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Abstract

Lakes provide continuous records of past regional and global climate. Most studies utilize single trench section dig from
the lake shore margins or from single core in the central part/depocenter of the lakes for paleoclimate reconstruction. These
reconstructions are based on the assumption of homogenous sedimentation across the lake. However, single core approach
for paleoclimate reconstruction is often debated due to inter-site spatial and temporal variations in sedimentation and proxy
responses. Therefore, in the present study, we explored the spatial-temporal heterogeneity in a small post-glacial lake of the
Lahaul Himalaya and its influence on paleoclimate reconstruction. The depocenter of lake received ~2.5 times higher aver-
age sedimentation compared to the shore margin. Despite the distinct sedimentation rate in depocenter and shore margin,
environmental magnetic and total organic carbon (TOC) records showed similar environmental signals over equivalent time
periods. The depocenter core provided high-resolution lacustrine environment, whereas the marginal trench recorded major
shifts in paleoclimate over a longer time scale. New multi-proxy data showed strengthened Indian summer monsoon (ISM)
during medieval climate anomaly (MCA) and weakened ISM during little ice age (LIA) in the NW Himalaya.
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Introduction

Lake sediments are important environmental archive and
continuous sedimentation provides an opportunity to study
high-resolution paleoclimate variability of several millennia
(e.g. Gasse et al. 1996; Williamson et al. 1998; Hodell et al.
1999; Kirby et al. 2004; Wiinnemann et al. 2010; Rawat
et al. 2015a, b; Rawat et al. 2021a). To retrieve the paleoen-
vironmental information from lacustrine sediments, several
organic (e.g. total organic carbon, total nitrogen, stable
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isotopes of carbon and nitrogen, lipid biomarkers, pollen
and diatoms) and inorganic (e.g. major and trace element
geochemistry, grain size, stable oxygen isotopes, mineral-
ogy and environmental magnetism) proxies are commonly
applied. The paleoenvironmental studies from the lacustrine
sediments are mostly based on single core considering that
sedimentation is homogenous across the lake (e.g. Charles
et al. 1991; Petterson et al. 1993; Fedotov et al. 2008; Fins-
inger et al. 2008; Lu et al. 2010). The single core approach
has been suggested to be more valid for the small varved
lakes compared to larger lakes owing to spatial consist-
ency in the geochemical proxies (e.g. TOC, stable carbon
and nitrogen isotopes) at annual scale (Gédlman et al. 2008,
2009). Several studies reported spatial variability in sedi-
mentations in non-varved lakes (e.g. Anderson 1990; Hilton
et al. 1986; Fritz et al. 2006; Schiefer 2006). Organic geo-
chemical proxies (e.g. lipid biomarker) have shown signifi-
cant spatial heterogeneity in surface sediments of lakes and
the core sediments from central part of the lake have been
suggested to best represent the average variability (Sarkar
et al. 2014). Along with this line of interpretation, Wang
et al. (2009) had also suggested that single core from the
deepest site can provide information about the total lake
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environment, whereas cores from a shallow site may divulge
shifts in environment over a longer time period.

A great number of studies on lacustrine sediments are
being carried out from the Indian subcontinent to reconstruct
the past Indian summer monsoon (ISM) precipitation (Misra
et al. 2019). Most of these studies are based on the single core/
trench approach either from the central part or from the mar-
ginal/shallower sites of the lake. The past ISM reconstruction
is not only important to understand the changes in the socio-
economic development of ancient Indian civilizations but also
to contemporary and future climatic changes (Pokharia et al.

2017, 2020; Dixit et al. 2018; Dutt et al. 2018; Rawat et al.
2021a). Therefore, in this regard, we aim to understand the
spatial-temporal heterogeneity in a small post-glacial lake
(~60 m diameter) from the Chandra valley, Lahaul Himalaya
and its impact on the paleoclimatic reconstruction (Fig. la,
b). The lake has developed on the glacially sculpted bedrock
(Fig. 1c). The water input in this lake is limited to snowmelt
and rainfall over the restricted catchment (Rawat et al. 2015b).
Therefore, the lake has a low sediment supply from a known
catchment, which makes it an ideal site to evaluate the spa-
tial and temporal variations in inorganic and organic proxies.

Fig.1 a Map of the study area with different Asian monsoonal set-
tings shown in the inset map. The white circles show location of stud-
ies in the NW and central Himalaya that have been discussed for the
regional/local paleoclimate correlation. (1) Chandra post-glacial lake
(Present study and Rawat et al. 2015a, b); (2) Chandra lake, Lahaul
(Kumar et al. 2020; Shamurailatpam et al. 2020); (3) Triloknath Pale-
olake, Lahaul (Bali et al. 2017); (4) Yunam basin, Lahaul (Bohra and
Kotlia 2015); (5) Tso Moriri, Ladakh (Leipe et al. 2014; Mishra et al.
2015a, b; Dutt et al. 2018); (6) Tso kar, Ladakh (Demske et al. 2009;
Wiinnemann et al. 2010); (7) North Pullu, Ladakh (Phartiyal et al.
2020); (8) South Pullu, Ladakh (Phartiyal et al. 2021); (9) Penzi-la
pass, Zanskar valley (Ali et al. 2020); (10) Anchar Lake, Kashmir
(Lone et al. 2020); (11) Wular Lake, Kashmir (Shah et al. 2020);
(12) Gharana Wetland, Jammu (Quamar 2019); (13) Kedarnath,
Alaknanda (Srivastava et al. 2017a, b); (14) Benital, Pinder (Bhushan
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et al. 2018); (15) Bedni, Pinder (Rawat et al. 2021a); (16) Badanital
Lake, Rudraprayag (Kotlia and Joshi 2013); (17) Takche lake, Spiti
(Mazari et al. 1995); (18) Bhujbasa, Gangotri (Kar et al. 2002); (19)
Pinder valley (Phadtare 2000; Riihland et al. 2006); (20) Dewar Tal,
Chamoli (Chauhan and Sharma 2000); (21) Pangong, Ladakh (Sriv-
astava et al. 2020); (22) Sitikher bog, Spiti (Chauhan et al. 2000);
(23) Naychhudwari bog, Parvati valley (Chauhan 2006); (24) Sahiya
Cave (Kathayat et al. 2017); (25) Rohtang Pass (Bhattacharya 1988);
(26) Tipra Bank Glacier (Bhattacharya and Chauhan 1997) and (27)
Sainji Cave (Kotlia et al. 2015). b Map of the Chandra valley show-
ing present study site (rectangle) with different glacier settings in the
region. ¢ Field photograph of the lake showing sampling site of the
Chandra core (CC) and marginal shore Chandra peat trench (CPT)
site. Figure is modified after Rawat et al. (2015a)
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Previously, we had established paleoclimate from this region
using multi-proxy data (i.e. pollen, stable carbon isotope,
total organic carbon and environmental magnetism) from a
marginal trench site [Chandra peat trench (CPT) sequence]
of this lake (Fig. 1c) (Rawat et al. 2012, 2015a, b). For the
present study, we collected a~ 111 cm long core from the cen-
tral/depocenter part of the same lake using a Russian Corer
(Fig. 1c). The core samples were studied using environmental
magnetism and total organic carbon proxies for spatial-tem-
poral heterogeneity. We also analyzed major and trace element
concentrations of lake core sediments for the paleoclimate
reconstruction.

