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Fig. 1. One core guideline for data visualization design is that some visual channels offer better perceptual precision than others,
drawing those precision estimates from two-value ratio judgment tasks [17]. (a) The figure depicts typical data (from [33], 50 participants)
showing these judgments are more precise for position (e.g., bar graphs) than for area (e.g., bubble charts). We tested whether that
ranking generalizes to the new task of reproducing 2 to 8 previously seen values, and analyzed reproduction bias, precision, and error
using a Bayesian modeling approach. (b) The figure shows our modeled results (49 participants). The ranking did not hold, and other
factors besides channel choiced like the number of values in the seriesd had an order of magnitude more influence on performance.

Abstract 8 Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these
visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption
that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that
tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared
to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To
simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of
values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph

(position (line)), heat map (luminance), bubbl e chart ( yesiama ) ,

multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8)
and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic
ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of
magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the
value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks
than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move
beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection
of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands).

Index Terms & DataType Agnostic; Human-Subjects Quantitative Studies; Perception & Cognition; Charts, Diagrams, and Plots.
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1 INTRODUCTION

Metric valuescanbeefficiently transmittedo thehumarvisualsystem  precisiorof makingratiojudgmentbetweerwovalues[17,30,33,77].

across a set of channels, includingipos, length, or intensity6]

Forexamplejn Fig. 2a,theviewermightusethepositionchanneto

(see 6] for review). When creating a visualization, designers face @stimatethatthevaluefor A is 85%of thevaluefor B, closeto thecor-

choiceof whichchanneto depictmetricvalueswith amajorconstraint
being a ranking of putativieerceptual precisionf that channel. This

rectanswemf 80%. Thetypical (log) errorfor thisjudgmentis shown
in Fig. 1a. It is typically the lowest error of any chann®laking the

rankingis organizedy eitherexpertjudgment50] or operationalized sameudgmentin Fig. 2b betweerA andB (now separatedertically)
by a particular task. The most referenced operationalization is th isabittougherasreflectecby thelargererrorvaluefor ratiojudgments
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of length in Figla. Finally, Fig.2c shows the same dapdotted as
luminancesWhile wedonotknow of empiricalmeasurementsf ratio
judgmenterrorfor thischannelgxperudgmen{17] (aswell asours)
suggests that the error would be quite HEf].

(a) Position (b) Length (c) Luminance
A
A
AB =
B
B

Fig. 2. Examples of visualization designs that use three different
visual channels. (a) This bar chart relies on the position channel for
comparison, (b) this bar chart relies on the length channel for vertical
comparisons between A and B, and (c) this heatmap relies on the lu-
minance channel. A two-value ratio judgment is precise in (a), and
progressively less precise from (b) to (c).
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1.1 Beyond aranking based on two-value ratio precision 4, 8 . Our results from a Bayesian multilevel model show that the

Thechannefankingderivedfrom errormeasurementsf two-valuera-  Previousranking[18] doesnothold,everfor reproducingnly 2 marks.

tio judgmentdikely deserveits role asakeyfactorthatdetermineshe 1 N€ néw probabilistic ranking also varies with the number of marks.
choiceof achannefor depictingmetricvalues But thereis animplicit  Otherfactorsbesideshannekhoicehaveanorderof magnitudemore
assumptionhatit shouldextrapolatébroadlyacrosshetypesof lower- influence on performance, such as the number of marks in the series,

level visual tasks that viewers execute in-watld visualizations and ©F the value of each mark. Across everyaischannel, performance

visual analytics. This is a bold assumption, because visualizatigFPsprecipitouslywhenmorethanjustafew markshaveto bestored,
requirethatwe extractrememberandcomparesetsof statisticstrends  consistentvith theknownlimits onvisualmemory.

and motifs, across visqalizatic_)tfmt al_most universally depict mMore; 3 ontributions

than two values, leading to increasing unease about the dominance ) ] )

of this method of ranking channdg]. A taxonomy of such opera Thlsyv_orkchalIenge$he_assumpt|omhattheranklngde_rlvedfromthe

tions presents ten lovevel perceptual tasks useddnalyzing a set of Precisionof judgingaratio betweertwo visualmarkswill extrapolate

datasetsq]. Interestingly, computing ratios does not appear as a tdéknew tasks, especially those thalve more than twenarks.
O0Retrieving a valued is pr es e @urprimanncantributionsiaee asfdlicavetsi bl e t hat this
foundationof atwo-valueratiojudgmentior chart17]. A morerecent A Experimental study resultson the effects of six typical encoding
survey includes oOcomputing der ichartésandtBehumBetof mark§R, 4,8 losataskdf @ptoduihgS € 0 n ¢
abouttaskdependeneffectivenes$66]. In Fig. 2a,if theviewerknew g set of visualized data, leading to a reassessment of the value of

that the maximum value of theaxis were 10, computing a ratio-be  rankings based on twaalue ratidasks.

tW(laen e]}ny parlarl)d tr;at numberl V‘éoﬁ'l?j allow thi“\flelwder to extract t,k\'eA contextual, probabilistic ranking of the six visual channels on
value of a single bar from an unlabeled (or spartigledpxis. three statistical measures: bias, precision earu.

In Fig. 2, for eaxh of the three visualizations, where are the threE ) ; )
highestorlowest valuesfor A or B?Wherearethelargestoraverage) A A publicly -accessibledatasetof28,602esponsesieasuringhat
differences for each value pairing across the series? There are dozef@Productiorperformanceaswell asaBayesiammultilevelmodel
of such critical comparisons that afivolve more than twopoints  todescribeéhedatasefThedatasetanalysiscript,andmodeffiles
(sed7,27,57] for review),andthereis insufficientempiricalwork that are available athttps://doi.org/10.17605/0SF.I0/3E2QT
evaluates whether the ranking of channels extracted fronvalue
ratio tasksalso applies to them (see S2x. 2 RELATED WORK
Herewesurveyedvorkin visualperceptioninformationvisualization,
1.2 The present study: reproduction asaproxy for various  and visual working memory to gather considerations for factors that

comparison tasks may impact visual reproductigerformance.
How might one compare performance for each channel across sugh a . . .
long list of potential comparison taské® start with the assumption Eq Context and bias effects on visual  judgements
that many of these comparison tasks require that one set of valud¥/ite Cleveland and McGill18] tested the precisioaf ratio judge
heldin visualmemory,andthatmemoryis comparedo asubsequently ments with only two relevant values for the judgment itself, they also
perceived set. For example, in any panel of Bjgcomputing a twe showed decreased precision for displays where those values were
value ratio might not feel like it requires a heavy memory compone#owded by adding other values in the display, B3]. More recent
But comparing the global shape of series A versus series B feelsveik [77, 87] identified similar impairments. In other reproduction
more capacitlimited [78] and memonyintensive P1]. Indeed, ewvi tasks, like the one used in the presgintly, surrounding values in
dencefrom thevisualmemoryandattentionliteraturessuggesthatfor  a display created memory biases, such that recollections of a single
such more complex comparisons, one must first inspec¢iold the relevant value were repulsed from the 0, .5, and 1.0optiop of a
set in memory, and then compare that memory to s88B8B, 84]. second larger reference b&2]. Memory bias has been shown even
At the very least, compar i 39 n forvaluespreserdediene suehthattgl larswith alrigh heighewidthy e s p a n
requiringaneyemovemenbr turn of apage certainlyrequire andwill ~ ratiowereunderestimatedandwide barswith alow height:widthratio
be limitedby, visualmemory. were overestimatef 4.

