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ABSTRACT 

Earlier experiments suggest that the evolutionary information (conservation and 

coevolution) encoded in protein sequences is necessary and sufficient to specify 

the fold of a protein family. However, there is no computational work to quantify 

the effect of such evolutionary information on the folding process. Here we 

explore the role of early folding steps for the sequences designed using 

coevolution and conservation through a combination of computational and 

experimental methods. We simulate a repertoire of native and designed WW 

domain sequences to analyze early local contact formation and find that the N-

terminal beta-hairpin turn would not form correctly due to strong, non-native local 

contacts in unfoldable sequences. Through a maximum likelihood approach, we 

identify five local contacts that play a critical role in folding, suggesting that a 

small subset of amino acid pairs can be used to solve the “needle in the 

haystack” problem to design foldable sequences.  Thus, using the contact 

probability of those five local contacts which form during the early stage of 

folding, we built a classification model that predicts the foldability of a WW 

sequence with 81% accuracy. This classification model is used to re-design WW 

domain sequences that cannot fold due to frustration and make them foldable by 

introducing a few mutations that lead to stabilization of these critical local 

contacts. The experimental analysis shows that a re-designed sequence folds 

and binds to polyproline peptides with similar affinity to those observed for native 

WW domains. Overall, our analysis shows that evolutionary designed sequences 
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should not only satisfy folding stability but also ensure a minimally frustrated 

folding landscape.  

 

 

INTRODUCTION 

Classic work by Nobel-laureate Christian Anfinsen showed that, for many 

proteins, the amino acid sequence alone is sufficient information to fold into a 

unique 3-D structure, the native structure. A brief combinatorial calculation of 

amino acid interactions shows that the information density of a protein sequence 

is vast. Specifying fold and function requires the impossible exploration of this 

enormous sequence space in totality. However, evolution, which is three billion 

years of Monte Carlo steps, has provided the data to dramatically reduce this 

search1,2.  It is plausible that all the information required for specifying the fold 

and characteristic function of a protein may be sufficiently encoded in the small 

set of amino acid interactions revealed by coevolution and conservation analysis 

of a given fold.  Using maximum entropy and/or Bayesian inference type 

methods on multiple sequence alignments of a given fold, one can incorporate 

important coevolved pairs as contacts, restraints in computer simulations 3–5. 

This greatly reduces the search through sequence space which allows one to 

obtain the 3-D native structure of proteins, intermediate conformations, protein-

ligand and protein-protein interactions 5–16.  

The success of approaches utilizing evolutionary analysis also prompts the 

question of whether we can use coevolution and/or conservation (i.e. amino acid 
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preference of a position) information to design a foldable sequence. That is, can 

we measure and subsequently predict the foldability of a designed sequence 

based on evolutionary analysis? 

Promising results were obtained previously for artificially designed sequences by 

using conservation and coevolution statistics based on the multiple sequence 

alignment (MSA) of 120 members of the natural WW domain family 17,18. 

However, only about one third of the evolutionary designed sequences fold to the 

natural WW domain structure and display similar binding affinity and specificity; 

the remaining two thirds are unable to fold.  

We hypothesize that the key in this discrepancy lies in the mechanism by which 

coevolved positions contribute to the folding energy, because only a small subset 

of coevolved contacts shapes the folding energy landscape. Identifying these 

contacts requires new methods that can isolate the set of coevolved positions in 

the sequence which encodes the depth and ruggedness of the folding funnel 

landscape 14,19 

In this work, we revisited these evolutionary designed WW sequences by 

exploring the emergence of interactions between the nearest positions in the 

sequence (i.e. local contacts), rather than focusing on the overall fold and its 

stability. Our results show that all foldable sequences form a nucleation site 

containing very strong native local contacts in the N-terminal β-turn, 

characteristic of WW domains. Our analysis also shows that, in unfoldable 

sequences, the N-terminal β-turn formation weakens due to formation of other 
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stable non-native contacts, leading to a frustration in the folding 20–22.  Using a 

maximum likelihood approach, we identify five local contacts that emerge at the 

beginning of the folding process critical for folding as they strongly contribute to 

the smoothness of the funneled landscape. By computing the probability of 

forming these five contacts, we successfully predict the foldability of a WW 

sequence. Building on the results of existing WW domain sequence studies, we 

develop a computational approach to design new foldable sequences by 

introducing mutations to unfolded sequences at positions forming these five 

crucial contacts.  Several of these mutants were experimentally expressed; one 

sequence of particular note, CC16_N21, folds into the typical WW structure and 

displays thermal stability comparable to native sequences. Most importantly, 

CC16_N21 binds target polyproline peptides with affinity in the low micromolar 

range, akin to those observed for native WW domains. These results indicate 

that functional WW domains can be designed by optimizing contacts emerging 

earlier in the folding pathway rather than so-called native contacts.  