Study area and sample collection

The Lahaul Himalaya (~3500-5000 m a.s.l.) lies in the rain
shadow zone due to the upliftment of Pir Panjal ranges dur-
ing the Pleistocene creating an orographic barrier for mois-
ture-laden winds of the ISM (Burbank 1982; Owen et al.
2001). This upliftment divided two climatic subdivisions of
the NW Himalaya (1) high precipitation front on southern
slopes of the Lesser Himalaya and (2) cold-dry semi-arid
regions of the northern Trans-Himalaya i.e. Lahaul, Zanskar
and Ladakh (Burbank 1982; Owen et al. 2001). The semi-
arid regions receive precipitation from both ISM and mid-
latitude westerlies bringing moisture from the Mediterranean
regions (Fig. 1). The post-glacial small lake was developed
on the glacially sculpted bedrock from Batal glacial stage
(~15.5-12 ka) in the Chandra valley, Lahaul Himalaya
(Fig. 1c). The Chandra core (CC) was carried out in the
depocenter of the lake using a Russian coreranda ~111 cm
long core was recovered (Fig. 1c). A total of 111 samples
were collected by slicing the sediment core at every~1 cm
interval for high-resolution systematic magnetic, geochem-
istry and TOC analyses. The detailed lithological description
of the core is given in Supplementary Figure S1. The rocks
in the study area are composed of sedimentary succession
of the Kunzam La Formation of the Haimanta Group over-
lying on the crystalline rocks of the Vaikrita Group. The
Kunzam La Formation is comprised of siltstone, shale, slate,
quartzite, sandstone and limestone/dolomite. The Kunzam
La Formation rocks are of the Cambrian age (Bhargava et al.
1991; Srikantia and Bhargava 2018) and were deposited in
a deep to shallow shelf setting in a low-energy depositional
environment (Parcha and Pandey 2016).

Methodology
AMS *C chronology

Three AMS '“C dates on bulk organic sediments at different
depth intervals of the lake core was analyzed at National

Ocean Sciences Accelerator Mass Spectrometry (NOSAMS)
facility of the Woods Hole Oceanographic Institution (MA,
USA). A detailed description of the sample treatment, pro-
cessing and method of AMS !#C dating can be accessed
from https://www.whoi.edu/nosams/home. The calibration
of AMS '“C ages (using IntCal13 data set) and construction
of the age-depth model was carried out using the Bacon
package (version 2.3.9.1) in R software (version 3.4.2)
(Blaauw and Christen 2011; Reimer et al. 2013).

Environmental magnetism

The low- and high-frequency magnetic susceptibilities
(x1=0.46 kHz and y;=4.65 kHz, respectively) were
measured using a Bartington MS2B laboratory sensor. The
frequency-dependent susceptibility x ¢y = (X s — X ) and cor-
responding percentage frequency-dependent susceptibility
Xta% = (X1t — Xnp/X1e X 100] were calculated. Anhyster-
etic remanent magnetization (ARM) was imparted at the
alternating field of 100 mT peak field superimposed over
0.1 mT DC field using a Molspin AF Demagnetizer and
remanence was measured using a Minispin Fluxgate Spin-
ner Magnetometer. ARM was normalized by DC bias field
strength and divided with the density to acquire the sus-
ceptibility of anhysteretic remanent magnetization (X Arp)-
Saturation isothermal remanent magnetization (SIRM) was
induced at 1000 mT forward field. Backfield IRM (BIRM)
was measured at — 300 mT for calculation of parameters hard
isothermal remanent magnetization (HIRM =0.5 X (SIRM +
IRM_340,m)) and S-ratio (— IRM_340,,r/SIRM). SIRM and
BIRM were induced using an ASC Model IM-10-30 Impulse
Magnetizer and remanences were measured using a Minispin
Fluxgate Spinner Magnetometer. Magnetic susceptibility,
ARM, SIRM and BIRM were measured at Paleomagnetic
Laboratory, Wadia Institute of Himalayan Geology (WIHG)
and at Department of Geology, Savitribai Phule Pune Uni-
versity, India.

For detailed magnetic mineralogy, selected samples were
analyzed for hysteresis loop and IRM acquisition at pro-
gressively higher DC fields up to a maximum field of 1 T
in 150 steps using a Princeton Measurements Corporation
Model 3900 Micromag Vibrating Sample Magnetometer.
Saturation magnetization (Ms), saturation remanence (Mrs)
and coercive force (Hc) were calculated from the slope
(paramagnetic) corrected hysteresis loops. The coercivity of
remanence (Hcr) was calculated from back-field remanence
curves. The un-mixing of magnetic coercivity distributions
from IRM acquisition data was performed using the web
application MAX UnMix (Maxbauer et al. 2016). Tempera-
ture dependence of the magnetic susceptibility was meas-
ured up to a maximum temperature of 700 °C in an argon
atmosphere using a furnace-equipped KLY-4 (AGICO)
Kappabridge. Hysteresis loop, IRM acquisition curves and
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temperature dependence of the magnetic susceptibility
measurements were performed at Centro Estratigrafico de
Registros Oceanografico (CORE), Instituto Oceanogréfico,
Universidade de Sao Paulo, Brazil.

Total organic carbon (TOC)

For TOC analysis, fine powdered sediment samples were
first treated with 0.6 N HCI to remove inorganic carbonate
contents. Then, ~0.2 to 20 mg of carbonate free powered
samples were packed into the tin capsule and combusted
at~1020 °C in an oxygenated environment in Flow Isotope
Ratio Mass Spectrometer (CFIRMS) coupled with Flash
Elemental Analyzer (EA) at WIHG. TOC was calculated
from peak areas obtained from the sum of integrated m/z 44,
45 and 46 signals measured in the CFIRMS.

Elemental geochemistry

Major and trace element concentrations of the lake core sedi-
ment samples were determined by solution method using a
PerkinElmer Elan-DRCe inductively coupled plasma mass
spectrometer (ICPMS) at WIHG. A 100 mg fine powdered
sample was digested with 10 ml of AR grade HF-HNO;
mixture (2:1) in open Teflon (PTFE) crucibles on a hot plate.
The process was repeated 3—4 times for complete digestion.
This was followed by two treatments with 2 ml AR grade
HCIO, and further evaporation to complete dryness. The
dried mass was then dissolved in 10 ml of 20% HNO; and
the final volume was made up to 100 ml using distilled water.
The sediment standard MAG-1 and shale standard SGR-1
were digested under similar conditions for calibration. A
batch of ten samples, a blank and two standards (MAG-1 and
SGR-1) were made and measured. The accuracy and preci-
sion of analysis for various major and trace elements were
achieved between 1 and 10% and 1-9% RSD, respectively.

Statistical analysis
We calculated Pearson’s correlation coefficients and per-
formed Principal Component Analysis (PCA) analysis on

all data of major and trace elements, TOC and environmental
magnetic parameters of the Chandra core. These analyses

Table 1 The AMS '“C radiocarbon ages of the Chandra Core

were performed using the data analysis tool package in excel
program and Origin software.

