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LogAbsError better Error bars are 95% confidence intervals of the modeled results. 

Fig. 1. One core guideline for data visualization design is that some visual channels offer better perceptual precision than others, 

drawing those precision estimates from two-value ratio judgment tasks [17]. (a) The figure depicts typical data (from [33], 50 participants) 

showing these judgments are more precise for position (e.g., bar graphs) than for area (e.g., bubble charts). We tested whether that 

ranking generalizes to the new task of reproducing 2 to 8 previously seen values, and analyzed reproduction bias, precision, and error 

using a Bayesian modeling approach. (b) The figure shows our modeled results (49 participants). The ranking did not hold, and other 

factors besides channel choice—like the number of values in the series—had an order of magnitude more influence on performance. 

Abstract—Data can be visually represented using visual channels like position, length or luminance. An existing ranking of these 

visual channels is based on how accurately participants could report the ratio between two depicted values. There is an assumption 

that this ranking should hold for different tasks and for different numbers of marks. However, there is surprisingly little existing work that 

tests this assumption, especially given that visually computing ratios is relatively unimportant in real-world visualizations, compared 
to seeing, remembering, and comparing trends and motifs, across displays that almost universally depict more than two values. To 

simulate the information extracted from a glance at a visualization, we instead asked participants to immediately reproduce a set of 

values from memory after they were shown the visualization. These values could be shown in a bar graph (position (bar)), line graph 

(position (line)), heat map (luminance), bubble chart (area), misaligned bar graph (length), or ‘wind map’ (angle). With a Bayesian 

multilevel modeling approach, we show how the rank positions of visual channels shift across different numbers of marks (2, 4 or 8) 

and for bias, precision, and error measures. The ranking did not hold, even for reproductions of only 2 marks, and the new probabilistic 

ranking was highly inconsistent for reproductions of different numbers of marks. Other factors besides channel choice had an order of 

magnitude more influence on performance, such as the number of values in the series (e.g., more marks led to larger errors), or the 

value of each mark (e.g., small values were systematically overestimated). Every visual channel was worse for displays with 8 marks 

than 4, consistent with established limits on visual memory. These results point to the need for a body of empirical studies that move 
beyond two-value ratio judgments as a baseline for reliably ranking the quality of a visual channel, including testing new tasks (detection 

of trends or motifs), timescales (immediate computation, or later comparison), and the number of values (from a handful, to thousands). 

Index Terms—DataType Agnostic; Human-Subjects Quantitative Studies; Perception & Cognition; Charts, Diagrams, and Plots. 

 

 

1    INTRODUCTION 

Metric values can be efficiently transmitted to the human visual system 
across a set of channels, including position, length, or intensity [6] 
(see [56] for review). When creating a visualization, designers face a 
choice of which channel to depict metric values, with a major constraint 
being a ranking of putative perceptual precision of that channel. This 
ranking is organized by either expert judgment [50] or operationalized 
by a particular task.       The most referenced operationalization is the 
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precision of making ratio judgments between two values [17,30,33,77]. 

For example, in Fig. 2a, the viewer might use the position channel to 
estimate that the value for A is 85% of the value for B, close to the cor- 
rect answer of 80%. The typical (log) error for this judgment is shown 
in Fig. 1a. It is typically the lowest error of any channel. Making the 

same judgment in Fig. 2b between A and B (now separated vertically) 
is a bit tougher, as reflected by the larger error value for ratio judgments 

of length in Fig. 1a. Finally, Fig. 2c shows the same data plotted as 
luminances. While we do not know of empirical measurements of ratio 
judgment error for this channel, expert judgment [17] (as well as ours) 
suggests that the error would be quite high [50]. 

(a) Position (b) Length (c) Luminance 

   
Fig. 2. Examples of visualization designs that use three different 

visual channels. (a) This bar chart relies on the position channel for 

comparison, (b) this bar chart relies on the length channel for vertical 

comparisons between A and B, and (c) this heatmap relies on the lu- 
minance channel. A two-value ratio judgment is precise in (a), and 

progressively less precise from (b) to (c). 
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1.1 Beyond a ranking based on two-value ratio precision 

The channel ranking derived from error measurements of two-value ra- 
tio judgments likely deserves its role as a key factor that determines the 
choice of a channel for depicting metric values. But there is an implicit 
assumption that it should extrapolate broadly across the types of lower- 
level visual tasks that viewers execute in real-world visualizations and 
visual analytics. This is a bold assumption, because visualizations 
require that we extract, remember, and compare sets of statistics, trends 
and motifs, across visualizations that almost universally depict more 
than two values,  leading to increasing unease about the dominance   
of this method of ranking channels [7]. A taxonomy of such opera- 
tions presents ten low-level perceptual tasks used in analyzing a set of 
datasets [2]. Interestingly, computing ratios does not appear as a task. 
‘Retrieving a value’ is present, and it is plausible that this task is the 
foundation of a two-value ratio judgment for charts [17]. A more recent 
survey includes ‘computing derived value‘ but also reveals concerns 
about task-dependent effectiveness [66]. In Fig. 2a, if the viewer knew 
that the maximum value of the y-axis were 10, computing a ratio be- 
tween any bar and that number would allow the viewer to extract the 
value of a single bar from an unlabeled (or sparsely-labeled) axis. 

In Fig. 2, for each of the three visualizations, where are the three 
highest, or lowest, values for A or B? Where are the largest (or average) 
differences for each value pairing across the series? There are dozens 
of such critical comparisons that all involve more than two points  
(see [7, 27, 57] for review), and there is insufficient empirical work that 
evaluates whether the ranking of channels extracted from two-value 
ratio tasks also applies to them (see Sec. 2). 

1.2 The present study: reproduction as a proxy for various 
comparison tasks 

How might one compare performance for each channel across such a 
long list of potential comparison tasks? We start with the assumption 
that many of these comparison tasks require that one set of values be 
held in visual memory, and that memory is compared to a subsequently 
perceived set. For example, in any panel of Fig. 2, computing a two- 
value ratio might not feel like it requires a heavy memory component. 
But comparing the global shape of series A versus series B feels far 
more capacity-limited [78] and memory-intensive [21]. Indeed, evi- 
dence from the visual memory and attention literatures suggest that for 
such more complex comparisons, one must first inspect A, hold the 
set in memory, and then compare that memory to set B [38, 83, 84]. 
At the very least, comparisons that are not ‘within the eyespan’ [79], 
requiring an eye movement or turn of a page, certainly require, and will 
be limited by, visual memory. 

Visual memory is highly capacity-limited [73]. As we attempt to re- 
member more information, precision plummets, bias quickly increases, 
and storage capacity hits ceiling limits (see Sec. 2.3). Therefore, we 
would expect the number of data values involved in comparison tasks 
to predict whether the viewer is successful. Because memory serves 
as a critical gateway for performance in comparison tasks, the present 
study measures how a viewer’s memory precision, bias, and overall 
error is affected by the channel used to encode a dataset, and how those 
measures are affected by the number of data values that the viewer is 
asked to process and remember. 

The present study measures memory using a reproduction task, un- 
der the assumption that this measurement will generalize to a variety of 
comparison tasks. If we had instead used a more specific comparison 
task, which would we pick? Comparisons of data distributions? A 
search for the longest set of relatively low values? Ask for the differ- 
ences in the global shape across the two series? If so, what type of 
difference, and how would it be reported? And how different should 
the two data series be, and in what ways? The present reproduction 
task allows a first look at how channel and number of marks affects 
reproduction performance, without the need to consider these more 
specific operationalizations of the various types of visual comparisons. 
We hope that after this initial exploration, the field can begin to ask 
more targeted empirical questions for particular comparison tasks. 

