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ARTICLE INFO ABSTRACT
Keywords: The Quaternary record of the US Mid-Atlantic coastal system includes onshore emergent late Pleistocene
Quaternary sea-level shoreline deposits, offshore inner shelf and barrier island units, and paleovalleys formed during multiple glacial

Delmarva peninsula

stage sea-level lowstands. The geochronology of this coastal system is based on uranium series, radiocarbon,
US Mid-Atlantic shelf

amino acid racemization (AAR), and optically stimulated luminescence (OSL) methods. We report over 600

iieizza:;yi racemization mollusk AAR results from 93 sites between northeastern North Carolina and the central New Jersey shelf, rep-
Geochronology resenting samples from both onshore cores or outcrops, sub-barrier and offshore cores, and transported shells
Age-mixing from barrier island beaches. AAR age estimates are constrained by paired l4c analyses on specific shells and
Seismic stratigraphy associated U-series coral ages from onshore sites. AAR data from offshore cores are interpreted in the context of
Mollusks detailed seismic stratigraphy. The distribution of Pleistocene-age shells on the island beaches is linked to the

distribution of inner shelf or sub-barrier source units. Age mixing over a range of time-scales (~1 ka to ~100 ka)
is identified by AAR results from onshore, beach, and shelf collections, often contributing insights into the
processes forming individual barrier islands. The regional aminostratigraphic framework identifies a widespread
late Pleistocene (Marine Isotope Stage 5) aminozone, with isolated records of middle and early Pleistocene
deposition. AAR results provide age estimates for the timing of formation of the three major paleochannels that
underlie the Delmarva Peninsula: Persimmon Point paleochannel >800 ka; Exmore paleochannel ~400-500 ka
(MIS 12); and Eastville paleochannel > 125 ka (MIS 6). The results demonstrate the value of synthesizing
abundant AAR chronologic data across various coastal environments, integrating multiple distinct geologic
studies. The ages and elevations of the Quaternary units are important for current hypotheses about relative sea-
level history and crustal dynamics in the region, which was likely influenced by the Laurentide ice sheet, the
margin just ~400 km to the north.

level changes but also by glacial isostatic adjustment (e.g., Potter and
Lambeck, 2004; Pico et al., 2017), colder climate (e.g., French et al.,
2009; Litwin et al., 2013), and fluvial drainage from the Laurentide (e.g.,
Reusser et al., 2004) and other rivers that constitute the Chesapeake Bay

1. Introduction

The Quaternary units of the Delmarva Peninsula (Delaware, Mary- .
land, and Virginia) on the US Mid-Atlantic margin (~37° to ~39.5°N) dramage.. . . . . . .
(Figs. 1-3) consist of multiple estuarine, open-bay, fluvial, barrier island The Virginia portion Of the pe.mnsula is underlain by four major
and lagoonal deposits that have formed during multiple cycles of Qua- paleochannels, formed during glacial stage low sea levels, whose posi-

ternary sea-level change. Although ~400 km south of the Laurentide ice tions track the southward progradation of the peninsula during the
sheet, this region was influenced not only by glacial-interglacial sea Quaternary (Colman et al., 1990; McFarland and Beach, 2019). These
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Abbreviations

AAR amino acid racemization

¢ carbon-14 or radiocarbon

GC gas chromatography

IE ion-exchange chromatography

RP reverse-phase chromatography

D/L the ratio of “dextro” (right-handed) to “levo” (left

handed) amino acids
Delmarva the peninsula of the US mid-Atlantic, including
Delaware, Maryland, and Virginia

ka kiloanno, age in thousand years or duration in thousand
years

OSL optically stimulated luminescence

U-Th Uranium-thorium dating method

U-series Uranium-thorium dating method

ASP Aspartic acid, an abundant amino acid in most mollusk
samples

GLU Glutamic acid, an abundant amino acid in most mollusk
samples

ALA Alanine, a common amino acid in many mollusk
samples

ILC Interlaboratory comparison (refers to samples shared
and analyzed by many AAR labs)

SER Serine, an amino acid whose presence in large relative

amounts is often indicative of sample contamination

paleochannels, their filling units, and associated Pleistocene interfluves
and shoreline deposits, form the antecedent geology that has influenced
the Quaternary history of the eastern Delmarva barrier islands, partic-
ularly those in Virginia (Oertel and Foyle, 1995; Oertel et al., 2008). The
origin and age of sediments found within the barriers, back-barriers, and
lagoons of Delmarva have significant implications for the late Quater-
nary relative sea-level history of the region (Colman et al., 1989; Fin-
kelstein, 1992; Finkelstein and Kearney, 1988, 1989; Pico et al., 2017;
Scott et al., 2010; Toscano, 1989). Prior offshore studies with relevant
chronologic results include Toscano et al. (1989), Toscano (1992),
Toscano and York (1992), Chen et al. (1995), and Williams (1999).
Onshore stratigraphic and geomorphic studies include those of Mixon
(1985), Colman and Mixon (1988), Colman et al. (1990), Powars and
Bruce (1999), all reviewed by Krantz et al. (2016). Onshore Delmarva
sites with chronologic data are described in Belknap (1979), Belknap
and Wehmiller (1980), Wehmiller et al. (1988), Groot et al. (1990), York
(1990), and Toscano and York (1992).

The present study seeks to refine the Quaternary geochronology of
this coastal system, using amino acid racemization (AAR) results for
mollusk samples from onshore (outcrop or subsurface units), barrier
island and inner shelf vibracores, and transported beach shell samples.
Data for each sample type establish a broad regional aminostratigraphic
framework that is useful for offshore-onshore correlation, character-
ization of sediment transport processes and barrier island evolution, and
establishing the timing of formation of the major paleochannels un-
derlying the peninsula. The Delmarva paleochannels form a major
component of the region’s Quaternary stratigraphy because their for-
mation and preservation involved glacial-stage low sea-level incision
into older units and subsequent filling and transgression during
interglacial-stage high sea levels. They are mapped throughout the
Chesapeake Bay, onshore, and along the adjacent continental shelf
where several coeval paleodrainage systems have been identified (Col-
man and Mixon, 1988; Oertel and Foyle, 1995; Brothers et al., 2020)
(Fig. 3). Better constraints on the timing of the formation of Delmarva
paleochannels would clarify the geochronology for a significant portion
of the Mid-Atlantic Bight.
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AAR data from beach shells collected from six barrier islands are
used to assign either Pleistocene or Holocene ages to these shells (e.g.,
Wehmiller et al., 1995, 2015, Wehmiller et al., 2019a, 2019b). Shelly
deposits on beaches are created by multiple interacting processes, such
as sediment source variations and delivery rates, beach erosion and
migration rates, storm frequency, and relative sea-level history (Frey
and Dorjes, 1988; Rojas and Martinez, 2020 and references therein). The
AAR results identify age-mixing at onshore, offshore and beach sites on
time scales (~10°-10° yrs) comparable to, and greater than, those
observed in other coastal environments (Murray-Wallace et al., 1996;
Kidwell et al., 2005; Nicholas et al., 2011; Kowalewski et al., 1998,
2000, 2018; Olszewski and Kaufman, 2015; Ryan et al., 2020). The large
dataset created here helps to quantify the magnitude of age-mixing
processes, which can otherwise be a serious issue if samples for
geochronology are limited in number. In particular, the AAR data for
beach shells are useful for understanding the role of sub-barrier units in
barrier island evolution. The history of the eastern Delmarva barrier
islands, particularly those in Virginia, has been reviewed by McBride
et al. (2015), with more recent contributions by Deaton et al. (2017),
Raff et al. (2018), and Shawler et al. (2019, 2020).

AAR age estimates are calibrated with associated coral uranium-
series ages or paired 1*C analyses on individual mollusks. More than
600 previously unreported AAR results, 35 1“C ages, and two uranium-
series ages are reported, and we build upon and confirm the early work
of Toscano et al. (1989) who used AAR to compare onshore data from
the peninsula with offshore data from the Maryland inner shelf. Addi-
tionally, we incorporate newer AAR analytical methods into the study
area to evaluate and, in some cases, reinterpret the earliest AAR results
for onshore sites in the region (Belknap, 1979; Belknap and Wehmiller,
1980). With these newer methods we report multiple analyses from
inner shelf vibracores that are linked to detailed seismic stratigraphy
(Brothers et al., 2020).

In following sections, we combine beach and onshore AAR and *C
results to identify major aminozones (clusters of similar amino acid D/L
values) for Mercenaria and Spisula, the taxa most commonly collected at
these sites. We then link these aminozones to offshore AAR results that
are based primarily on the taxon Mulinia, the most common mollusk
found in the offshore cores. The intergeneric relative racemization rates
for these three taxa are known from multiple field studies, particularly
for Mercenaria-Mulinia (York et al., 1989; York, 1990; Wehmiller et al.,
1988; 2010). Age estimates for the combined onshore/offshore amino-
zones are based on limiting 1*C ages in selected cores, associated U-se-
ries coral ages (~75-85 ka) from onshore sites in Virginia and North
Carolina, and age modeling that extends the AAR time scale for the re-
gion to the early Quaternary. Finally, we propose an age estimates for
the major paleochannel systems that underlie the peninsula, testing the
proposed chronology of Colman and Mixon (1988) and comparing AAR
age estimates with existing U-series and optically-stimulated lumines-
cence (OSL) ages. The results presented here refine our understanding of
the earliest Delmarva AAR studies (Belknap, 1979; Belknap and Weh-
miller, 1980) in the context of these paleochannels (Colman and Mixon,
1988; Colman et al., 1990; Hobbs, 2004; Powars, 2011; Krantz et al.,
2016). These collective results provide insights into the AAR method
itself, the reliability of shell radiocarbon ages, processes of shelf,
shoreface and beach sediment transport, and the regional history of
Quaternary sea-level change.

2. Sites and collection history

Samples used in this study were collected during early research on
AAR geochronology of onshore units in the Delmarva-Chesapeake re-
gion (summary in Wehmiller et al., 1988; Groot et al., 1990; Wehmiller,
2013a) and, more recently, during offshore (core) and beach sampling
efforts in the region. The offshore sites have been sampled as part of
several projects, focused on understanding the regional geologic
framework (Brothers et al., 2020; Mattheus et al., 2020a, b) and offshore



J.F. Wehmiller et al.

sand resources (Toscano et al., 1989; BOEM/ASAP). The collections and
relevant sites are listed in Table 1 and plotted in Figs. 1-3; sample site
numbers from Table 1 are referred to in all subsequent text and are
identified in Figs. 1-3. Beach collections were made between 1991 and
1994 on Parramore (60) and Wallops (42) islands and the first Parra-
more results, supplemented here, indicated a significant abundance of
Pleistocene shells (Wehmiller et al., 2015). Subsequent beach collections
were made on Cedar (57, 59) and Metompkin (46, 50) islands in 2006
and 2011, and finally on Wreck (71) and Smith (74) islands in 2015 and
2016. None of these islands experienced any artificial sand nourishment
prior to the dates of our collections [PSDS, 2020]. Because of the
remoteness of the Virginia Barrier Islands, beach shell collections were
made by “volunteers” involved with other field projects, hence the
collections do not represent an effort to collect at all sites at a single time
or even to collect a time-series at a single site. Beach sample collections
were usually made by gathering all whole shells withina 10 m x 10 m
area of shell concentration. This approach is inherently biased toward
those shells that are robust enough to survive intact within the nearshore
environment, and it does not attempt to document faunal assemblages.
Our emphasis is on the ages of the analyzed shells and their possible
sources, rather than relating apparent age to taphonomic characteristics
as in other studies (i.e., Davies et al., 1989; Powell et al., 1989; Weh-
miller et al., 1995; Martin et al., 1996). Photographs of most of the beach
shells used in this study are available in Appendix A. Because the

8OW 70°  60°
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samples relevant to this study have been analyzed over a period of
several decades (1992-2018), different analytical methods have been
employed (Table 1). In a few cases, only results for the early analyses are
reported, as no newer results are available, hence these earlier results
are used to supplement our regional aminostratigraphic interpretations.

Many of the Delmarva subsurface samples re-analyzed here are from
early collections made by colleagues at the U. S. Geological Survey
(Belknap, 1979; Mixon, 1985). AAR results from five sites, CW-4 (38),
Mathews Field (39), Exmore (66), Eyreville (69), and Cheriton East (94),
constrain the ages of the Persimmon Point, Exmore and Eastville pale-
ochannels. The Cheriton East samples are from a drill site whose location
is not precisely known (other than being within the USGS Cheriton 1:24,
000 quadrangle), but the site can be related to a published stratigraphic
section (Mixon, 1985: fig. 18 and inset, Fig. 3). Samples from the orig-
inal Maryland shelf project of Toscano et al. (1989) remained available
for the current analytical effort. A few results for samples from the New
Jersey shelf (sites 1-6) (Uptegrove et al., 2012; some re-interpreted by
Miller et al., 2013a), although outside our primary study area, are
relevant for regional comparisons of AAR data. All core and onshore
samples are archived at the Delaware Geological Survey, and beach
samples are archived at the Paleontological Research Institution, Ithaca
NY.

Numerous stratigraphic terms have been applied to the sedimentary
units sampled for this study, as summarized in Fig. 4. The purpose of this

Fig. 1. Map of the Mid-Atlantic, USA with

a) collection sites for samples discussed here
Cana/cja,/ { labeled with dots (1b). Numbers on map
40°N- ; 40°N refer to the site numbers listed in Table 1.
i Inset map a) shows study area location on
the US Atlantic Margin. Inset maps c) and d)
- : show closer views of the Delmarva Peninsula
75°0° 74°0° where samples were collected onshore, on
New Jerse 3 beaches and on the continental shelves.
y 142 5 cy O 20 40 Delaware and Maryland are shown in 1c and
= km Virginia is shown in 1d. Land imagery and
O 13,14 bathymetry are from World Base Ocean from
DE ;2.6 ESRI, Garmin, GEBCO, NOAA, NGDC and
(&; gel. 1 21-1 g/" A other contributors.
ay .
_(% Figic| Atlantic Ocean 2273, 24
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figure is to present stratigraphic terminology as it is used in mapping
local or regional sedimentary successions, rather than placing all these
named units on a common time scale. Citations are included for avail-
able published stratigraphic sections, or for other relevant studies of the
named units. Where possible, we include in Fig. 4 the identity of
collection sites that represent the named stratigraphic unit.

3. Methods and results

The beach shells analyzed in this study are either Mercenaria or
Spisula (Table 1). For purposes of age estimation, results for these two
taxa are compared with results for the same taxa from either offshore or
onshore sites. Because these taxa are not present at all sites (onshore or
offshore), we also include AAR data from Rangia, Astarte, and Mulinia
when appropriate. Data for these latter two taxa are particularly useful
for discussion of the broader regional 1*C-AAR dataset and its relation to
offshore geophysical studies (Pendleton et al., 2015; Sweeney et al.,
2015; Brothers et al., 2020). Only one site with 14¢ data (25) has AAR
data for all four taxa. All AAR results are presented in Appendices B and
C Graphical presentations of the AAR data appear in following sections
to demonstrate the relation of AAR results to specific stratigraphic
sequences.

AAR samples were prepared using routine preparative methods
involving mechanical and chemical (dilute HCI) cleaning to remove at
least 20% of the shell carbonate, dissolution, hydrolysis (22 h), and

Quaternary Geochronology 66 (2021) 101177

instrumental analysis using one of three methods: high-pressure ion-
exchange liquid chromatography (IE), gas chromatography (GC), or
reverse-phase liquid chromatography (RP). These methods are reviewed
in (Wehmiller and Miller, 2000) for IE and GC and (Kaufman and
Manley, 1998) for RP. In a few cases, samples were hydrolyzed for 6
instead of 22 h, so results from the analysis using the shorter hydrolysis
time must be converted for comparison (Appendix B). For a variety of
reasons, the three methods yield D/L values with varying reliabilities for
different amino acids, hence numerical results from the three methods
for a specific amino acid may differ (Wehmiller, 1984; 2013b). Results
for several individual shells analyzed by multiple AAR methods are
available (Appendix B).

Selected beach and offshore samples have associated radiocarbon
ages (paired AAR and C analyses conducted on the same shell). Sam-
ples for 1*C analysis were selected after AAR results became available so
that a range of D/L values could be compared with the anticipated range
in 1*C ages. All samples submitted for }*C were fragments cut from the
original shell after AAR analysis; fragments were cleaned with dilute
acid and distilled water prior to submission for “C analysis. One Mer-
cenaria sample (JW2017-306, site 48) was subjected to a serial el
analysis on progressive carbonate dissolution extracts of a single shell
following removal of outer shell material to evaluate the possible effects
of C contamination (incorporation of younger carbon) on Pleistocene-
age samples. 1*C results are cited below as they relate to ages inferred
from AAR results obtained on the '*C-dated samples.

80'W 70°  60°
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Fig. 2. Location map showing onshore collection sites and Virginia barrier islands (2d) referred to in the text. Labels are for selected onshore sites; dots represent all
other sites. DE = Delaware, MD = Maryland, VA= Virginia, SP= Stetson Pit, ELP = East Lake Pit, CWW= Chincoteague Water Well, T = T’s Corner, Pk = Parksley, Ex

= Exmore, Ey = Eyreville, ChE = Cheriton East, Kp = Kiptopeake.
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Two coral samples, from East Lake Pit, NC (site 87) were analyzed for
their Uranium-series ages; data are shown in Table 2b. Coral samples
were prepared, analyzed and interpreted using procedures described in
Thompson et al. (2003); ages reported in Table 2b are based on half-lives
reported in Cheng et al. (2013). The two coral samples are typical of
those found in Coastal Plain sites (Astrangia and Septastrea), and pho-
tographs of the two analyzed corals are available in Appendix A.
Cleaning of these samples can be challenging (Wehmiller et al., 2004; W.
Thompson, pers. comm., 2012) because the samples are usually found
buried in fine-grained muds, and the results in Table 2b show that even
with careful cleaning the 2*2Th concentrations indicate significant levels
of detrital contamination. The East Lake Pit coral ages fall in the late MIS
5 range, similar to many prior U-series coral results from northeastern
North Carolina and southeastern Virginia, as summarized in Wehmiller
et al. (2004; 2010). The U-series results for East Lake Pit are discussed
below for their role as calibration for the regional aminostratigraphy.

