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Abstract—The lack of authentication in the Internet’s data
plane allows hosts to falsify (spoof) the source IP address in
packet headers. IP source spoofing is the basis for amplification
denial-of-service (DoS) attacks. Current approaches to locate
sources of spoofed traffic lack coverage or are not deployable
today. We propose a mechanism that a network with multiple
peering links can use to coarsely locate the sources of spoofed
traffic in the Internet. The idea behind our approach is that
a network can monitor and map spoofed traffic arriving on
a peering link to the set of sources routed toward that link.
We propose mechanisms the network can use to systematically
vary BGP announcement configurations to induce changes to
Internet routes and to the set of sources routed to each peering
link. A network using our technique can correlate observations
over multiple configurations to more precisely delineate regions
sending spoofed traffic. Evaluation of our techniques on the
Internet shows that they can partition the Internet into small
regions, allowing targeted intervention.

Index Terms—IP spoofing, security, amplification, denial-of-
service, routing policies, topology discovery

I. INTRODUCTION

The lack of authentication in the Internet’s data plane
allows hosts to falsify (spoof) the source IP addresses of their
traffic and send unsolicited traffic to arbitrary destinations.
These vulnerabilities form the basis for amplification denial-
of-service attacks [1], which have been effectively employed
against large-scale distributed service providers (e.g., [2]-[7]).
The spoofed source addresses make the origins of such attacks
seemingly untraceable, complicating attribution, mitigation
efforts to squelch the attack, or targeted efforts to convince
networks to disallow spoofed traffic.

Over the last two decades, researchers have proposed dozens
of IP traceback techniques for identifying the routes taken
by spoofed packets [8]-[14]. Approaches include temporarily
congesting links to perturb (attack) traffic [8], modifying
routers to encode information (usually in the IP ID field) about
routers traversed by a small fraction of packets [9]-[11], modi-
fying routers to send information about a fraction of forwarded
packets towards destinations [12], or modifying routers to store
packet digests and provide an interface for querying for a
packet’s signature [13], [14]. Despite all the research, none of
these approaches has been deployed and increased our ability
to locate the origins of spoofed traffic, because they require
changes to routers, cooperation from other networks, and wide
deployment to provide accurate identification. Since these
techniques face nearly insurmountable barriers to adoption,
today’s networks get a single data point on the spoofed traffic’s
route: which peering link receives the traffic.
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In this paper, we explore how a network can manipulate this
information source—the peering link where traffic ingresses a
network—to more precisely locate sources of spoofed traffic.
Our key observation is that the routes are partially under
an origin network’s control, and so the network receiving
the spoofed traffic has some ability to impact on which link
it receives traffic, instead of relying on routers that are not
under its control. We propose techniques that are fundamen-
tally different from existing traceback approaches and can be
used today, requiring no changes to deployed equipment nor
cooperation from other networks. Our techniques work best
when the spoofed traffic originates from few sources, as is
common in amplification DoS attacks [15].

With our approach, a network announces an IP prefix
through multiple peering links, a practice known as anycast.
Each link attracts traffic from non-overlapping regions of the
Internet called the link’s catchment. The network can infer
the sources in each catchment by inspecting non-attack traffic
at each ingress link and mapping the source IP addresses to
their respective prefixes and controlling autonomous systems
(ASes), or by sending out pings and measuring which link
replies arrive at [16]. To measure the amount of spoofed traffic
on each link, the network can run an amplification honeypot
that does not receive legitimate traffic (e.g., AmpPot [15]) or
infer the set of valid source addresses from each peering link
and label the traffic from other addresses as spoofed [17], [18].
The amount of spoofed traffic arriving at each peering link can
then be attributed to the sources routed toward that link. Many
sources are routed toward the same peering link, however, so
simply attributing an attack traffic volume to a peering link is
not precise enough to isolate attack sources.