We asked participants to immediately reproduce a set of values seen 
moments earlier across six channels and three numbers of marks  {2, 

4, 8 . Our results from a Bayesian multilevel model show that the 
previous ranking [18] does not hold, even for reproducing only 2 marks. 
The new probabilistic ranking also varies with the number of marks. 
Other factors besides channel choice have an order of magnitude more 
influence on performance, such as the number of marks in the series, 
or the value of each mark. Across every visual channel, performance 
drops precipitously when more than just a few marks have to be stored, 
consistent with the known limits on visual memory. 

1.3 Contributions 

This work challenges the assumption that the ranking derived from the 
precision of judging a ratio between two visual marks will extrapolate 
to new tasks, especially those that involve more than two marks. 

Our primary contributions are as follows. 

• Experimental study results on the effects of six typical encoding 
channels, and the number of marks 2, 4, 8 , on a task of reproducing 
a set of visualized data, leading to a reassessment of the value of 
rankings based on two-value ratio tasks. 

• A contextual, probabilistic ranking of the six visual channels on 
three statistical measures: bias, precision, and error. 

• A publicly-accessible dataset of 28,602 responses measuring that 
reproduction performance, as well as a Bayesian multilevel model 
to describe the dataset. The dataset, analysis script, and model files 
are   available   at   https://doi.org/10.17605/OSF.IO/3E2QT. 

2 RELATED WORK 

Here we surveyed work in visual perception, information visualization, 
and visual working memory to gather considerations for factors that 
may impact visual reproduction performance. 

2.1 Context and bias effects on visual judgements 

While Cleveland and McGill [18] tested the precision of ratio judge- 
ments with only two relevant values for the judgment itself, they also 
showed decreased precision for displays where those values were 
crowded by adding other values in the display [17, 33]. More recent 
work [77, 87] identified similar impairments. In other reproduction 
tasks,  like the one used in the present study,  surrounding values in    
a display created memory biases, such that recollections of a single 
relevant value were repulsed from the 0, .5, and 1.0 proportion of a 
second larger reference bar [52]. Memory bias has been shown even 
for values presented alone, such that tall bars with a high height:width 
ratio were underestimated, and wide bars with a low height:width ratio 
were overestimated [14]. 

2.2 Evaluations beyond two-value ratio precision 

After one study showed that correlation judgments follow a systemati- 
cally measurable profile of perceptual precision for scatterplots using 
the position channel [69], a later study ranked the relative precision of 
correlation judgments across other visualizations, finding that position- 
based scatterplots offered the highest precision, but position-based line 
charts offered the lowest precision [31]. Angle, a channel with low 
precision on a two-value ratio task, showed the second-highest pre- 
cision [31]. Though in this case, the correlation judgment may not 
have been perceptually extracted by angle per se, but emergent shapes 
created by the angles for high negative correlations. 

With judgments of aggregate properties of mean, average, or spread, 
the typical ranking can reverse, such that typically low-ranked values 
like luminance (in this case, a ramp combining luminance and color 
saturation) can actually lead to the best performance in those tasks [1] 
(see [76] for review). Judgments of minimum, maximum, or range 
were still best for visualizations that used position channels. Another 
study asked participants to complete four tasks—read value, compare 
values, find maximum, and compare averages—across visualizations 
that relied on position, size, or color (similar to the luminance ramp 
used here). They found similar results, where extracting one value, or 
comparing two single values, was fast and accurate for position, but 
for aggregate properties like comparing averages, the color condition 
showed equal performance [44]. Another study, similar in spirit, tested 

https://doi.org/10.17605/OSF.IO/3E2QT
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*These figures were designed to illustrate the experiment. 
The visual marks and margins are not drawn to scale. 

cursor: low middle high 
 

 

Fig. 3. Visual channels and the reproduction task. (a) Examples of visual channels for 4 visual marks. (b) Each trial followed a “show-remove- 
reproduce” procedure to indicate their responses. (c) In reproduction, participants clicked on the screen or dragged the mouse to redraw the 

previously-seen marks. In all conditions, the visual channel changed as a linear function of the vertical position of the mouse cursor, such that even 

angle and area were changed by dragging the mouse up-and-down. For area channel, participants adjusted based on area not radius. More details 

are available in Appendix A. 
 

the speed, accuracy, and preference for ten data visualization tasks 
across scatterplots, bar charts, pie charts, and line charts [72]. They 
found, for example, advantages for bar charts in finding value clusters, 
or that scatterplots show advantages for anomaly detection, but not for 
cluster detection. 

Others evaluated the visual channels for comparison (measured by 
staircasing threshold differences that could be detected in a limited 
time [85]) across two tasks, finding the maximum difference among 
two paired values in a display similar to the left bar chart in Fig. 2, or 
the stronger correlation between two such pairings of values. The study 
included bar, line, and donut charts, was focused on comparing value 
arrangements within each chart type (e.g., juxtaposed vs. interleaved 
values). Those charts—and their underlying channels—could in theory 
be compared in their effectiveness for supporting those comparison 
tasks, but differences in the methods between chart types make that 
comparison difficult [59]. 

Similar to the cited studies, the present study relies on a single 
task, but we regard reproduction as a starting point for more generaliz- 
able results, compared to two-value ratio precision or a single visual 
comparison task. 

 

2.3 Visual memory 

Working memory is the ability to hold information actively in mind, and 
to manipulate that information to perform a wide variety of cognitive 
tasks [3]. For visual memory in particular, when asked to remember 
visual information across eye movements (e.g., for comparisons) or 
across interruptions [35], studies typically claim a capacity limit of only 
‘3-4 items’ (e.g., [19]). Even for fewer than 3-4 items, when participants 
recall the sizes, colors, or angles, of previously seen objects, they are 
notably less accurate in recalling 2 items than 1 item (e.g., [5, 86]). 

Remembering more complex conjunctions of visual channels  
(e.g., both the color and orientation of a mark) is extremely difficult 
when more than 1-2 objects must be remembered [29, 58]. The perfor- 
mance cost of increasing memory load from just 1 item held in mind at 
once to 2 items is larger than the cost of increasing the load from 4 to 8 
items (e.g., [73]). Thus, the profile of memory performance for tasks 
that involve only 1 or 2 items at a time may not predict the profile for 
more complex visual displays [11]. There are also strong contextual 
dependency effects where values are stored in compressed ways, as 
relative to other values [10]. In a visualization, increasing the number 
of memorized values will lead to performance changes that are hard 
to predict. Since nearly all data visualizations include more than 1 or  

2 marks, it is critical to study these cases directly rather than  assume 
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the lessons drawn from studies of 1 or 2 marks will generalize to 
these larger value sets. 

In the present study, participants were asked to reproduce data 
dis- plays that fall within (2 marks), at (4 marks), or beyond working 
memory capacity (8 marks) to gather data from qualitatively 
different memory loads. Participants in this task rely on 
reproduction of values, as opposed to semantic recall of the main 
message of a visualiza-   tion [47] or whether they have encountered 
an entire image before [8]. This task is an analogy to typical visual 
working memory tasks, acting as a proxy for how one retains values 
of marks across eye movements and delays (as when reading the text 
associated with the visualization). 