Results and interpretations

AMS '*C chronology

The result of AMS '*C chronology of the CC samples is pro-
vided in Table 1. The base sample at~111-110 cm depth of
the core produced an age of ~5514 cal years BP. The ages of
individual sediment depth horizons at each cm interval were
based on interpolated weighted median age calculated from
Bacon analysis (Supplementary Table S1). The Bacon age-
depth model result of the CC profile is presented in Fig. 2a.
Sediment accumulation rate (SAR) of the CC profile varied
from~0.07 to 0.63 mm year~! (Fig. 3a). Four distinct sedi-
ment accumulation phases were identified in the CC sedi-
ments (Fig. 3a). (1) Low sedimentation: ~0.09 mm year‘1
(avg.) from~5514 to 2178 cal years BP; (2) medium
sedimentation: ~0.26 mm year~' (avg.) from~2178 to
1900 cal years BP; (3) high sedimentation: ~0.5 mm year™'
(avg.) from ~ 1900 to 980 cal years BP, and (4) medium sedi-
mentation: ~0.3 mm year™! (avg.) from~980 cal years BP
to Present (Fig. 3a).

Magnetic mineralogy and concentration

The magnetic concentration parameters [(x ;= ~1.8-23.1
(x 107°m® kg™!); SIRM = ~6.3-164.3 (x 107°A m*kg™})
and X Ay =0.63-92.5 (X 10 m*kg~")] showed highly vari-
able distribution of magnetic minerals throughout the core
profile (Supplementary Table S2; Fig. 4). x 4% and ¢4 var-
ied from 0 to 17% and 0-1.70 (x 10~°m’kg™"), respectively,
indicating a total absence of superparamagnetic (SP) ferri-
magnetic particles to their low presence in lake sediments.
Xa% > 5 was found only in top lake sediment sequence
(past~ 1200 years) indicating presence of SP ferrimagnetic
particles in recent sediments. S-ratio varied between 0.30
and 1 indicating variations from antiferromagnetic (e.g.
hematite) rich sediments to ferrimagnetic (e.g. titanomagnet-
ite) rich sediments in the lake core samples (Supplementary
Table S2; Fig. 4).

Sample Id Depth (cm) Lab no Sample type AMS “C ages Minimum age Maximum age Median age
(years BP) (cal years BP) (cal years BP) (cal years
BP)
CC-29 28-29 0S-98755 Bulk organic sediments 1050 +45 768 1051 933
CC-77 76-77 0S-98754 Bulk organic sediments 1960+35 1819 2304 1938
CC-111 110-111 0S8-98751 Bulk organic sediments 483050 5236 5701 5514

@ Springer
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Hysteresis loop and its parameters (Ms, Mrs, Hc and
Hcr) are diagnostic for understanding magnetic miner-
alogy and grain size/magnetic domains (Dunlop 2002).
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line (red) shows the weighted median ages for each depth. The age
data of CPT profile is after Rawat et al. (2015a)

Hysteresis results for all selected samples from different
depth intervals showed similar shapes with loops closing
below 300 mT and there was no signature of wasp-waisted
feature indicating dominant unimodal population of low
coercivity ferrimagnetic minerals (Fig. 5a—e). Hc and Hcr
varied from~21.9 to 32.7 mT and ~44.1-52.1 mT, respec-
tively, indicating typical characteristics of fine pseudo sin-
gle domain magnetite or mixed multidomain and pseudo
single domain magnetite (Roberts et al. 1995; Peters and
Dekkers 2003) (Fig. 5a—e).

The IRM un-mixing results showed three distinct mag-
netic components (Fig. 5f—j). The model results output are
given in Supplementary Table S3. The low component (com-
ponent 1) had mean coercivity (Bh) for all samples between
1.33 and 1.50 log units (21.5 to 31.6 mT) and dispersion
(DP) between 0.27 and 0.38 broadly suggesting that this low
coercivity ferrimagnetic component is possibly pedogenic
magnetite (Maxbauer et al. 2016). The medium coercivity
component (component 2) Bh ranged between 1.87 and 1.95
log,, units (74.7-89.2 mT) and DP between 0.26 and 0.31.
This medium coercivity component 2 possibly indicated
partially oxidized/altered single domain (SD) magnetite or
maghemite and had the highest proportions in all the sam-
ples. The high coercivity component (component 3) had Bh
range from 2.58 to 2.83 log,, units (~382 to 676.4 mT) and
DP between 0.25 and 0.45. This high coercivity component
3 showed the presence of hematite.

@ Springer
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The temperature-dependent magnetic susceptibility
showed similar behavior for all the analyzed samples with
two increases in magnetic susceptibility i.e. (1) minor
increase in susceptibility starting at~250 °C with peak
susceptibility around 290 to 300 °C, and (2) major increase
in susceptibility starting at ~420 °C with peak suscepti-
bility around ~ 490 to 500 °C followed by complete loss
of magnetization between ~ 570 and 590 °C (Fig. 5k—o).
The minor increase in susceptibility at ~250 °C with peak
around ~ 290-300 °C indicated the transformation of
weakly magnetic minerals such as ferrihydrite to relatively
stronger magnetic minerals such as maghemite (Hanesch
et al. 2006). The major increase in susceptibility start-
ing at~420 °C with peak susceptibility at ~490-500 °C
was possibly due to either thermochemical alteration of
paramagnetic clays and/or pyrite into magnetite, which
was identified by the Curie temperature of ~570 to 590 °C
(Jovane et al. 2019) (Fig. 5k—o0). The other possibility of
this increase was from either goethite or hematite trans-
formation into magnetite under reducing environment cre-
ated by the decomposition of organic matter present in
samples and release of CO, (Hanesch et al. 2006; Dekkers
1990; Jordanova and Jordanova 2016). The IRM unmix-
ing results showed presence of antiferromagnetic mineral
hematite in all samples with low proportions as well as
organic carbon from TOC measurements. Varying amount
of organic carbon and paramagnetic clays may have con-
trol on the neoformed minerals and their concentration

@ Springer

which can be seen from variable increase in susceptibility
of cooling curves.

Geochemistry and total organic carbon

The concentration data of 24 major and trace elements and
TOC analyzed for all 111 samples of the Chandra core are
provided in Supplementary Table S4. The TOC data var-
ied between 0.20 and 21.24% indicating the highly variable
distribution of organic matter implying significant changes
in the paleo-productivity of lake in response to changing
climate/precipitation. The PCA analysis showed four prin-
cipal components with eigenvalues> 1 amounting to 77.85%
of the cumulative variance (Supplementary Table S5). The
maximum variance was shown by PC1 with 58.48% fol-
lowed by PC2 representing 10.20% of the total variance.
Most of the major and trace elements, magnetic concentra-
tion parameters and organic carbon data (Ti, Ca, Mg, Mn,
P, Sr, V, Co, Cr, Zn, Cd, Pb, Sc, Li, U, X, X 59> SIRM, X Arm
and TOC) were strongly loaded on the PC1. Fe, Ba, Rb, Ni,
Cu, Th and HIRM were moderately loaded on PC2 (Sup-
plementary Table S5). Al, Na and K were strongly loaded on
the PC3 which amount to 5.04% of total variability. Biplot
with loadings and the scores for PC1 and PC2 is shown
in Supplementary Figure S2. Except K, most parameters
showed a positive correlation (Supplementary Figure S2).
The PCA tool has been useful in distinguishing the changes
in redox conditions in the lake environment during different
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Fig. 5 Rock magnetic results on the selected samples of the CC profile. a—e Hysteresis plots; f—j IRM Un-mixing and k—o temperature-depend-

ent magnetic susceptibility

time intervals (e.g. Garnier et al. 2020). In present analy-
sis, a distinguished segregation or clustering between redox
sensitive and terrigenous proxy was not clearly observed.
However, organic proxies (TOC and P) showed a distinct
clustering than terrigenous proxies (e.g. Al and Ti) (Sup-
plementary Figure S2). Further, based on strong and mod-
erate loadings of most of the data on PC1, it could not be
specifically assigned to a single process but to a number
of processes that might work in close association in a lake
system e.g. detrital input, oxidation-reduction and organic
processes (Supplementary Table S5).