 

METHODS 

Computational Methods 

Molecular Dynamics Simulations: We performed independent simulations of full-

coverage 8-mer fragments (1st step of ZAM) of the sequences listed in Table SI 

to identify possible nucleation sites at the beginning of the folding process 

(further details provided in Supplementary Information).  
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Contact Probability Metric:  Contact probability (CPROB) is the equilibrium 

probability of a given contact, calculated as the fraction of residue-to-residue 

alpha carbon separation distances less than 8Å. The CPROB of a contact i called 

xi in a sequence is defined by the average CPROB over all the 8-mer fragments 

containing this contact. Thus each sequence has a vector of CPROBs over all 

possible N local contacts  𝑥⃗ = (𝑥!, 𝑥", … , 𝑥#), N being the total number of local 

contacts.  

 

Classification Model: The foldability of each sequence in our dataset was known 

from earlier experiments and thus each sequence had a vector of CPROBs. 

Based on these data, we wished to train a probabilistic model to estimate the 

likelihood of a sequence being foldable versus unfoldable, given only the 

CPROBs observed in the 8-mer fragment simulations. This was a binary 

classification problem, where we had an unknown outcome z that could be either 

foldable (z = 1) or unfoldable (z = 0) and we wanted to calculate (𝑧 = 1|𝑥⃑), the 

probability of the sequence being foldable given its CPROB vector (Pfold). Such 

a problem could be solved using a logistic regression model where the log odds 

(logit), a function of	𝑃(𝑧 = 1|𝑥⃑), was assumed to be linearly related to 𝑥⃑: 

                       log
$%𝑧 = 1&𝑥⃑'

!($%𝑧 = 1&𝑥⃑' = 𝛼 + 𝛽⃑ ∙ 𝑥⃑                                        

(1)    

 

Solving for 𝑃(𝑧 = 1|𝑥) yields:  
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                                                𝑃(𝑧 = 1|𝑥⃑) =
)*+	%-./00⃗ ∙3⃑'

!.)*+	%-./00⃗ ∙3⃑'
                                     (2)                   

The linear coefficients 𝛼  and 𝛽  were estimated using a maximum likelihood 

estimation. The Wald statistics of 𝛽 i indicated the significance of the contact i 

(See Supplementary Information for details). 

 

Design of Foldable WW Domain Sequences: We took an unfolded sequence as 

a scaffold and tried to maximize the expected Pfold 𝑃(𝑧 = 1|𝑥!, 𝑥"⋯𝑥5) for the 

template by swapping its five crucial local contacts (ten residues) identified from 

the classification model with those of a foldable natural sequence. To achieve 

this, we enumerated all possible combinations of swaps (i.e., swapping only one 

certain contact or two contacts, etc). The expected Pfold after swapping was 

calculated with eq. 2, where the CPROBs of the swapped contacts were 

represented by those from the foldable natural sequence and unswapped ones 

were kept as originally in the unfolded sequence. The hybrid sequence (a mixture 

of an unfolded template and amino acids from folded sequences) corresponding 

to the maximum expected Pfold would be further examined in ZAM simulation 

and experiment. 

 

Experimental methods 

The CC16_N21 designed WW peptide was ordered from Genscript in addition to 

5 separate genes containing single point mutations from the N21 WW peptide.  

All genes were designed to be expressed as fusion proteins to the Maltose 
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Binding Protein (MBP) and were delivered in the pMAL-c5x vector for expression.  

For purification, each gene contained an N-terminal polyhistidine tag and the 

TEV cleavage site ENLYFQG.  The DNA was transformed via heat shock into 

competent BL-21 cells and grown on Agar-LB plates containing ampicillin 

overnight at 37°C.  Single colonies were used to inoculate 8 mL LB liquid cultures 

containing ampicillin and were grown overnight at 37°C shaking at 210 RPM.  1 

mL of these cultures was transferred to a 2L flask containing 1L LB media with 

ampicillin for growth and expression.  The rest of the cells were centrifuged 

down, and the plasmid DNA was extracted using Promega Wizard ® Plus SV 

Miniprep kits.  Correct sequences were verified using ASU Sanger Sequencing.  