Visualmemoryis highly capacitylimited [73]. As weattemptto re- . . -,
membemoreinformation precisionplummetshiasquickly increases, 22 Evaluations beyond two-value ratio precision
and storage capacity hits ceiling limits (see e8). Therefore, we After onestudyshowedhatcorrelationjudgmentdollow asystemati
would expect the number of data wes involved in comparison taskscally measurable profile of perceptual precision for scatterplots using
to predict whether the viewer is successful. Because memory setliepositionchanne[69], alaterstudyrankedtherelativeprecisionof
as a critical gateway for performance in comparison tasks, the presenelationjudgmentsacrosthervisualizationsfinding thatposition
study measures how a vi ewer 0 sbasedacatenlgtoffprediehigresipeedsjonbbtposittonbasadned o v er
erroris affectedby thechannelisedio encodeadatasetandhowthose chartsoffered the lowest precisior8]]. Angle, a channel with low
measures are affected by the number of data values that the viewgreission on a twwalue ratio task, showed the secdrighest pre
asked to process aremember. cision B1]. Though in this case, the correlation judgment may no

The present study measures memory using a reproduction taskhamebeenperceptuallyextractedy angleper se butemergenshapes
dertheassumptiorthatthis measurementill generalize¢o avarietyof created by the angles for high negativerelations.
comparison tasks. If we had instead used a more specific comparisditith judgmentf aggregatpropertief mean averageor spread,
task, which would we pick? Comparisons of datdritlistions? A the typical ranking can reverse, such that typically-tamked values
search for the longest set of relatively low values? Ask for the diffike luminance (in this case, a ramp combining luminance and color
ences in the global shape across the two series? If so, what typgtofration) can actually lead to the best performance in thosdlhsks
difference, and how would it be reported? And how different sho&ee F6] for review). Judgments of minimum, maximum, or range
the two data series be, and inatlways? The present reproductiomwere still best for visualizations that used position channels. Another
task allows a first look at how channel and number of marks affestisdy asked participants to complete four tsksad value, compare
reproduction performance, without the need to consider these nwalaes, find maximum, and ogpare averagésacross visualizations
specificoperationalizationef thevarioustypesof visualcomparisons. that relied on position, size, or color (similar to the luminance ramp
We hope that a€r this initial exploration, the field can begin to asksed here). They found similar results, where extracting one value, or
more targeted empirical questions for particular comparésis. comparing two single values, was fast and accurate for position, but

Weaskedparticipantdo immediatelyreproduceasetof valuesseen for aggegate properties like comparing averages, the color condition
moments earlier across six channels and three numbers of i&ks showedequalperformancég44]. Anotherstudy,similarin spirit, tested
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(a)VisualChannel (b)Trial Schema (c) Redrawing by clicking and/or
dragging
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*These figures were designed to illustrate the experiment.
The visual marks and margins are not drawn to scale.
Fig. 3. Visual channels and the reproductiontask . (a) Examples of visual <channels f or-rethove-i sual
reproduceodo procedure to indicate their responses. (c) | n etoagumavotdeu ct i on
previously-seen marks. In all conditions, the visual channel changed as a linear function of the vertical position of the mouse cursor, such that even
angle and area were changed by dragging the mouse up-and-down. For area channel, participants adjusted based on area not radius. More details
are available in AppendixA.
the speed, accuracy, and preference for ten data visualization tazsws? rks, itis critical to study these cases directly rather thssume
across scatterplots, bar charts, pie charts, and line ¢fAa}tsThey
found,for example advantagefor barchartsin finding valueclusters,
or thatscaterplotsshowadvantagefor anomalydetection put notfor
clusterdetection.
Others evaluated the visual channels for comparison (measured by
staircasing threshold differences that could be detected in a limited
time [85]) across two tasks, finding the maximum difference among
two paired values in a display similar to the left bar chart inZFigr
thestrongercorrelationbetweertwo suchpairingsof values.Thestudy
included bar, line, and donut charts, was focused on comparing value
arrangements within each chart type (e.g., juxtaposed vs. interleaved
values)Thosechart® andtheirunderlyingchanneld couldin theory
be compared in their effectiveness fupporting those comparison
tasks, but differences in the methods between chart types make that
comparison difficulf59].
Similar to the cited studies, the present study relies on a single
task,butwe regardreproductiores astartingpointfor moregeneraliz
able results, compared to twalue ratio precision or a single visual
comparisortask.

2.3 Visual memory

Workingmemoryis theability to holdinformationactivelyin mind,and
to manipulate that information to perform a wide variety of cognitive
tasks[3]. For visual memory in particular, when asked to remember
visual information across eye movements (e.g., for comparisons) or
acrossnterruptions[35], studiegypically claimacapacitylimit of only
03 t e(mg.[d9). Evenfor fewerthan3-4items,whenparticipants
recall the sizes, colors, or angles, of previously seerctshjthey are
notablylessaccuraten recalling2 itemsthanlitem (e.g.[5, 86)).
Remembering more complex conjunctions of visual channels
(e.g., both the color and orientation of a mark) is extremely difficult
whenmorethanl-2 objectsmustberemembered?9, 58]. The perfor-
mancecostof increasingnemoryloadfrom just 1 item heldin mind at
onceto 2 itemsis largerthanthe costof increasingheloadfrom 4 to 8
items (e.g., T3]). Thus, the profile of memory performance for tasks
thatinvolve only 1 or 2 items at a time may not predict the profile for
more complex visual displayd]]. There are also strong contextual
dependency effects where vaduare stored in compressed ways, as
relative to other valued()]. In a visualization, increasing the number
of memorized values will lead to performance changes that are hard
to predict. Since nearly all data visualizatiomslude more than 1 or
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the lessonsdrawn from studiesof 1 or 2 markswill generalizeto
these larger valugets.

In the present study, participants were asked to reproduce data
dis- plays that falwithin (2 marks),at (4 marks), obeyondworking
memory capacity (8 marks) to gather data from qualitatively
different memory loads. Participants in this task rely on
reproduction ofvalues, as opposed to semantic recall of the main
mesage of a visualiza tion [47] or whetherthey haveencountered
an entireimagebefore[8]. This taskis an analogyto typical visual
working memorytasks,acting as a proxy for how one retains values
of marks across eye movements dethys(aswhenreadingthetext
associateavith thevisualization).

3 METHODS

This sectionpresentsand justifies our designdecisions alongwith
the description of the stimuli generation process, the experimental
design and procedure, and the dattected.

3.1 Visual channels

As introduced above, we chose six visual channels (denoteipy
alChanne) to cover a wide range of the original ranks by Cleveland
and McGill[18]: position (bar) (bar chart) position (line) (line chart),
luminance (heatmap),area (bubble chart), length (misalignedbar
chart), andangle (wind ma). We show an example of each of the
six visual channels in Figa.