3 METHODS 

This section presents and justifies our design decisions, along with 
the description of the stimuli generation process, the experimental 
design and procedure, and the data collected. 

3.1 Visual channels 

As introduced above, we chose six visual channels (denoted by Visu- 
alChannel) to cover a wide range of the original ranks by Cleveland 
and McGill [18]: position (bar) (bar chart), position (line) (line chart), 
luminance (heatmap), area (bubble chart), length (misaligned bar 
chart), and angle (wind map). We show an example of each of the 
six visual channels in Fig. 3a. 

3.2 The number of marks 

We tested three different numbers of marks (denoted by NumMark):  
2, 4, and 8 (Fig. 4a). The 2-mark condition requires that the viewer 
extract the value of two data visualization marks, replicating the 
earlier studies based on two-value ratio judgments (e.g., [17, 30, 33, 
77]). The 

 
2 marks 4 marks 8 marks 

 
(a) Stimuli 

 
 

(b) Underlying data 

 

Fig. 4. Different numbers of visual marks. We used the same pre- 

generated datasets across different NumMark and VisualChannel and 

removed the side values when showing 2 or 4 marks. 
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difference in our task is the nature of that extraction, in that participants 
must redraw it rather than reporting a ratio value. The 4-mark condition 
aligns with the boundary of typical working memory capacity, and the 
8-mark condition exceeds even the most optimistic estimates for human 
visual working memory. These three conditions have categorically 
different loads for working memory, allowing us to infer how the 
working memory limits affect reproduction. 

3.3 Experimental design 

We split the visual channels into two experiments based on whether 
the channel uses a common baseline. This split was decided to align 
participants’ mental models and to keep the experiment duration approx- 
imately 30 minutes to avoid severe fatigue effects. The first experiment 
tested position (bar), position (line), and luminance. The second experi- 
ment tested length, area, and angle. Each experiment tested all three 
numbers of marks 2, 4, 8 . Each participant did the task with 3 visual 
channels and all 3 numbers of marks, but with different channels for 
different experiments. 

Each pair of VisualChannel   NumMark was a block with a series 
of trials. The first experiment used 13 trials per block. The second 
experiment used 15 trials per block; this is because, in the pilot study, 
we found that the second experiment was more difficult: the mapping 
between the vertical mouse click and the visual change was challenging, 
and responses were noisier. Thus, we included the additional two trials 
to offset this additional noise. Within each of the two experiments, the 
order of visual channels was counterbalanced. 

3.4 Generating stimuli 

All the values were in the numeric range of [0.01, 1.0] and encoded to 
the visual channels as follows (see Appendix A for more details). The 
dimensions of marks were decided to maximize the varying range but to 
avoid overlapping. The background was set to rgb(.75,.75,.75) (light 
grey) to control visual contrast effects. As a result, position (bar) has the 
height of each bar ranging from 3.9 pixels to 390 pixels. Position (line) 

has the height of each line end ranging from 3.9 pixels to 390 pixels. 
Luminance has the color of each square ranging from rgb(.5,.5,.5) 

(grey) to rgb(1.0,1.0,1.0)(white) such that its middle point was the 
same as the background color. Area has the area of each circle ranging 
from π (5 + 1.19 pixels)2 to π (5 + 37.5 pixels)2; the 5 pixels offset 
was to ensure that all the circles were visible all the time. Length has 
the height of each bar ranging from 3.75 pixels to 375 pixels. Lastly, 

angle has each segment rotated counter-clockwise in the range of 1.8◦ 

to 180◦. For area, length, and angle, the vertical position of the marks 

were randomly generated in the range of the y-axis, spanning .0 of its 
height (i.e., the bottom of the axis range) to .9 of its height. 

All datasets were pre-generated, and the same datasets were repeated 
within the same experiment for different VisualChannel NumMark 
blocks. Each dataset consisted of 8 numeric values, and each value was 
randomly and uniformly sampled from the standardized values of 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0  .  When the NumMark was  8, 
participants saw all 8 values in a trial. When the number of marks was 
2 (or 4), participants saw the middle two (or four) values; the remaining 
values were not displayed (Fig. 4b). Each participant viewed different 
datasets within a VisualChannel NumMark block, and repeated the 
same datasets across different blocks. The order of the datasets and the 
values within a dataset were otherwise randomized. 

3.5 Procedure 

The experimenter first collected informed consent from the partici- 
pants and then shared an instruction presentation displaying the format, 
structure and response modality for all trial conditions. The experi- 
menter was present for training and answered clarifying questions the 
participant had about how to make their response. 

Trial As discussed above, in each trial, participants performed a repro- 
duction task. They first saw the stimuli visualization for .75 seconds. 
The stimuli were then replaced with a blank screen for .25 seconds. 
Immediately after this, participants were asked to reproduce each visual 
element (e.g., a bar) as they clicked and/or dragged the mouse to change 
the pre-marked visual elements on the screen (Fig. 3c).  The   stimuli 

visualization was randomly placed in one of the four quadrants (Fig. 3b) 
and redrawn in the diagonal quadrant. For example, if participants saw 
the stimuli in the upper left, they redraw the stimuli in the bottom right. 

The short duration exposure, along with unlabeled axes, prevent 
participants from recoding stimuli into other forms [51] and suppress 
top-down effects like prior knowledge. The duration is adequate for 

testing visual working memory [51] and provides ample time for the 
vision system to encode information (e.g., comparing correlation in 

scatterplots [67], estimating two-value ratio in bar charts [52],    etc.). 
The inclusion of a blank screen as a mask and a different redrawing 
location together eliminated visual aftereffects. 

Participants Thirty and twenty-nine participants were recruited for 
the two experiments, respectively. They were undergraduate students 
from the same institution, enrolled in introductory psychology classes, 
for which they earned partial credit in exchange for their time. Partici- 
pants were between 18 and 23 years old (µ = 19.02 years, σ = 0.96; 22 
female, 34 male, 3 unspecified), all with normal, or corrected-to-normal 
vision. The same author and experimenter proctored all the experiment 
sessions and finished them before the COVID-19 pandemic. 

Apparatus The experimental system was implemented using Psy- 
chophysics Toolbox [12, 46] and MATLAB 2018a, running on a Mac 
Mini (OS 10.10.5). Stimuli were displayed on a 23” monitor with a res- 
olution set to 1280 800 pixels and a 60 Hz refresh rate. Participants 
were sat approximately 18.5” from the display. 

3.6 Response data 

All the raw data from all the participants were considered for analysis 
with two exceptions. First, 3 and 7 participants from the two exper- 
iments, respectively, contributed to the pilot study or were unable to 
finish the experiment; they were excluded for the purpose of balancing 
learning and fatigue effects. Second, in the angle condition, when 
showing a maximum value 1.0 (180◦) as the reference, 45.79% of the 
responses were the same default value of 0.001 ( 0◦), resulting in a 
very large error (100% error).     Because both 0◦and 180◦were a flat 

segment (see Fig. 3), we think, if not all, the majority of the participants 
misinterpreted 180◦ as 0◦. To ensure the comparability of our results, 
we transferred the reference value (1.0) to 0.0 (180◦ to 0◦) for angle. 