The emphasis in this paper is on the AAR results obtained using the
RP method; in almost all cases, conclusions about relative ages derived
from prior IE or GC results are verified by the newer RP data. Quanti-
tative results from the RP method are found in Appendix C for shell
material and Appendix D for Interlaboratory Comparison Samples.
Because different taxa not only have different racemization rates, but
also have significant differences in the relative abundances of individual
amino acids (examples in Appendix E), some D/L values are considered

Quaternary Geochronology 66 (2021) 101177

more useful than others. Aspartic acid (hereafter ASP) is always the most
abundant amino acid of those reported in this study (and ASP D/L values
are well-resolved chromatographically by the RP method: Kaufman and
Manley, 1998), so it is the primary focus for many discussions (espe-
cially involving Mulinia), supplemented with D/L data for glutamic acid
(GLU), usually the next most abundant amino acid. The coefficients of
variation for the D/L values of the two amino acids are almost always
smaller (5-8%) than those for the other amino acids (see examples of
Mulinia data, Appendix B). Trace amounts of asparagine and glutamine
can decompose to ASP and GLU during diagenesis or sample preparation
(Kaufman, 2006), potentially introducing some scatter in the D/L values
observed for these two amino acids. Alanine (ALA) is abundant in most
samples, but because ALA D/L values can be affected by the decompo-
sition (to ALA) from other amino acids (e.g., Westaway, 2009; Miller
et al., 2013b), this amino acid may be less useful for aminostratigraphic
studies. Prior discussions of GC and IE results from this study area
emphasized data for D/L leucine, D/L valine, and A/I (D-alloisoleuci-
ne/L-isoleucine). In those cases where multiple methods have been
applied to individual samples, the earlier results from GC or IE were used
to guide selection of the samples for later RP analysis. Appendix B also
includes values for L-serine/L-aspartic acid concentrations (L-SER/-
L-ASP) (as determined by RP) as a measure of potential shell contami-
nation with “young” (low D/L value) amino acids (Kaufman, 2006;
Simonson et al., 2013). In the rare cases when samples are thought to be
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collection sites for AAR analyses. Locations of the Persimmon Point, Exmore,
are from Mixon (1985), Colman et al. (1990), Oertel and Foyle (1995), Powars

(2011), McFarland and Beach (2019), and Brothers et al. (2020). Cross-section A-A’ depicts the Eastville Paleochannel as reported by Mixon (1985: Fig. 18), filled
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~38° N south to the Exmore paleovalley and is younger than both the Persimmon Point and Exmore paleovalleys. The Nassawadox spit extends nearly to the southern
end of the Peninsula, and is younger than the Eastville Paleochannel. Paleovalley margins mapped in Chesapeake Bay and offshore correspond to the —30 m depth
contour, or in the case of the deepest offshore channels the shallowest contour on the subaerial unconformities that define the paleochannels. Depth scale for the
offshore section is related to mean sea level. All paleovalley delineations are limited by data availability.



Table 1

Sample collection sites. Site numbers in first column are plotted in Figs. 1 and 2. Columns 2, 3, and 4 list identifications used by the Delaware Geological Survey, informal names, and AAR database locality designations
(AARDB: Wehmiller and Pellerito, 2015). Analytical methods used in this or prior studies of each site are listed, as are the number of individuals of each taxon analyzed, the rationale for using data from the specific site,
and prior publications related to the site. Method abbreviations: RP = Reverse-phase liquid chromatography; GC = Gas chromatography; IE = Ion-exchange liquid chromatography (often identified as “HPLC” for
high-pressure liquid chromatography). “This work™ refers to the RP data not previously published. RP* = GC and/or IE data already published and not included here unless necessary. Appendix F contains core logs and
detailed discussion for sites 25, 32, 33, 37, 47-49, 52, and 76. Numerous collections have been made at Gomez Pit, Virginia Beach, VA (sites 81-84); these are summarized in the cited references and with maps and
photographs at the University of Delaware Institutional Repository.

Map DGSID Site name AARDB Lat Lon Surface Collection Analytical 14C Astarte  Mercenaria  Mulinia  Spisula  Rangia  Other  Reference Rationale for
# ID Elev.,, m type methods inclusion in paper
1 Dul5- New Jersey 05166 39.652 —-74.084 —20.6 Offshore RP* 1 3 Uptegrove et al. Regional
01 shelf Core 12 core (2012) comparison of
AAR data
2 Dv22- NewlJersey 05168 39.645 —74.051 —-19.6 Offshore RP* 1 Uptegrove et al. Regional
01 shelf Core 17a/ core (2012) comparison of
R2 AAR data
3 Dv11- NewlJersey 05169 39.652 -74.073  —15.46 Offshore RP* 1 Uptegrove et al. Regional
01 shelf Core 13 core (2012) comparison of
AAR data
4 Dv53- New Jersey 05170 39.598 —-74.039 —-18.63 Offshore RP* 1 Uptegrove et al. Regional
01 shelf Core 18 core (2012) comparison of
AAR data
5 na 313 site 27 05291 39.634 —73.622 —-33.5 Offshore GC 1 1 (Miller et al., Regional
core 2013a) comparison of
AAR data
6 na 313 site 29 05292 39.520 —73.413 —-35.9 Offshore GC 1 2 1 1 2 (Miller et al., Regional
core 2013a) comparison of
AAR data
7 7263- AMCOR 6020 06080 39.424 -73.594 -39 Offshore IE RP 1 1 Sheridan et al. Regional
137 core (2000) comparison of
AAR data
8 7z63- Edgewood 05095 39.301 —76.290 3.05 Excavation/ IE RP 5 This work; Paleochannel
555 Arsenal #81 Exposure Dunbar et al., discussion
2001
9 7z63-ai Edgewood APG 05140 39.397 —76.243 2 Excavation/ IE 2 This work; Paleochannel
pit Exposure Dunbar et al., discussion
2001
10 Z263- Edgewood-OE- 05145 39.325 -76.292  10.6 Inland core IE RP 5 This work; Paleochannel
550 3 Dunbar et al., discussion
2001
11 Carroll Island 05096 39.320 —76.346 1 Inland core IE 2 This work; Paleochannel
Dunbar et al., discussion
2001
12 Z263- Worton Pt 05009 39.309 -76.177 4 Inland core GC 4 Belknap (1979) Paleochannel
595, discussion;
—596, indirect 14C
—597 control
13 0j11- REB-1 05227 38.737 -75.081 212 Inland core GC RP (6) 5 Ramsey (2011) Lynch Heights
05 Formation
14 0i25- REB-6 05228 38.733 —75.092 6.1 Inland core GC RP (6) 5 Ramsey (2011) Lynch Heights
39 Formation
15 0j31- Silver Lake SB1 ~ 05212 38.708 —75.081  3.05 Inland core GC RP 4 Ramsey (2011) Lynch Heights
14 Formation
16 0j53- DGS07-17 05268 38.671 —75.038 —12.2 Offshore GC 1 1 (Mattheus et al., Shoal deposits
02 core 2020a,b)
17 Pj45-01 DGS92-02 05119 38.607 —75.008 -12.5 Offshore IE RP 1 2 2 1 Sheet sand
core deposits

(continued on next page)
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Table 1 (continued)

Map DGSID Site name AARDB Lat Lon Surface Collection Analytical 14C Astarte  Mercenaria ~ Mulinia  Spisula  Rangia  Other  Reference Rationale for
# ID Elev., m type methods inclusion in paper
Williams, 1999;(
Mattheus et al.,
2020a,b)
18 Pj42-a Indian River 05107 38.605 —75.006 ~1 Beach IE 6 Wehmiller et al. prior data; no new
Inlet (1995) data; for
discussion only
19 Qj22- KAM-NOV-80 05018 38.559 -75.058 1.5 Inland core RP* 3 Ramsey and Sinepuxent
06 Tomlinson (2012) Formation
20 Qj32- Bethany Beach 05297 38.549 -75.063 1.4 Inland core RP (6) 3 McLaughlin et al. Sinepuxent
27 Core (2008) Formation
21 Qj 31- BEB-17 05309 38.543 -75.074 0.6 Inland core RP 10 Ramsey (2010) Sinepuxent
20 Formation
22 Qj32- Bethany #3 05296 38.538 —75.059 -35.9 Inland core RP (6) 3 Ramsey and Sinepuxent
10 Tomlinson (2012) Formation
23 Qj42- KAM-MB-80-8 05020 38.525 -75.054 3 Inland core RP (6)* 6 Ramsey and Sinepuxent
07 Tomlinson (2012) Formation
24 QKk53- Qk53-03 05183 38.514 -74.960 —14.76 Offshore RP 1 3 McLaughlin et al. Sheet sand
03 core (2020a,b) deposits
25 RI25- DGS92-16 05130 38.475 —74.840 -23 Offshore IE GC RP 4 12 4 8 3 Williams (1999); Marine shelf
01 core McLaughlin et al. deposits
(2020a,b)
26 Z263- DCMD Taylors 05007 38.479 -76.277 1 Inland core GCRP 4 Jacobs, 1980; Paleochannel
548 Island Groot et al., 1990; discussion
Genau et al.,
1994; this work
27 Z263- Poplar Creek 05001 38.212 —76.586 3.7 Excavation/ GC IE RP 2 Belknap, 1979; Paleochannel
ag Bluff Exposure Wehmiller et al., discussion
1988; this work
28 Uj35- MD-BOEM-15- 05380 38.207 -75.011 -21 Offshore RP 1 1 4 This work
03 03A core
29 Ui31- ASSGO2 06286 38.204 -75.153 1.74 Barrier RP 5 Shawler et al., Sinepuxent
01 island core 2019; this work Formation ?
30 Uk33- MGS-16-1002 05056 38.203 -74.952 -21 Offshore IE RP 1 2 1 Toscano et al., previous AAR
01 core 1989; York, 1990 work; multiple
samples
31 Uid4l- Tingles Island 05004 38.194 -75.158 1.5 Barrier RP* 3 Toscano et al., sub-barrier
01 island core 1989; York, 1990 comparison site;
Sinepuxent Fm?
32 Uj45- MGS-18-1248 05063 38.187 —75.098 -16.5 Offshore IE RP 14 5 1 Toscano et al., prior evidence of
01 core 1989; York, 1990 two aminozones
(IE data)
33 Uj42- MGS-18-1230 05062 38.184 -75.056 —19.5 Offshore IE RP 1 11 4 2 Toscano et al., prior evidence of
01 core 1989; York, 1990 two aminozones
(IE data)
34 UKk53- MGS-18-1142 05060 38.174 -74.961 —18.9 Offshore IE RP 2 1 2 3 Toscano et al., previous AAR
01 core 1989; York, 1990 work; multiple
samples
35 Vil4- Vil4-01 05393 38.161 -75.107 —13.2 Offshore RP 5 1 This work
01 core
36 Vk21- MGS-20-1430 05065 38.148 74999 -18.9 Offshore IE RP 1 2 5 2 1 Toscano et al., previous AAR
01 core 1989; York, 1990 work; multiple
samples
37 Wj32- MGS-27-1520 05075 38.035 —75.055 -16.8 Offshore IE RP 1 20 1 Toscano et al.,
01 core 1989; York, 1990

(continued on next page)

0 3 LIPM AT

LLITO0I (1202) 99 A3ojouoy202D Lwusawnd)



Table 1 (continued)

Map DGSID Site name AARDB Lat Lon Surface Collection Analytical 14C Mercenaria  Mulinia Reference Rationale for
# D Elev., m type methods inclusion in paper
previous AAR
work; multiple
samples
38 Xe31- CW-4 06009 37.955 —75.492 6.71 Inland core GC RP* (2go)1 (rp) Belknap, 1979; prior data; relates
01 Belknap and to Delmarva
Wehmiller, 1980; paleochannel
Mixon et al., history
1982, Fig. 5;
Mixon, 1985: ~
H27
39 Xd45- MF 06004 37.949 -75.500 4.57 Inland core GC RP* (3ga)3 Mixon, 1985: prior data; relates
01 (rp) H-27; Mixon to Delmarva
etal.,,1982,Fig.5;  paleochannel
Belknap, 1979; history
Belknap and
Wehmiller, 1980
40 Xd43- Ts Corner (T’s) 06002 37.946 —75.541 7.5 Inland core GC RP* (20 gc) 3 Mixon, 1985: H-8; prior data; relates
01 (rp) Mixon et al., to Delmarva
1982, Fig. 5; paleochannel
Belknap, 1979; history
Belknap and
Wehmiller, 1980
41 Xe43- CWW - 06007 37.944 —75.453 7 Inland core GC 1 Belknap, 1979; prior data; relates
01 Chincoteague Belknap and to Delmarva
Water Well Wehmiller, 1980 paleochannel
history; Tertiary
age
42 Ye51-a Wallops June 06203 37.839 75483 ~1 Beach IE 11 This work beach collection
1994
43 Yh54- VA-BOEM- 06270 37.839 -75.199 -20.8 Offshore RP 1 This work
01 2017-03 core
44 Zb24- Parksley (Pk) 06008 37.808 -75.684  0.91 Inland core GC RP* (2g0) (2 Mixon, 1985: prior data; relates
01 p) P-11; Belknap, to Delmarva
1979 paleochannel
history
45 Zh31- VA-BOEM- 06254 37.793 —75.245 —20.67 Offshore RP 1 This work
01 2015-08 core
46 7282- Metompkin 2 06234 37.752  —-75.548 ~1 Beach RP 15 This work beach collection
dw May 2011
47 7z82- VA-BOEM- 06262 37.744  —75.443 —14.51 Offshore RP 2 12 This work 82-68 and 82-69
68 2016-11 core multiple samples;
evidence
48 7z82- VA-BOEM- 06263 37.736  —75.448 -15 Offshore RP 1 4 21 This work of multiple ages
69 2016-02 core
49 7z92- VA-BOEM- 06281 37.710 -75.459 —13.1 Offshore RP 2 7 This work
92 2017-14 core
50 Z282- Metompkin 1 06233 37.694 -75.584 ~1 Beach RP 15 This work beach collection
dx May 2011
51 7782~ CEDGO1 06287 37.655 —75.596 2.26 Barrier RP 4 Shawler et al.,
102 island core 2019; this work
52 Z282- VA-BOEM- 06265 37.677 —75.483 -15.7 Offshore RP 3 This work Merc-Spis-Ast
71 2016-04 core comparison
53 7282-e Norris Bridge 06000 37.632 —76.408 9.15 Excavation/ RP* 5 Belknap, 1979; Prior data;
(NB) Exposure Mixon et al., onshore

(continued on next page)
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Table 1 (continued)

Map DGSID Site name AARDB Lat Lon Surface Collection Analytical 14C Astarte  Mercenaria ~ Mulinia  Spisula  Rangia  Other  Reference Rationale for
# D Elev., m type methods inclusion in paper
1982, Fig. 4; comparison site;
Mirecki, 1985; includes 06107
Wehmiller et al., RRB-E Zz82-t
1988
54 Z282-f RRB 06018 37.638 —76.414 3.96 Excavation/ RP* Belknap, 1979; prior data
Exposure Wehmiller et al.,
1988
55 7282- CEDVO3 06288 37.600 —-75.641  0.52 Barrier RP 4 Shawler et al.,
103 island core 2019; this work
56 7282- CEDGO4 06289 37.595 -75.620 —0.06 Barrier RP 8 Shawler et al.,
104 island core 2019; this work
57 7z82- Cedar Island 06228 37.594 -75.614 ~1 Beach RP 15 This work beach collection
dy shell 1: October
2006
58 7282- VA-BOEM- 06283 37.590 -75.502 —9.6 Offshore RP 1 3 This work
94 2017-16 core
59 7282- Cedar Island 06227 37.582 -75.612 ~1 Beach RP 13 This work beach collection
dz Oyster:
October 2006
60 Z282-r North 06196 37.581 —75.612 ~1 Beach IE GC RP 1 1 This work; beach collection
Parramore Wehmiller et al.,
April 1991 2015; cited in
Miller et al.,
2013b
61 7282-s North 06202a 37.577 —75.610 ~1 Beach IE RP 16 This work; beach collection
Parramore Wehmiller et al.,
November 2015; cited in
1993 (Miller et al.,
2013a)
62 Zz82-dr North 06202¢ 37.572 —75.600 ~1 Beach RP 25 This work; beach collection
Parramore Wehmiller et al.,
November 2015; cited in
1993 (Miller et al.,
2013a)
63 7782- SN (Mixon J- 06012 37.566 —75.900 2.7 Inland core RP* 1 Belknap, 1979; onshore reference
34 24) Mixon, 1985; site; Delmarva
Wehmiller et al., paleoshoreline
1988; Toscano unit
et al., 1989;
Groot et al., 1990;
this work
64 7282- PARGO4 06285 37.559 —75.624 0.5 Barrier RP x) 6 This work; Raff sub-barrier
100 island core et al., 2018 comparison site
65 Z282- BN 06013 37.544 —75.771 0.9 Inland core GC, IE 3 Belknap, 1979; Delmarva
33 Toscano et al., paleoshoreline
1989; Groot unit
et al., 1990
66 7282- Exmore core 05081 37.53 -75.820 9 Inland core IE RP 17 Powars and mid-Pleistocene
111 Bruce, 1999; this paleochannel fill
work
67 7282- VA-BOEM- 06276 37.527 -75.514 9.1 Offshore RP 1 This work Holocene 14C
87 2017-09 core calibration
68 7282- F-30 06010 37.416 —75.898 9.8 Inland core GCRP 1 Belknap, 1979; onshore
35 Mixon, 1985; comparison site;

(continued on next page)
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Table 1 (continued)

Map DGSID Site name AARDB Lat Lon Surface Collection Analytical 14C Mercenaria  Mulinia  Spisula Reference Rationale for
# D Elev., m type methods inclusion in paper
Wehmiller et al., prior data;
1988; this work Delmarva
paleoshoreline
unit
69 7z82- Eyreville cores 06261 37.321 -75.975 2.4 Inland core RP 14 T. M. Cronin and Pleistocene
21 C&D R. Poirier (USGS), paleochannel fill
pers. comm;
Browning et al.,
2009
70 7282- Ch13 (Mixon 06011 37.300 —75.984 4.3 Inland core GC RP 1 3 Belknap, 1979; onshore
36 Ch-13) Mixon, 1985; comparison site;
Wehmiller et al., prior data;
1988; this work Delmarva
paleoshoreline
unit
71 7z82-i Wreck Island 06236 37.243 -75.800 ~1 Beach RP 2 16 16 This work beach collection
May 2015
72 7z82- CC (Mixon T- 06014 37.211 —75.966 11.6 Inland core RP* 2 Mixon, 1985; onshore
37 15) Wehmiller et al., comparison site;
1988; Groot prior data
et al., 1990; this
work
73 Zz82- EC-1 (Mixon 06015 37.207 —76.008 2.5 Inland core RP* 1 Mixon, 1985; onshore
38 EC-1) Wehmiller et al., comparison site;
1988; Groot prior data
et al., 1990; this
work
74 Z282-v Smith Island 06251 37.175 -75.835 ~1 Beach RP 6 15 16 This work beach collection
May 2016
75 7z82- Kiptopeake 06204 37.138 -75.965 7.6 Inland core IE RP 2 8 3 Powars and onshore
60 Bruce, 1999; this comparison site;
work prior data
76 7z82- VA-BOEM- 06274 37.131 —75.775 -11.3 Offshore RP 1 6 2 This work
85 2017-07 core
77 7282- VA-BOEM- 06275 37.129 —75.731 -13.1 Offshore RP 1 2 This work
86 2017-08 core
78 7z82- VA-BOEM- 06273 37.103 -75.756 —12.3 Offshore RP 6 This work
84 2017-06 core
79 7z82- VA-BOEM- 06272 37.079 —75.730 —-14.9 Offshore RP 1 1 2 This work
83 2017-05 core
80 7282- USGS-1423 05225 37.009 -75.180 —39.6 Offshore RP 5 1 8 Leupke, 1990 Holocene 14C
59 core calibration
81 7282-g Gomez Pit 06076a 36.785 -76.199 7 Excavation/ IE GC RP U-Th 2 Mirecki et al., onshore
Exposure 1995; O’Neal comparison site;
et al., 2000 prior data
82 7282-g Gomez Pit 06076b 36.785 —76.199 7 Excavation/ IE GC RP 2 Mirecki et al., onshore
Exposure 1995; O’Neal comparison site;
et al., 2000 prior data
83 Z282-1 Gomez Pit 06058 36.783 —76.198 7 Excavation/ IE GC RP 2 2 Mirecki et al., onshore
Exposure 1995; O’Neal comparison site;
et al., 2000 prior data
84 Zz82-m Gomez Sept 95 06212 36.781 —76.197 7 Excavation/ IE GC RP 2 2 Mirecki et al., onshore
MS#2 Exposure 1995; O’Neal comparison site;
et al., 2000 prior data