3.2 The number of marks

Wetested three different numbers of marks (denotetlloyMark:
2, 4, and 8 (Fig4a). The 2mark condiion requires that the viewer
extractthe value of two data visualization marks, replicating the
earlier studiedasedon two-valueratio judgmentge.g.,[17, 30, 33,
77)). The

2marks 4 marks 8marks

(a) Stimuli

(b)Underlyingdata

Fig. 4. Different numbers of visual marks . We used the same pre-
generated datasets across different NumMark and VisualChannel and
removed the side values when showing 2 or 4 marks.

e
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differencein ourtaskis thenatureof thatextractionjn thatparticipants  visualizationvasrandomlyplacedn oneof thefour quadrantgFig. 3b)
mustredrawit ratherthanreportingaratiovalue. The4-markcondition  andredrawnin thediagonalquadrantForexample,if participantsaw
alignswith theboundaryof typical working memorycapacity,andthe thestimuliin theuppereft, theyredrawthestimuliin thebottomright.
8-markconditionexceedgventhemostoptimisticestimate$or human The short duration exposure, along with unlabelgds, prevent
visual working memory. These three conditions have categoricalbarticipants from recoding stimuli into other formad] andsuppress
different loads for working memory, allowing us to infer how the top-down effects like prior knowledge. The duratioraidequatdor

working memory limits affeaeproduction. testing visual working memonpl] and provides amplertie for the
. . vision system to encode information (e.g., compadogrelationin
3.3 Experimental design scatterplots§7], estimating twevalue ratio in bar chart&], etc.).

We split the visual channels into two experimeh&sed on whether The inclusion of a blank screen as asknand a different redrawing
the channel uses a common baseline. This split was decided to adigation together eliminated visual aftereffects.
par t i eenmmodelsandtokeeptheexperimenturationapprox participants  Thirty and twentynine participants were recruited for
imately 30 minutesto avoidseveredatigueeffects.Thefirst experiment  the two experiments, respectively. They were undergraduate students
testedposition (bar), position (line), andluminance. The second experi from thesameinstitution,enrolledin introductorypsychologyclasses,
ment testedength, area, andangle. Each experiment tested all thregor which they earned partial credit in exchange for tiraie. Partici
numbers of marKs 2, 4}8 . Each participant did the task with 3 vispghtsverebetweerl8and23yearsold (1 = 19.02yearsR = 0.96;22
channels and all 3 numbers of marks, but with different channelsftfale,34 male 3 unspecified)all with normal,or correcteeto-normal
differentexperiments. vision. Thesameauthorandexperimenteproctoredall theexperiment

Each pair oVisualChannet NumMaras a block with a series sessionsndfinishedthembeforethe COVID-19 pandemic.

of trials. The first experiment used 13 trials per block. The seco . atis The experimental system was implemented using Psy
experiment used 15 trials per block; this is because, in the pilot st physicsToolbox[12, 46] andMATLAB 2018a, running on a Mac
we found that the second experiment was more difficult: thedm@p \ini (0510.10.5) Stimuli weredisplayecdbna2 3ndonitorwith ares

betweertheverticalmouseclick andthevisualchangevaschallenging, - o)ion et to 1289 800 pixels and a 60 Hz refresh rate. Participants
andresponsewerenoisier. Thus,weincludedtheadditionaltwotrials v oy ¢ sat a pproxidmegayely 18.50 from

to offsetthis additionalnoise.Within eachof thetwo experimentsthe
order of visual channels wasunerbalanced. 3.6 Response data

3.4 Generating stimuli A[I the raw data.from a[l the participants were considered for analysis
. . with two exceptions. First, 3 and 7 participants from the éwper

All thevalueswerein thenumeriaangeof [0.01,1.0]andencodedo  jments, respectively, contributed to the pilot study or were unable to

thevisualchannelsisfollows (seeAppendixA for moredetails).The  finish theexperimenttheywereexcludedor thepurposeof balancing

dimension®f marksweredecidedo maximizethevaryingrangebutto learning and fatigue effects. Second, in tmgle condition, when

avoidoverlappingThebackgrounavassettorgh(.75,.75,.75ight  gnowing a maximum value 1.0 (18@s the reference, 45.79% of the

grey)tocontrolvisualcontraseffects Asaresultposition (bar) haghe responses were the same default value of 0.0(’;51, (&sulting in a

heightofe_acrbarrang_ingfrom 3.9p_ixelsto390pi_xe|s.Position_(line) very large error (100% error).  Because bddma 18Gwere a flat

hastheheighiofeachineendrangingroms.9pixelsto390pixels. - geqmentseerig. 3), wethink, if notall, themajority of theparticipants

Luminance hasthecolorofeactsquareangingromrgb(.5,.5,.5) nisinterpreted 189as0F. To ensure the comparability of our results,

(grey)torgb(l.o,l.O,l.(I)Nhlte)suchhautsmlddlep_omtwasx_he wetransferredhereferencevalue(1.0)to 0.0(180E to OF) for angle.

samasthebackgroundolor.Areahastheareznf eactrircleranging v recordedhereproducedzalueof eachmark, theorderof visual

fromo (5+ 1.19pixel9)“too (5+ 37.5pixel9”; theSpixelsoffset 4 s the reference values shown on the screen, the reaction time,

wastoensuréhatall thecircleswerevisibleall thetime.Lengthhas i, achanneNumMark andthetrial index.Wecollecteds, 1 28trials

thehelghtofeacrbarranglngfrom3.75p|er§t0$75p|ers.Lastly!, = 3VisualChannelsc 3 NumMarksx (13 trialsx 27 participants

angle haseachsegmentotatedcounterclockwisein therangeof 18 15 trialsx 22 participants). Together we analyzed 28,602 respenses

to 18CF. Forarea, length, andangle, the vertical position of thearks 3 VisualChannels (2+ 4+ 8) marksx (13 trialsx 27 participants

were randomly generated in the range ofyais, spanning .0 of its | 15 trjalsx 22 participants).

height (i.e., the bottom of the axis range) to .9 of its height.

All datasetsverepre-generatecandthesamedatasetsvererepeated 4 ANALYSES

within the same experiment for differemisualChangel NumMark 1o analyzetheresponselatawefirst decidedhemeasureto quantify

blocks.Eachdatax_i*tconsisted)f 8 numeriwaluesande_acmaluewas theeffects followed by adescriptiorof themodelingapproachandthe
randomly and uniformly sampled from the standardized val{i8slof ,0del to support thiaference.