The 1L cultures were grown to an OD of 0.6 and protein expression was induced 

by addition of 1mM IPTG.  Proteins were expressed for 3.5 hours at 37°C 

shaking at 210 RPM.  Total protein yield for these conditions was roughly 20 

mg/L, but induction at 0.8-0.9 OD increased the yield to 30-35 mg/L total protein 

without additional issues in the purification. 

After Expression cells were pelleted out by centrifugation at 5,000 RPM for 20 

minutes.  1L of cells were resuspended in 30mL pH 7.5 buffer containing 20mM 

Sodium Phosphate, 0.5M NaCl, and 40mM Imidazole.  Cells were lysed by 

sonication, and then spun down at 5,000 RPM, 4°C for 30 minutes.  The 

supernatant containing the cytoplasmic fraction was then flowed injected onto a 

5mL Amersham Bioscience HisTrap column for purification.  Bound protein was 

washed with 75mL resuspension buffer to remove unwanted proteins, and then 

eluted by 500mM in 7.5 buffer containing 20mM Sodium Phosphate, and 0.5M 
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NaCl.  Eluted protein was recovered in 5mL fractions and quantified by UV-Vis 

spectroscopy using a Cary 50 Bio spectrophotometer.   

Purified fusion proteins were desalted using GE Healthcare PD-10 desalting 

columns and subjected to buffer exchange into the original resuspension buffer 

for TEV cleavage and further purification compatibility.  His-tagged TEV was 

added to the fusion proteins at a ratio of 1:10 TEV to fusion protein.  After 

addition of 1mM DTT and 0.5mM EDTA, the reaction was left overnight at 4°C 

and peptides were further purified on the HisTrap column by collecting flow 

through. 

MALDI-TOF was used to verify that each of the peptides was the correct mass, 

but all samples showed impurities in RP-HPLC.  Peptides were further purified by 

RP-HPLC with a 250 x 10mm Phenomenex C18 Semi-prep column by gradient 

elution starting with .01% TFA in water to 95% acetonitrile with .01% TFA.  

Fractions were collected, frozen, and lyophilized to yield pure protein with an 

overall expression yield of about 2-3 mg/L. 

Group I, N21, and CC16 peptides were synthesized on Wang resin using a CEM 

Liberty automated peptide synthesizer with FMOC protected amino acids.  Using 

DMF as a solvent, 20% Piperidine with 0.1M HOBT was used to deprotect amino 

acids.  Activation and coupling were completed using 0.5M HBTU and 2M DIEA 

in NMP respectively.  Complete cleavage was accomplished by shaking for 2 

hours using a cleavage cocktail containing 90% TFA, 5% Thioanisole, 3% DODT, 



	 10	

and 2% Anisole.  After cleavage, peptides were precipitated with cold ether, 

pelleted by centrifugation, and washed four times.  Purification was done by RP-

HPLC using the same protocol for the expressed WW peptides above.  Correct 

proteins were verified by MALDI-TOF after purification. 

Protein stability and folding was analyzed using a JASCO J-815 CD 

Spectrophotometer.  Full scans were measured from 260nm-200nm at 5°C using 

a 1cm quartz cuvette, which showed the distinctive WW domain signal at around 

229nm.  Tmelt for all the WW peptides were calculated by monitoring ellipticity at 

229nm while increasing temperature from 5°C to 90°C at 0.5°C/min.  ITC 

titrations were performed using ITC200 (GE Lifesciences) instrument at 4°C.  

One of 1 μl and 18 of 2 μl injections of 5.1 mM Group I peptide were made into 

the cell containing either 0.102 mM native N21 or 0.097 mM CC16_N21. The ITC 

data were fitted using MIcrocal Origin software provided by the ITC 

manufacturer.  

 

RESULTS  

Crucial local contacts highly impact foldability  

Most earlier work on designing foldable protein sequences focused on optimizing 

structural stability to ensure foldability. However, it has been shown that it is also 

possible to design foldable artificial sequences by inferring coevolved positions. 

Designing artificial sequences by inferring coevolution and conservation from 

multiple sequences has been applied first to WW domains17,23. Two libraries of 

artificial sequences were constructed using computational algorithms: (i) site-
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independent conservation (IC) sequences which only preserve the amino acid 

composition (conservation) at each single site but diminish the pairwise 

coevolution between sites and (ii) coupled-conservation (CC) sequences which 

maintain both the pattern of conservation and pairwise coevolution information. 