We recorded the reproduced value of each mark, the order of visual 
marks, the reference values shown on the screen, the reaction time, 
VisualChannel, NumMark, and the trial index. We collected 6,129 trials 
= 3 VisualChannels × 3 NumMarks × (13 trials × 27 participants + 
15 trials × 22 participants). Together we analyzed 28,602 responses = 
3 VisualChannels × (2 + 4 + 8) marks × (13 trials × 27 participants 

+ 15 trials × 22 participants). 

4 ANALYSES 

To analyze the response data, we first decided the measures to quantify 

the effects, followed by a description of the modeling approach and the 
model to support the inference. 

4.1   Measures 

We follow the literature on visual memory and used three statistical 
measures to compare participants’ responses: bias, precision, and indi- 
vidual response level error [10] (see Fig. 5). 

Among these, bias is how the mean of the responses deviates from 
the actual value presented as the reference. Think of bias as systematic 
error or the tendency to make mistakes in a certain direction,  such   
as exhibiting a bias to overestimate wide bars [14]. Precision is the 
consistency of participants’ responses; they may consistently report the 
same value, regardless of the reference value. Bias and precision are 
different facets for the same set of responses. Participants could be pre- 
cise but consistently underestimate (or overestimate) the value [17, 52]. 
They could be imprecise but generally right on average. Alternatively, 
error measures how each response deviates from the reference value. 
These three measures are different facets for the same distribution of 
the responses, capturing variations in visual error and reproduction 
performance through different lenses. 

Here we used a student  t(µ,σ ,ν ) distribution for a more robust 
understanding. Bias, the mean of responses, is described by the location 
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4.3   Model specification 

Formula Using a syntax similar to brms’s [13] extended Wilkinson- 
Rogers-Pinheiro-Bates notation [64, 80], our final model is 

pr    
bias  error of the response 1   Response|cens ~ mixture(Student_t(μ ,σ ,ν ), normal(μ ,σ ), θ  ) 

ecision 1      1    1 2     2 1 

 
(b) unbiased, imprecise 

 
 

 
(c) biased, precise 

2  θ1= MarkChanged + NumMark * VisualChannel * ReferenceValue 

3  μ1 = NumMark * VisualChannel * ReferenceValue + 
4 ExperimentalTrial + 
5 VisualChannel * DataMean + 

6 (1 + NumMark * VisualChannel | ParticipantID), 

7  σ1 = NumMark * VisualChannel * ReferenceValue + 
8 ExperimentalTrial + 
9 VisualChannel * DataMean + 

10 (1 + NumMark * VisualChannel | ParticipantID) 

 
 

(d) unbiased, precise 

 

 
Fig. 5. Bias, precision, and error. Bias and precision describe the 

average properties of a set of responses, while error is a measure for a 

single response. In this work, error is defined as the deviation from the 

reference, mean of errors is defined as bias, and standard deviation of 

errors is defined as precision. 

 
parameter µ; and precision, the consistency of responses, is described 

by the dispersion parameter σ 1. The errors of individual responses 
combine both bias (µ) and precision (σ ) of the responses into one 
measure. If we fit the distribution with the response data collected, then 
knowing µ and σ , we are able to draw samples from the distribution 
and calculate error of each draw. 

It is important to note that bias and precision describe the average 
properties of a set of responses (e.g., responses from one or more 
experimental conditions, one or more participants). However,  error  
is a measure for a single response, combining variance from bias and 
precision; hence it is with more uncertainty than bias and precision. 

Because each of the three measures is associated with a reference, in 
the remainder of this paper, we subtract the reference value from each 
response and transform all the raw responses to errors (i.e., relative 

responses = raw responses − reference values). 

4.2 Bayesian multilevel (hierarchical) modeling 

We adopted a Bayesian modeling approach to estimate the error distri- 
bution. The mean and standard deviation parameters of this distribution, 
as described above, are considered bias and precision of the responses. 

We followed a process of model expansion with regularization [53, 
65]. It allowed us to understand how each predictor affects the model, 
to capture more variance in the data while reducing overfitting, and to 
explore the effects of secondary variables. We started with a minimal 
model, which contained only experimental variables, and a list of po- 
tential predictors, ordered by their importance in our subjective beliefs. 
We then progressively added the predictors and evaluated each inter- 
mediate model by inspecting their posterior predictions and posterior 
distributions of the coefficients. We compared each intermediate model 
to the last model using WAIC (widely applicable information criterion) 
and LOO (Leave-One-Out Cross-Validation) for out-of-sample predic- 

tion accuracy, and examined their Akaike weights (the probabilities 
of the differences in these predictions) [49, 53]. We also started with 
weakly informative priors and gradually regularized the priors as the 

model expanded [53]. We chose the final model which was the best at 
addressing our research questions, describing the current data,  and 

predicting future observations. 
We implemented the modeling processes using R packages brms [13], 

CmdStanR [24], bayesplot [22, 23], ggdist [41], and tidybayes [42]. 
We provide the analysis script and the resulting model files as supple- 
mentary materials (the analysis.Rmd|html and *.rds files). 

 

1Strictly, the σ parameter (standard deviation) describes imprecision. 

11  μ2 = DefaultError 

Explanation 

line 1 We treat all the responses as arising from a mixture of two 
distributions: a student t distribution for all the genuine reproduc- 
tion responses, and a normal distribution for those made without an 
intention to reproduce a value, termed the ‘default’ distribution. This 
is because sometimes participants did not move the mouse to make 
a response, resulting in a cluster of likely irrelevant responses at a 
small (known) value. The mixture model separates these two sorts 
of responses; a mixture model like this is ubiquitous in the visual 
memory literature [10, 86] for modeling responses. 

In the model, the mixture parameter θ1, the mean (µ1; bias), and 
standard deviation (σ1; precision) of the student t distribution vary 
with the experimental variables. The mean (µ2) of the normal distri- 
bution captures the default responses (see line 11 below). We assumed 
that the ν1 parameter of the student t distribution and the standard 
deviation (σ2) of the normal distribution do not vary. We also left 
censored the responses to reduce the impact of erroneous responses. 

line 2 This line describes the probability of a response coming from 
the genuine reproduction (cf. default) distribution. This probability 
could be affected by if the mark was changed (1 or 0), the number of 
marks, the visual channel used, and the reference value. 

The mean (µ1; bias) of the reproduction distribution is a joint function 
of a set of linear predictors with varying intercepts and slopes: 

line 3 The experimental variables NumMark and VisualChannel are 
of the most importance. ReferenceValue acknowledges that percep- 
tual errors are likely to be affected by the magnitude of stimuli  
(e.g., Weber-Fechner’s [26, 32], Stevens’s power [74], and Guilford’s 
laws [28]) without making a strong assumption about this relationship 
is the same for different numbers of marks and visual channels; this 
aligns with the observations that Weber’s law appears not to hold  
for extreme values [25] nor perception of area and angle [74] (see 
Appendix B for more discussion). The interaction between these 
variables further generalize this relationship. 

line 4 ExperimentalTrial captures learning and fatigue effects over 
the course of the experiment such that we can later divest these effects 
by conditioning on the median trial. 

line 5 DataMean is the average of the shown data in a trial. It 
approximates the context of a response. If the reference value is small 
but the data mean is large, it may indicate that this response was made 
in the presence of other large values, and vice versa. The interaction 
with VisualChannel is motivated by the speculation that participants 
may use perceptual proxies for mean [39, 60], and the proxies may be 
different for different visual channels [31]. 

line 6 The group-level effects (“random intercepts and slopes”) cap- 
ture the correlation within a participant and also allow each participant 
to vary for different experiments and experimental conditions. 

lines 7-10 The same predictors were used for bias (µ1) and 
precision (σ1) to ensure compatibility. 

line 11 The responses from the default distribution, when participants 
may not be trying to reproduce the value, are always near a small, 
known value (denoted by DefaultError), specified via the informative 
priors for the mean (µ2 and standard deviation (σ2) . 

https://osf.io/b26yq/


 

(a) Primary effects (b)  Deriving  probabilistic ranks 

These figures show how bias and precision vary with the number of marks and the 
reference value. Remember that bias (mean; µ) and precision (standard deviation; 
σ) are the aggregated properties of a set of responses; they are distributional 
parameters of the modeled responses (error). 