0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0 . WherNtmaMarkwas 8,
participantssawall 8 valuesin atrial. Whenthenumberof markswas 4.1 Measures
2 (or4), participantsawthemiddletwo (or four) valuestheremaining - e follow the literature on visual memory and used three statistical

values were not displayed (Fi#p). Each participant viewadifferent  neasyreso comparep ar t i eesporsestias @ecision andindi-
datasets within &isualChannel NumMarblock, and repeatehé¢ iqual response levelror[10] (see Fig5).

samedatasetsicrosdifferentblocks. Theorderof thedatasetsindthe Among thesepi=<is how the mean of the responses deviates from

values within a dataset were otherwesedomized. theactualvaluepresenteasthereference Think of biasassystematic

error or the tendency to make mistakes in a certain direction, such
3.5 Procedure as exhibiting a bias to overestimate wide Ha#. Precisionis the

The experimenter first collected informed consent from the particonsistencyfp a r t i cesporsegfiegnéayconsistentlyeportthe
pantsandthensharedaninstructionpresentatiomisplayingtheformat, same value, regardless tbfe referencasalue. andprecisionare
structure and response modality for all trial conditions. The expelifferentfacetsfor thesamesetof responsesParticipantsouldbepre-
menter was present for training and answetadfying questions the cisebutconsistentlyunderestimatéor overestimatephevalue[17,52].
participant had about how to make thesponse. Theycouldbeimprecisebutgenerallyright on averageAlternatively,

Trial As discusse@bovejn eachtrial, participantgperformedarepro  €rrormeasures how each response deviates from the reference value.
duction task. They first saw the stimuli visualization for .75 second$iese three measures are different facets for the same distribution of
The stimuli were then replaced withblank screen for .25 secondghe respongg capturing variations in visual error and reproduction
Immediatelyafterthis, participantsvereaskedo reproduceachvisual  performance through differefenses.
elemente.g.,abar)astheyclickedand/ordraggedhemouseochange ~ Herewe useda studentt(|:,R ,0) distribution for a morerobust

the premarked visual elements on the screen (8dy. The stimuli understandingzias themearofresponsess describedby thelocation
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Fig. 5. , precision , and error. and precision describe the

average properties of a set of responses, while error is a measure fora
single response. In this work, error is defined as the deviation from the
reference, mean of errors is defined as , and standard deviation of
errors is defined as precision.

parameter; andprecision the consistency of responsegjéscribed
by the dispersion parameter®. The errorsof individual responses

combine both andprecision R ) of the responses into one

measurelf wefit thedistributionwith theresponseélatacollectedthen

4.3 Model specification
Formula Using a syntax similar torms EL3] extended Wilkinson

ROgR S IoNEl B ares NotaHaRR &L AL FIRHINRLR! Bity vy
11 2 2 1

2 ¢,= MarkChanged + NumMark * VisualChannel * ReferenceValue
= NumMark * VisualChannel * ReferenceValue +

ExperimentalTriak

VisualChannel * DataMear

(1 + NumMark * VisualChannel | ParticipantID),
7 b,= NumMark * VisualChannel * ReferenceValue +
8 ExperimentalTriak
9 VisualChannel * DataMear
10 (1 + NumMark * VisualChannel | ParticipantID)
| 11 4,= DefaultError
Explanation
line 1 We treat all the responses as arising from a mixture of two
distributions: astudentt distribution for all the genuine reproduc
tion responses, andrarmaldistribution for those made without an
intentionto reproducaavaluetermedthe6 d e f disuitbutiod. This
is because sometimes participants did not move the mouse to make
a response, resulting in a cluster of likely irrelevant responses at a
small (known) value. The mixture model separates these two sorts
of responses; a mixture model likgig is ubiquitous in the visual
memoryliterature[10, 86] for modelingresponses.
In the model, the mixture parameter, the mear( ), and
standardieviation(R1; precisior) of thestudentt distributionvary
with theexperimentalariablesThemean(|.2) of thenormaldistri-
butioncaptureshedefaultresponseéseeine 11 below). Weassumed

knowing ' andR , we are able to draw samples from the distribution thatthe O1 parametenf thestudentt distributionandthestandard

and calculaterrorof eachdraw.

It is important to note thetiasandprecisiondescribe the average

deviation(Rz2) of thenormaldistribution do nowary. Wealso left
censoretheresponset®reduceheimpactoferroneousesponses.

properties of a set of responses (e.g., responses from one or mare: 2 This line describes the probability of a response coming from

experimentalconditions, one or more participantgjowever, error
is a measure for a single response, combining variancelframand
precision hence it is with more uncertainty thamsandprecision

Becauseachof thethreemeasuress associatedvith areferencejn
theremaindeof this paperwe subtracthereferencevaluefrom each
response and transform all the raw responsesrtos(i.e., relative
responses raw responseks reference values).

4.2 Bayesian multilevel (hierarchical) modeling

Weadopted a Bayesian modeling approach to estimageribralistri-
bution.Themearandstandardieviationparametersf thisdistribution,
asdescribedabove areconsiderediasandprecisionof theresponses
Wefollowed a process of model expansion wéularization[53,
65]. It allowed us to understand how each predictor affeetsiodel,
to capturemorevariancen thedatawhile reducingoverfitting, andto
explore the effects of secondary variabl&estarted witha minimal
mode] which contained only experimental variables, and afipb-
tentialpredictorsprderedby theirimportancen our subjectivebeliefs.
Wethen progessively added the predictors and evaluaadhinter-
mediate model by inspecting their posterior predictiandposterior
distributionsof thecoefficients Wecompareaachntermediatenodel
to thelastmodelusingWAIC (widely applicabldnformationcriterion)
andLOO (LeaveOneOutCrossValidation)for out-of-samplepredic
tion accuracy, and examined their Akaike weigfthte probabilities
of the differences in these prediction4),[53]. Wealso startedwith
weakly informative priors and gradually regularized the prawthe
model expandedp]. Wechose the final model which walse bestat

addressing our research questions, describing the currentatata,

predicting future observations.
WeimplementedhemodelingprocessessingR packagesrms[13],
CmdStanR24], bayesplof22, 23], ggdist{41], andtidybayed42].
Weprovidetheanalysiscriptandtheresultingmodelfilesassupple
mentarymaterialgtheanalysis.Rmd|htmand*.rdsfiles).

Istrictly, theR parameter (standard deviation) descringsrecision

the genuine reproduction (cf. default) distribution. This probability
couldbeaffectedby if themarkwaschangedZ or 0), thenumberof
marks, the visual channel used, and the referaaloe

Themean( ) of thereproductiordistributionis ajoint function
of a set of linear predictors with varying interceptssloges:
The experimental variablédumMarkandVisualChannekre
of the most importancd&keferenceValuacknowledges that percep
tual errors are likely to be affected by the magnitude of stimuli

(e.g.WeberF e ¢ h 26,320t e v powar[@d andGui | f or d 6

laws[28]) withoutmakingastrongassumptioraboutthisrelationship
is the same for different numbers of marks and visual channels; this
aligns with the observations th#te b elawb appears not to hold
for extreme values2h] nor perception of area and angled] (see
Appendix B for more discussion). The interaction between these
variables further generalize thidationship.

ExperimentalTrialcaptures learning and fatigue effects over
thecourseof theexperimensuchthatwe canlaterdivesttheseeffeds
by conditioning on the medianal.

DataMeanis the average of the shown data in a trial. It
approximateghecontextof aresponself thereferencevalueis small
butthedatameanislarge,it mayindicatethatthisresponsevasmade
in the presence of other large values, aicd versa Theinteraction
with VisualChanneis motivatedby the speculatiorthatparticipants
mayuseperceptuaproxiesfor mean39, 60], andtheproxiesmaybe
different for different visual channgi31].