Additionally, native (N) sequences have been used for comparison throughout 

the study. While constructed IC sequences and CC sequences shared similar 

sequence identities to those of native sequences, only 1/3 of these constructed 

sequences were able to fold.  

To explore how such evolutionary information specifies a protein fold, we 

analyzed previously designed native-like sequences of the WW domain.  

Particularly we focused on initial local contact formation patterns of the foldable 

and unfoldable sequences which follow distinct patterns. If these patterns are 

able to distinguish foldable from unfoldable sequences, the prediction of 

foldability may be possible through emergence of these local contacts. 

Supporting this approach, our earlier studies on protein folding show that local 

contacts are critical for foldability, and proteins initiate a fold by forming 

independent local fragments on the shortest time scales (i.e. zipping steps). 24,25 

For each sequence, we simulated short 8-mer fragments using replica exchange 

molecular dynamics (REMD) with the AMBER ff96 force field 26  and the 

Generalized Born (GB) implicit solvent model 27  and computed the equilibrium 

contact probability (CPROB) between any two positions (i.e., the probability that 

a contact is formed) in the equilibrium simulations. If a contact is included in 
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many fragments, the CPROB of the contact is computed by averaging CPROB 

over all the 8-mer fragments containing this contact (i.e. the contact between 3rd 

and 7th residue position is computed using fragments 1-8, 2-9, 3-10). For each 

sequence, we have a CPROB vector over all possible N local contacts where 𝑥 =

(𝑥!, 𝑥", … , 𝑥#). (here, N=115, based on 28 positions that do not have gaps in 

MSA, see supporting information for details). We computed a total of 89 CPROB 

vectors arising from 40 foldable and 49 unfoldable sequences (See 

Supplementary Tab. S1). To compare the foldable sequences with unfoldable 

sequences, we also calculated the maximum likelihood CPROB (MLCPROB), 

obtained from the histogram of CPROB (Supplementary Fig. S1). We used a 

normal Kernel Density Estimate to smooth the histograms which removes the 

dependence on the bin starting points and better reflects the underlying data.  

We then constructed MLCPROB maps for foldable and unfoldable sequences 

separately based on 8-mer fragment simulations. On the map, each rectangle 

represents a local contact colored by MLCRPOB values ranging from 0 (blue) to 

1 (red). We found that native foldable sequences give rise to strong local 

interactions in the turn segment of the N-terminal hairpin based on high local 

contact probabilities observed in this region (Fig. 1(A)). On the contrary, 

unfoldable sequences give rise to weak local interactions in the N-terminal 

hairpin (Fig. 1(B)).	 	Differences became further pronounced when these small 8-

mer structures were grown into larger 16-mer fragments, clearly delineating two 

behaviors: (i) experimentally foldable sequences display the emergence of 

contacts corresponding to the N-terminal hairpin, measured with a high CPROB 
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score and (ii) experimentally unfoldable sequences display very low CPROB near 

N-terminal hairpin indicating weak interactions. In contrast, strong non-native 

interactions are observed in another region, possibly leading to a frustration in 

the landscape (i.e. decreasing the smoothness) (Fig.1 (C-D)). Indeed, the 

average contact map of all foldable sequences shows the same trend of 

formation of N-terminal hairpin contacts (Supplemental Fig S2). However, the 

local native contacts of the N-terminal hairpin turn are notably missing the in the 

contact map averaged over all unfoldable sequences. Overall, the emergence of 

strong native contacts that favors hairpin formation leads to correct folding in all 

foldable designed sequences. On the other hand, the contact probability of these 

contacts are rather weak in unfoldable sequences, due to emergences of non-

native contacts and misfolding 28. 
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Figure 1. Average contact probability (obtained by MLCPROB) maps from 8-mer 

fragment simulations for (A) foldable native sequence N2 and (B) unfoldable 

sequence IC1. Foldable sequences show trends of forming local contacts around 

the turn of the N-terminal hairpin.  Contact probability (CPROB) maps for larger 

16-mer fragment simulations for (C) a representative foldable sequence N2 

shows the same trend of strong formation of native N-terminal hairpin turn 

contacts in a foldable sequence, whereas (D) shows that an unfoldable sequence 

IC1 exhibits non-native interactions in other regions which weaken the formation 

of this N-terminal hairpin turn. 