The slope shows the effects from the number of marks, and the distance between 
two “ribbons” shows the effects from different reference values. Each ribbon 
averages across all participants and conditions on the median trial and an average 
case when data mean is equal to the reference value. 

A ranking list of visual channels with uncertainty is 
considered a chain on which a previous node (a visual 
channel) is more likely (>50%) to be better than any of 
its later nodes. 

Such probabilities are found by subtracting the 
posterior samples of two channels. Negative values 
mean better (e.g., less bias). The proportion of negative 
values over the entire distribution is the probability. 

 

i. Bias (µ) is how the reponses systematically deviate from the truth. This figure shows the subtractions and the chain for 4 
marks, which becomes the basis of Fig. 8i (4 marks). 

 
 

over- 
estimation 

 
 

not 
biased 

 
 

under- 
estimation 

 

0.50 

 
0.25 

 

0.00 

 

-0.25 

 

-0.50 

 
-0.75 

Position 
(bar) 

Position 
(line) Luminance Area Length Angle 

A ribbon shows 
the estimated 
bias and the 
associated 
uncertainty for 

0.1 a reference 
0.2 value. 
0.3  

 
median 
5% ... 95% 
credible 
intervals 
(CIs; Bayesian 
analogy to 
confidence 

 

Length − Position(bar) 

Position(bar) − Angle 

Angle − Luminance 

Luminance − Area 

Area − Position(line) 

Pr(less biased|marks=4) 

 
.64 

 
.71 

 
.63 

 
.86 

 
.69 

2    4 8  

IPosition(bar)I − IAngleI 

intervals) −0.1 0.0 0.1 

 

ii. Precision (σ) is how consistent the reponses are. The subtractions and the chain for precision. This is 
the basis of Fig. 8ii (4 marks). 
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student_t(µ,σ,ν) 

Mean and standard deviation jointly define the response distributions, and samples from the distribution express the 
predictions of a future response as the posterior predicted error. 

Unlike aggregated properties (bias and precision), errors describe individual responses, in which randomness dominates 
the differences among reference values and visual channels. Thus, the ribbons overlap with each other. 

 

iii. Error of individual response expresses the prediction of a future response. The subtractions and the chain for error. This is the 
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basis of Fig. 8iii (4 marks). 
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Fig. 6. (a) The primary effects modeled from the experimental observations; and (b) how we compare two visual channels, calculate the probabilities 
of being better, and finally derive the probabilistic ranks. 
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5    RESULTS 

To understand the differences in visual channels for the reproduction 
task, we report various effects on each of the precision, bias, and error 
measures. We then derive ranks for the visual channels. 

We base our inference on the first distribution of the mixture model 
and the posterior distributions (marginal, conditional, and predictive dis- 
tributions). Marginal posterior distributions summarize all the known 
information for one parameter; conditional posterior distributions tell 
us the expected value of one parameter in a specific situation; and 
posterior predictive distributions provide unobserved data conditioning 
on the observed data and the fitted model. 

i. Bias   (Figs. 6i and 7i) 

Number of marks. The average participant is very likely to be less 
biased in the reproduction, when the number of marks is small. For an 
average visual channel and an average reference value, the estimated 
probability that the average participant is less biased in a chart with 2 
marks than with 8 marks is .92. That is, for the same reference value, 
we expect 92% of responses with 2 marks to exhibit less bias than the 
responses with 8 marks. 

Reference value. The average participant is very likely to overestimate 
a small reference value and seriously underestimate a large reference 
value, and are least biased with a reference value around .4 or .5 
(median).  For an average visual channel and an average number   of 

i. Bias 

NumMark (2 − 4) 

NumMark (4 − 8) 

NumMark (2 − 8) 

 
ReferenceValue (0.1  − 0.5) 

ReferenceValue (0.5  − 1.0) 

ReferenceValue (0.1  − 1.0) 

 

ii. Precision 
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ReferenceValue (0.1  − 1.0) 

 
 

iii. Error of individual response 
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1.00 

−0.30 −0.15 0.00 0.15 

 
Pr(smaller errors) 

.58 

.65 

.71 

 
.51 

.73 

.74 

−1.6 −0.8 0.0 0.8 

marks, the estimated probability that the participant is less biased in a 
chart with the median reference value (.5) than the minimum value (.1) 
is .93 (this is 1-.07). Similarly, the estimated probability that an average 
participant is less biased in a chart with the median reference value (.5) 
than the maximum value (1.0) is .97. 

Interaction effects. The effects of NumMark and ReferenceValue inter- 
act, and each interacts with VisualChannel. For most of the visual 
channels but position (line), response bias increases when the number 
of marks is large and a reference value deviates from the median fur- 
ther. Overall, angle is the visual channel where response bias is most 
sensitive to either a change in the number of marks or the reference 
value; position (line) is where bias is sensitive to the reference value, 
but robust to the number of marks for large reference values. 

ii. Precision   (Figs. 6ii and 7ii) 

Number of marks. The average participant is very likely to be more 
precise (more consistent) when the number of marks is small. For an 
average visual channel and an average reference value, the estimated 
probability that the participant is more precise with a chart of 2 marks 
than a chart of 8 marks is .99. 

Reference value. The average participant is more precise with repro- 
ducing a small reference value and much less precise with reproducing 
a large reference value. For an average visual channel and an average 
number of marks, the estimated probability that the participant is more 
precise with the minimum reference value (.1) than the median or 
maximum reference value (.5 or 1.0) is 1.00 (nearly deterministic). 

Interaction effects. The effects of these two variables on precision in- 
teract with each other and further with visual channels. Response 
precision is more affected by the number of marks when the reference 
value is smaller, except angle, where precision is more affected by the 
number of marks when the reference value is large. Similarly, preci- 
sion is more affected by the reference value with fewer marks, except 
angle, where precision is more affected by the reference value with 
more marks. Overall, luminance is the visual channel where precision 
is least sensitive to the reference value, and position (line) is where 
precision is most sensitive to the reference value. 

iii. Error of individual response   (Figs. 6iii and 7iii) 
Fig. 7.  The exmaples of quantified primary effects of the number   

of marks and reference values. We take subtraction and calculate the 

marginal probabilities of being better (see Fig. 6b), averaging across 

visual channels and reference values (or different numbers of marks). 

 
5.1 Primary effects 

The model suggests that the two experimental variables—the number 
of marks (NumMark) and the reference value (ReferenceValue)—both 
have very strong effects on the reproduction responses across the three 
measures. To show these effects, we take an average participant (to 
eliminate individual differences), conditional on the median trial (to 
rid learning/fatigue effects) and on the case where data mean is equal 
to the reference value (to remove the effects of the other marks in the 
same trial). 