The groupl e v e | effects (Arandem i
turethecorrelatiorwithin aparticipantandalsoallow eactparticipant
to vary for differentexperiment@andexperimentatonditions.

lines 7-10 The same predictors were used for and
precision(R1) to ensurecompatibility.

line 11 Theresponsefom thedefaultdistribution,whenparticipants

may not be trying to reproduce the value, are always near a small,
knownvalue(denotedy DefaultError), specifiedvia theinformative
priors for the meafu2 and standard deviatioRg) .

n
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(a) Primaryeffects (b) Derivingprobabilisticranks

Thesdiguresshowhowbiasandprecisiornvarywith the numberof marksandthe A ranking list of visual channeléth uncertainty is
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Theslopeshowstheeffectsfromthe numberofmarks andthe distanceoetween Such probabilities are found by subtractitg
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averagescrosallparticipantsandconditionsonthe mediantrial andanaverage meanbetter (e.g.essbias) Theproportionof negative

casevhendatameanisequalto thereferencevalue. values over the entire distribution Is tipeobability.

i. Bias(u) ishowthe reponsessystematicallyleviatefrom the truth. Thisfigureshowsthe subtractionsandthe chainfor 4

markswhichbecomeghebasif Fig 8i(4marks).
Position Aribbonshows
(bar) Luminance  Area  Length  Angle the estimated Pr(less biased|marks=4)
0.50 bias and the
associated
uncertaintyfor
0.1 areference
0.2 value. Position(bark Angle .71
=0.3

_over "
estimation Lengthb Position(bar) .64

0.25

not

biased 0-00

) Angleb Luminance .63
median

™ 5% ... 95%
credible Luminancé Area .86
intervals
(Cls; Bayesian
analogy to Areab .69
0.75 confidence

2 4 8 ] intervals) 101 00 01
L |Position(bar)l T IAnglel

-0.25

under-
estimation 1-0.50

ii. Precisior(’ ) ishowconsistenthereponsesre. The subtractions and the chain for precision. This is
i, the basis of Fig. 8ii (4 marks).
ngglr()m Luminance Area  Length  Angle Pr(more precise|marks=4)
e The slope '
d shows
precise the effects of Areab Angle .62 ‘
0.1 \ \ thenumberof :
0 § \ \ Cqségkr?qgmz)r.ks Angleb Luminance .58 ‘
— ' The span on ' | yminance Position(bar) .54 —<<:
03 y-axis shows (bar) '
’ the effectsof
the reference Position(barp Length .64 ‘
0.4 value (a108 i
(0.6) angle vs.
a162 (0.9) Lengthb .78 *
0.5 angle). ]
2 4 6 8 10.08 0.00 0.0¢
The number of marks (6 is the interpolation of the model)
2 Meanandstandarddeviationjointly definethe responselistributions,andsamplefrom the distributionexpresghe
.' . predictionsof afuture responseasthe posteriorpredictederror.
At dRSy Gyl @ﬂlrge agigregated properties (bias and precision), errors describe individual responses, in which randomness dominates
the differences among reference values and visual channels. Thus, the ribbons overlap with each other.
iii. Errorofindividualresponseexpressethe predictionof afuture response. The subtractions and the chain for error. This is the
Position ) basis of Fig. 8iii (4 marks).
(bar) Luminance Area Length  Angle Pr(smaller errors|marks=4)
smaller - _ _____________________________________________________ mediansof Position(bark Angle .5005 .
'
errors 05 ‘\% %‘ “\!\“1 \‘ posterior E
: \ \ predictions ;
Angleb Length.5001 ]
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95%0f future Luminanceb Area.5230 1
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e this interval. Areab -5550 !
2 4 68 108 00 08

Thenumberof marks(6isthe interpolationof the model)

Fig. 6. (a) The primary effects modeled from the experimental observations; and (b) how we compare two visual channels, calculate the probabilities
of being better, and finally derive the probabilistic ranks.



5 RESuULTS

i. Bias (Figs.6i and7i)

Tounderstand the differences in visual channels for the reproductigi!mber of marks. The average participant is very likely to less
task,we reportvariouseffectson eachof theprecision bias,anderror
measuresWethen derive ranks for the visugilannels.

Webaseour inferenceon thefirst distributionof themixturemodel
andtheposteriodistributiongmarginal conditional andpredictivedis-

tributions). Marginal posterior distributions summarize all the know
information for one parameter; conditional posterior distributions te

biasedn thereproductionwhenthe numberof marksis small Foran
average visual channel and an average reference value, the estimated
probability that he average participant is less biased in a chart with 2
marks than with 8 marks i52. That is, for the same reference value,

Jve expectd2% of responsewith 2 marksto exhibitlessbiasthanthe
[esponses with Bharks.

us the expectestalue of one parameter in a specific situation; andReference value. Theaverageparticipants verylikely to overestimate
posteriopredictivedistributiongprovideunobservedataconditioning
on the observed data and the fitteatel.

i. Bias

bdzyall NJ o6H b no

bdzyall NJ on b yo
bdzyall NJ o6H b yoO
wSTFSNBYyOS+1I t dzS
wWSFSNBYyOS+I t dzS
wSTFSNBYyOS+1I t dzS

ii. Precision

bdzYal N¥) 0H b
bdzval NB) 6n b
bdzyal NB) oH b

wWSFSNBYyOS+I t dzS
wSTFSNBYyOS+1I t dzS
wWSTSNBYy OS+1I t dzS

iii. Error of individualesponse

bdzyal NJ o6H b no
bdzyal NJ o6n b yo0
bdzyall NJ o6H b yo

wSTSNBYy OS+1I f dzS
wSTSNBYy OS+1I f dzS
wSTSNBYy OS+1I f dzS

Fig. 7. The exmaples of quantified primary effects
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of the number

of marks and reference values. We take subtraction and calculate the
marginal probabilities of being better (see Fig. 6b), averaging across
visual channels and reference values (or different numbers of marks).

5.1 Primary effects

The model suggests that the two experimental varidktles number
of maks (NumMarR andthereferencevalue(ReferenceValyé both
havevery strongeffectsonthereproductiorresponseacrosghethree
measuresTo show these effects, we take an average participarn
eliminate individual differences), conditional on the median trial

rid learning/fatigue effects) and on the case where data mean is equéraction effects. Reproductiorerroris likely affectedby thenumber
to the reference value (to remove the effects of the otleks in the

sametrial).

a small reference value and serioushylerestimate large reference
value, and are least biased with a reference value around .4 or .5
(median). For an average visual channel and an average nuofber
marks the estimatedrobability thatthe participantis lessbiasedn a
chartwith themediarreferenceralue(.5) thantheminimumvalue(.1)
is.93(thisis 1-.07).Similarly, theestimategrobabilitythatanaverage
participants lessbiasedn achartwith themediarreferencevalue(.5)

than the maximum value (1.0).is".

Interaction effects. Theeffectsof NumMarkandReferenceValuimter-

act, and each interacts witfisualChannel For most of the visual
channels buposition (line), response biantreases when the number

of marks is large and a reference value deviates from the median fur
ther. Overallangle is the visual channel where response bias is most
sensitive to either a change in the number of marks or the reference
value; position (line) is where bias is sensitive to the reference value,
butrobustto thenumberof marksfor largereferencevalues.

ii. Precision (Figs.6ii and 7ii)

Number of marks. The average participant is very likely to more
precise (more consistent) when the number of marksall For an
average visual channel and an average reference value, the estimated
probabilitythattheparticipantis moreprecisewith achartof 2 marks

than a chart of 8 marks .ig9.