To track down sources of spoofed traffic, we present system-
atic approaches to vary IP prefix announcement configurations
that allow networks to induce changes to routes toward their
prefixes and, more importantly, in the set of ASes routed
toward each peering link (the catchment). Networks using our
techniques can correlate spoofed traffic observed from sets of
sources across multiple announcement configurations to infer
regions of the Internet sourcing spoofed traffic. Figure 1 pro-
vides intuition for how such measurements can be combined
to identify networks that allow spoofed packets:

¢ In Configuration 1, the operator announces a prefix

through three peering links with networks m, n, and p;
measures the catchment (colored polygons) and traffic
arriving on each peering link; and identifies that the
spoofed traffic is concentrated on the link with n, i.e.,



Figure 1: Example with catchments and resulting clusters for
three announcement configurations performed by an origin
network peering with ASes m, n, and p. On the bottom right
we show the resulting clusters, denoted by Greek letters.

sent by networks in n’s catchment (red arrow).

e The operator later withdraws the announcement to
n (Configuration 2), measures catchments and traffic
volumes again, and identifies that the spoofed traffic is
now concentrated on the peering link with m.

o Configuration 3 announces the prefix from n again, but
poisoning AS u (which causes AS u to ignore the route
from n and choose the route from p instead). The operator
can measure catchments and traffic to identify that the
spoofed traffic is concentrated on the peering link with p.

o Finally, the operator can intersect the measured
catchments to partition networks into clusters (bottom
right), and correlate clusters with observed spoofed
traffic (red arrows) to identify that the spoofed traffic is
concentrated on networks comprising .

We evaluate our techniques running experiments on the
PEERING platform [19]. We deploy 1572 different announce-
ment configurations from eight peering links, identifying
multiple, different routes from each source covered in our
measurements. We show that correlating information across
multiple announcement configurations on PEERING allows us
to partition the Internet into small regions with as few as one
AS and with 1.29 ASes on average. The small size makes these
regions candidate targets for countermeasures or notifications.
Our results indicate that networks with peering footprints
larger than PEERING’s, as is the case for most regional transit
networks, can more effectively manipulate routes to achieve
even higher accuracy and quicker localization.

Our techniques allow identification of networks that do
not employ BCP38 (ingress filtering) [20] and allow spoofed
traffic, helping Internet bodies focus efforts and drive adoption
of best practices. They can also be used to drive automatic DoS
mitigation systems that use, e.g., BGP communities to trigger
remote traffic blackholing [21] or BGP flowspec to configure
traffic filters [22].

A previous version of this paper appeared on IFIP Net-
working [23]. This version includes several improvements over
the original paper, including the collection of a larger dataset
(§IV), more detailed analysis (§V), operational considerations
(§VI), and deeper discussion of related work (§VIII).

II. BACKGROUND ON BGP

The BGP best-path selection algorithm defines the preferred
route to an IP prefix as the route with the highest local
preference (LocalPref), a value set by the AS according to
private routing policies. If multiple routes have the same
LocalPref, BGP chooses the route with the shortest AS-path
length. If multiple routes remain tied for best, BGP applies
other tiebreakers that include intra-domain (IGP) routing costs,
hints received from neighboring ASes (MED), and route age
(to reduce oscillations) [24].

An AS that controls an IP prefix can configure its BGP
announcements to influence routes, e.g., to achieve traffic en-
gineering goals [25], [26]. First, an AS can announce (anycast)
an IP prefix from all or a subset of its peering links. This
strategy is used by content distribution networks so remote
ASes, and users therein, route to a topologically close location,
improving performance and increasing reliability [25], [27].
Second, an AS can influence BGP’s tie breaking at remote
ASes by prepending its AS number to the announcement’s
AS-path, making the AS-path artificially longer. This strategy
is used by multihomed ASes to signal on which link it prefers
to receive traffic [26], [28]. Third, an AS can influence the use
and propagation of its announcements through a remote AS
using BGP poisoning [24], [29]-[31]. A poisoned announce-
ment targets one or more ASes, and includes the target ASes’
numbers in the AS-path; this triggers loop prevention and
causes poisoned ASes to ignore the announcement.