Fig. 6a shows all of the modeled effects, including the tendencies and 
the interactions between variables. Fig. 7 provides examples of quan- 
tified primary effects by showing how likely an average participant’s 
responses are better (less biased/more precise/smaller errors). 

The samples drawn from the posterior distributions provide an es- 
timation of errors in individual responses; for the convenience of 
comparison, we took the absolute values. 

Number of marks. The average participant is likely to make smaller 
errors with fewer marks. For an average visual channel and an average 
reference value, the probability that a single future response exhibits a 
smaller error with 2 marks than with 8 marks is .71. 

Reference value. The average participant is likely to make smaller 
errors with a smaller reference value. The estimated probability that 
a single future response will have a smaller error for the minimum 
reference value (.1) than the maximum (1.0) is .74. 

Interaction effects. Reproduction error is likely affected by the number 
of marks slightly more in larger reference values for area and angle, 
less for position (bar) and position (line), and similarly across different 
reference values for luminance and length. These interactions effects 
are milder than those observed for bias and precision, owing in part 
to increased uncertainty in this measure relative to the aggregated 
properties described by bias and precision. 
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5.2 Secondary effects 

The model also suggests several moderate effects. To show the learn- 
ing/fatigue effect, we condition on the average case where both refer- 
ence value and the associated data mean are at their median (.5, .55, 
respectively). To show the effect of data properties (e.g., the mean of 
all the data values in a trial), we condition on the average case where 
reference value is at its median (.5) in the median trial, and sampled all 
the possible values of data mean. We also marginalize out the number 
of marks and visual channels and use an average participant. 

the observations and the modeling processes. 

A rank in the probabilistic domain may mean that one is more likely 
to be better than another. Hence we start by calculating these proba- 
bilities for visual channels. We marginalize all reference values and 
condition on the median trial with the median data mean. We subtract 
the absolute values of each measure; if A is better (less biased/more pre- 
cise/smaller errors) than B, we expect negative values after subtraction 
(see Fig. 6b). The estimated probability of A being better than B is the 
proportion of the negative values over the entire subtracted distribution. 

i. Bias The participant appears to un- 
derestimate reference values at the begin- 
ning of the experiment. In later trials, the 
participant generally increases the repro- 
duced values and becomes less biased. In 
reproducing an average value, the partic- 
ipant seems not affected by other small 
reference values, but is likely to under- 
estimate the median value when other 
reference values are large. 

ii. Precision The participant appears to 
become slightly less precise as the exper- 
iment goes on, possibly due to the fatigue 
effect. In reproducing an average value, 
the average participant seems less precise 
when other larger values are present in 
the same trial; these larger values pos- 
sibly distract the participant’s judgment 
and reproduction. 

iii. Error of individual response It ap- 
pears that learning or fatigue effects do 
not strongly affect response error. In re- 
producing an average value, the partici- 
pant is likely to make smaller errors when 
other reference values are small, and to 
make larger errors when other values are 
large. The error of a response seems to 
largely increase when data mean is above 
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When this probability is larger than 50% (larger than chance or other 
thresholds), we say A is more likely to be better than B, and A “wins.” 
We derive the probabilistic rank lists by pairwise subtraction and then 

build a chain of visual channels where any previous node on this 
chain always “wins” any comparison to the later nodes for a given 
measure. This is essentially a constraint satisfaction problem [48, 55], 

and there are many methods to find a solution [48].     For the scale 
of our problem, we can build the chain by hand or apply heuristics 
(e.g., sorting by how many times a visual channel “wins”). We construct 
a chain for each measure and visualize them in Fig. 8, augmented with 
the associated probabilities to convey uncertainty. 

The ranking produced by the precision of two-value ratio judg- 

ments does not hold for each of the three measures nor any of the 
modeled numbers of marks. The ranks changes with different numbers 
of marks across different measures, which suggests that the previous 
channel rank is likely not generalize to other visual comparison tasks. 

 

6 DISCUSSION 

6.1 The context of a visualization 

We find that showing more marks adds substantial noise to memory 
representations, and has an order of magnitude more influence on 

performance than the choice of channel. Squeezing more data into 
one visualization may cause viewers to increasingly remember (and 

compare) data as statistics or rough global shapes [9, 16], rather than 
precise representations of individual values. Memory for each value 

likely also depends on its relation to the distribution of other values, as 
in work on neighborhood effects [4, 10, 87] and distractor effects [77]. 
We also find that the value of a mark (the reference value) has a more po 

.25, half of the median. 

 

5.3 Deriving probabilistic ranks 

5    60 0.1  0.5 werful effect on reproduction than the channel chosen: tall bars are 
more biased than small areas, even though position (bar) is one of the 
least biased channels overall. The context of the reference value also 
shows strong bias (e.g., angle), similar to past work where participants 

One primary goal of this work is to derive ranks for the visual channels 
based on the reproduction task and compare them to those from two- 
value ratio judgment tasks [18, 30, 33].  A ranking list may provide    
a summary of effects for others to digest the results (e.g., [31, 70]). 
However, a rank list may cause dichotomous thinking (e.g., “A is always 
better than B.”), which belies the nuances in the ranking. In the spirit of 
rethinking the previous ranks and in the context of Bayesian statistics, 
we will derive probabilistic ranks that acknowledge the uncertainty in 

tend to be more biased and less precise with a value further from the 
ends of the range [34, 52] (e.g., “edge effects”); it also aligns with 
psychophysical observations [26], where low and high ends of the data 
range can serve as perceptual anchors (e.g.,“the angle is 10◦ from 90◦ is 
perceptually congruent). Alternatively, for a channel like position (bar), 
participants perform better around the median value, possibly because 
they resort to near-mean estimations when their memory falters, which 
would also be consistent with better performance around the mean of 
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Fig. 8. The probabilistic rankings of visual channels on the three measures, augmented with the probability of the associated channel being 

better (less biased/more precise/smaller errors) than another. 
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Fig. 9. An example of how the model could support design decision 
making via predicting a viewer’s responses. 

 

the possible range of values [37]. 

The reproduction task may also have provided a context that influ- 
enced the pattern of results. For example, while line charts relied on 
the position channel, they were underestimated (redrawn lower than 
the original reference values). The connected nature of a line graphs’ 
points might have further induced viewers to perceive them as a sin- 
gle complex shape, or set of contrasting slopes, for the purposes of 
redrawing. 

6.2 Implications and future directions 

The channel ranking based on two-value ratio judgments is attractive 
as a rule. That task feels like a visual comparison distilled down to an 
atomic unit, which may lead to an assumption that a ranking based on 
that task should extrapolate to new ones. However, the present results 
question this assumption (Fig. 8), producing a different ranking for the 
two-value condition using a reproduction task. Designers should be 
increasingly skeptical of the channel ranking produced by two-value ra- 
tio tasks [18], which may not generalize as much as has been presumed. 
The present results also suggest that the number of marks, the reference 
values, and other secondary factors such as data mean may strongly, 
progressively, and interactively affect reproduction, which we argue 
may serve as an important proxy for data perception across a suite of 
realistic perceptual tasks. 