(continued on next page)
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Table 1 (continued)

Map DGSID Site name AARDB Lat Lon Surface Collection Analytical 14C Astarte  Mercenaria  Mulinia  Spisula  Rangia  Other  Reference Rationale for
# ID Elev.,, m type methods inclusion in paper
85 7282- PR#1 06192 36.745 —76.020 5.2 Excavation/ IE GC RP 14 24 Darby, 1983;( onshore
ap Exposure Darby and Evans, comparison site;
1992) (Pungo prior data
Ridge) indicating age
mixing
86 7z82- VA-BOEM- 06258 36.602 —75.804 —-14.8 Offshore RP 1 1 1 This work
63 2015-01 core
87 na East Lake Pit 07556 35.888 75959 1 Excavation/ RP* 7 Wehmiller et al., onshore
Exposure 2010; Parham comparison site;
et al, 2013 prior data
88 7262- CS80 07118 35.873 -75.650 1 Inland core IE GC RP 1 1 3 1 York, 1990; Riggs ~ onshore
05 et al., 1992; this comparison site;
work prior data
89 na Stetson Pit core 07077 35.864 —75.859 ~0.5 Inland core RP* 3 York et al., 1989; onshore
1 Riggsetal., 1992;  comparison site;
Wehmiller et al., prior data
2010
90 na Stetson Pit core 07127 35.864 -75.859  ~0.5 Inland core RP* 9 York et al., 1989; onshore
2 Riggs etal., 1992;  comparison site;
Wehmiller et al., prior data
2010
91 na MLD-05 07572 35.698 —75.771 1.8 Inland core RP* 3 Wehmiller et al. onshore
(2010) comparison site;
prior data
92 na MLD-06 07707 35.897 —75.971 1.25 Inland core RP* 3 Wehmiller et al. early Pleistocene
(2010) reference loc
93 na MLD-01 07534 35.509 -76.001 0.22 Inland core RP* 3 Wehmiller et al. early Pleistocene
(2010) reference loc
94 na Cheriton East 06310 37.280 —75.950 ~9.5 Inland core RP 12 Mixon, 1985: Paleochannel
assumed = Ch-14 discussion

or Ch-15
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Onshore lithostratigraphic units

Southeastern Virginia and northeastern North Carolina

Mixon et al. 1989; Mirecki et al., 1995 Mallinson et al., 2008
Scott et al., 2010: Mixon et al. 1982
Poquoson Mbr
Lynnhaven Mbr
Tabb Fm York et al., 1989
Sedgefield Mbr (81-84) Wehmiller et al., 2010
Mallinson et al., 2010
Culver et al., 2008; 2011; 2016
Parham et al., 2013
Shirley Formation (53, 54) Multiple un-named units in superposition
in the Albemarle Embayment
(87-93)

Virginia portion of Delmarva Mixon, 1985; Colman and Mixon, 1988
Mixon et al., 1982
High-stand shoreline (various named scarps)
|Wachapreague Fm (51, 55, 56, 64, 65) |Kent Island Fm |

High-stand shoreline (various named scarps)
|Joynes Neck Sand [Nassawaddox Fm, Ocohannock Mbr |

High-stand shoreline (various named scarps)

Nassawadox Fm Butler's BIUTf Mbr Overlying Eastville paleochannel (63,65,66,70,72,73,75) |
Stumptown Mbr C (69, 94) |
Stumptown Mbr B Eastville Paleochannel fill
Stumptown Mbr A |

Incision of Eastville paleovalley
Accomack member, Omar Fm (southern portion Omar-Accomack spit)
Exmore Paleochannel fill (66)
(Powars and Bruce 1999)
Incision of Exmore paleovalley
Accomack member, Omar Fm (northern portion Omar-Accomack spit) (38-40, 44)
Persimmon Point Paleochannel Fill
(Powars 2011)
Incision of Persimmon Point paleovalley

Maryland and Delaware portion of Delmarva

Delaware Bay and Atlantic inland Delaware Offshore (Mattheus et al.,
Maryland (Owens and Denny, 1978) Delaware Atlantic Coast (Ramsey, 2010) bays (Ramsey, 2010) 2020)

Incision of paleovalleys filled with Holocene

sediments
[sinepuxent Fm (29, 31) Jsinepuxent Fm (19, 21-23) |Scotts Corner Fm (younger) JSinepuxent Fm./Quaternary marine deposits |
[ronshire Fm Jironshire Fm [Scotts Corner Fm (older) JQuaternary marine deposits |
Omar Fm Omar Fm Lynch Heights Fm (younger)
Omar Fm not subdivided in Maryland by Owens and Denny, 1978
Omar Fm Omar Fm Lynch Heights Fm (older) (13-15) (Omar Fm and Lynch Heights Fm paleovalley fill
Incision of Omar paleovalley Incision of Omar paleovalley Incision of Lynch Heights paleovalley Incision of Omar and Lynch Heights paleovalleys

|
Offshore Seismic Stratigraphic Units

Toscano et al., 1989 Colman and Mixon, 1988 Foyle and Oertel, 1997 Brothers et al., 2020
Qs Qhe Seq| Qmn:Modern (late Holocene) including coastal
sand bodies, ridges and sandy shoreface
Q3 Qc Seql Qech:Transgressive unit filling the Cape Charles
paleochannel that formed during LGM (MIS2)
Q2 Seq lland Il Q2:Shelf and estuarine sediments not
related to paleochannel fill (30,34,36,37)
Qe Seq IV Qe: Unit filling the Eastville paleochannel
Qi Q1: Shelf and estuarine sediments not
related to paleochannel fills (32, 33)
Qx Seq Vand VI Qx: Exmore paleochannel fill
T1 Qbd: Low stand fluvial plain deposit,

offshore equivalent of the Beaverdam
Qpp: Persimmon Point paleochannel fill

Fig. 4. Summary of stratigraphic terminology for three regions within the study area. References in italics contain published stratigraphic diagrams. Numbers in
parentheses identify sites in Table 1 that can be related to the named stratigraphic unit. See section 4.5 for discussions of AAR data for individual stratigraphic units
(Mixon et al., 1989).
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Table 2a

Compilation of conventional and accelerator-mass-spectrometer (AMS) radiocarbon analyses and associated median calibration ages for all shells with paired amino
acid racemization results (see Appendix B), and arranged in order of the AARDB ID number. Site and sample identifications are as in Table 1. Sample depths are in
meters relative to MSL.**C ages were calibrated using OxCal 4.3 (Bronk Ramsey, 2009) and the Marine20 calibration curve (Heaton et al., 2020), corrected to a
regional AR of 54 + 74 years following Raff et al. (2018). All dates presented in the text are calibrated, 2-sigma (20) years before present (BP; present = 1950). Conv RC
Age: Conventional Radiocarbon age; DGSID: Delaware Geological Survey site identifier; DGSRCDB: Delaware Geological Survey Radiocarbon Date Database identifier
number. Laboratory code is identifier for the analyzing radiocarbon laboratory: OS = NOSAMS laboratory, Woods Hole MA; AA = University of Arizona, Tuscon AZ;
Beta = Beta Analytical, Miami Florida. Results are plotted in Fig. 5; results for samples with “greater than”'*C ages are arbitrarily plotted as if their ages are 55 ka.

Site DGSID  Local Site AARDB SampleID Mollusk Analysis  Pretreatment  Sample DGSRCDB Laboratory Reported'*C Calibrated
# name ID Genus Elevation ID # Code Age (yrs BP) median age
(m) (yrs BP)
30 Uk33- MGS-16- 05056 jw2015- Astarte C14 (HY) —23.8 489 0S-124831 51600 + N/A
01 1002 140-001 AMS Hydrolysis 2500
34 UKk53- MGS-18- 05060 jw2015- Spisula C14 (HY) —-20.3 492 0S-124834 695 + 15 117 £ 137
01 1142 128-001 AMS Hydrolysis
34 Uk53- MGS-18- 05060 jw2015- Spisula Cl14 (HY) —20.2 491 0S-124833 37400 + 450 41183 +
01 1142 129-001 AMS Hydrolysis 666
36 Vk21- MGS-20- 05065 jw2015- Astarte C14 (HY) —-22.1 604 0S-141999 48500 + 51087 +
01 1430 103-001 AMS Hydrolysis 1500 N/A
36 Vk21- MGS-20- 05065 jw2015- Ensis Cl4 (HY) -22.1 493 0S-124835 41400 + 710 43568 +
01 1430 103-003 AMS Hydrolysis 1037
36 Vk21- MGS-20- 05065 jw2015- Mulinia Cl14 (HY) -20.8 484 0S-124792 35200 + 340 39370 +
01 1430 101c AMS Hydrolysis 726
17 Pj45- DGS92-02 05119 CW93- Spisula Conv acid etch -13.4 496 Beta- 720 + 30 136 + 149
01 008-1 C14 437604
17 Pj45- DGS92-02 05119 CW93- Spisula Conv acid etch -13.6 497 Beta- 820 + 30 221 + 203
01 009-1 Cl14 437605
25 RI25- DGS92-16 05130 cw93- Astarte Cl14 (HY) -23.6 603 05-141998 48900 + 51518 +
01 070-1 AMS Hydrolysis 1500 N/A
25 R125- DGS92-16 05130 cw93- Astarte Cl4 unknown —25.7 212 AA-14749 >49900 £n/ N/A
01 076-002 AMS a
25 RI25- DGS92-16 05130 cw93- Astarte Cl14 (HY) —23.6 602 05-141997 46300 + 48148 +
01 070-3 AMS Hydrolysis 1100 2990
24 Qk53- DGS04-12 05183 jw2005- Mulinia Cl4 (HY) -19.2 608 08-142003 1880 + 20 1218 + 203
03 164-1 AMS Hydrolysis
24 QKk53- DGS04-12 05183 jw2005- Spisula Cl4 (HY) —-16.4 607 08S-142001 580 =+ 20 20 + 21
03 161-2 AMS Hydrolysis
80 Z282- USGS-1423 05225 jw2007- Astarte Cl4 (HY) —40.3 589 0S-126619 3980 + 25 3732 £ 250
59 122-003 AMS Hydrolysis
80 7282- USGS-1423 05225 jw2007- Mercenaria  C14 (HY) —40.9 590 08-126620 5590 + 25 5724 +213
59 122-007 AMS Hydrolysis
80 7282- USGS-1423 05225 jw2007- Spisula Cl14 (HY) —40.3 588 0S-126618 6320 + 25 6507 + 218
59 122-001 AMS Hydrolysis
80 Z7282- USGS-1423 05225 jw2007- Spisula Cl14 (HY) —40.9 587 0S-126065 6000 + 30 6166 + 220
59 122-006 AMS Hydrolysis
16 0j53- DGS07-17 05268 jw2009- Mercenaria ~ Conv acid etch —-15.5 302 Beta- 4210 + 40 4037 + 279
02 068-1 C14 257231
28 Uj35- MD-BOEM- 05380 jw2016- Astarte Cl14 (HY) —25.8 605 0S-142000 44800 + 940 46480 +
03 15-03A 017-002 AMS Hydrolysis 1946
60 7z82-r  North 06196 LY92-015  Spisula Cl14 acid etch 0 694 Beta-53234  >44600 £n/ N/A
Parramore AMS a
April 1991
71 7282-i  Wreck 06236 ERT2015-  Spisula Cl14 (HY) 0 495 0S-125184 38000 + 740 41541 +
Island May 100-004 AMS Hydrolysis 905
2015
71 7282-i  Wreck 06236 ERT2015-  Spisula Cl14 (HY) 0 494 0S-125183 27600 + 260 30845 +
Island May 100-016 AMS Hydrolysis 538
2015
74 7282- Smith 06251 ERT2016-  Mercenaria  Cl4 (HY) 0 599 0S-141994 4400 + 25 4288 + 261
v Island May 003-14 AMS Hydrolysis
2016
74 7282- Smith 06251 ERT2016- Mercenaria C14 (HY) 0 601 0S-141996 1870 + 35 1208 + 209
v Island May 003-3 AMS Hydrolysis
2016
74 7z82- Smith 06251 ERT2016- Spisula Cl14 (HY) 0 600 0S-141995 35000 + 340 39179 +
v Island May 003-17 AMS Hydrolysis 722
2016
74 7z82- Smith 06251 ERT2016- Spisula Cl14 (HY) 0 596 0S-141991 29500 + 170 33058 +
v Island May 003-25 AMS Hydrolysis 627
2016
74 7282- Smith 06251 ERT2016-  Spisula Cl4 (HY) 0 597 0S-141992 29600 + 180 33191 +
v Island May 003-27 AMS Hydrolysis 597
2016
74 7282- Smith 06251 ERT2016-  Spisula C14 (HY) 0 598 0S-141993 31400 +£ 260 34945 +
v Island May 003-29 AMS Hydrolysis 568
2016
86 06258 Spisula -17.9 610 0S-142005 1760 + 25 1100 + 192

(continued on next page)
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Table 2a (continued)
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Site DGSID  Local Site AARDB SampleID Mollusk Analysis  Pretreatment  Sample DGSRCDB Laboratory Reported'*C Calibrated
# name ID Genus Elevation ID # Code Age (yrs BP) median age
(m) (yrs BP)

Zz82- VA-BOEM- jw2016- Cl4 (HY)
63 2015-01 039-001 AMS Hydrolysis

86 7282- VA-BOEM- 06258 jw2016- Mulinia Cl4 (HY) -18.6 609 08-142004 31400 £ 220 34941 +
63 2015-01 038-005 AMS Hydrolysis 496

48 Zz82- VA-BOEM- 06263 jw2017- Mercenaria  Cl4 (HY) -17.9 606 0S-142002 42100 + 730 44079 +
69 2016-02 306 AMS Hydrolysis 1207

48 7z82- VA-BOEM- 06263 jw2017- Mercenaria C14 (HY) -17.9 696 0S§-149175 40500 + 670 42950 +
69 2016-02 306-1* AMS Hydrolysis 929

48 7282- VA-BOEM- 06263 jw2017- Mercenaria  C14 (HY) -17.9 697 0S-149174 43000 + 990 44909 +
69 2016-02 306-2* AMS Hydrolysis 1878

48 7z82- VA-BOEM- 06263 jw2017- Mercenaria Cl4 (HY) -17.9 698 0S-149173 46600 + 48757 +
69 2016-02 306-3* AMS Hydrolysis 1400 4370

79 Zz82- VA-BOEM- 06272 JW2018- Mercenaria  C14 (HY) —15.6 593 0S-141988 6650 + 30 6882 + 240
83 2017-05 018 AMS Hydrolysis

67 7282- VA-BOEM- 06276 JW2018- Spisula C14 (HY) —14.2 591 0S-141986 740 + 20 150 + 157
87 2017-09 019-002 AMS Hydrolysis

88 7262- CS80 07118 LY85- Mercenaria Cl4 acid etch —-8.2 695 AA-7322 >39700 £ n/ N/A
05 161A AMS a

*successive leaches of second fragment of original sample.
1 = first 42.6%.

2 = second 37.7%.

3 = final 19.7%.

Table 2b

Uranium series age results for two corals from East Lake Pit, North Carolina (site 87, Table 1). Analyses performed by W. Thompson, Woods Hole Oceanographic
Institution. Photos of the coral samples are available in Appendix A. Samples collected by Peter Parham, East Carolina University. The stratigraphic relation of the coral
samples and associated AAR and OSL results is shown in Appendix F. The conventional U-series ages were corrected using the open-system conversion procedure of
Thompson et al., 2003. Final U-series ages were calculated using the half-lives of Cheng et al., 2013. The high?*Th content of sample JW2004-147 is an indication of
the high detrital content of many Coastal Plain samples (Wehmiller et al., 2004)..

Apparent Excess Model  Open-System  Conventional Initial [u1 [232 Th]
Sample 234y /238y 2307 /238y 234y Slope Age, ka Age %3y ppm ppb
JW2004-146 1.118 4+ 0.0006 0.576 + 0.0016 0.998 0.272 77.95 + 0.44 77.73 + 0.32 146.4 + 0.7 3.0844 + 0.0004 131.788 + 0.4
JW2004-147 1.128 £+ 0.0002 0.648 + 0.0019 1.058 0.294 83.97 + 0.35 91.13 + 0.41 165.8 + 0.4 1.9533 £ 0.0002 303.959 + 1.5

altered based on L-SER/L-ASP or otherwise aberrant D/L values they are
usually specimens of the thin-shelled taxa Mulinia or Ensis. The potential
for shell alteration (and/or age mixing) underscores the importance of
doing as many analyses as possible from each site or core interval;
Table 1 lists the number of samples of each genus analyzed from each
site.