III. LOCATING SOURCES OF SPOOFED TRAFFIC

We define an announcement configuration for an IP prefix
as a triple ¢ = (A.; P,; Q.). We denote the set of peering links
of an origin AS by L. A. C L is the set of locations from
which the prefix is announced. Each location in .4, announcing
the prefix will attract traffic from non-overlapping regions of
the Internet that we call a catchment. P, C A, is the set of
locations where the prefix is announced with prepending, and
Q. is a mapping from announcement locations in A, to sets of
poisoned ASes. We drop the subscripts when the configuration
is clear from context. For example, consider an AS with
four peering links labeled from [; to l4. A configuration
c = ({l,la};{l1};{l1: 0, 12: {a,b}}) means the prefix is
announced through peering link /; with AS-path prepending,
announced through peering link /o poisoning ASes a and b,
and not announced through links I3 and 4.

A. Systematic Route Changes

We propose a method that an origin AS with multiple
peering links can use to generate announcement configurations
that systematically induce route and catchment changes.

a) Varying announcement locations: Announcing a pre-
fix from more peering links increases route diversity and leads
to smaller catchments, on average. Smaller catchments provide
better localization of spoofed traffic.

We propose that the origin AS deploy a sequence of configu-
rations starting by announcing from all available peering links,
i.e., A = L; then make announcements from all proper subsets



of available locations £ in decreasing size order. Deploying
all configurations removing up to 7 links from £ is guaranteed
to discover at least v+ 1 routes for all sources in the Internet.
Whenever we withdraw the prefix from the peering link a
source is routed to, that source will need to be routed to an
alternate link. This is a deterministic way to uncover route
diversity that scales with a network’s peering footprint (i.e.,
the size of L£).

In Figure 1, Configuration 1 shows catchments when the
origin AS announces a prefix through three peers: m, n, and
p; Configuration 2 shows catchments when the origin AS
announces through m and p only.

b) Varying the AS-path length with BGP prepending:
For any given announcement configuration, a router may have
multiple routes with the same LocalPref to choose from. In
these cases, the router chooses the preferred route based on
the AS-path length or subsequent BGP tiebreakers.

Given a configuration with a set of announcement loca-
tions A C L, we propose that the origin AS generate and
deploy additional configurations prepending announcements
from subsets of locations P C A, in increasing size order.
To make prepended routes longer than most other routes, the
origin can prepend its AS number four times, which is longer
than most AS-paths in the Internet [32]. Deploying config-
urations that prepend announcements from all combinations
of up to s locations induces BGP’s tie-breaking mechanism
to choose up to s alternate routes. More precisely, prepending
will cause a router to change away from its (previously shorter
and preferred) route whenever an alternate route with the same
LocalPref and no prepending is available.

Manipulating BGP tiebreakers like the AS-path length is
a general idea. Unfortunately, BGP tiebreakers after the AS-
path length cannot be controlled (e.g., IGP costs) or do not
propagate to distant ASes (e.g., MED), and thus cannot be
employed by the origin for route manipulation.

c) Controlling route propagation with BGP poisoning:
BGP AS-path prepending is ineffective when routers choose
routes based on LocalPref, i.e., before applying BGP tiebreak-
ers. In these cases, the origin AS can still try to induce
route changes by making a remote router’s preferred route
(with highest LocalPref) unavailable using BGP poisoning.
The origin AS can try to induce routers in a remote AS r
to change routes by poisoning 7 (or other intermediate ASes
between itself and r) in some announcements. Target ASes
for BGP poisoning can be chosen using different strategies
depending on the goal [24], [29]-[31].

Figure 2a shows the routes used by each AS to reach AS
o when the origin o announces (anycasts) the prefix to all
neighbors without poisoning. Figure 2b shows the routes when
the origin o poisons AS u on announcements through link o-n,
announcing an AS-path starting with O-U-O instead of just O.
Poisoning an upstream AS wu that is a neighbor of AS n will
prevent routes (and traffic) from traversing the link n—u (red
X in Figure 2b) because it triggers BGP loop prevention when
AS u observes itself in the received route, causing routing
changes at all sources previously routed through link n—u.

Figure 2: Example of AS o poisoning AS wu through link
o—n to force all ASes previously routing through link n—u
to choose a different route.

Therefore, ASes a, b, ¢, and u need to find an alternate path
to reach AS o (dashed lines). Configuration 3 in Figure 1
illustrates the change in catchments when we poison AS u on
the announcement through n.