How might the rankings produced by the present model, once refined 
and expanded, be used by a designer? While we caution the reader 
that these results are a start, and more work is needed to replicate 
these rankings in more realistic and concrete perceptual tasks, we of- 
fer a glimpse of guidelines that might eventually follow. One might 
imagine that as length and position (bar) generally lead to less bias and 
smaller errors, these encodings might be desirable when bias must be 
minimized. Area is surprisingly more precise but could lead to more 
bias and larger error, so it might be preferred for improving precision. 
Luminance shows relatively stable performance across different num- 
bers of marks and measures, which might make it more suitable when 
the number of marks vary. Angle drops rapidly in all ranks as the num- 
ber of marks increases, making it less suitable for realistically complex 
data. Position (line) was surprisingly ineffective in this reproduction 
task, but may reduce bias for a larger dataset. Knowing one’s risk ap- 
petite for the misperception of bias or precision will inform the choice 
of visual channels. Moving forward, parameterizing the influence of 
data properties (number of marks, values) and the designers’ desire to 
optimize for lower bias, higher precision or lower error may help to 
inform visualization designers’ decisions. 

Concurrently considering multiple factors and their conflicts and in- 
teractions would likely be difficult for designers, such that an automated 
model might be important for weighting their complexities. We were 
inspired by the recent modeling work [20,31,40,43,75] and appealed to 
psychophysical laws [31, 52, 69, 82], entropy [15, 68, 70, 71], perceptual 
proxies [39, 58], serial-position and ordering effects [36], visual mem- 
ory (e.g., [3, 10, 54]), neighborhood effects [87], and distractors [77]. 
We are capable of providing (very) preliminary recommendations given 
the inputs (see Fig. 9). Thus, a modeling approach like the present one 
may harmonize different factors and provide design candidates. 

It would be premature to derive other firm guidelines based on the 
present study; additional studies will be needed or establish whether 
there exist broadly applicable guidelines. Our task relies on a purposely 
abstract reproduction task as a first step toward inspiring future work 

Fig. 10. The moderate non-linearity and symmetry in responses for  (b) 

luminance and (c) angle, compared to (a) position (bar). 

 
using more concrete comparison tasks. Those studies will need to 
expand how the visualization research community operationalizes dif- 
ferent visualizations tasks (e.g., detecting trends and motifs, immediate 
or later comparison, and viewing a visualization with thousands of data 
points), and what ‘good performance’ means in a task (e.g., precision, 
bias, error, speed [44, 72], etc.). In addition, other factors such as top- 
down effects like prior knowledge [81] and expectations [45, 63] may 
impact reproduction task performance, and individual differences [62] 
and spatial ability [61] may affect strategies that subsequently impact 
task performance, which could be promising directions. 

6.3 Limitations 

For the sake of comparability, we treated all visual channels equally in 
designing the experiment and analyzing the data. This makes the chan- 
nels easier to compare, potentially at the cost of the usability for some. 
The redrawing method may add noise and bias to data, as it might not 
be equally intuitive for all the visual channels. For example, for angle, 
we mapped the y-coordinate of the cursor to the degrees of the angle, 
which might be more difficult to draw than others (e.g., position (bar) 

that maps the cursor to the height of the bar). Similarly, always dragging 
up from the zero value might result in a bias towards smaller values 
for the two position channels, possibly explaining the underestimation 
in position (line) noted above. These response methods likely have an 
impact on the result, and a comparison of different response methods 
might be important to generalization of these results. Similarly, the 
model also always assumes linearity between errors of the responses 
and all the variables. While most of the data meet this assumption, vi- 
sual channels like angle display moderate non-linearity across different 
reference values (Fig. 10), likely affecting the estimation of the model. 

 

7 CONCLUSION 

We revisited the ranking of visual channels [17] using a visual re- 
production task as a proxy of various visual comparison tasks. We 
tested participants’ reproduction performance with six visual channels: 
position (bar), position (line), luminance, area, length, and angle across 
different numbers of marks and data values. With a Bayesian multilevel 
model, we show that both the number of marks and the reference value 
strongly affect the bias and precision in a set of responses, as well as 
errors of individual responses; the number of marks gradually domi- 
nates the differences in visual channels and reference values, reflecting 
a strong limit on working memory, that likely serves to limit most 
comparison tasks in data visualization. We further derive probabilistic 
rankings from the model for each measure and show that the previous 
ranking [18] does not hold. This work demonstrates the limitations of 
the previous ranking [17], offers the preliminary new rankings based 
on a reproduction task, and presents a Bayesian modeling approach to 
rank visual channels, all as bases for future work to continue exploring 
this area. 

 

ACKNOWLEDGMENTS 

The authors would like to thank Satoru Suzuki and members of the 
Visual Thinking Laboratory at Northwestern University for their sug- 
gestions during the experimental design. The authors also thank the 
anonymous reviewers for their feedback.  This work was supported   
in part by grants BCS-1653457 and IIS-1901485 from the National 
Science Foundation. 



10 
 

REFERENCES 

 
[1] D. Albers, M. Correll, and M. Gleicher. Task-driven evaluation of ag- 

gregation in time series visualization. In Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems, page 551–560, 

2014. doi:10.1145/2556288.2557200. 

[2] R. Amar,  J. Eagan,  and  J. Stasko.   Low-level components of  analytic 

activity in information visualization.  Proceedings - IEEE Symposium   

on Information Visualization, INFO VIS, pages 111–117, 2005. arXiv: 

15334406, doi:10.1109/INFVIS.2005.1532136. 

[3] A. Baddeley. The concept of episodic memory. Philosophical Trans- 

actions of the Royal Society of London. Series B: Biological Sciences, 

356(1413):1345–1350, 2001. doi:10.1098/rstb.2001.0957. 

[4] G.-Y. Bae and S. J. Luck.  Interactions between visual working  memory 

representations. Attention, Perception, & Psychophysics, 79(8):2376–2395, 

2017. doi:10.3758/s13414-017-1404-8. 

[5] P. M. Bays, R. F. Catalao, and M. Husain. The precision of visual working 

memory is set by allocation of a shared resource. Journal of vision, 9(10), 

2009. doi:10.1167/9.10.7. 

[6] J. Bertin, W.  J. Berg, and H. Wainer.  Semiology of graphics:  diagrams, 

networks, maps, volume 1. University of Wisconsin press Madison, 1983. 

[7] E. Bertini, M. Correll, and S. Franconeri. Why shouldn’t all charts be 

scatter plots? Beyond precision-driven visualizations. CoRR, 2020. URL: 

https://arxiv.org/abs/2008.11310. 

[8] M. A. Borkin,  Z. Bylinskii,  N. W.  Kim,  C. M. Bainbridge,  C. S.  Yeh, 

D. Borkin, H. Pfister, and A. Oliva. Beyond memorability: Visualization 
recognition and recall. IEEE transactions on visualization and com- 
puter graphics, 22(1):519–528, 2015. doi:10.1109/TVCG.2015. 

2467732. 

[9] T. F. Brady and G. A. Alvarez. Hierarchical encoding in  visual  

working memory: Ensemble statistics bias memory  for  individual  
items. Psychological science, 22(3):384–392, 2011. doi:10.1177/ 

0956797610397956. 

[10] T. F. Brady and G. A. Alvarez. Contextual effects in visual working 

memory reveal hierarchically structured memory representations. Journal 

of vision, 15(15):6–6, 2015. doi:10.1167/15.15.6. 

[11] T. F.  Brady and G. A. Alvarez.  No evidence for a fixed object limit    in 

working memory: Spatial ensemble representations inflate estimates of 

working memory capacity for complex objects. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 41(3):921, 2015. doi: 

10.1037/xlm0000075. 