4. Results and discussion

Clusters of D/L values observed at individual sites are defined as
“local” aminozones but, if observed at multiple sites, they can be
interpreted as “regional” aminozones. These aminozones are usually
characteristic of specific lithologic units at outcrops or in cores, but for
transported shells, the aminozone is defined solely on the basis of the
numerical clusters. Although the typical precision of AAR analysis of an
individual shell can be as small as 2% (see results for Interlaboratory
Comparison Samples, Appendix D), numerous diagenetic and thermal
factors, as well as age-mixing, can cause the precision of a single ami-
nozone to be on the order of 10% (Wehmiller et al., 2000). Therefore, we
use this qualitative guideline to define aminozones based on the RP
results, with the caveat that a range of ages can be represented by a
defined aminozone even if all the D/L values fall within this range.
Similarly, in the discussion of radiocarbon results (and particularly for
those samples with paired Pleistocene *C-AAR results), we report C
ages at “face value” even though there are reasons to suspect that some
of these ages are minimum values only.
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4.1. Paired 14C — AAR results

Paired 1*C-AAR results demonstrate an expected trend of increasing
D/L values with *C age (Fig. 5). The paired results for Astarte and
Mercenaria are limited, but there are enough paired results for Spisula to
conclude that there is no clear relation between D/L values and 14C ages
for the Pleistocene samples of this genus. The shapes of these curves are
the combined consequence of the fundamental diagenetic pathway of
racemization and the contrast in effective temperature between Holo-
cene and Pleistocene samples (Wehmiller et al., 2010: Figs. 12 and 13).
Other studies (e.g, Ryan et al., 2020) also confirm the general obser-
vation that ASP appears to racemize very quickly in young (Holocene)
samples, with racemization rates then slowing significantly in older
samples. Kaufman (2006) demonstrated this trend using controlled
laboratory experiments, showing that incremental increases in D/L ASP
and GLU get progressively smaller with increasing sample age. For
natural samples, at some point the increase in D/L value will be equal to,
or less than, the inherent variability of D/L values within a group of
samples (e.g., Blakemore et al., 2015). The D/L ASP and GLU values for
the Pleistocene samples in Fig. 5 fall within the ranges seen in Merce-
naria and Spisula from onshore Pleistocene sites, including several
samples from the Marine Isotope Stage (MIS) 5a (calibrated with U-se-
ries coral results) unit at Gomez Pit, VA (81-84)

4.2. Identification of Holocene and Pleistocene aminozones: beach and
onshore comparison samples

Co-varying D/L values of ASP and GLU in Mercenaria and Spisula
from five of the six islands, and for several onshore comparison sites, are
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Fig. 5. Plots of D/L values of ASP and GLU
vs. 4C (calibrated) age for Astarte, Merce-
naria and Spisula for samples of these taxa
that have both AAR and '“C results for the
same sample (paired analyses). 14¢ ages in
Table 2a; D/L values in Appendix B. One
paired Mulinia analysis is listed in Table 2
but not plotted here. The D/L ASP and GLU

>
>

® Mercenaria values for this sample are 0.46 and 0.22; the
B Spisula 14C calibrated age is ~39.3 ka. The open
A Astarte symbols represent Spisula and Astarte with
A>50 ka “greater than” 14C results and are plotted

with an assigned age of 55 ka. The plotted
A curves are logarithmic fits to all finite age
results without distinction regarding genus.

20 30 40
Cal “C age, ka

shown in Fig. 6a and b. Only IE data for Mercenaria are available for
Wallops Island, where no Spisula were collected. Four clusters of Mer-
cenaria D/L values, designated M1, M2, M3, and M4 are observed
(Fig. 6a), and two clusters of Spisula D/L values (designated S1 and S2)
(Fig. 6b). For the beach and onshore samples only mean values (with
ranges of + 10%) are plotted. Co-variance plots such as these have been
used to screen for aberrant or anomalous results (e.g., Kaufman, 2006);
although some results in Fig. 6a and b might be considered suspect, no
results have been excluded from these plots. Results for Interlaboratory
Comparison Samples (ILC) are plotted in Fig. 6¢; the ranges of D/L
values for the ILC samples provide a useful comparison with the ranges
seen in the different Mercenaria or Spisula clusters, as the ILC results are
for homogeneous samples analyzed at different times during the course
of this study. The ILC samples represent different ages and molluscan
genera, but the D/L values are a qualitative indication of the age dif-
ferences between the samples.

Clusters M1 and S1 in Fig. 6a and b represent Holocene ages based on
a limited number of paired '*C-AAR analyses of specific shells of each
genus that fall within these clusters (Table 2a; Fig. 5). The actual range
of D/L values for the M1 and S1 beach samples is variable depending on
the island site and is as large as +20% (Appendx B). Based on paired l4c.
AAR results for Mulinia (Simonson et al., 2013), the ranges of D/L values
in clusters M1 and S1 likely represent the mid-to late Holocene. Clusters
M2 and S2 include shells that are inferred to be of Pleistocene age based
on paired *C-AAR results or stratigraphic association with units dated
via U-Th. Clusters M2 and M3 at the Gomez sites (81-84) represent two
distinct aminozones in the Sedgefield member of the Tabb Formation, in
stratigraphic superposition. These two aminozones are identified in
numerous exposures throughout the excavation (Wehmiller et al., 1988;
Mirecki et al., 1995; Lamothe et al., 1998). Shells in the M2 zone are
associated with corals with U-series ages of ~75-80 ka (Wehmiller et al.,
2004). The M2 and S2 clusters also include samples from several
southern Delmarva onshore sites that represent the Nassawadox For-
mation (Mixon, 1985). The M2 and S2 clusters both contain results for
two collection sites approximately 100 m apart within the same shell
bed at Gomez Pit, providing examples of local variability within a single
aminozone and lithostratigraphic unit. Clusters M2 and M3 include re-
sults for two Mercenaria shells from PR#1 (85), confirming the original
GC and IE results.

Cluster M3 includes data for three sites (T’s, Pk, and NB) (40, 44, and
53) originally grouped (using GC data) with the M4 Omar-Accomack
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samples from CW-4 (38) and MF (39) using GC or IE data. All but NB
(53) are located in the northern Virginia portion of Delmarva. However,
the newer results indicate that sites T’s, Pk, and NB (40, 44 and 53) are
younger than the MF/CW-4 samples, with mixed ages possibly being
inferred from the T’s data. The inferred clusters of RP ASP and GLU data
for these samples conflict with the clusters based on GC data for leucine
and valine, implying that some amino acids are more useful for ami-
nozone distinctions, particularly with the more extensively racemized
samples. T’s and Pk collection sites lie off the axis (Fig. 3) of the Omar-
Accomack spit (Mixon, 1985), hence could be younger than the unit
represented by the MF/CW-4 group. The question of the age difference
between the MF/CW-4 and NB/T’s/P samples requires further study,
including repeat GC/RP analyses on the same sample using current
analytical methods. The implications of the MF/CW-4 results are dis-
cussed in section 4.5.5.

Cluster M4 includes results from the Accomack member of the Omar
formation of Mixon (1985) (38-40, 44, Table 1). Original results from
the M4 samples were interpreted to be mid-Pleistocene (>400 ka) in age
(Belknap and Wehmiller, 1980; Wehmiller et al., 1988). One Mercenaria
sample, from onshore site CWW (41, Tables 1 and 2), has D/L values at
or near racemic equilibrium (D/L ~1.0), indicating it is more exten-
sively racemized than all the others of this genus in the present study.
The CWW sample is from a deep (~-50m) water well that penetrated the
Yorktown Formation, a Neogene unit that underlies much of the central
Delmarva Peninsula (Belknap, 1979; Belknap and Wehmiller, 1980;
Mixon, 1985). Although the D/L values for beach shells in this study are
not represented by clusters M3 or M4, these latter two clusters are
important for the overall understanding of the regional amino-
stratigraphy because they constrain the ages of the Delmarva paleo-
channel system. A limited number of samples with M3 or M4 D/L values
are found in shelf cores (section 4.6).

The covariance of ASP and GLU D/L values for Mercenaria and Spisula
is quite similar, as seen in Fig. 6a and 6b. D/L values for Rangia speci-
mens (a brackish water mollusk) from several central and northern
Chesapeake Bay sites (8-11), plot within the M2 and M3 clusters. The
Rangia RP D/L values are consistent with previously obtained IE data
identifying two clusters. At only one site (NB, site 53) are Rangia and
Mercenaria found together in outcrop (Mixon, 1985: Fig. 4) but because
they are in superposed units it cannot be proven that they are equal in
age. Combining data for different taxa into a single D/L vs. D/L figure
does not imply equivalent intergeneric racemization rates, rather it
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Fig. 6. RP data for D/L ASP vs D/L GLU in Mercenaria (6a) and Spisula (6b) from Metompkin, Cedar, Parramore, Wreck and Smith islands, Smith Island Shoal (SIS)
(80), and onshore comparison sites as follows: NB (53,54); GP (81-84); CC (72) EC-1 (73); SN (63); MF (39); CW-4 (38); T’s (40); Pk (44); PR#1 (85). Mean values for
clusters from each island are plotted with a range of +10%, although the actual ranges can be larger. Samples from SIS (80) have Holocene paired *C-AAR results.
Samples from Parramore (Parr), Smith (Sm), and Wreck (Wrk) have Pleistocene paired *C-AAR results. Results for onshore sites are plotted as mean values with
ranges of £10%. D/L results for Astarte are more limited and fall within the M1 and M2 clusters (Appendix B). The two data points labeled Rn are for the two clusters
of Rangia D/L values observed at sites in the central and northern Chesapeake Bay (8-11). M1, M2, M3, M4, S1, and S2 identify the general clusters of D/L values for
Mercenaria and Spisula, as discussed in text. Fig. 6¢ shows comparable ASP-GLU D/L values by RP for Interlaboratory Comparison Samples (Wehmiller, 1984) (data in
Appendix D), indicating the range of results for multiple analyses of individual homogeneous samples. ILC B and C are homogeneous powders of Mercenaria from late
and early Pleistocene sites in South and North Carolina, respectively, and ILC A is a homogenous powder sample of Saxidomus from a late Pleistocene site on the US
Pacific coast. The D/L values in ILC A and ILC B span the range of most of the values observed in the present study.

indicates a similarity in relative intrageneric rates. Comparison of the
Mercenaria and Spisula data with Astarte is more limited because only
one cluster of Pleistocene Astarte is observed (Appendix B), with mean
D/L values of ~0.58 and ~0.23 for ASP and GLU, respectively.

The ranges of D/L values for each cluster in Fig. 6 represent a com-
bination of factors: actual age differences within a given aminozone,
intra-sample variability, differences in sample quality, and contrasting
temperature histories for individual samples. The latter effect is signif-
icant, as the localities represented by these clusters include both offshore
and onshore sites spanning a ~ 2° latitude range, representing a range of
approximately 2.5 °C in mean annual temperature (Wehmiller et al.,
2000). None of these possibilities is dismissed, but a Pleistocene age for
the M2 and S2 clusters observed in shells from the island beaches is
confirmed by the paired *C-AAR results for these shells, which provide
minimum ages of at least ~30 ka. A heating effect, in which long
exposure on the beach surface leads to anomalously high D/L values, has
been noted in earlier AAR studies of Holocene mollusk samples (Weh-
miller, 1977; Wehmiller et al., 1995). Although the number of beach
shell analyses reported here is limited, the AAR results indicate that only
Holocene Mercenaria have been found on Wreck and Smith Islands, and
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that only Pleistocene Spisula have been found on these two islands. Both
Pleistocene and Holocene Mercenaria and Spisula are found on Parra-
more Island, and with a few exceptions, the shells from Wallops, Cedar
and Metompkin islands appear to be primarily Holocene in age; these
interpretations are summarized in Table 3.

4.3. Identification of Holocene and Pleistocene aminozones: offshore
samples

Mulinia specimens are found much more frequently in the offshore
cores than either Spisula or Mercenaria, hence data for Mulinia are
particularly useful for developing a regional aminostratigraphic frame-
work and linking offshore, beach, and onshore results. The Mulinia
aminostratigraphy for the study area is shown in Figs. 7 and 8. Fig. 7
presents the D/L ASP-GLU relation for Mulinia samples from offshore
and onshore sites, with four clusters identified as Mul, Mu2, Mu3, and
Mu4. As in the case of the clusters of D/L values observed for Mercenaria
and Spisula (Fig. 6), the individual Mulinia clusters identified in Fig. 7
have ranges of D/L values that can represent both age and temperature
differences, among other factors. The intrageneric ASP-GLU relation for
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Table 3
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Numbers and proportions of Delmarva island beach shells interpreted as being either Holocene or Pleistocene in age.

Holocene Holocene Pleistocene  Pleistocene % % Pleistocene %
Pleistocene Pleistocene
Map #  Collection site UDAMS Mercenaria  Spisula Mercenaria Spisula Mercenaria Spisula Combined**
42 Wallops Island 06203 13* nc 0 nc 0 na 0
50 Metompkin 1 06233 10 nc 5 nc 33 na 33
46 Metompkin 2 06234 15 nc 0 nc 0 na 0
59 Cedar Island O 06227 13 1 0 1 0 50 7
57 Cedar Island 1 06228 13 nc 2 nc 13 na 13
59-62  North 06196, 06202 14 1 9 7 40 88 52
Parramore
71 Wreck Island 06236 16 0 0 16 0 100 50
74 Smith Island 06251 15 0 0 17 0 100 50
* including 2 nc = none na = not ** = # Pleist/(#Hol +
Noetia collected applicable #Pleist)
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Fig. 7. D/L ASP vs. D/L GLU for Mulinia from onshore and offshore sites. Onshore sites are identified with large solid circles and identified by name. Offshore sites
are identified by small solid circles and by solid squares, the latter identified by name. Each data point represents the mean value for each site with three or more
analyses. Selected sites are identified for reference, as follows: 18-1230 (33); 18-1248 (32); 27-1520 (37); O-LH as the mean of three Omar/Lynch Heights (13-15),
Exmore (Ex) (66); Kiptopeake (Kp) (75); Stetson Pit (SP) (89, 90); the plotted Eastville mean values (Estvile 1 and Estvile 2) represent two apparent groups of D/L
values for Eyreville (69) and Cheriton East (94). The Stetson Pit results represent a superposed sequence from late to early Pleistocene (York et al., 1989). MLDO1 and
MLDO6 (93, 92) are results for early Pleistocene samples from the Albemarle Embayment, NC (Wehmiller et al., 2010). Ranges of D/L values for late, middle, and
early Pleistocene are based on the Albemarle data and U-series results (Table 2b). See Fig. 12 for further discussion. Data for only 22-h hydrolysis analyses

are included.

Mulinia in Fig. 7 is similar to those for Mercenaria and Spisula (Fig. 6), but
for any specified D/L GLU value the D/L ASP values in Mulinia are lower
those in either Mercenaria or Spisula. Because Fig. 7 represents both
offshore and onshore sites from a broad latitude range, we use Fig. 8 to
show Mulinia ASP and GLU D/L values for the onshore and offshore sites
listed in Table 1, demonstrating the latitude (temperature) effect on the
range of D/L values for the Mu2 cluster. There is a clear trend of D/L
values for both ASP and GLU increasing with decreasing latitude (which
represents an increase in mean annual temperature of approximately
2.5°, cited above), although there is some scatter around both of these
trends (not always in the same direction for the two amino acids). For
simplicity, each data point in Fig. 8 is plotted with a +5% precision,
acknowledging that some results have either smaller or larger co-
efficients of variation. The solid lines are linear regressions on all the D/
L ASP and D/L GLU site means for Mulinia, and the dashed lines depict a
range of 10% above or below these regressions. These “envelopes”
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represent simple guidelines for definition of a regional Mulinia amino-
zone, which represents the range of D/L values in cluster Mu2 in Fig. 7.

Cluster Mu2 (Figs. 7 and 8) includes results from offshore, onshore,
and barrier island cores from southern Delmarva, southeastern Virginia
and northeastern North Carolina excavations or subsurface sections. The
onshore Mu2 sites include a superposed subsurface sequence at Stetson
Pit NC (89, 90) (York et al., 1989; Riggs et al., 1992; Wehmiller et al.,
2010), a superposed sequence at East Lake Pit (87) (Parham et al., 2013;
this work) and the Lynch Heights/Omar Formation in southeastern
Delaware (Ramsey, 2010), the latter with Mu3 D/L values (sites 13-15).
Both the Stetson Pit and East Lake Pit superposed stratified sections also
yield Mu4 values, the latter interpreted as early Pleistocene (Wehmiller
etal., 2010, 2012) . Also included are results for cores MLD-05, MLD-06,
and MLD-01 (91-93), from the Albemarle Embayment study that in-
cludes detailed litho- and seismic stratigraphic information (Mallinson
et al., 2010; Wehmiller et al., 2010). AAR results for East Lake Pit and
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Fig. 8. Latitudinal distribution of mean D/L ASP and GLU values (RP method only) for Mulinia samples from all sites listed in Table 1. Each site mean is plotted with a
range of 5%. The solid lines are linear regressions on the mean values for ASP and GLU; the dashed lines represent ranges of 10% above or below the linear regression.
“Mu2 ASP” and “Mu2 GLU” represent the “Mu2 Mulinia aminozone” as discussed in text. For clarity, with the exception of the Eyreville, Cheriton East, and Exmore
GLU D/L values, only ASP D/L values for Mu3 and Mu4 are plotted, as the GLU D/L values for these clusters overlap with the ASP values for Mu2. The dashed line
between Mu3 points is qualitative and not an actual regression. See Fig. 7 for ASP and GLU D/L values for Mu3 and Mu4. Sites with either U-series or 1*C age control
are SP (Stetson Pit, NC, sites 89, 90); ELP (East Lake Pit, NC (site 87) at latitude 35.8° and DGS92-16 (25) at latitude 38.5° (see Fig. 9). Other identified sites or groups
of sites are: Ey = Eyreville (site 69); Ex = Exmore (site 66); ChE = Cheriton East (94); Md Shelf (sites 32, 33); Omar Fm (Lynch Heights) (sites 13-15). ASP and GLU
D/L values for Holocene Mulinia are ~0.24 and 0.05, respectively (Appendix B and Fig. 7). Data for only 22-h hydrolysis results are included. Regressions for Mu2
values as follows: ASP D/L = 1.1961-0.0202 (Latitude) GLU D/L = 1.0734-0.0232 (Latitude).

MLD-06 are discussed in greater detail in section 4.5.1. The Mu2 and
Mu3 clusters are clearly separated; the intermediate D/L values for
MGS18-1230 (33) and Eyreville/Cheriton East (69, 94) are interpreted
as cluster Mu2.5.

A few Mulinia results in Fig. 8 plot below or above the Mu2 envelope
but do not appear to fit in either the Mul or Mu3 clusters. The magni-
tude of these deviations from the Mu2 envelope is quantified in Table 4,
where the ratio of observed to predicted ASP and GLU D/L values for all
sites within the Mu2 envelope is listed. The reference regressions for the
two amino acids are found in the caption for Fig. 8, and both predicted
and observed site mean values are listed in Table 4. The averages of the
deviations for ASP and GLU are used as guides to assignment of Mu2-or
Mu2+ to each site, using an arbitrary threshold of 8% below or above
the reference regression. In several cases the difference between the ASP
and GLU deviations is quite large (Table 4), suggesting anomalous re-
sults likely related to diagenetic factors such as leaching or contami-
nation (selective loss or gain of amino acids).