The Pearson’s correlation coefficient for most of the
analyzed major and trace elements showed moderate
(r=0.50-0.70) and strong (r=0.70-0.99) positive correla-
tions amongst themselves and such correlations are com-
monly expected in catchment weathering and lakes deposi-
tional systems e.g. Fe showed moderate positive correlation

with Ti and strong correlation with trace metals Ni, Cu, Co
and Zn (Supplementary Table S6). These trace elements are
generally hosted in weathering resistant primary minerals
(e.g. Fe-Ti oxides/titanomagnetite) and/or adsorbed on sec-
ondary Fe—Mn oxides and clays (e.g. Srivastava et al. 2018a).
Magnetic susceptibility also showed moderate and strong
positive correlations with Fe, Ti, Mn, V, Cr, Ni, Co, Zn, Pb,
Cd, Li and U (Supplementary Table S6). Mn and Mg showed
strong correlations amongst themselves and with other trace
elements e.g. V, Ni, Co, Sc, Zn, U and Th (Supplementary
Table S6). Generally, Mg is retained in weathering system
owing to its high compatibility with clays, whereas second-
ary Fe—Mn oxides are formed from alteration of primary
minerals (Srivastava et al. 2018a). These trace elements (V,
Ni, Co, Sc, Zn, U and Th) are adsorbed on clays and Fe-Mn
oxides depending on the redox conditions. Organic matter
has been also suggested to have the adsorption capability of
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trace elements (Sharma et al. 2004). Positive correlations
amongst TOC and trace elements were found (Supplemen-
tary Table S6). P in lake sediments functions as an important
nutrient for lake productivity and showed strong correlations
with TOC (Supplementary Table S6).

Since precipitation is one of the dominant factors that
control weathering of catchment rocks, lake sediments in
monsoon-dominated areas are often evaluated for chemical
weathering to understand the precipitation strengths during
different time intervals. Chemical index of alteration (CIA)
(=100 x Al,0,4/(Al,05 + Na,O + K,0 + CaO*) is often
employed to understand the in-situ weathering of rocks as
more liable elements (e.g. Na, Ca and K) are more easily
leached off from primary minerals, and residue weathered
products gets enriched in Al-rich clays resulting in higher
CIA values (Nesbitt and Young 1982; Fedo et al. 1995;
Srivastava et al. 2018b). However, in closed lake basins, the
reverse CIA values are used to indicate chemical weathering
intensity i.e. high CIA values are referred to low chemical
weathering. This is due to the fact that more liable elements/
oxides (soluble) get deposited in lake basins and become
enriched (Zhisheng et al. 2011; Minyuk et al. 2014; Liu et al.
2014). In present studied lake, a small rivulet outlet exists
indicating that this lake is not an entirely closed lake and
therefore, solute/soluble chemical elements (e.g. Na, Ca, Sr
and K) are also expected to be partly lost from the lake thor-
ough rivulet. However, some elements like Ca and Sr may
be retained in the lake basin due to authigenic carbonate
precipitation. Elements such as K, Rb, Mg and Ba are also

easily leached off from primary minerals during chemical
weathering but can be adsorbed by secondary clay minerals
(Nesbitt et al. 1980; Nesbitt and Markovics 1997, Srivastava
et al. 2018b) and, therefore, these elements become enriched
in the weathering residue and only lost upon extreme chemi-
cal weathering (Nesbitt et al. 1980; Nesbitt and Markovics
1997). Al, Fe and Ti are conservative elements and with
increasing chemical weathering processes they tend to be
enriched in weathering products (Nesbitt et al. 1980; Condie
et al, 1995; Nesbitt and Markovics 1997). As weathered resi-
due products may compose the majority of the detrital com-
ponents in open or partly open lake sediments, we employ
CIA and ratios such as Al/Na, Al/Ca, Al/Mg, Al/Ti, Ti/Na
and Li/Ba to understand the chemical weathering intensity
during middle Holocene (Fig. 6). Higher values of these
ratios indicate higher chemical weathering in catchment
whereas low values indicate low chemical weathering. The
CIA values ranged from 50.47 to 84.7 indicating unaltered/
incipient to moderate chemical weathering of lake sediments
(Supplementary Table S4; Fig. 6). The CIA accompanying
ACNK plot showed moderate chemical weathering and
follows the expected weathering trend of catchment rocks
(Fig. 7).

The Rb/Sr is one of the most commonly used param-
eters applied in closed lake basin sediments to determine
the chemical weathering intensity of catchment rocks due to
their unique behavior (Jin et al. 2001). Rb is mostly incorpo-
rated in K-bearing silicates which are relatively more resist-
ant to weathering compared to Na/Ca minerals or carbonate
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Fig.6 Elemental ratios and chemical index of alteration (CIA) plotted against calibrated ages of the CC profile. The dark blue line overlain on
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rocks of catchments (Jin et al. 2006; Chen et al. 1999). Fur-
ther, upon higher chemical weathering, Rb can be retained
in weathering residue in K-rich clays e.g. illite. While Sr
behaves similarly to Ca in many geochemical processes
substituting for Ca in minerals and is easily leached off into
lake basins as dissolved Sr** load under enhanced chemi-
cal weathering (Jin et al. 2001, 2006). Therefore, weather-
ing residue in catchment rocks becomes enriched in Rb/Sr
whereas lake sediments have low Rb/Sr indicating higher
chemical weathering. Often studies show that Rb/Sr ratio
in lake sediments are mainly controlled by Sr activity by
showing the strong negative correlation between Rb/Sr and
Sr or a strong positive correlation with CIA (Jin et al. 2001,
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Fig. 8 Bivariate plots a Sr and Rb/Sr, and b CIA and Rb/Sr

2006; Zhisheng et al. 2011). The Rb/Sr showed strong nega-
tive correlation (R>=0.93) with Sr, whereas, Rb/Sr did not
show any correlation with CIA (R*=0.01) (Fig. 8). In pre-
sent studied lake sediments Rb (~80-159 ppm) also showed
highly variable distribution along with Sr (~ 13-94 ppm)
(Supplementary Table S4). Therefore, Rb/Sr in this lake set-
ting indicates a more physical weathering dominant process
than chemical weathering and therefore, high Rb/Sr may
indicate higher physical weathering/erosion.

Chronology-wise variations in environmental
magnetic, geochemistry and TOC data

The Chandra core record is divided into six zones primarily
based on visual observations on gradual or sharp changes in
environmental magnetic, geochemistry and TOC data.