Reference value. The average participant isore precise with repro
ducingasmallreferencevalueandmuchlessprecisewith reproducing

a large reference value. For an average visual channel and an average
numberof marks theestimategrobabilitythatthe participantis more
precise with the minimum reference value (.1) than the median or
maximum reference value (.5 or 1.8)i00 (nearlydeterministic).

Interaction effects. The effects of these two variables on precision in
teract with each other and further with visual channels. Response
precisionis moreaffectedby thenumberof markswhenthereference
valueis snaller, exceptangle, whereprecisionis moreaffectedby the
number of marks when the reference valukige. Similarly, preci

sion ismoreaffected by the reference value wiwermarks, except
angle, where precision isnore affected by the reference value with
moremarks. Overallluminance is the visual channel where precision

is least sensitive to the reference value, pwsition (line) is where
precision is most sensitive to the refereralae.

iii. Error of individual respon se (Figs.6iii and 7iii)

The samples drawn from the posterior distributions provide an es
timation of errors in indidual responses; for the convenience of
comparison, we took the absolute values.

Number of marks. The average participant is likely to makmaller
errorswith fewermarks.Foranaverageszisualchannebndanaverage
referencevalue,theprobabilitythatasinglefutureresponsexhibitsa
smaller error with 2 marks than with 8 marksris

Reference value. The average participant is likely to make smaller
errors with asmallerreference value. The estimated probability that

t (ta single futue response will have smallererror for the minimum

(toreference value (.1) than the maximum (1.0)4s

Fig.6ashowsall of themodeledeffects ncludingthetendencieand
the interactions between variables. Figrrovides examples of quan are milder than those observed for bias and precision, owing in part

tified

pri mary

effects by

responses are better (less biased/more precise/senathes).

of marks slightly more in larger reference valuesdiea andangle,
less fa position (bar) andposition (line), and similarly across different
reference values fduminance andlength. These interactions effects

s h o wd imgeaskd uncertaintly i lthis measurearelative todthe agygredated C

properties described by bias ardcision.



5.2 Secondary effects the observations and the modeling processes.

The nodel also suggests several moderate eff@atshow the learn A rankin theprobabilisticdomainmay meanthatoneis morelikely
ing/fatigue effect, we condition on the average case where both rdfeP€ etter than another. Hence we start by calculating these proba
ence value and the associated data mean are at their median (.5°! gies for visual channelsVe marginalize all reference values and

; ; tondition on the median trial with the median data m@émsubtract
respectively).To show the effect of data propegiée.g., the mean of 0N 1 (he ,
all the data values in a trial), we condition on the average case wifaPsolutevaluesof eachmeasureif A isbetter(lessbiased/morere-

referencevalueis atits median(.5) in themediantrial, andsamplechll cise/smalleerrors)thanB, we expectegativevaluesaftersubtraction

the possible values of data me¥vealso marginalize out the numbet(see':ig: 6b). Theestimated)robabilityof A. beingbetterthan'B is.the
of marks and visuathannels and use an averpggicipant. proportionof thenegativeraluesovertheentiresubtractedlistribution.

When this probability is larger than 50% (larger than chance or other

i. Bias The participant appears to -un Trial  DataMean  thresholds)we sayA is morelikely to bebetterthanB, andAfi wi n's . o
derestimateeferencevaluesatthebegin 50 Wederive the probabilistic rank lists by pairwise subtractodthen

ning of theexperimentln latertrials, the 25 build a chain of visual channels where any previous nadleis
participant generally increases tieero chainalwaysfi wi mrsy Gomparisorto the later nodesfor a given
ducedvaluesandbecomedessbiasedIn 00pzz====a e measure. This is essentiallganstraint satisfaction problef48,55),
reproducinganaveragevalue thepartic 5 and there are many methods to find a solut4g.[ For thescale

ipant seems not affected by other small of our problem,we can build the chainby handor apply heuristics
reference values, but is likely to uneer -50 (e.g.sortingby howmanytimesavisualchannef w i nVgedopstruct
estimate the median value when other ., .. achainfor eachmeasurandvisualizethemin Fig. 8, augmenteaith
reference values al@ge. the associated probabilities to convey uncertainty.

ii. Precision The participant appears to o The ranking produced by the precision of twevalue ratio judg-
becomeslightly lesspreciseastheexper ' ments does not holdfor each of the three measures nor any of the
imentgoeson, possilly dueto thefatigue 12 modelemumbersof_marks.Therankschangesvith differentnumbers _
effect. In reproducing an average value, 24- of marks acro.ss.dlfferent measures, WhICh. suggests that the previous
theaveragearticipanseemsessprecise channel rank is likely not generalif® other visual comparisdasks.

when other larger values are present in 36

the same trial; these larger values -pos 8 6 DiscussioN

sibly distract the participangpsmeicdhdd@dPg Yidualization

andreproduction. 60

Wefind that showing more marks adds substantial noisegmory
representations, and has an order of magnitude méuence on
performance than the choice of channel. Squeezing what&Einto

one visualization may cause viewers to increasimgigember(and

compare) data as statistics or rough global shi@yds$)], ratherthan
precise representations of individual values. Memoneé&mhvalue
likely alsodepend®nits relationto thedistributionof othervaluesas

iii. Error of individual response It ap-
pears that learning or fatigue effects do
not strongly affect respoaserror. In re
producing an average value, the pattici
pantis likely to makesmallererrorswhen
other reference values are small, and to

lmakeIaTrﬁererrorsvx;henothervaluewre 100 in work on neighborhoocffects[4, 10,87] anddistractoreffects[77].
Ig:ggi inc?ezggh%ngartgipeogr?seaz%(\a/zs tQ L2 W also find that the value of a mark (the reference value) has a more
_259 h)r:\If of thamedian. 5 60 0105 werful effect on reproduction than the channel chotsghbars are

more biased thasmallareas, even thougjosition (bar) is one of the

least biased channels overall. The context of the reference value also
showsstrongbias(e.g.angle), similarto pastwork whereparticipants
Oneprimarygoalof thiswork is to deriveranksfor thevisualchannés  tend to be more biased and less precise with a value further from the
based on the reproduction task and compare them to those frem @amads of the rang@4,52] (e . g . , fedge effectso)
value ratio judgment task&8, 30, 33]. A ranking list may provide psychophysicabbservation§26], wherelow andhighendsof thedata

a summary of effectfor others to digest the results (e.®1[70]). rangecanserveasperceptuahnchorg e . g angldisL0RfemMI0Fis
However aranklist maycausealichotomoushinking(e.g.fi Asalways perceptuallycongruent)Alternatively,for achannelike position (bar),
betterthanB . hichbeliesthenuancesn theranking.In thespiritof  participantgerformbetteraroundthe medianvalue,possiblybecause
rethinking the previous ranks and in the context of Bayesian statistiesyresortto nearmeanestimationsvhentheir memoryfalters,which

we will derive probabilistic ranks that acknowledge tineertaintyn  would also be consistent with better performance around the miean

5.3 Deriving probabilistic  ranks

i. Bias iii. Precision iii. Error of individuatesponse
best

Triangles encode the
probability that the
channel is better a

neighboring one.
near

50/50
Theprobabilitythat chance
leadsto
less bias than
is about for a
chartwith 2 marks.

worst

2 4 6 8 2 4 6 8 2 4 6 8
The number of marks (6 is the interpolation of the model).