The constraints on the range of ages represented by the Mu2 enve-
lope in Fig. 8 are based on both radiocarbon and U-series results for
associated samples. The younger age limit is defined by the *C results
(at or near detection limit) from offshore core DGS92-16 (25) that are
stratigraphically above analyzed Mulinia from this core (Fig. 9a; Ap-
pendix F). A >52 ka 1*C-AAR result for Astarte with D/L values like those
from DGS92-16 from the New Jersey shelf (site 6; Miller et al., 2013a)
further supports this age constraint. Less direct calibration of this ami-
nozone is discussed in section 4.5.3. The older age range is based on
U-series results (~MIS 5a-5c¢) from two of the North Carolina sites (East
Lake and Stetson: 87, 89, 90) that define the Mu2 aminozone to repre-
sent at least part of Marine Isotope Stage (MIS) 5, and we adopt as a
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working model that this envelope represents the full range of MIS 5 from
~130 ka to ~75 ka. The combined results for the East Lake Pit, Stetson
Pit, and DGS92-16 sites represent the best-controlled “end members” for
the envelope of D/L values shown in Fig. 8. The detailed relation of AAR
and independent chronologies for these sites are summarized in Fig. 9.
Mubhs et al. (2014; 2018) presented similar D/L envelopes for MIS 5
samples from United States Pacific coast marine terraces; although the
data are for different taxa, the trends of D/L values are comparable, as
are the ranges of D/L values (~+ 10%) for samples of the same age
within each envelope. Muhs et al. report GLU and VAL D/L values
increasing by ~30% over a temperature range of ~2.5 °C, a range
similar to that represented in Fig. 8, where GLU D/L values increase by
~35%. Corresponding VAL D/L values in Mulinia (Appendix B) increase
by ~35%.

4.4. Linking offshore and onshore aminozones — intergeneric comparisons

Comparison of beach shell AAR results for Mercenaria and Spisula
with results from potential offshore source units requires quantifying the
intergeneric relation between the D/L values of these two taxa with
those of Mulinia, the genus that dominates the results from offshore
cores. This relation is shown in Fig. 10, where ASP and GLU D/L values
for Mulinia, Astarte, Mercenaria and Spisula from offshore cores are
plotted when any of the latter three taxa are found at the same core
depth as Mulinia (Tables 1 and 2). Although no Astarte beach samples
have been analyzed, the inclusion of Astarte results in this plot is
important because several of the Astarte samples have 14¢C results (Ta-
bles 1 and 2) that provide reference ages (—~50 ka or greater) for the
associated Mulinia. Fig. 10 demonstrates that Mulinia ASP D/L values
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Table 4
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Comparison of observed D/L values for ASP and GLU with those predicted by reference regression lines (Fig. 8). Ratio of observed to predicted (O/P) shown in right
columns; average of the ASP and GLU O/P values is used as a guide for assigning Mu2, Mu2-+, Mu2.5, or Mu2-to the site cluster values. Included in this analysis are
those sites where two or more specimens yielded “similar” results (avoiding sites with widely-divergent results, with the exception of GP, site #83). No results from the

6-h hydrolysis procedure are included.

Predicted Predicted Observed Observed Obs/Pred Obs/Pred Avg dev

Site No. UDAMS Other Loc ID Latitude ASP GLU ASP GLU ASP GLU ASP & GLU Mu zone Notes
91 07572 MLDO5 35.698 0.475 0.245 0.468 0.238 0.985 0.971 0.978 Mu2
89,90 07077 Stetson 35.864 0.472 0.241 0.481 0.247 1.020 1.023 1.022 Mu2
88 07118 CS80 35.873 0.471 0.241 0.480 0.236 1.018 0.979 0.998 Mu2
87 07556 ELP 35.887 0.471 0.241 0.464 0.275 0.985 1.142 1.063 Mu2 3
86 06258 VA-2015-01 36.602 0.457 0.224 0.459 0.224 1.005 0.999 1.002 Mu2
83 06058 Gomez 36.785 0.453 0.220 0.452 0.259 0.998 1.177 1.088 Mu2 3,4
75 06204 Kiptopke 37.138 0.446 0.212 0.435 0.215 0.976 1.015 0.995 Mu2
79 06272 VA-2017-05 37.079 0.447 0.213 0.441 0.232 0.986 1.088 1.037 Mu2
78 06273 VA-2017-06 37.103 0.447 0.213 0.477 0.238 1.068 1.119 1.094 Mu2
76 06274 VA-2017-07 37.131 0.446 0.212 0.429 0.193 0.962 0.911 0.936 Mu2
77 06275 VA-2017-08 37.130 0.446 0.212 0.470 0.250 1.054 1.179 1.116 Mu2+
69 06261 Eyreville 1 37.320 0.442 0.208 0.477 0.267 1.079 1.286 1.182 Mu2+ 3
69 06261 Eyreville 2 37.320 0.442 0.208 0.535 0.345 1.210 1.658 1.434 Mu2.5 3,57
94 06310 CherEst 1 37.288 0.443 0.208 0.428 0.251 0.966 1.205 1.086 Mu2 3
94 06310 CherEst 2 37.288 0.443 0.208 0.494 0.299 1.115 1.438 1.277 Mu2.5 3,57
70 06011 Ch-13 37.300 0.443 0.208 0.462 0.245 1.044 1.178 1.111 Mu2+ 3
64 06285 PARGO4 37.559 0.437 0.202 0.431 0.179 0.985 0.886 0.936 Mu2 2
58 06283 VA-2017-16 37.590 0.437 0.201 0.410 0.172 0.939 0.854 0.897 Mu2- 2
56 06289 CEDGO4 37.595 0.437 0.201 0.445 0.187 1.019 0.929 0.974 Mu2
55 06288 CEDVO3 37.600 0.437 0.201 0.431 0.170 0.987 0.845 0.916 Mu2- 2,3
51 06287 CEDGO1 37.656 0.435 0.200 0.415 0.217 0.953 1.086 1.020 Mu2 3
43 06281 VA-2017-14 37.711 0.434 0.199 0.437 0.233 1.006 1.174 1.090 Mu2 3
48 06263 VA-2016-02 37.736 0.434 0.198 0.464 0.247 1.070 1.248 1.159 Mu2+ 1,3
47 06262 VA-2016-01 37.440 0.440 0.205 0.470 0.235 1.069 1.148 1.108 Mu2+ 1
35 05393 MD-2017-06 38.161 0.425 0.188 0.413 0.194 0.971 1.032 1.001 Mu2
29 06286 ASSGO02 38.204 0.424 0.187 0.409 0.169 0.964 0.903 0.934 Mu2
31 05004 Tingles 38.194 0.425 0.187 0.432 0.225 1.017 1.201 1.109 Mu2+ 3
37 05075 MGS27-1520 38.035 0.428 0.191 0.433 0.189 1.012 0.990 1.001 Mu2
36 05065 MGS20-1430 38.148 0.426 0.188 0.410 0.160 0.964 0.849 0.906 Mu2- 3
32 05063 MGS18-1248 38.187 0.425 0.187 0.420 0.206 0.989 1.099 1.044 Mu2 3
25 05130 DGS92-16 38.475 0.419 0.181 0.416 0.179 0.993 0.990 0.992 Mu2
21 05309 Qj31-20 38.543 0.418 0.179 0.435 0.202 1.042 1.127 1.085 Mu2
19 05018 Qj22-06 38.559 0.417 0.179 0.441 0.221 1.057 1.236 1.146 Mu2+ 3
23 05020 Qj42-07 38.525 0.418 0.179 0.430 0.214 1.028 1.195 1.111 Mu2+ 3,6
22 05296 Qj32-10 38.538 0.418 0.179 0.425 0.197 1.016 1.100 1.058 Mu2 6

Four cores with only one Mulinia

06275 7282-86 Mu2+

06254 Zh31-01 off trend

06270 Yh54-01 Mu2+

06253 Xh54-01 Mu2

1 evidence of age-mixing in results for Mulinia and Mercenaria
2 Combined D/L & quantitative data (Appendix C) indicate marginal quality results for all but ASP
3 large (>0.1) difference in deviations

4 two shells only

5 samples with high D/L values at depth in two adjacent cores in Eastville Paleochannel
6 6-h hydrolysis; D/L values converted (see Appendix B)
7 D/L values are between those of Mu2 and Mu3; assigned to Mu2.5

between 0.4 and 0.5 are associated with ASP D/L values in the other
three taxa between 0.5 and 0.6; for GLU, the D/L values in all four
genera are similar. These ranges of ASP and GLU D/L values for Mer-
cenaria and Spisula are typical of those found in the Pleistocene shells
from the island beaches and onshore Pleistocene units (clusters M2 and
S2, respectively).

4.5. Relation between D/L clusters and local stratigraphic sequences

Although the broad regional framework of Mulinia D/L values in
Fig. 8 is constrained by independent chronologic control at selected
sites, it is important to compare AAR results with stratigraphic se-
quences to demonstrate how D/L values relate to named units at specific
sites. These comparisons refer to results identified in Fig. 7, supple-
mented by the logs for offshore cores and related seismic stratigraphic
information as presented in Appendix F.
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4.5.1. East Lake Pit, Stetson Pit, CS80, and MLD-06, northeastern North
Carolina

Results from these four sites (87-90, 92) in northeastern North
Carolina (Fig. 9b) demonstrate the consistency of D/L values when
“tested” within both superposed sequences and over a lateral extent of
~25 km, as well as providing a comparison with both OSL and coral U-
series ages. Earliest studies of the Stetson Pit site include those by Cronin
et al. (1981) and Szabo (1985), where a U-series age of ~70 ka was
reported for a coral from an excavation at Stetson Pit. York et al. (1989)
reported AAR data for Mulinia and Mercenaria from a split spoon core
taken within ~1 km of the original Stetson Pit excavation, using the
U-series results of Szabo (1985) as calibration for the shallowest ami-
nozone found between 7 m and 11 m below sea level (York et al., 1989).
York et al. (1989) referred to this as the Upper aminozone and identified
Middle and Lower aminozones at depths of ~14 m and >17 m below sea
level, respectively (York et al., 1989, Table 1). Only the RP AAR results
for samples from the original York collection are discussed here, as these
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Fig. 9. a. D/L values for ASP and GLU in Mulinia and
Astarte from core DGS92-16 (25), plotted vs. depth in
core. 1C calibrated age for two Astarte at 0.6 m and
one Astarte at 2.7 m are listed to the left of the D/L
trends in the figure. Two data points marked with #
are for repeat analyses of the same shell, where a large
difference in ASP D/L was observed. The slight trend
of Astarte D/L GLU values vs depth is not apparent in
the Mulinia results for either amino acid. The Mulinia
results for DGS92-16 (cluster Mu2) are interpreted to
represent an age of at least 50 ka based on the limiting
14C ages for Astarte in this core. b. D/L GLU values for
Mulinia from four northeastern North Carolina (Stet-
son and East Lake Pits, CS80 and MLDO06) (sites
87-90, and 92) compared with aminozone Mu2 from
Figs. 7 and 8. Only GLU values are plotted for clarity;
D/L ASP values are consistent with the observations
based on D/L GLU. D/L values are plotted vs.
approximate depth below sea level. Lines connect
data for multiple depths from Stetson Pit and East
Lake Pit. The rectangle along the horizontal axis
shows the range of Mu2 values for GLU (~0.26). East
Lake Pit has two superposed clusters of results (Mu2
and Mu4), and Mu4 is found at a similar depth at
MLD-06, ~1.5 km to the west. Mu2 is found at two
sites to the east (Stetson Pit and CS80). The Stetson Pit
section also reveals additional D/L clusters at depth,
the lowermost one likely corresponding to the Mu4
cluster seen at MLD-06 and East Lake. D/L GLU values
from East Lake Pit associated with MIS 5 OSL or U-
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results can be compared directly with those for East Lake Pit and
MLD-06 (Fig. 9b). At least four aminozones for this region are inferred
from the collective RP results.

Two clusters of D/L values are recognized in superposition at East
Lake Pit (Mu2 and Mu4), and Mu4 is found at the nearby (~1.5 km)
MLD-06 site to the west. Mu2 at East Lake Pit is associated with both U-
series and OSL results that collectively represent Marine Isotope Stage
(MIS) 5, likely MIS 5a and/or MIS 5c, thereby serving as calibration for
the Mu2 aminozone. Mu2 is found also at site CS80, to the east of Stetson
Pit, demonstrating the regional extent of this aminozone. Mu3 and Mu4
are found at depth at Stetson Pit, representing middle to early Pleisto-
cene (Wehmiller et al., 2010; 2012). In both the East Lake and Stetson
Pit sections (and in other sections in the area — Wehmiller et al., 2010),
increasing D/L values are found with increasing burial depth in super-
posed strata, a fundamental test of the reliability of the results. The Mu2
D/L values for these two sites are slightly higher than those for Delmarva
sites (e.g., Fig. 8) because of the latitudinal temperature difference be-
tween the regions.
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series results are plotted as a solid square. These
samples are from the same stratigraphic position as
the Mu2 samples in the East Lake exposure (see Par-
ham et al., 2013: Fig. 17), hence Mu2 at this site is
assigned a calibrated age of ~80 ka to ~90 ka (MIS 5a
or MIS 5¢). This age assignment is consistent with a
previous MIS 5a age assignment for the lowest D/L
values observed at Stetson Pit (York et al., 1989). OSL
data from Parham et al. (2013); U-series results are in
Table 2b. See section 4.5.1 for discussion.

4.5.2. Maryland shelf cores and the identification of aminozones for units
Q2 and Q1

For the Maryland shelf results, the sequence of D/L values observed
in MGS cores 27-1520, 18-1230 and 18-1248 (37, 33, and 32) is related
to the mapping by Toscano et al. (1989), who identified units Q2 and Q1
in superposition in cores 18-1230 and 18-1248, and the single unit Q2
in core 27-1520. Core logs with superimposed AAR data from Toscano
et al. (1989) and Appendix B are found in Appendix F. The AAR results
(Fig. 7) for Q2 in 27-1520 and 18-1248 cluster tightly as Mu2 (also with
results for DGS92-16 (Fig. 9a), cited in section 4.3 and in Appendix F);
D/L values for Q1 in both 18-1230 (Mu2.5) and 18-1248 (~Mu3) are
significantly higher than in Q2, confirming the age differences in these
cores observed by Toscano et al. (1989) for these two cores. Though in
broad agreement, differences in the location of the seismic section and
sediment cores make it difficult to compare with spatial precision the
seismic interpretations of Brothers et al. (2020) and the core results of
Toscano et al. (1989). Spisula data for the lowermost portions of
18-1230 and 18-1248 show scatter and evidence of contamination,
suggesting shell alteration and/or age mixing. These two cores are
critical for identification of superposed aminozones in the offshore, so
this region of the shelf should be revisited to construct a more detailed
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Fig. 10. D/L mean values for ASP and GLU
in samples of Mercenaria, Astarte, and Spisula
plotted against the corresponding values of
ASP and GLU in coexisting Mulinia. Data
from sites 25, 36, 37, 70, 75-77, 79, 83 and
88 are plotted, as these are the only ones
with multiple coexisting samples of two or
more of these taxa. These two groups of D/L
values are equivalent to the M2 and S2
clusters in Fig. 6; D/L values for Astarte are
more limited but are similar to the M1 and
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amino- and seismic stratigraphic sequence.

4.5.3. Southern Delmarva onshore and offshore aminozone correlations

The Mu2 Mulinia results from southern Delmarva sites KP (75) and
Ch13 (70), reinforced with Mercenaria results (M2) from nearby sites CC
(72) and EC-1 (73) (Appendix B; Fig. 6a), establish the range of D/L
values for Mixon’s (1985) Butlers Bluff member of the Nassawadox
Formation. The D/L values for KP and Ch13 (southern end of Delmarva)
are slightly higher than those in the Q2 unit in MGS cores 27-1520 (37)
and 18-1248 (32) (Maryland shelf) because of the latitude - temperature
difference between the two regions. D/L values for Mulinia and Spisula
from cores offshore of Smith Island (76-79) (Appendices B and F) plot
within the Mu2 and S2 clusters, confirming the interpretation of
Brothers et al. (2020) that the Q2 unit is found in this offshore region.
The Spisula results (cluster S2) from Smith and Wreck Islands (Fig. 6b)
indicate the presence of a nearshore unit aminostratigraphically equiv-
alent to Q2 offshore and the Nassawadox onshore. The cluster of Mu2
D/L values includes results representing the Wachapreague and Sine-
puxent formations (see Fig. 4) (Mixon, 1985; Ramsey, 2010) along the
eastern margin of Delmarva (sites 19-21, 23, 29, 31, 51, 55, 56, 64).
Estimates of the age of the Sinepuxent/Wachapreague unit are based on
multiple finite '*C results from both shell and organic-rich sediment, in
the range of 30-40 ka (Finkelstein and Kearney, 1988; Owens and
Denny, 1978); . Raff et al. (2018) reported e ages for Mulinia and a
bulk organic sample from “probable Wachapreague” of ~29 ka and
>42.6 ka (infinite age), respectively, at ca. —10 m underlying Parramore
Island; the former they recognize as improbable and associated with the
common observation of Pleistocene shell carbonate yielding falsely
young ages. Their >42.6 ka age and the similar >49 ka sample dated
from Delaware shelf core DGS92-16 (25) (see Fig. 9a) provide good
minimum-age constraints on the collective AAR results for the
Sinepuxent/Wachapreague.

4.5.4. Southern Delmarva: aminozones of the Eastville and Exmore
paleochannel fills

The combined Eyreville (69) - Cheriton East (94) and Exmore (66)
cores represent filling units of the Eastville and Exmore paleochannels,
respectively (Colman and Mixon, 1988; Colman et al., 1990; Powars and
Bruce, 1999; Browning et al., 2009); these are important Pleistocene
reference sections for the regional Delmarva stratigraphy. The Eyreville
and Cheriton East results each appear as two overlapping but
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superposed groups of D/L values (labeled Estvile 1 and Estvile 2 in
Figs. 7 and 8); the Exmore results cluster around still higher D/L values
but show a wide range, probably reflecting some sample alteration
(Appendix B). There is a large range of L-SER/L-ASP in the Exmore
samples (0.05-0.33), high values being indicative of alteration or
contamination (Kaufman, 2006). Only five of these samples have
L-SER/L-ASP values less than 0.1, values observed in most other Mulinia
(App. B). The mean ASP and GLU D/L values of these five are 0.596 and
0.413, respectively, roughly 0.02 and 0.03 higher than the grand mean
for all 14 Exmore samples. Given the fragile nature of the Exmore shells,
even the highest D/L values from the Exmore samples are likely mini-
mum values. The Exmore results overlap with those from the combined
Omar/Lynch Heights formations (see Fig. 4) in southeastern Delaware
(sites 13-15; Ramsey, 2010; 2011), implying similar ages.