 
 

Contact probabilities of local interactions can predict foldability  

Our observation that foldable and unfoldable sequences show different patterns 

of emergence of local contacts at the early stage of protein folding suggests that 

the contact probabilities of these local contacts (i.e. contact probability vector of 

115 local contacts) can be utilized to predict whether a sequence is foldable or 

not. A further reduction to a minimum set of specific local contacts could prove 

much more relevant for the initiation of folding (nucleation sites) than others by 

making foldability predictions which only implement the contact probability of this 

minimum subset, particularly for evolutionary designed sequences. To verify this, 

we built a classification model where the probability of a sequence being foldable 

given by its contact probability (CPROB) vector expressed as a function of 	𝑥⃑ and 
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solved using maximum likelihood estimation (see Methods and Supplementary 

Information for details).  

 

Using this classification analysis, we found that a minimum set of five out of the 

115 local contact elements of the CPROB vector 	𝑥⃑ are enough to differentiate 

the foldability of sequences in the dataset with high accuracy. These five crucial 

contacts are listed in Table I. We computed the CPROB of these five local 

contacts from simulations employing our zipping and assembly methodology 

(ZAM)24,29. The CPROB data was then used to predict the foldability of WW 

sequences with an average true prediction rate of 80.9%, (Table I) where the 

sequences are classified to be foldable or unfoldable if the conditional probability 

of foldability (Pfold) 𝑃(𝑧 = 1|𝑥!, 𝑥"⋯𝑥5)	> 0.5 or < 0.5, respectively. This model 

also shows excellent statistical significance compared with random models using 

any five of the 115 contacts, with a high true prediction rate (Fig. S2 (A)) and low 

deviance (Fig. S2 (B)). Mapping those contacts onto a crystallographic structure 

of WW domain, we found that four of them are located in or around the N-

terminal hairpin, which has been shown to be critical in  the folding process in 

many experiments and simulations 24,30–34. Interestingly, one of these contacts is 

a non-native interaction and thus has a negative contribution to foldability score 

(Fig. 2). 

 

Table I. Statistics of 5 crucial local contacts found in the classification model. 

(S.E. is short for standard error associated with b coefficients in the classifier, 
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and Wald Statistics and p-value quantify the significance of parameters in our 

classifier)  

Crucial Contacts Coefficient S.E. Wald Statistics p-value 

 

(2,7) 3.426 1.434 5.713 0.017 
(4,7) -6.278 1.770 12.581 0.000 
(10,13) -3.330 1.234 7.282 0.007 
(11,16) 6.685 1.995 11.233 0.001 
(25,28) 5.554 1.843 9.086 0.003 

 

Figure 2. Mapping five crucial local contacts onto the 3-D WW domain structure. 

The contact formation probabilities (CPROB) of these five contacts enables us to 

predict foldability of designed WW sequences with a TP rate of~80.9 Four local 

contacts are located around the N-terminal hairpin of WW domain and the 

contact between 25-28 is a negative control.   

Given that the formation of N-terminal hairpin is a critical step of folding, and the 

importance of five local contacts found from statistical analysis on simulation 

data, we next wanted to determine whether the stabilization of those crucial local 

contacts could assist the formation of the N-terminal hairpin and subsequently 

promote folding. To test this idea, we artificially constrained two crucial local 

contacts ((10, 13) and (11, 16)) at the N-terminal hairpin in the simulation for 

several unfolded sequences. These non-native constraints did indeed increase 

the probability of forming the N-terminal hairpin,  leading to the correct fold when 

growing the chain from 8-mer fragments in ZAM simulations 24,29  (Fig. 3).  In 

ZAM simulations, each 8-mer fragment undergoes a 5 ns per replica REMD 35 

starting from a fully extended conformation. We analyzed the results by using 

weighted histogram analysis and identified the fragments which form stable 
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hydrophobic contacts with well-formed turns or helical shapes, as determined 

from the potential of mean force (PMF). We then loosely enforced those contacts 

with added restraints and grew 8-mer fragments by adding more residues in 

extended form. New REMD simulations were then performed on those larger 

fragments. A new PMF analysis is performed to see whether new hydrophobic 

contacts are formed, till full sequence is obtained. 

 

 
Figure 3. (A) The folding pathway of an unfolded WW sequence (CC36) using 

ZAM. CC36 turns out misfolded in the simulation. (B) Adding constraints to the 

crucial local contacts helps form the N-terminal hairpin correctly and make this 

unfolded sequence foldable. 