Fig. 8. The probabilistic rankings of visual channels on the three measures, augmented with the probability of the associated channel being
better (less biased/more precise/smaller errors) than another.
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A a) Position(bar b) Luminance c) Angle
TheY 2 R $fedicdionof what @ (bar)  (b) (c) Ang

Position (bar) - 1.0
B ] Participant221would respond :
Position (line) when recalling two value&2, 05
Luminance 7} _ seems to be least 5 0.0
biasingfor this participantand g VIR TR (TR EPIAEEE RSN AN |
Area this set of values, while our 105
Length overall ranks suggestngle If 1o
thegoalﬁ,to %mlnateblas, 1L
Angle shouldoerecommended. 00 04 08 00 04 08 00 04 08
0 2 7 10 Reference value (4 marks)

Fig. 9. An example of how the model could support design decision  Fig. 10. The moderate non-linearity and symmetry in responses for (b)
making via predicting a viewer 6s lungnseoand(@ angle, compared to (a) position (bar).

the possible range of valug]. using more concrete comparison tasks. Thatselies will need to
The reproduction task may also have provided a context that infipand how the visualization research community operationdiizes
enced the pattern oésults. For example, while line charts relied oferentvisualizationgasks(e.g. detectingrendsandmotifs,immediate
the position channel, they were underestimated (redrawn lower thelatercomparisonandviewing avisualizationwith thousandsf data
the original reference valuespoimhe)coaddpwhtonédgncedomeand iine
points might have further induced viewers to perceive them as a bias, error, speefd4, 72, etc.). In addition, other factors such as-top
gle complex shape, or set of contrasting slopes, for the purposedooin effects like prior knowledg8]] and expectationip, 63] may

redrawing. impactreproductiortaskperformanceandindividual difference{62)
o o and spatial ability§1] may affect strategies that subsequently impact
6.2 Implications and future directions task performance, which could be promigiiigctions.

The channel ranking based on twalue ratio judgments is attractive o
as a rule. That tadieelslike a visual comparison distilled down to arf-3  Limitations
atomic unit, which may lead to an assumption that a ranking basedornthe sakeof comparability we treatedall visualchannelsquallyin
that task should extrapolate to new ortéswever,the present results designingheexperimentindanalyzingthedata. This makeshechan
questiorthis assumptior{Fig. 8), producingadifferentrankingfor the nelseasierto comparepotentiallyat the costof theusability for some.
two-value condition using a reproduction taglesigners should be The redrawing method may add noise and bias to data, as it might not
increasinglyskepticabf thechannetankingproducedytwo-valuera-  beequallyintuitive for all thevisualchannelsFor examplefor angle,
tio taskg 18], whichmaynotgeneralizasmuchashasbeenpresumed. we mapped thg-coordinate of the cursor to the degrees of the angle,
Thepresentesultsalsosuggesthatthenumberof marks thereference which might be more difficult to draw than others (epgsition (bar)
values, and other secondary factors such as data mean may strapglynapshecursoro theheightof thebar). Similarly, alwaysdragging
progressively, and interactively affect reproduction, which we argue from the zero value might rtédsin a bias towards smaller values
may serve as an important proxy for data perception across a suitgrahetwo positionchannelspossiblyexplainingthe underestimation
realistic perceptudhsks. in position (line) noted above. These response methods likely have an
How mighttherankingsproducedy thepresentmodel,oncerefined impact on the result, and a comparison of different response methods
and expanded, be used by a designer? While we caution the reaifgit beimportant to generalization of these results. Similarly, the
that these results are a start, and more work is needed to replipaigel also always assumes linearity between errors of the responses
these rankings in more realistic and concrete perceptual taskd; wand all the variables. While most of the data meet this assumption, vi
fer a glimpse of guidelines that might eventudtiifow. One might sualchanneldike angle displaymoderatanonlinearity acrosgifferent
imaginethataslength andposition (bar) generallyleadto lessbiasand referencevalues(Fig. 10), likely affectingtheestimationof themodel.
smaller errors, these encodings might be desirable when bias must be
minimized. Area is surprisingly more precise but could lead to more  ConcLUSION

bias and larger error, so it might be preferred for improving precisiwé revisited the ranking of visual channdl?] using a visual re

Luminance shows relatively stable performee across different num raduction task as a proxv of various visual comparison tAsk
bers of marks and measures, which might make it more suitable V\}?lé’rﬁj proxy P )

thenumberof marksvary. Angle dropsrapidlyin all ranksasthenum- testedp ar t i ceprpdactidrperrmancavith six visualchannels:

berof marksincreasesmakingit lesssuitablefor realisticallycomplex PoSition (bar), position (line), luminance, area, length, andangle across
data.Position (line) was surprisingly ineffective in this reproductiorg'ﬁerenmumbemf marksanddatavalues With aBayesiarmultilevel

t ask, but may reduce bias f o-r rr:%deliyvea?fpopqga\tgptraﬂ}ied?ugwgt_a@ftmgrksek|tqt ewflerﬂnge/albl% e”c‘n s
petitefor themisperceptiorof biasor precisionwill inform thechoice strongly attect the bias an prgusmn Ih a SEL of reSponses, as well as
of visual channels. Moving forwargarameterizing the influence ofrrors of individual responses; the number of marks gradually-domi

data properties (number of ma pa}geghedif(?rgqc%rbv? alchgr}p%an(iir_q{eéencalaéugg,re IeH:tLog s6 d

optimize for lower bias, higher precision or lower error may help strohg limit on \_Norkln mem_ory_hat likely Serves to lirnit most
i nform visualdedsmitsi on designer parison tasks in data visualizatigvie further derive probabilistic

Concurrentlyconsideringnultiple factorsandtheir conflictsandin-  'ankings from the model for each measure and show that the previous
teractionsvouldlikely bedifficult for designerssuchthatanautomated trﬁnklng 0] doeSkF‘Ot h°|d'ﬁTh'St‘r’]"°rk dl_em_onstratee ﬂnnllt(atlonsbof g
model might be important for weighting their complexitiéée were N prewom(st ran mgll[(?], oders € preliminary new rgnl_lngs ase h
inspiredbytherecenimodelingwork[20,31,40,43,75] andappealedo on akl r_eprol rL:ctlonltasl,l ! at? prgesefnts a Baylfsmn moae mglapproac to
psychophysicdhws[31,52,69,82], entropy[15,68,70,71], perceptual {ﬁga\iggac annelsall asbasesor futurework to continueexploring
proxies[39, 58], seriatpositionandorderingeffects[36], visualment )
ory (e.g., B, 10, 54)), neighborhood effects8[], and distractors77].
Wearecapablef providing(very)preliminaryrecommendationgiven
theinputs(seeFig. 9). Thus,amodelingapproacHike thepresenbne The authors would like to thank Satoru Suzuki and members of the
may harmonizdifferentfactorsandprovidedesigncandidates. Visual Thinking Laboratory at Northwestern University for their-sug

It would be premature to derive other firm guidelines based on tpestions during the experimental design. The authors also thank the
present studyadditional studies will be needed or establish whethanonymous reviewers fdaheir feedback. This work was supported
thereexistbroadlyapplicableguidelines Ourtaskreliesonapurposely in part by grants BC3653457 and 119901485 from the National
abstract reproduction task as a first step toward inspiring futor&  Sciencé~oundation.
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Rethinking the Ranks of Visual Channels
Appendices

A VisUAL CHANNELS DETAILS

In all the conditions, for all theisual channelsparticipants redrew the stimulus by dragging their mouse above the data mark. This may be
obviousfor avisualchannekuchasabargraph wheretheheightof thebarreflectstheunderlyingvalue.lt is alittle lessobviousfor awind map,
where the orientation of the line reflects the underlying value. The motivation for this consistent response is to edgteretites in the
observecerrorsarenotbeauseof differentmotordemandsUsingaconsistentesponsenethodacrosglifferentvisualchannelsnayintroduce
variance in thelata.