The Eastville samples (from the Eyreville and Cheriton East cores)
represent the Butlers Bluff and possibly the Stumptown members of the
Nassawadox Formation (Mixon, 1985: Fig. 18), the latest stages of filling
and transgression of the Eastville paleochannel. The Exmore samples
represent a deeper (~30 m) portion of the unit that fills the Exmore
paleochannel (Powars, 2011). The two apparent clusters of Mulinia D/L
values for the Eastville samples are lower than the most reliable values
for the corresponding Mulinia D/L values in the Exmore core (Fig. 7).
This relation is consistent with the relative ages of these two paleo-
channels (Colman and Mixon, 1988). The lower D/L values from the
Eastville cores (Estvle 1) plot within or the Mu2 cluster (Fig. 7), but
distinctly higher D/L values (Mu2.5) (similar to those from the Q1 unit
of MGS18-1230) are also seen (Estvile 2) (Figs. 7 and 8). D/L values for
Ensis samples from the Eyreville core are also higher than any other Ensis
results for the region (Appendix B), reinforcing the interpretation of the
Mulinia data. Sites KP (75) and Ch13 (70), southwest of the Eyreville
core site, yielded Mu2 (and M2) D/L values (Fig. 7). The combination of
KP, Ch13, and Eastville results indicate that the filling of the Eastville
paleochannel is recorded by deposits with both Mu2 and higher (Mu2.5)
(~Q1) D/L values (Table 4). This aminostratigraphic sequence is
consistent with the interpretation of Mixon (1985), that the
Eastville-Nasswadox-Wachapreague-Sinepuxent sequence represents
paleochannel incision during a glacial-stage sea-level lowstand followed
by deposition during interglacial transgression (Stumptown to Butlers
Bluff), and then multiple phases of regressive deposition (Wachaprea-
gue-Sinepuxent). Oertel and Foyle (1995, Fig. 9) suggested two phases
for the evolution of the Nassawadox, the earlier phase possibly being
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represented by the Mu2.5 D/L cluster (Estvle 2 in Fig. 7). Numerical ages
for the sequence of units related to the Eastville are proposed in section
S.

4.5.5. The aminostratigraphic relation of the Omar-Accomack spit to the
Exmore and Persimmon Point paleochannels

The Persimmon Point paleochannel (McFarland and Beach, 2019;
Brothers et al., 2020) underlies the northern portion of the landform
mapped by Mixon (1985) as the Omar-Accomack (O-A) spit (Figs. 1-3).
The O-A spit at its southern end overlies the Exmore paleochannel
(Colman and Mixon, 1988; Colman et al., 1990). AAR results for O-A
samples are limited to two sites (CW-4 and MF, 38 and 39) where
Mercenaria results fall in the M4 cluster (Fig. 6a). Mercenaria D/L values
in this range (ASP ~0.75, GLU ~ 0.50) correspond to equivalent Mulinia
D/L values of ~0.75 and 0.55 (~cluster Mu4), respectively Figure 7.
These equivalent Mulinia D/L values are substantially higher than those
seen in the Exmore paleochannel fill (~0.60, ~0.40, respectively)
(Fig. 7), indicating that the Persimmon Point paleochannel predates the
Exmore, consistent with the relations of these two units in the offshore
stratigraphy (Brothers et al., 2020).

4.6. Age-mixing, multiple apparent ages in offshore cores, and
identification of the potential sources of Pleistocene-age beach shells

The offshore core results indicate that the Mu2 cluster (Figs. 7 and 8)
represents the late Pleistocene unit Q2 mapped by Toscano et al. (1989)
for the Maryland inner shelf and extended by Brothers et al. (2020) over
the full region of the southern Delmarva inner shelf. Unit Q2 is partic-
ularly thick (~10 m) and exposed at the seafloor offshore of Smith and
Wreck islands, and has been dissected and, in many locations, subse-
quently filled during Holocene ravinement and transgression. D/L
values from cores in the Smith-Wreck region identify Q2 as a source for
beach shells on these two islands (Figs. 7 and 8). Similarly, the results for
the Pleistocene shells found on the beaches of Parramore, Cedar, and
Metompkin islands can be linked to the Mu2 cluster and the equivalent
Q2 unit through the intergeneric relation seen in Fig. 10. This is sup-
ported by the AAR data from cores penetrating Pleistocene sediments
underlying Parramore and Cedar islands (sites 51, 55, 56, and 64),
which Raff et al. (2018) and Shawler et al. (2019, 2020) infer to be
former pre-Holocene barrier/beach deposits. This conclusion follows
Oertel et al. (1989), who suggested the existence of a “barrier platform”
underlying the southern Delmarva islands. The AAR results from both
offshore and sub-barrier cores indicate that this platform is indeed of
Pleistocene age, and equivalent to the regionally thick (0-20 m) and
extensive unit Q2 (spanning at least 5100 km?, over 160 km N-S) of
Toscano et al. (1989) and Brothers et al. (2020).

Although most of our interpretation of the aminostratigraphy of the
offshore cores is based on Mulinia data simply because of the abundance
of this genus, the more limited AAR data for Astarte, Mercenaria, and
Spisula from the offshore cores provide insights into either age mixing or
possible age differences within these cores. Core DGS92-16 (25) is a
particularly useful reference for comparison with other sites because
AAR results for four taxa are available, along with paired *C ages
(Fig. 9a; core log in Appendix F). The results for Astarte (all samples
analyzed were whole or nearly whole valves) from DGS 92-16 (25; —23
m MSL) show a subtle trend of increasing D/L GLU values with depth
(also for valine and alanine, Appendix B), although the ranges of D/L
values for the three sampled depths all overlap and the ASP D/L values
do not show this trend (Fig. 9) Two Astarte from ~0.6 m core depth have
finite 4C ages (48.1 and 51.5 ka) while a deeper Astarte (~2.6 m)
returned a'*C age of >49.9 ka (Table 2a). The D/L trend is not seen in
the Mulinia data or in the more limited data for either Spisula or Mer-
cenaria (all fragments) from this core (Fig. 9a; Appendix B, F), and one
shallow (~0.6 m core depth) Mercenaria from DG92-16 has higher D/L
values (M4), indicating that it has been reworked from an older unit. The
DGS92-16 results for Mercenaria and Spisula fall within clusters M2, M4,
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and S2. Where Astarte are found in other shelf cores, their D/L values fall
within the range seen in DGS92-16 (25): 05292 (6); 05056 (30); 05065
(36); 05380 (28); 06254 (45); 06262 (47); and 06265 (52). The possi-
bility of a slight and increasing age difference down-core at site DGS92-
16 requires further detailed study, but this core demonstrates the value
of multiple analyses whenever possible.

Mercenaria specimens have been obtained from eight Virginia or
Maryland shelf cores in this study. These specimens are, with one
exception, all fragments representing 50% or less of the shell (usually
the robust hinge portion), providing evidence for possible transport.
Sample JW2017-306, from Zz82-69 (48), was a complete valve and was
subjected to multiple AAR analyses and also serial *C analysis. This
sample, and most of the other offshore Mercenaria, plot in the M2 cluster.
Maryland shelf cores with Mercenaria include MGS18-1230 (33) and
MGS18-1142 (34), with one sample from each core with D/L values
equivalent to clusters M2 and M3, respectively. The M2 result is
consistent with interpretations of Toscano et al. (1989); the M3 result
confirms the original analysis (Toscano et al., 1989) but, based on the
overall interpretation of this core, the M3 shell must be reworked from a
nearby source unit (likely unit Q1). Core Uj35-03 (28) may have also
sampled that source unit, as it contains Mercenaria representing three
clusters (M1, M2, and M3), all found in a zone at the bottom of the core
likely disturbed during coring or storage. In spite of this ambiguity, the
AAR results identify a potential source unit at or near the core site.

The seismic stratigraphy of the shallow units in the Chincoteague
Bight region of the northern Virginia barrier islands (Fig. 1a) indicates a
complex paleodrainage history, suggesting extensive sediment rework-
ing throughout multiple glacial-interglacial cycles (Brothers et al.,
2020). This is supported by combined Mulinia-Mercenaria results for four
cores (Zz82-68, —69, —71, and —92: 47, 48, 52, 49) from this area,
which indicate sedimentary mixing of material of different ages. For
detailed discussion, Appendix F contains four core logs (47-49 and 52)
for expanded discussion of the relation between amino- and seismic
stratigraphy in this region. For Mercenaria, only samples from Zz82-69
(48) and Zz82-92 (49) can be considered as possibly in place based on
their physical condition and location within the core. This suggests that
the erosion of an older unit in this area contributed shells through
reworking. Samples from Zz82-71 (52) have D/L values intermediate
between M2 and M3; three analyses of separate portions of the one
Mercenaria shell demonstrate the magnitude of intra-sample variability,
potentially indicative of alteration and serving as reminder about this
issue for all analyzed samples, particularly reworked specimens with a
complex taphonomic history. Even if all the M3 Mercenaria fragments in
these cores are not in place, their D/L values serve to identify a source
unit in the area, a unit that is also recognized onshore at sites 40, 44,
81-85 and that was likely present on the shelf at one time. The Merce-
naria D/L results from DGS92-16 and Zz82-69 are shown in Fig. 11,
which includes data for onshore samples from clusters M2, M3, and M4.
This comparison demonstrates that the both DGS92-16 and Zz82-69
have shell fragments with D/L values comparable to these “old” M3
and M4 aminozones. Similar to Mercenaria, AAR analysis of Mulinia from
cores Zz82-68 (47) and Zz82-69 (48) in this region show a wide range of
D/L values that span all of clusters Mu2 and Mu3, suggesting a mixing of
samples with a wide range of ages (Appendix B; Fig. 7).

Although the beach collections discussed here do not represent a
statistically rigorous geographic distribution of results, several gener-
alizations are warranted. Notably, they represent a wide range of
erosional systems. The two southernmost islands, Smith and Wreck, are
highly dynamic, experience rapid geomorphic change, and in places,
migrate rapidly landward over a shallow platform of backbarrier de-
posits (Deaton et al., 2017). All analyzed Mercenaria from these islands
are Holocene, whereas all analyzed Spisula are Pleistocene (Table 3).
These results require that sediment for these islands is sourced from two
units, representing the different habitats of these two taxa and with very
different ages. The Wreck collection site lies on a migrating spit that
became emergent only in 2012, while the Smith collection site is on a
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0.80 - Fig. 11. D/L ASP and GLU in Mercenaria
from onshore sites Gomez (GP), PR#1, and
MF (81-85, 39) compared with Mercenaria
ME data from offshore cores DGS92-16 (25) and
0.70 - 92;16 7282-69 (48). Note axes do not include the
origin. The results for GP (M2 and M3) are
consistent with the stratigraphic super-
+ M4 . ;

82.60 position of these samples. The dashed lines
0.60 connect results for two aminozones seen at
both GP and PR#1. The results from PR#1
";_’ are consistent with the two units at GP and
14 demonstrate age mixing at the PR#1 site, as
é 0.50 + inferred from prior IE and GC data. The MF
< results imply a still greater age (cluster M4).
E‘ Both DGS92-16 and Zz82-69 have Mercenaria
samples with M2 and higher D/L values (M3
0.40 A or M4), the latter in samples that are inter-
preted to have been reworked from an older
source unit. Age mixing in Zz82-69 is also
evident in the Mulinia results (section 4.6).
0.30 4 Beach shell results also fall in cluster M2

(Fig. 6a).
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0.9 - Fig. 12. Numerical age modeling using the elevated
temperature intrageneric kinetic pathway of Kaufman
0.8 M4 2 499 (2006) for reference. Co-varying D/L ASP and D/L
GLU values from Kaufman (2006) are plotted for
64 ® MLDO1 . . . e
0.7 - - ® ELP & MLDO6 different times, as listed above the kinetic curve (e.g,
_____ 2, 4, 8, 16 days at 110°). Decreasing incremental
064  m2 7 % changes in D/L values with increasing time along this
g - isothermal curve represent the overall slowing of
X 0.5 racemization rates with increasing extent of racemi-
E zation. Age differences for samples in the present
2 04 4 study are inferred from this covariance -curve,
S assuming all samples have the same effective tem-
e 0.3 perature; modeling suggests that age estimates
Early derived from thi h b izned

Pleistocene Pleistocene Pleistocene ertved trom this approac mUSt_ ¢ assigned a range
0.2 A of at least 10% because of this assumption (e.g,
Wehmiller et al., 2000, 2012). Holocene samples are
0.1 4 not plotted in Fig. 12 because their history does not
include the cooler effective temperatures associated
0 T T T T T T T ) with Pleistocene samples. Mean Mercenaria D/L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 wvalues for specific sites are represented by the M2,

D/L GLUTAMIC

M3, and M4 data points as follows: M2, CC (72) and
GP(81-84); M3, NB(53, 54); and M4, MF(39). Mean
Mulinia D/L values for specific sites are represented by
Mu2, Mu2.5, Mu3, and Mu4 as follows: (Mu2), KP
(75), Ch-13 (70); Eyreville core (69) (two depths, Mu2

and Mu2.5, connected by the solid line); Exmore (66) (Mu3) (highest five values), and Stetson Pit (89, 90) (two depths, Mu2 and Mu4, connected by the dashed line);
Rangia (Rn), two clusters for this genus from northern Chesapeake Bay (8-11). The two SP clusters represent the Stetson Pit stratigraphic section that spans the
interval from late Pleistocene (MIS 5) to early Pleistocene (York et al., 1989; Wehmiller et al., 2010; 2012).

portion of the island that has migrated landward more than 500 m in the
past two decades, accelerating during the years immediately prior to
sample collection (as observed by Deaton et al. (2017) and from Google
Earth time-lapse images). In contrast, northern Parramore is “anchored”
on a Pleistocene headland (Raff et al., 2018), erosion of which, on both
the shoreface and through inlet incision, provides Pleistocene-age Mer-
cenaria (~40% of samples on the Parramore beach are Pleistocene in
age) and Spisula (~90% of samples are Pleistocene in age). The per-
centages of Pleistocene shells decrease north of Parramore, where Cedar,
Metompkin, Assawoman, and Wallops islands comprise the “arc of
erosion” of Chincoteague Bight (Leatherman et al., 1982; Oertel et al.,
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2008; McBride et al., 2015; Fenster et al., 2016; Deaton et al., 2017).
Pleistocene-aged shells are essentially absent from the beaches of these
islands except at the southern end of Metompkin Island. Spatial changes
in the distribution of Pleistocene beach shells from these islands is
consistent with the variable depths to subsurface Pleistocene units in
this coastal segment (Finkelstein and Ferland, 1987; Byrnes, 1988;
Shawler et al., 2020).

Storms are the likely cause of many of the major transport “events”
that would bring shelly material to the beaches through runup and
overwash. At least seven major named storms impacted the Delmarva
Islands between 1990 and 2012, as summarized by McBride et al. (2015:
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Fig. 13. Summary of regional aminostratigraphy for Delmarva onshore, beach, barrier island, and offshore results. Map of the Delmarva Peninsula showing
collection sites (dots), paleochannels (polygons, see Fig. 3 for references) and offshore geologic cross section. Stratigraphy and collection sites represent the Delmarva
region from Cape Charles VA to the Maryland-Delaware border (Fig. 1a). Stratigraphic units mentioned in the text are as follows: Qmn = marine nearshore, Holocene
unit; Qcch = Fill of the Cape Charles Paleochannel; Q2 = Late Pleistocene estuarine and marine sediments that are not channel fill; Qe = Fill of the Eastville
Paleochannel; Q1 = Middle Pleistocene estuarine and marine sediments that are not channel fill; Qx = Fill of the Exmore Paleochannel; Qpp = Fill of the Persimmon
Point Paleochannel. For a complete offshore stratigraphic description see Brothers et al. (2020). Sites 1-12, 26, 27, 80. 85, 87-93 not plotted. Color coding is used to
identify Holocene and late, middle, and early Pleistocene aminozones. Multiple colors for a single site represent multiple ages, either because of age mixing or
because multiple units are found in superposition. The designations 2, 2+, 3, and 4 refer to Mulinia (Mu2 through Mu4) clusters, but color coding also represents data
for other genera. Onshore, late Pleistocene is found in central and southern Delmarva; middle Pleistocene aminozones are found in the Eastville and Exmore
paleochannels where they underlie the Delmarva Peninsula. The early Pleistocene is identified in the northern part of the Omar-Accomack spit, overlying the
Persimmon Point paleochannel. The light blue (late Pleistocene) aminozone is found in offshore unit Q2 and in numerous beach and sub-barrier sites. At least one
core (33) on the Maryland shelf sampled Q2 and underlying Q1, interpreted as middle Pleistocene in age.
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Table 2). Boyajian and Thayer (1995) described the storm transport of sea-level history for the region. Several studies (Mallinson et al., 2008;

large quantities of articulated, living shells to southern New Jersey Scott et al., 2010; Parham et al., 2013), using optically stimulated
beaches in a single storm event; this mechanism might be invoked for luminescence (OSL) geochronology, indicate that sediments interpreted
the Pleistocene shells of the Delmarva islands if the shells had remained as marine in origin were deposited during MIS 3 and are preserved as
articulated, protected, and well-preserved in their host unit until emergent units at several locations in northeastern North Carolina and
storm-transported and disarticulated at the time of accumulation. The southern Delmarva. These age estimates are fundamental components of
regionally extensive unit Q2 likely serves as that host unit. discussions of ice-volume chronology, sea-level history, and isostatic
adjustment (e.g., DeJong et al., 2015; Pico et al., 2017; Creveling et al.,
5. Discussion: aminozone age estimates 2017; Miller and Andrews 2019). The conceptual model proposed by
Scott et al. (2010) and employed by DeJong et al. (2015) identifies two
5.1. What time interval is represented by the M2/S2/Mu2 regional intervals for relative submergence of the mid-Atlantic land surface at
aminozone? roughly 55 ka (early MIS 3) and 70-80 ka (MIS 5a). Only the latter
(older) age interval is supported by U-series coral ages from SE Virginia
Age estimates for Pleistocene units of the mid-Atlantic coastal plain and NE North Carolina (Wehmiller et al., 2004). Our age estimates from
(other than by AAR) are based on either U-series, radiocarbon, or paired *C-AAR analyses must be evaluated in the context of these two
optically-stimulated luminescence (OSL) methods. Detailed site-specific possibilities.
comparisons of multiple methods are rarely available because sample The strongest argument in favor of the MIS 5a age assignment for the
collections are made by different workers and because of the ephemeral M2/S2/Mu2 aminozone is the equivalence of most of the offshore AAR
nature of most exposures (Lamothe et al., 1998). The age estimates for results with those from onshore samples that are stratigraphically
the Pleistocene beach and offshore shells that represent the M2/S2/Mu2 associated with corals whose U-series ages in the ~75-85 ka range
clusters (and the equivalent offshore Q2 unit) based on both 14¢c and (Figs. 7, 8 and 9b). The combined 14C.AAR results for Astarte with
AAR are critical to the understanding of the late Quaternary relative “infinite” (or near infinite) '*C ages (sites 6, 25, 28, 30 and 36) do not
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rule out the possibility of at least some core samples (all at water depths
of at least ~ —20 m — Table 1) dating to ~55-60 ka. Nevertheless, these
14C-AAR results provide a minimum age for associated Spisula, Merce-
naria, and Mulinia in these and other offshore cores, thereby demon-
strating that many of the “finite” (i.e., 30-45ka) *C ages on these other
taxa must be incorrect (Colman et al., 1989; Pigati et al., 2007; Busschers
et al., 2014; Rojas and Martinez, 2016), Spisula apparently being
particularly vulnerable (Nadeau et al., 2001). The contrast in D/L values
between the outer (chalky) and inner (robust) layers of LY92-15 (site 60)
(Appendix B, C) demonstrates the effect of shell alteration on D/L
values, and similar effects are likely for shell radiocarbon results,
although in this particular case the shell yielded a “clean” infinite (>44
ka) 14C result when carefully leached prior to analysis. The likelihood of
partial contamination of carbonates with atmospheric carbon is also
supported by serial 1*C analysis of Mercenaria sample JW2017-306 (site
48). Apparent ages differ by more than 5000 years over the sample
transect (43.7 ka to 48.8 ka) (Table 2), several orders of magnitude
longer than the lifespan of a single organism. Notably, none of the C
analyses achieve the “infinite” age expected from the paired D/L values
for this sample. Nonetheless, this analysis provides further evidence that
low-level carbon contamination likely affects many of the shell radio-
carbon ages reported here. Shell-bearing units formed during either MIS
3 or MIS 5 would have been sub-aerially exposed during later phases of
low sea level, hence vulnerable to diagenetic carbon exchange. The re-
sults for Pleistocene Spisula, plotted in Fig. 6b can be interpreted to
represent incremental additions of inorganic [modern?] carbon, but
with no addition of L-amino acids, thereby resulting in falsely young **C
ages with no concurrent decrease in D/L values as compared with the
“true” values (those represented by the results for on-shore Pleistocene
samples). The relative serine abundance in the *C -dated samples also
does not indicate any significant amino acid contamination (Appendix
B). Among the different taxa analyzed here for *C, only the Astarte
yielded results near or at the laboratory detection limits of ~50 ka
(Table 2).