 

A new design approach by utilizing the crucial contacts of foldability 
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Overall, predicting the foldability of a sequence based on local contact 

probabilities suggests that entropically low-cost local contacts contribute to 

folding and are likely coevolved due to their importance in providing smoothness 

to the folding landscape. Yet it may be difficult to get sufficiently strong signaling 

from coevolutionary analysis to identify “the direct local contacts” that contribute 

to the smoothness from indirect local contacts due to noise inherent in MSAs. 

Our maximum entropy approach through computing local contact formation can 

be coupled with coevolutionary inference analysis in this regard to redesign 

unfoldable sequences and make them foldable.  

Our protocol differs fundamentally from the conventional computational protein 

design approach in which energy or stability optimization is used to search for 

ideal amino acid sequences given a fixed backbone topology (structure). Instead 

we identify mutations to the amino acid pairs at the positions of the five crucial 

local contacts (10 total residues) to maximize expected folding probability, Pfold 

𝑃(𝑧 = 1|𝑥!, 𝑥"⋯𝑥5). 

Here, we took each unfolded sequence as a scaffold and attempted to maximize 

the expected Pfold for the template by swapping its five local contacts (or ten 

residues) with those of a foldable natural sequence. To achieve this, we 

enumerated over all possible combinations of swaps (i.e., swapping only one 

certain contact or two contacts, etc.). The expected Pfold after swapping was 

calculated with the obtained classifier where the CPROBs of the swapped 

contacts were represented by those from the foldable natural sequence and 

unswapped ones were kept as originally present in the unfolded sequence. Then 



	 19	

these hybrid sequences (now a variant of CC unfoldable sequences with amino 

acids substitutions from foldable native sequences) corresponding to the 

maximum expected Pfold 0.9 or greater were further examined in ZAM 

simulations. Using our ZAM protocol, the 8-mer fragments of these hybrid 

sequences were simulated to obtain the CBPROB values at the critical positions 

and their Pfold values were then re-estimated (Fig. S3). With this approach we 

have generated 227 hybrid sequences. We then selected those fragments with 

high Pfold values (i.e. folding probabilities of at least 0.7) to grow to larger 16-mer 

fragments.  At the 16-mer fragment step, we filtered out those failing to form N-

terminal hairpins and grew the rest to the full sequences. Finally, we chose the 

sequences with correctly folded WW structures (i.e. those having backbone 

RMSD < 3 Å) as the foldable sequence candidates, which was subjected to 

experimental verification. (Fig. 4)  

 

Figure 4. The designed sequence CC16_N21 was generated based on an 

unfolded scaffold CC16 and a folded sequence N21. One of the five critical 
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contacts remains the same as in CC16 (green) and three contacts are chosen to 

swap (purple). The threonine substituted to serine in the second contact of the 

designed sequence also resulted in a hybrid serine-serine contact in the 

designed sequence (green/purple) as a result of this residue (residue 7) taking 

part in two crucial contacts. The unfolded, folded and designed sequences are 

displayed below for visual inspection.   

 

Redesigned CC16_N21 based on crucial local contacts folds and function 

as natural WW domains  

The sequence with the highest foldability based on computational analysis, 

CC16-N21, was selected for biophysical characterization. We compared the 

secondary structure and stability to thermal denaturation of CC16_N21 to that of 

the parent unfoldable sequence CC16 and that of the donor native WW domain 

sequence, N21, by circular dichroism (CD). The secondary structure of the 

designed CC16_N21 protein resembles that of N21 and CC16, as shown by 

similar features in the CD spectrum including a maximum in the CD spectrum at 

approximately 227 nm (Fig. 5 (A)), a signature for WW domains; as expected, 

CC16 lacks these features and appears unfolded.  

Although the native contacts introduced in CC16_N21 are sufficient to restore the 

signatures of a WW fold, the designed protein is less stable to thermal 

denaturation than its native counterpart, N21. Thermal denaturation curves were 

obtained by monitoring the loss of CD signal at 227 nm as a function of 

temperature in the 4˚C to 90˚C range (Fig. 5 (B)), and  yielded an apparent Tm of 
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46.7˚C for N21, and of 22.4 ˚C for CC16_N21; CC16 shows no transition, due to 

its unfolded structure.   

 

 

 

Figure 5. Structure and stability of WW domains. (A) CD spectra of N21 (solid 

black line), CC16 (dashed black line), CC16_N21 (dotted black line) collected at 

4˚C. Both spectra display a peak at 227 nm typical of folded WW domain. (B) 

Thermal denaturation curves of N21 (black circles), CC16 (white circles), and 

CC16_N21 (grey circles), and CC16, white circles. Conditions: phosphate buffer 

20 mM, pH 7. 