CCZone-1(111-90 cm; ~ 5514 to 3160 cal years BP)

The magnetic concentration parameters s, SIRM and  srm
did not show any trend suggesting no significant changes in
ferrimagnetic concentration in this period (Fig. 4). S-ratio
ranged between 0.30 and 0.95 (average =0.59) suggesting
dominant antiferromagnetic mineral composition in this
zone. HIRM, an indicator of antiferromagnetic mineral (e.g.
hematite) concentration, showed a significant decreasing
trend (Fig. 4). TOC ranged between 0.2 and 0.7% indicat-
ing an overall low concentration of organic matter (Fig. 4).
Al/Na, Al/Mg and CIA showed a decreasing trend indicating
lower chemical weathering intensity (Fig. 6). Mn/Fe showed
relatively higher values between ~5500 and 2200 cal years
BP. Ti/Na and Li/Ba did not show any significant trend in
this zone (Fig. 6).
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CCZone-2 (90-76 cm; ~ 3160 to 1900 cal years BP)

The minor increase in SIRM and ;s and significant increase
in HIRM suggested an increased concentration of magnetic
minerals (Fig. 4). S-ratio ranged from 0.41 to 0.90 (aver-
age=0.61) indicating relative abundance of antiferromag-
netic minerals. TOC varied between 0.4 and 0.8% indicating
low organic carbon content (Fig. 4). Al/Na, Al/Ca, Al/Mg,
Al/Ti, Ti/Na and CIA showed increased values in this zone
indicating relatively higher chemical weathering (Fig. 6).

CC Zone-3 (76-40 cm; ~ 1900 to 1150 cal years BP)

A decrease in all magnetic concentration parameters indi-
cated an overall decrease in bulk magnetic minerals concen-
tration in this zone (Fig. 4). TOC ranged from 0.8 to 2% indi-
cating low organic carbon content (Supplementary Table S4;
Fig. 4). This zone showed highly fluctuating values with
overall lower values of CIA, Al/Na and Ti/Na (Fig. 6). Inter-
estingly, Rb/Sr showed significantly increased values in this
zone (Fig. 6). This zone also showed maximum sedimen-
tation implying that Rb/Sr coincides well with changes in
sedimentation and validates a proxy for detrital/terrigenous
input in these lake settings.

CCZone-4 (40-24 cm; ~ 1150 to 770 cal years BP)

This zone was characterized by an increased concentration
of magnetic minerals (Fig. 4). ;3% and ;4 also showed the
presence of SP ferrimagnetic particle in this zone (Supple-
mentary Table S2; Fig. 4). TOC ranged from~ 1.3 to 10.7%
indicating significantly increased organic productivity dur-
ing this period (Fig. 4). Li/Ba and Mn/Fe showed increased
values, whereas Al/Na, Al/Ca, Al/Mg, Al/Ti, Ti/Na and CIA
showed low/decreased values (Fig. 6).

CCZone-5 (24-13 cm; ~ 770 to 390 cal years BP)

The low values of all the magnetic concentration parameters
indicated decreased bulk magnetic concentration in this zone
(Fig. 4). TOC showed significantly decreased values as com-
pared to the previous zone (Fig. 4). Li/Ba and Mn/Fe have
declined in this zone. Al/Na, Al/Ca, Al/Mg, Al/Ti, Ti/Na and
CIA showed increased values (Fig. 6).

CC Zone-6 (13-0 cm; ~ 390 cal years BP to present)

All the magnetic concentration parameters showed an
increasing trend in this zone indicating the increased con-
centration of bulk magnetic minerals (Fig. 4). TOC ranged
from~6.5 to 21.2% with an average of 12.5% suggesting
maximum organic content in this zone (Supplementary
Table S4; Fig. 4). Li/Ba and Mn/Fe have increased during
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this period. Al/Na, Al/Ca, Al/Mg, Al/Ti, Ti/Na and CIA
showed a decreasing trend (Fig. 6).

Discussion

Spatial and temporal variations in marginal trench
and depocenter core

For comparison of sedimentation rate in depocenter core
(CC) and marginal trench (CPT; Rawat et al. 2015a) profiles,
the AMS '“C ages of the CPT profile were re-calibrated with
the IntCal13 calibration data set using Bacon package (ver-
sion 2.3.9.1) in R software (version 3.4.2) and age-depth
model was developed (Supplementary Table S1; Fig. 2b).
The SAR of the CPT profile is presented in Fig. 3b. The
sedimentation in both shore margin and depocenter of the
lake was continuous. The average SAR for the CPT pro-
file was ~0.13 mm year™! for past~ 5600 years, whereas the
average SAR for the CC profile was ~0.32 mm year™' for
past~5500 years. This indicated that the depocenter of the
lake had received ~2.5 times higher sedimentation compared
to the shore margin site, which is in accordance with the
several studies (e.g. Hilton et al. 1986; Wang et al. 2009).

The spatial and temporal correlations of data using graph-
ical/stratigraphy observation for environmental magnetic
(x;r and HIRM) and organic proxies (TOC) from marginal
CPT and depocenter CC profiles are provided in Fig. 9.
Xir and HIRM data of both CC and CPT profiles showed
a good correlation (Fig. 9). However, a small temporal off-
set (< 150 years) was observed for different zonations of
CPT and CC profiles (Fig. 9). The temporal variations in
magnetic proxy of CPT and CC profiles were very small
and broadly fall within the measurement accuracy of the
AMS '*C chronology and cannot be resolved. No significant
spatial variation in concentration of magnetic minerals was
found in the CPT and CC profiles except for two intervals
i.e.~ 1150 to 770 cal years BP and ~390 cal years BP to
present (Fig. 9). The relatively high concentration of mag-
netic minerals in the CC during these periods was possibly
due to higher sedimentation rates and sediment focusing
mechanism.

However, TOC showed a contrasting pattern in CC and
CPT profiles for the period between ~ 770 cal years BP and
Present. The spatial variations in the organic proxies such
as TOC had been well reported by several workers (John-
son et al. 2012; Wang et al. 2009). A higher TOC percent-
age was observed for the marginal trench as compared to
the depocenter core for the same period. Generally, higher
TOC along with higher sedimentation had been reported
in the depocenter part of the lake due to sediment focusing
mechanisms (Davis and Ford 1982; Hilton 1985; Wang
et al. 2009). The contrasting behavior in the present lake
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is possibly due to the development of peat on the lake mar-
gins that has led to higher organic carbon in the marginal
trench. Further, major and minor inter-core variability has
been often assigned to varying accuracy of the chrono-
logical model and varying sampling resolutions between
different cores (Fritz et al. 2006; Bogota-A et al. 2011).
Such complexities were precluded as sampling resolutions
were kept the same for the core and marginal trench (i.e.
1 cm interval) and similar accuracies were achieved for the
AMS '4C analysis. Therefore, observed spatial variation
is likely due to the development of peat in the margins.
Further, the depocenter has high sedimentation thus repre-
senting high-resolution data as well as TOC and magnetic
data co-varies in the depocenter. This implies that TOC
data in recent sediments are more suitable for paleocli-
mate reconstruction from the depocenter cores in cases
of the development of peats on lake margins. The present
study suggested that despite the spatial differences in the
sedimentation rate, the magnetic properties of core and
trench samples indicated similar variations over equivalent
time periods. The depocenter and shore margin site data
comparison in a small lake indicated that depocenter core
provides high-resolution lacustrine environment, whereas
the shore margin trench records major shifts in paleocli-
mate over a longer time scale and is consistent with the
similar observations in case of large size lakes (Wang et al.
2009). Therefore, based on present study we recommend
that depocenter of lake should be selected as a site of inter-
est for sample collection to obtain high-resolution pale-
oclimate data whereas shore margin site should be selected
as a site of interest to obtain long-term paleoclimate at
coarser resolution.