The younger age option (~55 ka) for the M2/S2/Mu2 aminozone is
within the range of OSL ages obtained in the three major studies of
emergent deposits (elevations: —5 to +8 m) in the region (Mallinson
et al., 2008; Scott et al., 2010; Parham et al., 2013). These units
apparently lack shells at the OSL collection sites, hence no direct com-
parison with AAR methods has occurred. Mallinson et al. (2008) re-
ported OSL ages of 65-80 ka and 40-60 ka for the Sedgefield and
Poquoson members, respectively, of the Tabb formation in northeastern
North Carolina. Scott et al. (2010), studying sites in southeastern Vir-
ginia, reported OSL ages of 39-44 ka for the Poquoson and 33-36 ka for
the Sedgefield members. They also report OSL ages for the Wachap-
reague Formation (39-47 ka) and for the Butlers Bluff Formation (69 ka)
from samples collected on the southern Delmarva peninsula west of
Smith Island and near the Kiptopeake site (75). Similarly, in north-
eastern North Carolina, Parham et al. (2013) reported a range of OSL
ages from ~35 to ~65 ka for samples collected within ~ + 5 m of
present sea level. The OSL ages each have uncertainties of at least 5 ka,
but the collective mean value of the OSL results falls somewhere be-
tween 45 and 50 ka. The 69 ka OSL age for the Butler’s Bluff Formation
on the Delmarva Peninsula can be interpreted as “late MIS 5a” and is
consistent with the AAR age estimate for samples from nearby sites;
however, this result was rejected by Scott et al. (2010) based on
geochemical evidence. Although AAR data are available for shells from
many sites proximal to those with OSL results (Wehmiller et al., 2010;
Parham et al., 2013; Wehmiller, 2013a), unambiguous comparison of
AAR and OSL results is possible at only one site, East Lake Pit (87) as
summarized in Fig. 9b. Conversely, OSL, AAR, and U-series results for
samples from Moyock Sand Pit (NC) - the only other site with AAR,
U-Th, and OSL results - are contradictory, with the OSL results indi-
cating MIS 3 (~50 ka, Parham et al., 2013), younger than the MIS 5a
ages derived from U-series and AAR (Wehmiller et al., 2010), but these
results might be explained by differences in sampling sites within the
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excavation. Indirect comparisons of OSL and AAR results are found in
Parham et al. (2013, Tables 3 and 4): AAR age estimates listed as 70 to
90 ka have D/L values that fall within the Mu2 cluster reported here and
agree with at least some OSL ages for samples in the same region.

Although the number of U-series calibrated AAR results for the M2/
S2/Mu2 (Q2) aminozone is small, we conclude that this aminozone
represents deposition during all or part of MIS 5 because: 1) the abun-
dance of MIS 5 U-series results (and associated AAR results) in the NC-
VA area; 2) the limiting 14C results from the offshore cores; and 3) the
consistency of this aminozone at ~50 sites (e.g., Table 4, Figs. 7 and 8)
over a broad latitude region and within individual, local stratigraphic
sequences. The age-resolution capability of AAR within the time-frame
40-100 ka is dependent on many factors, temperature history being
the most important (e.g., Wehmiller, 1982: app A). (Miller et al., 1997,
1999) presented an excellent example of racemization (epimerization)
over the past ~100 kyr in independently dated eggshell samples from
Australia, showing that MIS 3 (30-60 ka) can be distinguished from MIS
5 (both 80 ka and 120 ka) but that scatter within the MIS 3 results
prevents unambiguous age resolution within the MIS 3 interval. Simi-
larly, D/L values for mollusks from MIS 3 (~50 ka) uplifted terrace
deposits in Southern California can be resolved from those for MIS 5
samples (Wehmiller, 2013a, and references therein). Mangerud et al.
(2008), addressing the question of finite 1*C ages, observed a clear trend
of D/L vs 1*C age within the 30-50 ka range, but we do not see this trend
(Fig. 5). These various independent observations imply that it should be
possible to resolve MIS 3 (30-60 ka) from MIS 5 (80-130 ka) ages using
the AAR results presented here. If MIS 3 deposits are present in the study
area, they may only be represented by the limited number (n = 3) of
aminozone Mu2-results, but even in these few cases the difference in D/L
values between Mu2 and Mu2-results is small compared with what
would be predicted from the Miller et al. (1999) study. Two of the
Mu2-results are for offshore cores (sites 36 and 58) at elevations > 10m
below sea level, and one (site 55) is from a sub-barrier core that sampled
the Mu2 unit in nearby cores (51, 56, and 64), suggesting a local
example of the inherent variability in these results.

5.2. Contrasting age models for the delmarva Quaternary record: “long”
versus “short” chronologies

The interpretation of regional aminostratigraphy and the relative
history of Delmarva paleochannels are closely related. The AAR results
presented here are relevant to the ages of the Eastville, Exmore, and
Persimmon Point paleochannels, but the focus of most prior paleo-
channel age discussions has been on the Exmore. The time of formation
of Exmore paleochannel was interpreted by Colman et al. (1990) to be
either MIS 8 or 12, with the paleochannel fill occurring during either
MIS 7 or MIS 11, the older ages favored by Colman et al. (1990) based on
a body of stratigraphic and geomorphic evidence. This uncertainty re-
flects contradictory age estimates (by AAR and U-series) for coral and
mollusk samples from the Omar-Accomack region (MF, 39) on Delmarva
and the Norris Bridge site (53, 54) on the western shore of Chesapeake
Bay, as reviewed by Mixon et al. (1982: Figs. 4, 5), Szabo (1985),
Wehmiller et al. (1988), and Wehmiller (2013a). The original mollusk
AAR data for these sites were grouped in a “mid-Pleistocene” aminozone
(~400 ka); the U-series coral results assigned ages of 187+20 ka to
Norris Bridge (53) and 340 + 137/-66 ka to the Matthews Field (39) site
from the Omar-Accomack Spit (Figs. 1-3). Mixon et al. (1982) and Szabo
(1985) interpreted the 340 ka age as a maximum age and concluded that
the 187 ka result was the correct age for both samples, conforming to
Mixon’s interpretation that the MF and NB sites were correlative and
synchronous. The new RP data instead indicate that MF is older than NB
(see Fig. 6a), consistent with the age difference implied by the U-series
results and even some subtle differences in original AAR data (Weh-
miller et al., 1988). The contrast between the MIS 7 and MIS 11 age
estimates for the Exmore paleochannel fill is an example of conflicts
between “short” (less than 200 kyr) and “long” (up to ~1000 kyr)
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chronologies for the Quaternary record in the mid-Atlantic (York et al.,
1989; Wehmiller, 2013a). The depositional model proposed by Scott
et al. (2010) assigns the Exmore paleochannel to MIS 6, significantly
younger than either of the optional ages proposed by Colman et al.
(1990). The AAR age estimate (M4) for sites CW-4 and MF (38 and 39)
constrains the age of stratigraphically older Persimmon Point paleo-
channel (McFarland and Beach, 2019).

Using an independent approach for interpreting the age implications
of the RP data from these sites, we suggest that the 187 and 340 ka U-
series ages for the Norris Bridge and Mathews Field sites are both min-
imum ages and that shell samples from the two sites are distinctly
different in age (Clusters M3 and M4, Fig. 6a). This approach is outlined
in Fig. 12, which uses the covariance of ASP and GLU D/L values from
elevated laboratory kinetic experiments (Kaufman, 2006) to quantify
the relative age differences represented by incremental increases in D/L
values for known time intervals. This empirical approach does not
invoke any specific kinetic model for estimating ages (e.g., review by
Clarke and Murray-Wallace, 2006), similar to the “model-free” approach
of Tomiak et al. (2013). Wehmiller et al. (2010, section 7.2) used this
same approach to estimate relative age differences represented by
different clusters of D/L values observed in Pleistocene Mulinia samples
from cores in the Albemarle Embayment, North Carolina. For clarity,
Fig. 12 includes only results for the M2 and M4 Mercenaria clusters (plus
the D/L values for NB), the Mu2, Exmore, and Eastville Mulinia clusters,
and selected results from the long section at Stetson Pit NC. For refer-
ence, Fig. 12 shows the lowest and highest D/L values for the Stetson Pit
superposed section (89, 90); Appendix B; Figs. 7 and 8), as these values
represent a majority of the Quaternary section in NC (York et al., 1989;
Wehmiller et al., 2010; 2012); the higher (older) Stetson Pit D/L values
represent an age approximately 10 times greater than the lower
(younger) values. The mean ASP and GLU D/L Exmore values of 0.61
and 0.43, as compared with the Mu2 Mulinia values from the Exmore
region (0.45 and 0.21, respectively) represent more than a four-fold
increase in age when compared with the Kaufman (2006) covariance
curve. If the Mu2 aminozone represents all or part of MIS 5 (i.e., 80 to
130 ka), then the Exmore results are interpreted to represent between
320 and 520 ka using the minimum four-fold factor. The two Eastville
clusters plot slightly to significantly above the Mu2 cluster, suggesting
an approximate two-fold age difference, but with both being younger
than the Exmore age estimate. Browning et al. (2009) reported 8 Sr/%6sr
age estimates from shell carbonate samples in this same Eyreville depth
interval of between 240 and 740 ka. Although the Sr-isotope results span
a large age range, they all imply an age greater than MIS 5, hence the
combined AAR and Sr ages indicate that units representing MIS 5 and
MIS 7 or MIS 9 are preserved on the basal flanks of the Eastville pale-
ovalley, supporting the model of Oertel and Foyle (1995) for the
multi-phase evolution of southern Delmarva. Fig. 12 also shows the ASP
and GLU values for Mercenaria from specific sites within the M2, M3, and
M4 clusters to compare results for sites with associated U-series data
(GP, NB, MF; 81-84, 53/54, and 39). The covarying trends for Merce-
naria and Mulinia are parallel with those for the heating experiment
data, with offsets caused by genus-specific differences in relative ki-
netics (e.g., Figs. 6 and 7). The estimated age for the M4 group (sites MF
and CW-4 (39, 38) is approximately 8-10 times that of the M2 group, or
roughly 600 to 1200 ka, while the age of the NB site is approximately
4-5 times that of the M2 group (~320-600 ka). The MF and CW-4 ages
are consistent with Sr-isotope calibrated AAR age estimates from the
Albemarle Embayment of North Carolina (Wehmiller et al., 2012). One
sample with nearly racemic D/L values (D/L GLU ~0.9: Appendix B)
from the underlying Neogene Yorktown Formation at the CWW site (41;
Belknap, 1979; Belknap and Wehmiller, 1980) is estimated by this
approach to be 3-4x older than the M4 group, or approximately 3000 ka.
Although this modeling approach yields age estimates with relatively
large uncertainties because it assumes equivalent effective temperatures
for all samples (see Wehmiller et al., 2012 for discussion), the collective
AAR results support a mid-Pleistocene age for the formation of the
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Exmore paleochannel. Similarly, we assign an early Pleistocene age to
the Persimmon Point paleochannel based on local stratigraphy and the
AAR results for sites 38 and 39 (Mixon, 1985; McFarland and Beach,
2019). The Exmore Mulinia D/L values are greater than those seen in the
Q1 unit (Maryland shelf sites 32, 33), consistent with the Q1-Exmore
relation mapped in the offshore by Brothers et al. ( 2020). Because no
offshore cores penetrated the units identified by Brothers et al. (2020) as
either Eastville- or Exmore-correlative, the relation between the offshore
Q1 D/L values and the onshore Exmore D/L values is a fundamental link
in the regional aminostratigraphy.

Age estimates for the Eastville-Exmore paleochannel system can also
be inferred from AAR data for Rangia from Quaternary units in central
and northern Chesapeake Bay (Fig. 1). Genau et al. (1994) discussed
limited Rangia results from a vibracore on Taylors Island, Md (23), re-
sults that are re-evaluated here in light of new data and a better un-
derstanding of the relation of the Taylors Island samples to the
underlying paleochannels. The Rangia results are in two clusters of RP
D/L values (Appendix B), plotted in Fig. 6a, similar to the M2 and M3
clusters observed for Mercenaria. The Rangia cluster with higher D/L
values is observed at Norris Bridge (53), Poplar Creek Bluff (27), Taylors
Island (26), and Edgewood (8-10). The latter two sites represent units
that fill paleochannels within the central and northern Chesapeake Bay
(Colman and Mixon, 1988; Dunbar et al., 2001). A Rangia cluster with
lower D/L values is also observed in a separate paleochannel in the
northern Chesapeake (Hughes, 1991; Dunbar et al., 2001), a cluster also
apparent in the GC data obtained by Belknap (1979, Fig. 40) for a
subsurface unit at Worton Point, Maryland (12). The Taylors Island re-
sults are interpreted to represent the latest stage of filling of the Exmore
paleochannel, which underlies the Taylors Island region (Colman and
Mixon, 1988; Genau et al., 1994; DeJong et al., 2015). This interpreta-
tion contradicts that of Genau et al. (1994), but is based on a
re-evaluation of the original GC data for the Taylors Island samples, the
actual relation of the Taylors Island collection site to the subsurface
paleochannels (Jacobs, 1980; Colman and Halka, 1989), and the
regional consistency of all the RP Rangia results presented here. We
suggest that cluster of higher Rangia D/L values represents a
post-Exmore paleochannel flooding “event” in the central and northern
Chesapeake. The age difference between the two Rangia clusters can be
estimated using the model presented in Fig. 12: if the lower and higher
D/L Rangia clusters represent the units that fill the Eastville and Exmore
paleochannels, respectively, then the age of the older cluster is esti-
mated to be approximately 4 times older than that of the younger
cluster. This age range is consistent with that inferred from Mulinia data
for samples that can be linked directly to the Exmore paleochannel fill.

The modeling approach seen in Fig. 12 provides quantitative insight
into the possible age range represented the Mu2 cluster. For example, in
the region between 37.5° and 37.8° N (Fig. 8), the Mulinia ASP and GLU
values range from 0.41 to 0.47 (ASP) and 0.18 to 0.24 (GLU), within the
Mu2 cluster. Assuming that no factors other than age differences are
responsible for these ranges, the samples with the higher D/L values are
estimated to be about 1.5x older than those with the lower D/L values.
This range is consistent with Mu2 likely representing all of MIS 5 (75 ka
to 130 ka).

5.3. Synthesis

The sites from this study and their associated aminozones or data
clusters derived from Figs. 6 and 7 and Table 4 are listed in Table 5 (an
expanded version of Table 5 is in Appendix G). We assign the results
from all sites in this paper to broadly defined age ranges: either Holo-
cene, late, middle, or early Pleistocene. Based on paired 14C.AAR anal-
ysis, direct association, or intergeneric relations, clusters M1, S1, and
Mul represent Holocene ages; based on associated U-series results and
limiting e ages, clusters M2, S2 and Mu2 represent the late Pleistocene
(MIS 5). Clusters M3 and Mu3 are interpreted to represent middle
Pleistocene (~200-500 ka), and clusters M4 and Mu4 likely represent
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AAR data clusters and age estimates. Sites with map reference # (Table 1) are grouped from Holocene through early Pleistocene. For the Mulinia (Mu) clusters, de-
viations from the latitude regressions are summarized in Table 4. If the deviations are significant, then the results are labeled either as Mu2+, Mu2.5, or Mu2-. In
several cases multiple ages are found at a site, either because of age-mixing or because of two units in stratigraphic superposition Age estimates are based on the
associated AAR clusters and their independent calibrations. Stratigraphic units are identified where an unambiguous assignment can be made.