Compared to the parent sequence CC16, which is unfolded 17,18, our re-designed 

version of CC16, (CC16_N21) folds into the native WW domain fold, as shown by 

its CD spectrum at 4 ˚C. When compared to the native N21 sequence, 

CC16_N21 displays lower stability as shown by the temperature denaturation 

curves. However, the observed apparent Tm of 22.4 ˚C is well within the range 

observed for natural WW domains 36,37.  
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An alternative explanation for the observed rescue of foldability in CC16 is that 

the five amino acids in N21 at these positions are important for stability of the 

WW fold. To deconvolute the contribution of each mutation to the stability of the 

WW fold, we introduced each of the five amino acids that differentiate CC16 from 

N21 individually on the background of N21 (Fig 6). We found that three 

mutations, S7T, N11T, and Q25E, are relatively conservative and have minimal 

effect on stability; two mutations (S4L and P16E) that replace a hydrophilic 

residue with a polar one, and a proline with glutamic acid respectively, destabilize 

the fold to some extent. These results indicate that most of the mutations 

inserted into CC16 would have little or no effect on stability.  
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Figure 6. CD monitored thermal denaturation curves of the parent proteins and 

of N21 mutants. Conditions: phosphate buffer 20 mM, pH 7; protein 

concentrations were: N11T 10.0 mM, S7T 5.75 mM, Q25E 14.3 mM, P16E 9.28 

mM, S4l 18.58 mM, CC16-N21 16.35 mM, CC16 12.0 mM, N21 7.55 mM. 

We next investigated whether the designed CC16_N21 sequence conserves the 

function of native WW domains. These domains typically recognize proline-rich 

peptides belonging to four distinct classes with micromolar affinity and some 
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degree of in-class specificity. Given that the vast majority of WW domains display 

at least some degree of binding affinity for Class I peptides, we assessed the 

fitness of both CC16_N21 and N21 by evaluating binding to a model Class I 

peptide, EYPPYPPPPYPSG, using isothermal titration calorimetry (ITC) at 4˚C 

(Fig. 7). We found that the native N21 did not bind Group I peptide up to high 

micromolar concentrations, despite previous literature data indicating weak 

binding by oriented peptide array 17,36,38.  In contrast, fitting of the titration curve 

for our designed sequence CC16_N21 resulted in a  Kd = 71.0 µM ± 4.7 µM, 

comparable to those recorded for native WW domains, typically in the 10-300 µM 

range 17,36,38.    
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Figure 7. Isothermal titration calorimetry curve of Group I model peptide 

EYPPYPPPPYPSG into CC16_N21 100 µM, phosphate buffer 20 mM pH 7. 

Fitting of the data suggests one binding site and duplicate titrations give 73.5 µM 

± 4.4 µM and 68.5 µM ± 5.0 µM.  

 

DISCUSSION  

We studied the interactions between near neighbor residues in the sequence (i.e. 

local contacts) in early steps of the folding process using a repertoire of 

evolutionary designed WW domain sequences, and explored the role of local 

contact formation pattern in predicting their foldability.  Particularly, we 

investigated why only one third of the sequences designed based on coevolution 

and conservation fold, even while sharing high sequence similarity to those of 

native foldable sequences.  When we analyzed the local contact emergence 

between foldable and unfoldable sequences, we observed that minimum 

frustration plays a crucial role for a given sequence’s ability to fold 39. The 

foldable sequences follow the experimentally observed folding, where strong 

local native contacts emerge around the N-terminal hairpin turn. On the other 

hand, the native local contact formation is weakened in unfoldable sequences 

due to non-native local interactions, suggesting the frustration in the landscape 

prevents folding.   
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Recent folding studies of resurrected ancestral RNaseH proteins have shown 

that the main folding intermediate is conserved over 3  Billion years of evolution, 

and  folding pathways to reach the folding intermediate  are modulated through  

the formation local contacts, particularly helical propensities 40,41. Similarly, the 

folding kinetics of ancestral thioredoxins 39 along with the extant homologs 

suggested that evolution utilizes minimum frustration for folding.  Overall, these 

studies are in agreement with our finding that there exist a minimum set of 

coevolved positions critical for early steps of folding which may play role for the 

smoothness of the potential energy landscape. Thus, when evolutionary 

inference is used to design novel sequences, conventional computational design 

approaches primarily depending on protein stability may fail to predict foldability 

and it should be complemented with approaches like ours that also incorporate 

folding kinetics. 