Magnetic mineral sources in lake sediments

The magnetic mineral sources into this lake have been sug-
gested to be from the lake catchment and no significant post-
depositional alteration such as dissolution of magnetic min-
erals and/or from authigenic and biogenic processes were
reported from the marginal CPT profile (Rawat et al. 2015b).
The new data on hysteresis analysis of several samples at
various depth showed dominant ferrimagnetic behavior of
lake sediments which was affirmed by the IRM un-mixing
data indicating low coercivity pedogenic magnetite and
medium coercivity partially oxidized magnetite/maghemite
as dominant magnetic carriers. Lake sediments were also
composed of high coercivity antiferromagnetic mineral, such
as, hematite but in relatively low proportions. Temperature-
dependent magnetic susceptibility results did not show the
presence of greigite indicating no alteration of magnetic sig-
nals from authigenic greigite formation. The IRM un-mixing
data also did not show any sign of bacterial magnetite often
characterized with low DP values <0.19. However, IRM un-
mixing is not a distinctive method to characterize bacterial
magnetite and requires more detailed investigation using
transmission electron microscopy (TEM), which is out of
scope/aim of the present study. Therefore, we assume that
most magnetic signals in lake sediments are from the catch-
ment soils. The dissolution behavior in lake sediments is
often described from decreasing concentration of fine mag-
netic particles with depth. In the present studied lake sedi-
ments, low x sgm Was found from~ 1200 to 5510 cal years
BP. However, during this period sediments were also char-
acterized by low TOC, an important catalyst for reducing
environment and dissolution. Further, Mn/Fe ratio was
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relatively high from ~2200 to 5510 cal years BP indicating
more oxidizing condition during this period. Therefore, sedi-
ments during this period did not show a signal of dissolution
but were rather dominated by high coercivity minerals than
low coercivity minerals as shown by low S-ratio values. The
ISM and westerlies are sources of moisture for this lake. A
recent study from the region had shown that fine sediment
particles could be brought by westerly winds as dust depo-
sition (Kumar et al. 2020). Therefore, fine-grained hema-
tite could also be sourced from dust. However, during the
period (~5500 to 2000 cal years BP) of relative abundance
of antiferromagnetic minerals, the strength of westerlies
had weakened and ISM was dominant (Kumar et al. 2020).
Therefore, it appears that all magnetic minerals were from
catchment soils and their concentration could be used to
infer the strength of ISM.

Mid- to late Holocene climatic variability
in the Lahaul, NW Himalaya

The decreased HIRM, low TOC and decreased Al/Na, Al/
Mg and CIA during ~ 5500 to 3160 cal years BP indicated
an overall low influx of sediments, low organic productivity
and low chemical weathering in the catchment suggesting
relatively weak strength of the ISM (Fig. 10). The period
from ~ 5500 to 3160 cal years BP can be subdivided into
middle Holocene (~5500 to 4200 cal years BP) and late
Holocene/Meghalayan stage (~4200 cal years BP to Pre-
sent). Various paleoclimatic records from the Indian subcon-
tinent showed that period from ~ 5500 to 4200 cal years BP
(and in some studies up to 3900 cal years BP) was character-
ized by increased ISM precipitation and/or as a relatively
stable warm and wet climatic period (e.g. Kathayat et al.
2017; Dixit et al. 2018; Rawat et al. 2021a). This warm and
wet period is explained as late portion of mid Holocene cli-
mate optimum (mHCO). The abrupt decline in strength of
ISM at~4200 cal years BP has been reported in many stud-
ies (e.g. Staubwasser et al. 2003; Dixit et al. 2014; 2018;
Dutt et al. 2018; Singh et al. 2021). The time period
from ~ 5200 to 3300 cal years BP is important in context of
understanding past civilizations and climate relationship.
The early agricultural based establishment of the Indus val-
ley civilization (IVC) between ~ 5200 and 4500 cal years BP
has been suggested to be favored by stable warm-wet cli-
matic condition whereas decline in ISM precipitation during
mature/late phase of the IVC led to the de-urbanization of
the IVC between ~ 3900 and 3300 cal years BP (Dicxit et al.
2018; Dutt et al. 2018; Pokharia et al. 2017, 2020; Rawat
et al. 2021a). However, the nature and timing of this late
Holocene decline in ISM precipitation is not uniform across
various basins in the Indian subcontinent with many records
showing decline in ISM precipitation between ~4600 and
3900 cal years BP (e.g. Dutt et al. 2019; Dixit et al. 2018;
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Fig. 10 Comparison of multi-proxy (CIA, HIRM and ) (a—c)
results of the depocenter CC with d—e Broadleaved and Conifer pol-
len data from marginal shore CPT sites of the Chandra lake, Lahaul
(Rawat et al. 2015a), f carbon isotope data from Bednikund lake,
Garhwal Himalaya (Rawat et al. 2021a and b), g oxygen isotope data
from Shaiya cave speleothem, Garhwal Himalaya (Kathayat et al.
2017), h total solar irradiance (Steinhilber et al. 2009) and i NH tem-
perature anomaly (Mann and Jones 2003)

Kotlia et al. 2015; Rawat et al. 2021a) and with several stud-
ies showing non-abrupt nature of this decline in ISM pre-
cipitation (e.g. Kathayat et al. 2017). New evidence from
Arabian Sea core suggested that both Indian winter monsoon
(IWM) (from westerly) and ISM had declined
at~4100 cal years BP (Giesche et al. 2019). Several studies
also contest records of stable warm and wet climate
between ~ 5500 and 4200 cal years BP with weakened/
decreased ISM precipitation during this period (e.g. Srivas-
tava et al. 2017a, b; Prasad et al. 2014, 2020; Ali et al. 2020;
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Wang et al. 2020). The pollen record from the marginal
trench profile of the studied lake showed the effective growth
of meadow vegetation between ~ 6700 and 3300 cal years BP
under relatively warm-wet climate condition and was inter-
rupted by an intermittent cold and dry climatic period
between ~4800 and 4300 cal years BP (Rawat et al. 2015a).
To have more local perspective on ISM variations during
this period climatic records from NW and Central Himalaya
is discussed. The multi-proxy record from neighboring lake
in the Chandra valley showed intensified ISM strength
from ~ 6500 to 4500 cal years BP, whereas from ~4500 to
3900 cal years BP precipitation source shifted to westerlies
which further dominated up to 3000 cal years BP with region
experiencing more colder and drier climatic condition
(Kumar et al. 2020). Shamurailatpam et al. (2020) based on
organic productivity record also showed decreased ISM pre-
cipitation in the Chandra valley between~ 5800 and
3800 cal years BP. In the same basin of Lahaul Himalaya,
environmental magnetic records from Triloknath paleolake
sediments showed decreased magnetic mineral concentration
between ~ 5400 and 3900 cal years BP suggesting reduced
monsoon season with less warm climatic conditions (Bali
et al. 2017). The multi-proxy records from Kilang Sarai,
Lahaul Himalaya also suggested the prevalence of cold and
dry climatic conditions between ~4500 and 2000 cal years
BP (Bohra and Kotlia 2015). The regional records from fur-
ther NW of the present studied site also indicated a cold-dry
climate and weak ISM strength during this period. For
example, extensively studied lake core records from the Tso
Moriri, Ladakh had shown a progressive lowering of lake
water level, reduction in detrital input, increase in the authi-
genic calcite precipitation as well as increase in salinity dur-
ing ~5500 to 2700 cal years BP, which indicated higher sum-
mer evaporation than fresh water input (low ISM
precipitation + melt water) (Mishra et al. 2015a, b and 2018).
Pollen records from Tso Moriri lake also suggested that dry
climatic conditions prevailed in the region at
around ~ 4000 cal years BP which continued up
till ~3600 cal years BP (Leipe et al. 2014). Sedimentological
and geochemical record from sediments of the Tso Moriri
lake showed long cold and arid phase between ~4350 and
3450 cal years BP (Dutt et al. 2018). The glacial advances
in the Tso Moriri region have also been noted during this
period (Hedrick et al. 2011; Leipe et al. 2014). The pollen
record from the Tso Kar lake in Trans Himalaya, which falls
in similar climatic conditions as of Tso Moriri, showed
humid climate from ~ 6900 to 4800 cal years BP followed by
expansion of Chenopodiaceae dominated desert-steppe
after ~4800 cal years BP indicating dry climatic condition
(Demske et al. 2009). The multi-proxy data also showed
shallowing of Tso kar lake after ~5500 cal years BP with
pronounced aridity from ~4800 to 4200 cal years BP
(Wiinnemann et al. 2010). The weakening phases of summer