For all visual channel types, the data mar ks wer e ummngwteant ed w
resolution of 128 800 pixels, the usable Y range for each data displa;%@@aﬁo pixels. The 20 pixels was dyn&ally determineql&of
the height) to keep the highest values from ever hitting the top of the screen. Similadgxibevas determined to be half of the width, minus
an edgebuf'fer(s%of thewidth) to keepthedatamarksfrom hitting the edge of thescreenThe maximumheightfor abaris 390pixels. Thebars
were 1/16th of the-axis wide (37.3 pixels). As with all of the data marks used in the current experiments, participants were presented with a
randomselectionof valuesfrom 0.1- 1.0. Theminimumbarheight(0.1) wasthen39 pixels.

Experiment A: The visual channels with a common baseline
Thebottomof the eachvisualmarkin thefirst experimentwasrandomlyselectedvithin they axisrangefor eachtrial, soparticipantscould
not rely solelyon positionto remembethevaluestheywereshownin thegraph.Thebackgroundor all conditionswaslight grey (25%black).

Position -bar Participants respond using a computer mouse and clicking/dragging above the data mark to draw it to the size they remembe
seeingn theinitial datapresentationNotethattheinitial valuewasO for thebar.Forthis, andall conditions theresponsevasinitialized to the
lowestvaluein therangeof possibleresponsesParticipantsanclick or adjustthesamemarkmultiple times. Theirresponsés fully selftimed.

If participants click away from the indicated response space, the graph briefsflaf§tthe screen to provide unintrusive feedback about the
viable responseegions.

Position -line The heights of the points on the line were the same as the heights of the bars in the position condition, such thatithe maxim
heightfor aline chartvertexwas390pixels(theheightof the Y range).Thestimuluswascreateddy joining therandomlyselectedointheights.
The line was four pixelside.
Participants respond by-trawing the line in the same manner as the bars. They click or drag the point above-tharkeémadjust the
height of the line, in an attempt to match the lihart they saw in the initial stimulus as closely as possible.

Luminance The heat map marks were 37 37 pixels (same width as the bars). While the aligned bars and the line chart represented changir
valuesby changingn height,theheatmapschangedow light/darkthe presentednarkswere. Themaximumvaluewaswhite, suchthatasthe
participantdraggedheir mousehigher,theboxthattheywereadjustingpecamdighter. 0% wasrepresentethe samecolor asthestimuli in the
other conditions: RGB values [127.5, 127.5, 127.5] or bl#k.

Participantsespondy click-and-draggingabovethedatapointjustasin thebarandline graphs Thatis, to makethemarkdarker theydrag
themousecursorhigheronthescreenJustaswith thebarandline charts theinitial responsetartedat0, andparticipanthadto dragthemouse
to changehevalueof thedatamark. Theonly differencebetweertheheatmapandthepreviousc o n d i respanse®thodsthat,for theheat
maps, when participants dragged the mouse up and down, the position of the mark stayed constant and the color chdimgednéhlzhe
chartswhentheparticipantsiraggedhe mouseup anddownthe positionof the markchangedandthe color stayedconstant.

Experiment B: The misaligned charts

Length As with the other visual channels in this experiment, the misaligned bars do not share a common baseline. Since tharieaseline
within they-axisrange themaximumheightof thesebarsis reducedothatthereis enoughroomto havethe0.1- 1.0variationwhile still having
theparticipantsespondn theoppositecornerfrom wherethebarswereoriginally presentedOtherwisethebarswerethesameasin Experiment

1A: the aligned barsondition.

Angle The wind map line segments were as long as the bars were l\%tidiatl(\e x-axis). The maximum value (1.0)_was presented by a
horizontal line (186). The remaining presented values (0110) were proportions of theIBOérange, such that 0.1 was™18

Participants make their responses just as in the other conditions: by adjusting the height of the mouse cursor abauartheBéatuse
there is 18Bof possible response space it could be difficult to tell whether a riéatrlyas close to 0 or 180To address this concern for
participantsywe ensuredhatthe)géverewell trainedbeforetheybegarthetask,apdthattherewasanorigin for theline segmentsuchthataline
falling to the right was closer to-@nd a line falling to the left was cloger180~. Just as with the ot legonsevi sua
screensvereinitializedto 0, soit wasclearto participantghattheinitial screerwas0 degreestheywouldexceedhe0.5responsenly adjusting
the line pasdO~.

Area Theareachartsusedcircle visualchannelwheretheareaof the circle markchangedn directlinearproportionto thesizeof the presented

value. The maximum value (1.0) was represented by a circle with a diameter the same width as #eflthesxtaxis, or 370% R{A(E,L?' r.r'll'akrlga

remainingvalueswererepresentedsa proportionof thatc i r arkaesidclsthattheradiusfor thecirclerepresentin@.1was

Participantse-drewtheareavaluesustastheyre-drewthebar, line, andheatmambovetheydraggedheir mouseontop of thedatamarkto
maketheirresponselNotethattheadjustmenbf this markwasscaledo thechangeheareaof thecircle (not, thediameter)sincepeopletendto
perceivethedifferencedn theareaof thecircle asthenaturaldatamapping.Oneunit increaseén mousecursorheight,then,correspondso one
unit increase in marétrea.

B ALTERNATIVE MODELING APPROACHES

An alternativeapproacho incorporateReferenceValuasa predictoris to divide all theresponseby their correspondingresentedalues.This
approach assumes that each visual channel foMdesh e r Gaad tHerefare division is able to normalize errbiswever this assumptiors
too strong, and we found that after dividing presented value, errors still vary with presented value, and errors fessntell palues were
exacerbatedrig. B.1ashowsabsoluteerrors.Fig. B.1b showsabsoluteerrorsdividedby presentedalue,whereerrorsarestill nortlinear.

1



Fig. B.1. Altern
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appro aches of using our kn wI dg about perception. We could tr f d ta by dividing refer value, but this still did
Bayesian approac n directly model k dd b So, using reference value asapredictor is rational



C CALCULATING LOGABSERROR (RATIO) FOR OUR DATA
We replicate Cleveland and McGill ds analysis to facdthdranksbfe c om
visual visual channels on a task of ratio estimation and thrdogformed absolute errors.

LogAbsError= logy(|bias o f percentage errpr .125

We utilize the same ratio measure to the modeled bias in our experiment and its reference:

bias

LogAbsError= Iogz( 100 + .125

Re f erence

Weapply this measure to our modeled bias and calcutaefidence intervals. Since the model has 49 ppdits levels, we can consider that
we have 49 participants. The results are used to generate Fig.