We further tested whether conventional computational folding stability analyses 

could distinguish between the foldable and unfoldable sequences of WW 

domains. For this analysis, we first built model structures of these sequences 

using Modeller 42. We then computed the folding stability of these models by 

commonly used computational folding stability methods such as FoldX 43 and 

DFIRE 44. As expected, the folding stability distributions of foldable and 

unfoldable sequences yielded very similar trends (Fig. S5). We also obtained a 

classification model using the FoldX and DFIRE folding energy scores and 

obtained ROC curves in predicting foldability of sequences (Fig. S6 (A-B)). We 

found that both bioinformatics-based folding energy scores fails to predict 
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foldability of a given sequencing, yielding AUC around 0.52 (which is as good as 

random guessing). Likewise, other bioinformatics-based servers that implement 

biophysical properties of natively unfolded versus folded proteins such as 

FoldIndex 45 also yielded similar low prediction accuracy with an AUC of 0.63 

(Fig. S6 (C)). 

Besides bioinformatics-based approaches, we also performed 150 ns all-atom 

explicit water molecular dynamics simulation starting from the modeled structures 

for only three sequences, N21, CC16 and CC16_N21. Both unfoldable sequence 

CC16 and our re-designed CC16_N21 with an additional 4 mutations are similar 

to the foldable native sequence N21 with sequence similarities of 50 and 58 %, 

respectively.  The RMSD plots of CC16, N21 and CC16_N21 (Fig. S7) show that 

they all exhibit fairly similar stabilities. Interestingly, the unfoldable sequence 

CC16 was shown to be the most stable over the simulation run. We also 

obtained energy landscapes of these three modeled structures as a function of 

native heavy-atom contacts and beta sheet secondary structure fractions as used 

previously to check stability 46  which all share similar shapes, again suggesting 

that the modeled folded structures exhibit similar stability.  Surprisingly, the 

unfoldable CC16 sequence is slightly more stable than the foldable native N21 

and designed CC16_N21 sequences. Overall these analyses suggest that all-

atom molecular forcefields also fails to discriminate a foldable evolutionary 

designed sequence from that of an unfoldable sequence of a given fold if one 

starts with homology-modeled folded structures.   
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On the other hand, our use of local contact formation patterns, evaluated during 

the early stages of the folding process, can differentiate the foldable versus 

unfoldable sequences. Based on the contact probability of five local contacts 

using 8-mer fragment simulations, we built a classification model which could 

predict the foldability of WW domain sequences with high accuracy of 0.82. 

Enforcing the formation of certain local contacts in the WW domain also helps to 

avoid misfolding and leads to correct WW domain structures. Moreover, altering 

the contact probability formation of these five crucial contacts through amino acid 

substitutions, we have shown that it is possible to make frustrated unfolded 

sequences such as CC16 foldable. 

This then raises the question as to why other designed sequences were 

frustrated and did not properly fold into a WW domain, despite the fact that they 

also contained the same coevolution (pairwise evolutionary coupling) and 

conservation (single site amino-acid frequency). One possible explanation is that 

discerning directly coupled coevolved contacts from indirectly coupled ones 

becomes challenging for local contacts as the data contains much more noise. 

While the coevolution information can be used to construct sequences with high 

stability once folded, the additional noise makes it extremely difficult to identify 

other obfuscating traps such as kinetic barriers which can exist at early stages in 

the folding process.  Our approach allows for a functional and mechanistic 

analysis of early-folding contact formation which can provide additional 

information to highly complement evolutionary designed methods to create 

foldable units.  Simply put, we enforce formation of the local contacts crucial for 
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early steps of folding. Then the designed sequences sharing the same 

coevolution and conservation of native sequences that cannot fold due to 

frustration become foldable, as these local contacts help smooth out the 

landscape (Fig. 8).  

 

Figure 8. A cartoon model of folding energy funnel landscape. Here, jagged 

purple regions indicate local folding energetic minima. (A) The evolutionary 

designed WW sequences that cannot fold due to frustration in early states of 

folding with a frustrated landscape as compared to (B) our re-designed 

unfoldable sequences based on five local contacts that prevents early non-native 

contact formation, thus smoothing out the funnel.   

 

SUPPORTING INFORMATION 

Additional supplementary information is available which contains extended 

descriptions of computational and experimental methodologies as well as 

additional computational and experimental analysis and associated figures.  
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