[12] D. H. Brainard and S. Vision. The psychophysics toolbox. Spatial Vision, 

10:433–436, 1997. 

[13] P.-C. Bürkner et al. brms: An R package for Bayesian multilevel models 
using Stan. Journal of Statistical Software, 80(1):1–28, 2017. doi: 

10.18637/jss.v080.i01. 

[14] C. Ceja, C. McColeman, C. Xiong, and S. Franconeri. Truth or square: 
Aspect ratio biases recall of position encodings. IEEE Transactions on 
Visualization and Computer Graphics, 27:1054–1062, 2020. doi:10. 

1109/TVCG.2020.3030422. 
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Rethinking the Ranks of Visual Channels 
Appendices 

 
A VISUAL  CHANNELS DETAILS 

In all the conditions, for all the visual channels, participants redrew the stimulus by dragging their mouse above the data mark. This may be 
obvious for a visual channel such as a bar graph, where the height of the bar reflects the underlying value. It is a little less obvious for a wind map, 
where the orientation of the line reflects the underlying value. The motivation for this consistent response is to ensure that differences in the 
observed errors are not because of different motor demands. Using a consistent response method across different visual channels may introduce 
variance in the data. 

For all visual channel types, the data marks were presented within an axis that was nearly half the height of a 23” screen. Running with a 

resolution of 1280 × 800 pixels, the usable Y range for each data display was 800 - 20 pixels. The 20 pixels was dynamically determined ( 1  of 
the height) to keep the highest values from ever hitting the top of the screen. Similarly, the x-axis was determined to be half of the width, minus 

an edge buffer ( 1 of the width) to keep the data marks from hitting the edge of the screen. The maximum height for a bar is 390 pixels. The bars 
were 1/16th of the x-axis wide (37.3 pixels). As with all of the data marks used in the current experiments, participants were presented with a 
random selection of values from 0.1 - 1.0. The minimum bar height (0.1) was then 39 pixels. 

Experiment A: The visual channels with a common baseline 

The bottom of the each visual mark in the first experiment was randomly selected within the y axis range for each trial, so participants could 
not rely solely on position to remember the values they were shown in the graph. The background for all conditions was light grey (25% black). 

Position-bar Participants respond using a computer mouse and clicking/dragging above the data mark to draw it to the size they remember 
seeing in the initial data presentation. Note that the initial value was 0 for the bar. For this, and all conditions, the response was initialized to the 
lowest value in the range of possible responses. Participants can click or adjust the same mark multiple times. Their response is fully self-timed. 
If participants click away from the indicated response space, the graph briefly flashes off the screen to provide unintrusive feedback about the 
viable response regions. 

Position-line The heights of the points on the line were the same as the heights of the bars in the position condition, such that the maximum 
height for a line chart vertex was 390 pixels (the height of the Y range). The stimulus was created by joining the randomly selected point heights. 
The line was four pixels wide. 

Participants respond by re-drawing the line in the same manner as the bars. They click or drag the point above the zero-mark to adjust the 
height of the line, in an attempt to match the line chart they saw in the initial stimulus as closely as possible. 

Luminance The heat map marks were 37 37 pixels (same width as the bars). While the aligned bars and the line chart represented changing 
values by changing in height, the heat maps changed how light/dark the presented marks were. The maximum value was white, such that as the 
participant dragged their mouse higher, the box that they were adjusting became lighter. 0% was represented the same color as the stimuli in the 
other conditions: RGB values [127.5, 127.5, 127.5] or 50% black. 

Participants respond by click-and-dragging above the data point just as in the bar and line graphs. That is, to make the mark darker, they drag 
the mouse cursor higher on the screen. Just as with the bar and line charts, the initial response started at 0, and participants had to drag the mouse 
to change the value of the data mark. The only difference between the heat map and the previous conditions’ response method, is that, for the heat 
maps, when participants dragged the mouse up and down, the position of the mark stayed constant and the color changed; in the line and bar 
charts, when the participants dragged the mouse up and down the position of the mark changed and the color stayed constant. 

Experiment B: The misaligned charts 

Length As with the other visual channels in this experiment, the misaligned bars do not share a common baseline. Since the baseline varies 
within the y-axis range, the maximum height of these bars is reduced so that there is enough room to have the 0.1 - 1.0 variation while still having 
the participants respond in the opposite corner from where the bars were originally presented. Otherwise, the bars were the same as in Experiment 
1A: the aligned bars condition. 

Angle The wind map line segments were as long as the bars were wide ( 1 of the x-axis). The maximum value (1.0) was presented by a 
horizontal line (180◦). The remaining presented values (0.1 - 1.0) were proportions of the 0-180◦range, such that 0.1 was 18◦. 

Participants make their responses just as in the other conditions: by adjusting the height of the mouse cursor above the data mark. Because 
there is 180◦of possible response space it could be difficult to tell whether a nearly-flat was close to 0 or 180◦. To address this concern for 

participants, we ensured that they were well trained before they began the task, and that there was an origin for the line segment, such that a line 
falling to the right was closer to 0◦and a line falling to the left was closer to 180◦. Just as with the other visual channels, participants’ response 
screens were initialized to 0, so it was clear to participants that the initial screen was 0 degrees, they would exceed the 0.5 response only adjusting 
the line past 90◦. 

Area The area charts used circle visual channel, where the area of the circle mark changed in direct linear proportion to the size of the presented 

value. The maximum value (1.0) was represented by a circle with a diameter the same width as the bars ( 1   of the x-axis, or 37.3 pixels).  The 16 √
0 1  maximumarea 

 

 

remaining values were represented as a proportion of that circle’s area, such that the radius for the circle representing 0.1 was . ∗    
π 

. 

Participants re-drew the area values just as they re-drew the bar, line, and heatmap above: they dragged their mouse on top of the data mark to 
make their response. Note that the adjustment of this mark was scaled to the change the area of the circle (not, the diameter) since people tend to 
perceive the differences in the area of the circle as the natural data mapping. One unit increase in mouse cursor height, then, corresponds to one 
unit increase in mark area. 

B ALTERNATIVE  MODELING  APPROACHES 

An alternative approach to incorporate ReferenceValue as a predictor is to divide all the responses by their corresponding presented values. This 
approach assumes that each visual channel follows Weber’s law, and therefore division is able to normalize errors. However, this assumption is 
too strong, and we found that after dividing presented value, errors still vary with presented value, and errors for small presented values were 
exacerbated. Fig. B.1a shows absolute errors. Fig. B.1b shows absolute errors divided by presented value, where errors are still non-linear. 
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Fig. B.1. Alternative approaches of using our knowledge about perception. We could transfer data by dividing reference value, but this still did not 

normalize error distributions. Bayesian approaches can directly model skewed distributions. So, using reference value as a predictor is rational. 
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C CALCULATING  LOGABSERROR  (RATIO) FOR  OUR DATA 

We replicate Cleveland and McGill’s analysis to facilitate comparison. Cleveland and McGill’s study and their successors based the ranks of 
visual visual channels on a task of ratio estimation and the log-transformed absolute errors. 

LogAbsError = log2(|bias o f  percentage error| + .125) 

We utilize the same ratio measure to the modeled bias in our experiment and its reference: 

LogAbsError = log (     
bias  

100  + .125) 
Re f erence 

We apply this measure to our modeled bias and calculate t confidence intervals. Since the model has 49 participants levels, we can consider that 
we have 49 participants. The results are used to generate Fig. 1. 