Site Type of Collection Isotopic ages Ast**  Merc Mul Spis  Ran**  Offshore seismic Onshore Stratigraphic age; comments
# unit lithostratigraphic
unit
Holocene fill and shallow shelf deposits; mix of Holocene and late Pleistocene shells
17 Offshore core Mul S1 Shoal? Hol
24 Offshore core Mul Shoal? Hol
80 Offshore core Multiple Al M1 S1 Shoal Hol
Holocene
16 Offshore core 14C ages M1 Shoal? Hol
42 Beach M1 Beach Hol
46 Beach M1 Beach Hol
67 Offshore core S1 Shoal? Hol
60 Beach Some M1 S2 Beach Hol and Late P mixed
reworked
59 Beach Pleistocene M1 S1 Beach Hol and Late P mixed
S2
57 Beach 14C ages M1 Beach Hol and Late P mixed
M2
50 Beach M1 Beach Hol and Late P mixed
M2
71 Beach M1 S2 Beach Hol and Late P mixed
74 Beach M1 S2 Beach Hol and Late P mixed
86 Offshore core Mu2 S1 Shoal? Hol and Late P mixed
61 Beach M1 Beach Hol and Late P mixed
M2
62 Beach M1 S1 Beach Hol and Late P mixed
M2 S2
MIS 2 incision; Cape Charles paleovalley; offshore unconformity 10
Late Pleistocene shelf, sub-barrier, paleovalley fill, and onshore units
21 Inland core Mu2 Sinepuxent Late P
12 Inland core ~ M2 Paleochannel fill Late P
19 Inland core Mu2+ Sinepuxent Late P
23 Inland core [Mu2+] Sinepuxent Late P
30 Offshore core 51.6 ka 14C A2 S2 Q2 Late P
34 Offshore core 37.4 ka 14C M3 (1) S1 Q2 Late P
S2
36 Offshore core 48.5 ka 14C A2 Mu2- S2 Q2 Late P
37 Offshore core A2 Mu2 S2 Q2 Late P
8 Excavation/ ~ M2 Paleochannel fill Late P
Exposure
11 Inland core ~ M2 Paleochannel fill Late P
25 Offshore core 46.3t0 >49.9 A2 M2 Mu2 S2 probable Q2 Late P
ka 14C M3)
9 Excavation/ ~ M2 Paleochannel fill Late P
Exposure
1 Offshore core S2 MIS 3 or 5: Late P
Uptegrove et al.,
2012
2 Offshore core S2 MIS 3 or 5: Late P
Uptegrove et al.,
2012
3 Offshore core S2 MIS 3 or 5: Late P
Uptegrove et al.,
2012
4 Offshore core S2 MIS 3 or 5: Late P
Uptegrove et al.,
2012
22 Inland core [Mu2] Sinepuxent Late P
35 Offshore core Mu2 probable Q2 Late P
68 Inland core M2 Nassawadox Late P
70 Inland core M2 Mu2+ Nassawadox Late P
63 Inland core M2 Nassawadox Late P
65 Inland core {Mu2] Wachapreague Late P
72 Inland core M2 Nassawadox Late P
73 Inland core M2 Nassawadox Late P
83 Excavation/ [Mu2+] S2 Sedgefield Late P
Exposure
7 Offshore core A2 NJ shelf Late P
75 Inland core*** M2 Mu2 S2 Nassawadox Late P
45 Offshore core A2 [Mu2?] S2 Q2 likely only 1 Mul Late P
47 Offshore core A2 M2 Mu2+ Q2 base or older; Late P

27

mixing

(continued on next page)
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Site Type of Collection Isotopic ages Ast**  Merc Mul Spis Ran**  Offshore seismic Onshore Stratigraphic age; comments
# unit lithostratigraphic
unit
48 Offshore core 46.6 ka 14C M2 Mu2+ Q2 base or older; Late P
M3(?) mixing
52 Offshore core A2 M2 S2 Qbd or Qpp; Late P
mixing/lag deposit
43 Offshore core [Mu2+] S2 Q2 likely Late P
79 Offshore core 6.65 ka 14C M1 Mu2 Holocene over Q2 Late P; altered Q2 samples?
78 Offshore core Mu2 Qmn Qcch Late P; lag deposit in
Holocene?
76 Offshore core M1 Mu2 S2 Q2 definite Late P
77 Offshore core [Mu2+] S2 Q2 likely Late P
49 Offshore core M2 Mu2 Q2 with reworked Late P
M3? sample (Qpp lower
in core)
58 Offshore core M2 Mu2- Q2 unlikely at the Late P
depth of Mul data;
Mixing?
64 Barrier island core 29; >42 ka Mu2 Wachapreague Late P
14C
29 Barrier island core Mu2 Sinepuxent Late P
51 Barrier island core Mu2 Wachapreague Late P
55 Barrier island core Mu2- Wachapreague Late P
56 Barrier island core Mu2 Wachapreague Late P
88 Inland core >39.7 ka 14C M2 Mu2 S2 Sedgefield? Late P
91 Inland core Mu2 Sedgefield? Late P
81 Excavation/ MIS 5 U-Th M2 S2 Sedgefield Late P
Exposure
28 Offshore core 44.8 ka 14C A2 M1 Q2? mixing Late P? mixing
M2
M3

Sections with Late Pleistocene over older Pleistocene units: Maryland and New Jersey shelves;
superposed sections in VA and NC; and Eastville Paleochannel fill

33

32

85

84

89

920

87

69

94

Offshore core

Offshore core

Offshore core
Offshore core
Excavation/
Exposure
Excavation/
Exposure
Inland core***

Inland core***

Excavation/
Exposure

Inland core
Eastville
Paleochannel fill
Inland core
Eastville
Paleochannel fill

>52 ka 14C

MIS 5 U-Th

A2

M1 Mu2 S2?
Mu2.5
Mu2 Mu3 S2

M4+ S2
M4+ S2
M2 S2
M3
M2 S2
M3

Mu2 Mu3

Mu4

Mu2 Mu3

Mu4

Mu2 Mu4

Mu2+;

Mu2.5

Mu2;

Mu2.5

Middle to Early Pleistocene paleovalley fill and onshore units

27
26
10
15
13
14
51
82

66

53

40

Excavation/
Exposure

Inland core
Inland core
Inland core
Inland core
Inland core
Excavation/
Exposure

Excavation/
Exposure

Inland core

Excavation/
Exposure
Inland core

~ M2
~ M3
~ M3
Mu3
Mu3
Mu3
~ M3
M3
Mu3

M3/
M4
M3/
M4

28

Q1; Q2

Q1 (?); Q2

NJ shelf

NJ shelf
Pungo Ridge
Sedgefield
multiple
multiple
multiple

Nassawadox/
Stumptown

Nassawadox/
Stumptown

Incision of Eastville paleovalley (~MIS 6) and creation of offshore unconformity 8

Paleochannel fill

Paleochannel fill
Paleochannel fill
Omar

Omar

Omar

Shirley

Sedgefield

Exmore
paleochannel fill

Incision of Exmore paleovalley (~MIS 6) and creation of offshore unconformity 6

Shirley

Accomack Mbr,
Omar

Late and late middle P

Late and late middle P; Q1
uncertain because of limited
seismic control

Late over early P

Late over early P

Late and middle P mixed
Late and middle P

Late to Early P

Late to Early P

Late and Early P

Late middle & late P

Late middle & late P

Middle P
Middle P
Middle P
Middle P
Middle P
Middle P
Middle P
Middle P

Middle P

Early/middle P

Early/middle P

(continued on next page)
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Site Type of Collection Isotopic ages Ast**  Merc Mul Spis Ran**  Offshore seismic Onshore Stratigraphic age; comments
# unit lithostratigraphic
unit
44 Inland core M3/ Accomack Mbr, Early/middle P
M4 Omar
39 Inland core M4 Accomack Mbr, Early P
Omar
38 Inland core M4 Accomack Mbr, Early P
Omar
93 Inland core Mu4 Early P
92 Inland core Mu4 Early P
Incision of Persimmon Point paleovalley and creation of offshore unconformity 4
41 Inland core M4+ Yorktown Neogene

* Uncalibrated.

** Rangia & Astarte ~ Mercenaria.

*** [E data also.

[ 1 uncertain because of limited or scattered results.

multiple ages within the middle and early Pleistocene (~500 ka to
~1000 ka). Cluster Mu2.5 is distinct from both Mu2/2+ and Mu3 and is
significant because it represents the offshore Q1 unit and an older unit
within the Eastville paleochannel fill. The three major Pleistocene
aminozones identified here (M2-S2-Mu2; M3-Mu3; M4-Mu4) are
broadly correlative with the three major aminozones (AZ2, AZ3, and
AZ4) described by Wehmiller et al. (2010; 2012) for the Albemarle
Embayment, eastern North Carolina, also representing late, middle, and
early Pleistocene, respectively.

If multiple zones are listed in Table 5, then either age mixing or
superposition is implied. Brackets imply that the zone designation is
based on taxa other than Mulinia. A plus (+) or minus (—) sign is listed if
the D/L values are thought to be above or below the “typical” aminozone
value (see Table 4). In some cases, the relation between an aminozone
and the associated seismic unit is unambiguous, but in cases where
samples were collected at an unconformity, they could represent either
or both the unit above or below the unconformity. In general, Mu2
corresponds to offshore stratigraphic unit Q2; Mu3 corresponds strati-
graphic unit Q1 in the two cores from the Maryland shelf (32, 33,
Table 5; Fig. 7). The distribution of these late, middle, and early Pleis-
tocene aminozones is summarized in Fig. 13, which uses color-coded
symbols for the AAR results to link the offshore seismic stratigraphy of
Brothers et al. (2020) to the onshore, sub-barrier, and beach sample
chronology established here. Fig. 13 demonstrates the frequent occur-
rence of late Pleistocene shell material (all or part of MIS 5) on the shelf,
on beaches, beneath barrier islands, and in onshore units. Samples of
middle and early Pleistocene age samples are recognized in several
subsurface sections in NC, VA, and DE including the Exmore paleo-
channel, an important stratigraphic feature in the history of the Del-
marva peninsula. Middle Pleistocene (pre-MIS 5) samples are found on
the mid-Atlantic shelf at a limited number of sites, likely reworked but
identifying the presence of these older unit(s) on the mid-Atlantic shelf.

6. Conclusions
6.1. Implications for AAR methods, modeling, and sampling strategies

Because multiple taxa are needed for a comprehensive study such as
this, the comparability of results between taxa must be understood.
Some amino acids appear more reliable in some taxa than in others,
either because of the relative abundance of those amino acids or because
of the inherent age-resolution capability within the D/L interval in
question. Although the focus of the present study is on results obtained
using the reverse-phase (RP) AAR method, we conclude this newer
method has reinforced or confirmed conclusions based on earlier GC or
IE methods (e.g., Toscano and York, 1992; Toscano, 1992). D/L values
for aspartic acid (ASP), abundant in all the taxa studied, are generally
useful for distinction between Holocene and late Pleistocene samples
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(and even within the Holocene), but the declining rate of racemization
of ASP makes this amino acid less useful in older samples, except at
low-resolution. D/L values for glutamic acid (GLU), also usually abun-
dant, also successfully resolve Holocene and late Pleistocene samples
and become more useful as a tool for defining aminozones within the
middle Pleistocene. Results for other amino acids can be used to “refine”
interpretations based on ASP and GLU results.

The taxa used in this study vary in their utility for several reasons.
The small and generally thin-shelled Mulinia are the most abundant in
offshore cores but are potentially most susceptible to diagenetic alter-
ation or contamination. Hence, multiple analyses must be conducted to
determine the most representative D/L value for a specific unit based on
this genus. Because of the abundance of Mulinia results, we have been
able to recognize the regionally extensive Mu2 aminozone, interpreted
as MIS 5, that represents offshore unit Q2, which is nearly continuous on
the Delmarva shelf, with correlative units south of the mouth of Ches-
apeake Bay in North Carolina. Conversely, robust Mercenaria samples
provide the opportunity to investigate the chemical integrity of the shell
with multiple AAR analyses, but intra-sample variability for this genus is
a more significant issue, especially when subsamples as small as ~5 mg
are taken from these large (~100 g or more) shells. One conclusion from
this and other studies (Wehmiller et al., 1995; 2015) is that both Mer-
cenaria and similarly large Spisula can survive reworking, hence any
aminostratigraphic studies based on these or other taxa must consider
this process. Results from onshore site 85 and offshore sites 25, 28, 49,
and 48 demonstrate that the modern age-mixing processes observed at
beach and shelf sites have also occurred during deposition and erosion of
offshore units during the Pleistocene. Results from the Chincoteague
Bight region demonstrate that Interpretation of AAR data from dynamic
coastal environments often requires iterative evaluation of subtle factors
such as mixing, sample alteration, and detailed understanding of core
stratigraphy.

In a few cases the new RP results have led to a reinterpretation of
local or regional aminostratigraphic relations. Important examples
include the original results for Rangia samples from the Taylors Island
site, central Chesapeake Bay (26), and an alternative approach to the
interpretation of both relative and numerical ages of the critical Math-
ews Field and Norris Bridge sites (39 and 53/54). This new interpreta-
tion is internally consistent with current knowledge about the relative
ages of the major Quaternary paleochannels underlying the Delmarva
Peninsula.

6.2. Reliability of **C ages for Pleistocene mollusks

The reliability of 14C ages obtained on Pleistocene mollusk carbonate
has been debated for almost as long as the 1*C method has been avail-
able. The present study contributes some insight into this discussion, as
it has employed paired 1*C-AAR analyses of individual shells to compare



J.F. Wehmiller et al.

age interpretations based on the two methods. The principal conclusion
is that *C ages within the range ~28-~45 ka obtained on samples of
Mercenaria or Spisula from either beach or offshore sites are anomalously
young. In all cases, the D/L values from these paired **C-AAR analyses
fall within the range of D/L values observed for samples from onshore
emergent sites, some of which are independently “calibrated” as being
~80 ka (MIS 5a) in age.

Several Astarte samples analyzed in this study have returned “infin-
ite” or “near infinite” 1*C ages, and this is the only genus in our study to
yield 14C results that consistently approach the detection limit of the
method. Many of the paired Astarte results constrain the interpretation
of either AAR or 1*C data in other cores, often confirming that some 1*C
ages of other mollusk samples are incorrect, as those apparently younger
samples are stratigraphically older than the Astarte samples. The
inherent “geochemical robustness” of Astarte deserves further study, as
this species may prove to be a preferential target for future **C dating of
Pleistocene materials.

6.3. Regional aminozones and age assignments

Within the study area, four broadly defined aminozones are recog-
nized, corresponding to the Holocene, late, middle, and early Pleisto-
cene. The aminozones are numbered according to the genus in which
they are identified and assigned ages based on correlations between taxa
and/or local geochronologic control. Each of these aminozones is
recognized at numerous individual sites, and each of them is also
recognized in stratigraphic superposition at one or more sites, affirming
the consistency of the AAR results. The late Pleistocene aminozone (M2-
S2-Mu?2) is observed at almost all sampling locations (offshore, onshore,
beach, and sub-barrier) and is associated with the nearly continuous Q2
unit on the inner shelf. This unit likely acts as the source of both sedi-
ment and Pleistocene shells found on the modern beaches. *C ages for
Q2 shells range from ~30 ka to >52ka, but AAR results indicate that
these must all be minimum ages. Although the sampling strategies for
the beach samples have been rather biased, we find an abundance of
Pleistocene shells on beaches from North Parramore to Smith Island,
likely reflecting the presence of a Pleistocene ridge (former barrier-
island or regressive coastal deposits) underlying these barriers. In
particular, Pleistocene Mercenaria and Spisula are found in relatively
high abundance near modern tidal inlets (e.g, Wachapreague and
Metompkin inlets) which can erode into underlying Pleistocene de-
posits, or along the highly dynamic southern Virginia barrier islands
(Wreck, Smith). Further north, this remnant Pleistocene high has
probably been eroded on the shoreface as the barrier islands of the
Chincoteague Bight migrated landward, resulting in a dearth of Pleis-
tocene shells on these beaches. Only an integrated study of shelf, beach,
and even onshore samples would recognize the geographic variability of
the processes involved in barrier island evolution. Ideally, a systematic
sampling effort of multiple taxa on all the islands at a single time (or pre-
and post-storm) would enhance our insights into the spatial distribution
of the sources of the Pleistocene beach shells. Although logistically
challenging and requiring hundreds of AAR analyses, such a study would
be a significant and unique contribution to the understanding of
shoreface sediment dynamics. The utility of the AAR method derives
from its ability to obtain large numbers of analyses, either from indi-
vidual sites or from mappable stratigraphic units, thereby helping to
identify diagenetic and taphonomic factors that likely affect all
geochemical dating methods.

The middle Pleistocene aminozone (M3 and Mu3) is not represented
by a large number of sites, and further study would likely result in
subdividing this zone into multiple ages (e.g., the superposed section at
Stetson Pit, NC). M3 results are recognized in onshore sites on the west
shore of Chesapeake Bay and also in probable reworked samples from
the Chincoteague Bight, an area of complexly cut and filled seismic se-
quences indicating multiple episodes of erosion and potential rework-
ing. Aminozones Mu2 and Mu3 are found in superposition in two
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Maryland shelf cores, representing units Q2 and Q1, respectively, and
confirming the original observations of Toscano et al. (1989), Toscano
(1992), and Toscano and York (1992). The relation of these Mu3 units to
the Exmore paleochannel and the seismic stratigraphic framework of
Brothers et al. (2020), combined with AAR age modeling, confirms a
mid-Pleistocene (MIS 12 or older) age for the formation of the Exmore
paleochannel. The AAR age estimate for the stratigraphically younger
Eastville paleochannel is enigmatic but definitely consistent with the
relative ages of the Exmore-Eastville paleochannel pair. The MIS 12 and
MIS 6 age estimates support the model (Colman et al., 1990) that the
Delmarva Peninsula had significant episodes of southward advance
during major interglacials MIS 11 and MIS 5, respectively. These age
estimates for the Exmore and Eastville are substantially greater than the
MIS 6 and MIS 5b ages proposed by Scott et al. (2010) based on OSL
geochronology. Where this sequence is recognized on the inner shelf
(Brothers et al., 2020), in the subsurface of the southern Delmarva
Peninsula and the central-northern Chesapeake Bay (Colman and Mixon,
1988), AAR results are consistent with local stratigraphic relations. AAR
age modeling indicates that aminozone M4 represents an early Pleisto-
cene (>800 ka) age; this aminozone is younger than the Persimmon
Point paleochannel based on local age and elevation information.
Collectively, the AAR results imply that the Delmarva paleochannel
system developed over at least the past ~1000 ka. Although the nu-
merical ages derived from AAR results have significant uncertainties
because of inherent modeling assumptions, the proposed ages and the
regional AAR dataset are stratigraphically consistent and form a hy-
pothesis for testing with additional chronologic tools (Brothers et al.,
2020). The duration of the Delmarva record is similar to that seen in
other long Quaternary coastal records, such as the nearby Albemarle
Embayment (Culver et al., 2008; 2011; 2016), the Coorong Coastal Plain
of Australia (Blakemore et al., 2015; Murray-Wallace, 2018), and the
Wanganui Basin, New Zealand (Bowen et al., 1998).

6.4. Broader implications for regional sea-level history

The combined C-AAR chronology for onshore, offshore, and beach
samples and their host units presented here provides insights into late
Pleistocene relative sea-level changes along the US mid-Atlantic coast.
This history has important implications for models of isostatic adjust-
ment and global ice volume during the interval between the last inter-
glacial and the present. The geochronology of this time interval is
challenging because it is generally at or beyond the limit of C and the
resolving power of AAR is limited by the inherent vulnerability of the
method to geochemical and thermal factors. The AAR data, constrained
by limiting *C and U-series ages, define the regionally extensive “Q2”
aminozone, with onshore and offshore equivalents, that is dominated by
“late last interglacial” (MIS 5a) samples, with some older samples
reworked into the Q2 unit. While the existence of this aminozone does
not negate the possibility of younger (MIS 3) deposits in the region, we
expect to have encountered evidence of these younger units in the large
AAR dataset presented here. Without the paired *C-AAR approach,
results from either of these methods could be misleading or otherwise
rejected without supporting evidence, so it is important that future in-
vestigations of MIS 3 ice-volume/sea-level histories include this com-
bined approach if at all possible. The presence of this widespread last
interglacial unit over a broad latitude and elevation range needs to be
incorporated into current models of glacial-isostatic adjustment in
response late Pleistocene ice volume and relative sea-level change.
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