monsoon in the Ladakh, Himalaya also corresponded to
increased strengths of the westerlies (Demske et al. 2009).
The glacier advance in the semi-arid Gomuche Kangri, Kar-
zok valley, Zanskar from ~ 6100 to 3300 cal years BP also
indicated the prevalence of cold-dry conditions (Saha et al.
2018). This cold-dry period is associated with the North-
Atlantic cooling and likely tele-connected via mid-latitude
westerlies (Saha et al. 2018). However, contrastingly Kumar
et al. (2020) suggested that moisture source for glaciation in
NW Himalaya during ~ 6500 to 4500 cal years BP was from
the ISM. Phartiyal et al. (2020) found cold and dry climate
between ~ 5800 and 4400 cal years BP in Khardung La
region of the Ladakh-Karakoram. Whereas in another study
from the same region Phartiyal et al. (2021) reported a wet
climate and westerly dominated precipitation from ~4100 to
3000 cal years BP. Ali et al. (2020) showed a cold-dry cli-
matic condition with reduced ISM precipitation from ~ 6200
to 4500 cal years BP and a warm-wet climate with increased
ISM precipitation from ~4500 to 3400 cal years BP in the
Zanskar valley of NW Himalaya. Shah et al. (2020) found a
wet climatic condition from ~ 6350 to 5000 cal years BP and
a dry climatic condition from ~ 5000 to 4000 cal years BP in
the Kashmir valley and assigned these climatic changes to
increasing and decreasing strengths of westerlies precipita-
tion, respectively. Lone et al. (2020) also found warm-wet
climatic condition in the Kashmir valley from ~ 6000 to
3900 cal years BP and a cold-dry climate from ~ 3900 to
2500 cal years BP and suggested these climatic variability
to changing strengths of westerly precipitation. Quamar
(2019) showed increased ISM precipitation strength
between ~ 5300 and 2800 cal years BP in the Jammu region
of the NW Himalaya. In the central-western Himalayan
region, the weakening of the ISM has been recorded
between ~4000 and 3500 cal years BP (Phadtare 2000). The
multi-proxy study on a peat sequence from the Alaknanda
basin also recorded declined ISM precipitation
between ~ 5400 and 3800 cal years BP (Srivastava et al.
2017a). Weak ISM strength from ~5800 to 5000 and
strengthen ISM from ~ 5000 to 4000 cal years BP was
reported from Benital lake in Pinder valley (Bhushan et al.
2018). Recent high-resolution study from Bednikund in Pin-
der valley showed stable warm and wetclimate from ~ 6000
to 3950 anddecreasedISM precipitation from ~ 3950
t03380 cal years BP (Rawat et al. 2021a). A number of pale-
oclimatic studies have been carried out from NW and central
Himalaya and from above synthesis it indicates that variabil-
ity in climate has not been uniform in different basins
between ~ 5500 and 3000 cal years BP and sources of pre-
cipitation i.e. ISM and westerlies have not been well quanti-
fied. The isotopic composition of modern Indus river head
water in Ladakh showed dominant ISM contribution (~74%)
and minor Mediterranean source/westerlies contribution
(~26%) in the Indus River (Sharma et al. 2017). Whereas
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moisture source determination from pore water, lake surface
water and glacier using deuterium excess showed dominant
Mediterranean source in Lahaul Himalaya during Holocene
(Kumar et al. 2020). The climatic variability in NW Hima-
laya is complicated as it receives moisture from both ISM
and westerlies and therefore only strength determination of
precipitation is not important but also identification of dif-
ferent sources of moisture in different basins is important for
more accurate understanding of the ISM dynamics in the
NW Himalaya during middle Holocene.

The increased influx of antiferromagnetic minerals
was recorded by an increase in HIRM during ~3160 to
1900 cal years BP. The increased values of Al/Na, Al/Ca, Al/
Mg, Al/Ti, Ti/Na and CIA showed higher chemical weather-
ing of catchment rocks (Fig. 10). The pollen results from the
marginal CPT site showed the mixed coniferous and broad
leaved forest along with the growth of diverse vegetation
cover in the region and continuous improvement in wetland
taxa between ~ 3260 and 1950 cal years BP under warm and
wet climatic conditions (Rawat et al. 2015a) (Fig. 10d, e). In
the NW Himalayan region of Ladakh, several studies showed
a cold and dry climate between ~3200 and 2000 cal years
BP (e.g. Demske et al. 2009; Wiinnemann et al. 2010; Leipe
et al. 2014; Lone et al. 2020), whereas few studies record
relatively warm and wet climate during this period (Ali
et al. 2020; Phartiyal et al. 2020; Quamar 2019). Further, in
northwestern-central Himalayan region most studies showed
warm and wet climate in different basins during ~ 3200 to
2000 cal years BP (Phadtare 2000; Kotlia and Joshi 2013;
Bhushan et al. 2018; Shamurailatpam et al. 2020; Rawat
et al. 2021a) (Fig. 10). Based on various studies in NW-
central Himalaya, a general census can be reached for the
overall warm and wet climatic condition between ~ 3200 and
2000 cal years BP.

The decreased influx of magnetic minerals shown by
decreased yr, SIRM and HIRM values in the Chandra core
from ~ 1900 to 1150 cal years BP indicated decreased sup-
ply of magnetic minerals in response to the decreased ISM
precipitation (Fig. 10). The decreased CIA, Al/Na and Ti/Na
showed lower chemical weathering of catchments. High Rb/
Sr was found during this period corresponding with maxi-
mum sedimentation implying higher physical weathering.
TOC data showed lower lake and catchment productivity
prompting more erosion and lake-fill up. The relative decline
of broad leaved and meadow taxa and the prolific increase of
coniferous taxa in the region during ~ 1950 to 1060 cal years
BP suggested a cool and moist climate (Rawat et al. 2015a)
(Fig. 10d, e). The pollen record from the neighboring
Spiti valley also indicated cool-dry climatic conditions
between ~ 2000 and 1000 cal years BP (Mazari et al. 1995).
Kar et al. (2002) found cool-moist climate between ~ 2500
and 1700 cal years BP in the central-western Garhwal Hima-
laya. In the Dhakuri region of Pinder basin, drier climatic
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condition was reported at~ 1600 cal years BP (Riihland et al.
2006). The cold-dry climate in the Chamoli region of the
Pinder basin had prevailed from~ 1860 to 1050 cal years
BP (Rawat et al. 2021a) (Fig. 10f). The pollen analysis
of Dewar Tal sediments also showed climatic deteriora-
tion between ~ 2000 and 1400 cal years BP (Chauhan and
Sharma 2000). The lake sediments from Badani Tal showed
low organic productivity, less erosion and reduced rainfall
under semi-arid to arid climate ca. 1800 to 920 cal years
BP (Kotlia and Joshi 2013). Recently, Srivastava et al.
(2020) also recorded extreme aridity between ~2000 and
1000 cal years BP which led to~6 m lake level fall in Pan-
gong Tso in the Ladakh, NW Himalaya. Emerging evidences
indicate a decline in ISM precipitation between ~ 2000 and
1000 cal years BP in the NW and central Himalaya. The
Northern Hemisphere (NH) temperature data recorded
cooler climate during this period which is in accordance
with reduced ISM strength (Fig. 10i) (Mann and Jones
2003).

