
(F(2,46)=13.7, p<0.001), color distance (F(4,92)=21.09, p<0.001), and an interaction (F(8,184)=3.76, p<0.001). The 1273 
repulsion bias is marginally impacted by encoding time (F(2,46)=3.08, p=0.056), significantly impacted by color 1274 
distance (F(4,92)=9.54, p<0.001), and there is a significant interaction (F(8,184)=2.66, p<0.01). Note that the mixture 1275 
modelling assumes that the error distribution follows a symmetric circular distribution. However, the true error 1276 
distributions were skewed which makes it less accurate in estimating the true biases and the memory strengths.  1277 
 1278 
 1279 
  1280 
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 1281 
 1282 
Appendix Figure 6. Task sequence in Experiment 5: Two color stimuli were presented for 250ms, and the color 1283 
distance between the two items was fixed at 45o. The memory delay period was either 250ms, 750ms or 5000ms. After 1284 
the delay, participants were cued to report one of the two memory items with an arrow cue, and they moved a white 1285 
dot along a continuous color wheel to choose the color that matched their memory as closely as possible. For clarity, 1286 
the grey circle and color wheel are shown wider here than they were presented during the actual experiment.  1287 
  1288 
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 1289 

 1290 

Appendix Figure 7. Results from a control experiment (N=47) replicating the finding from Experiment 5 that memory 1291 
biases increase with longer delays. Here, we collected 36 trials per condition per subject (a total of 108 trials per 1292 
subject) a.) Error distributions at each delay, revealing a high number of responses biased away from the non-target. 1293 
b.) The quantified repulsion bias (i.e. percentage of responses away from the non-target color) shows that repulsion 1294 
grew monotonically stronger as the delay duration increased (1.4%, 2.7%, and 5.6% for delays of 250ms, 750ms and 1295 
5000ms respectively; F(1,46)=6.62, p=0.013). Error-bars represent + 1 within-subject SEM. c) To assess the increase 1296 
of repulsion bias with delay, one can fit a line through the three points in (b) and calculate the slope – a positive slope 1297 
indicates repulsion bias growing as a function of delay duration. Shown here is a distribution plot of bootstrapped 1298 
slopes (5000 iterations of resampling with replacement). The double asterisk indicates p<0.01 confirming a 1299 
statistically robust effect. 1300 

 1301 
  1302 
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 1303 
Appendix Figure 8. a.) Fitting a mixture model with swap errors to the data in Experiment 5 confirms that 1304 
repulsion bias grows stronger with longer delay intervals (blue; F(1,54)=10.2; p=0.002), confirming what we found 1305 
with our non-parametric repulsion bias measure. The frequency of swap errors did not significantly change 1306 
across time (red; F(1,54)=1.87; p=0.178). b.) We computed slopes of bias and swap errors as a function of time –1307 
positive slopes indicating an increased repulsion or swap rate over time. We evaluated significance by 1308 
resampling with replacement 10,000 times. Repulsion bias grew significantly stronger as the delay interval 1309 
increased (blue), replicating our findings using a non-parametric bias measure. Swap errors did not increase 1310 
significantly as the delay interval increased. These results suggest that the increase in repulsion bias that we 1311 
found when using either parametric or non-parametric methods cannot be explained by a reduction in swap errors 1312 
(if anything, swap errors increase with delay, numerically). 1313 