The abundance of organic matter shown by increased
TOC in the Chandra core from ~ 1150 to 770 cal years BP
(~800 to 1180 AD) coincided with the increased mag-
netic mineral concentrations represented by increased
values of x, X ;4» SIRM, ¥ arpm and HIRM (Fig. 10). The
increased SP ferrimagnetic particle concentration during
this period indicated higher pedogenesis under favorable
warm and wet climatic conditions. The increased Li/Ba
ratio during this period indicated higher chemical weath-
ering and increased Mn/Fe showed relatively oxidizing
condition. Al/Na, Al/Ca, Al/Mg, Al/Ti, Ti/Na and CIA
showed low/decreased values during this period imply-
ing lower chemical weathering of catchment rocks under
reduced precipitation, which is in contrast with the mag-
netic, TOC and Li/Ba data suggesting relatively warm
and wet climate. TOC data of marginal trench and depo-
center core showed maximum vegetation growth in lake
and catchment during this period. The higher vegetation
growth in lake margins may have restricted the outflow
of the lake leading to higher retention of liable (i.e. Na,
Ca and K) elements compared to Al. This implies that
lake may have started showing closed lake basin behavior.
Therefore, as discussed above, reverse CIA and Al/ele-
ment ratios can be applied from this period forward with
their lower values showing higher chemical weathering
of catchment rocks. The pollen record from the CPT sec-
tion also showed expansion of broad leaved, non-arboreal
pollens and fern taxa between~ 1160 and 650 cal years
BP, which indicated warm and wet climatic condition
in the Lahaul valley (Rawat et al. 2015a) (Fig. 10d, e).
Overall this period was marked by high lake productiv-
ity, enhanced pedogenesis, higher chemical weather-
ing and increased runoff that indicated strengthened
ISM. This warm and wet phase of ~380 years (~ 1150 to
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770 cal years BP) corresponded to the “Medieval Climate
Anomaly” (MCA). The total solar irradiance (TSI) and
NH temperature showed covariance with the proxy data
indicating warmer period corresponded with higher ISM
precipitation (Fig. 10h, i). The warm and wet MCA has
been recorded in numerous NW Himalayan basins e.g.
between ~ 1500 and 900 cal years BP in the Lahaul and
Spiti valley (Chauhan et al. 2000) and between ~ 1300 and
800 cal years BP in the Parvati valley (Chauhan 2006). In
the central-western Himalaya, the MCA has been recorded
between ~ 1200 and 700 cal years BP in the Alaknanda
basin, Garhwal Himalaya (Srivastava et al. 2017a), and
between ~ 1200 and 800 cal years BP in Sahiya cave,
Garhwal Himalaya (Kathayat et al. 2017) (Fig. 10g). In
the Pinder basin, MCA was recorded between ~ 1050 and
760 years BP (Rawat et al. 2021a) (Fig. 10f). The higher
flood frequencies in Himalayan Rivers have also been
recorded during the MCA (Srivastava et al. 2017b).

The decreased values of magnetic concentration param-
eters (X Xta» SIRM, X srm and HIRM) between ~ 770 and
390 cal years BP (~1180-1560 AD) showed low supply of
magnetic minerals under declined precipitation condition
(Fig. 10). Further, decreased TOC during this period also
indicated low paleo-productivity implying climatic dete-
rioration. The decreased Li/Ba indicated lower chemical
weathering. The high CIA, Al/Na, Al/Ca, Al/Mg, Al/Ti
and Ti/Na under reverse behavior indicated lower chemi-
cal weathering due to reduced precipitation condition. The
pollen records from marginal CPT site showed a decline
in broad leaved and meadow vegetation during ~ 650 to
340 cal years BP (~1300-1610 AD) (Rawat et al. 2015a)
(Fig. 10d, e). The overall climate during this period in the
Chandra valley, Lahaul Himalaya was cold and dry with
reduced ISM precipitation. This cold-dry period corre-
sponded to the most recent climatic event, the “Little Ice
Age” (LIA). The TSI and NH temperature data correlates
well with the proxy data during this period (Fig. 10h, i).
The LIA has been reported from several parts of the NW
Himalaya (Bhattacharyya 1988; Mazari et al. 1995; Chau-
han et al. 2000; Chauhan 2006) and the central-western
Himalaya (Bhattacharyya and Chauhan 1997; Kar et al.
2002; Kathayat et al. 2017; Shekhar et al. 2017; Saha et al.
2018; Rawat et al. 2021a). During this period, glaciers
in the NW Himalaya have advanced (Owen et al. 1996;
Rowan 2017; Saha et al. 2018).

The subsequent period after ~ 390 cal years BP to the pre-
sent was marked by increasing trend in magnetic mineral
concentration (increased X s, X g» SIRM, X arpm and HIRM),
TOC, Li/Ba and declining trend in Al/Na, Al/Ca, Al/Mg,
Al/Ti, Ti/Na and CIA suggesting increased magnetic min-
eral supply, increased lake and catchment productivity and
higher chemical weathering under climatic amelioration and
set towards modern current warm period (CWP).

Conclusions

The present study was aimed to understand the inter-site
spatial and temporal variations in the inorganic and organic
proxies in a small post-glacial lake from the Lahaul Hima-
laya and to reconstruct paleoenvironmental variations dur-
ing the middle to late Holocene. The inter-site comparison
between depocenter core and marginal shore trench indi-
cated distinct sedimentation rate with~2.5 times higher in
the former. Despite the spatial differences in the sedimenta-
tion rate, the magnetic properties of core and trench samples
indicated similar environmental signals over equivalent time
periods. The higher percentage of total organic carbon was
found in the marginal trench as compared to the depocenter
core defying sediment focusing mechanism possibly due to
the development of peat at lake margins. The environmen-
tal magnetic, geochemical and total organic carbon data of
the depocenter core provided significant information on
erosion, chemical weathering and productivity of the lake
catchment of the Chandra valley during middle to late Holo-
cene in response to changing strength of the ISM. The weak
ISM strengths in the Lahaul Himalaya had been recorded
during periods (1) ~5500 to 3160 cal years BP, (2) ~ 1900
to 1150 cal years BP, and (3) ~770 to 390 cal years BP.
The strengthening or relatively improved ISM conditions
were recorded during intermediate intervals (1) ~3160
to 1900 cal years BP, (2) ~1150 to 770 cal years BP, and
(3) ~390 cal years BP to the Present (1950 AD). The weak-
ened and strengthened ISM periods during middle to late
Holocene in the Lahaul Himalaya were in accordance with
the regional climatic variability of various other NW and
central Himalayan basins.
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