Poisoning is similar and complementary to our proposal to
control announcement locations (choosing 4), as it attempts
to control route propagation through a network’s links. In par-
ticular, poisoning directly-connected neighbors is equivalent
to withdrawing the announcement. For example, in Figure 2,
poisoning n on the announcement to n is equivalent to
withdrawing the announcement.

Unfortunately, BGP poisoning may be ineffective: an AS
may disable BGP loop prevention for traffic engineering,
e.g., when interconnecting multiple sites over the Internet by
announcing different prefixes from each site; and ASes may
filter poisoned announcements, e.g., tier-1 ASes often filter
announcements from clients whose AS-path contains other
tier-1 ASes, as such announcements normally indicate a route
leak [33]. We use BGP poisoning as a best-effort approach
to complement the previous two techniques, which are more
reliable.

B. Correlating Observations

We define a cluster as a set of sources that are in the same
catchment across all announcement configurations. We start
by placing all sources into a single cluster. We iterate over
all catchments in all configurations; for each catchment o we
iterate over all clusters « identified so far and split any cluster
k that overlaps « into up to two clusters: K N« and kK \ «
(we do not split x if K N o = k). The bottom right corner
of Figure 1 shows the clusters obtained after performing the
three announcement configurations.

Our techniques generate different announcements to induce
route changes with the goal of reducing the size of clusters.
Small clusters allow the identification of networks responsible
for sending spoofed packets and enable targeted intervention.

C. Estimating Volume of Spoofed Traffic

An origin AS can estimate the presence or volume of
spoofed traffic received on each catchment by hosting a



Table I: PoPs and providers of the PEERING platform used
in the experiments.

PoP Transit Provider
AMS-IX Bit BV (AS12859)
Georgia Tech | Georgia Institute of Technology (2637)
NEU Northeastern University (AS156)
Seattle-IX RGnet (AS3130)
UFMG RNP (AS1916)
UTAH Utah Education Network (AS210)
UW Pacific Northwest GigaPoP (AS101)
Wisconsin University of Wisconsin System (3128)

honeypot that emulates a service vulnerable to (but that does
not contribute to) amplification attacks to attract spoofed
traffic [15]. Another approach is to infer legitimate sources
for each peering link and label all traffic received from other
sources as spoofed [17], [18].

IV. EXPERIMENTAL SETUP

We evaluate our techniques in the Internet by making
announcements from the PEERING platform [19]. PEERING is
a research platform that operates an AS with multiple points-
of-presence (PoPs) in various locations spread across three
continents. We make announcements from eight PEERING
PoPs, using one provider at each PoP. At PEERING PoPs at
IXPs, which have multiple providers and peers, we choose
one provider and use it throughout the experiment. Table I
summarizes information about the PoPs and providers we
used. We next describe how we generate configurations using
our techniques and how we measure catchments.

A. Announcement Configurations

We perform exhaustive announcements to obtain a complete
dataset that allows the evaluation of different aspects of
the proposed heuristics. We start with a configuration that
announces (anycasts) a prefix to one transit provider in each of
eight active PEERING PoPs. As an attempt to induce as many
path changes as possible and, consequently, reduce cluster
sizes, we consider 255 possible configurations withdrawing
from all possible subsets of locations; i.e., we set r = 7
and deploy all configurations withdrawing from up to seven
locations. For each such configuration ¢, we generate |A.|
additional configurations, prepending from each active location
in turn. This requires an additional 7 _ [8—x](4®.) = 1024
configurations.

We deploy 293 additional configurations poisoning targeted
ASes, one at a time, while announcing from all available
locations without prepending; i.e., we deploy configurations
(L;0;{l : {a}}), where a is the target AS and [ is the
location used in a’s preferred route. As a tradeoff between
completeness and number of announcements, we select as
targets ASes that provide transit to three or more downstream
ASes in the initial configuration anycasting from all locations,
i.e., (£;0;0). We do not poison tier-1 and tier-2 ASes, as
these large networks frequently filter announcements received
from customers whose AS-paths contain other tier-1 or tier-2
ASes [33]. We deploy a total of 1572 configurations.

B. Measuring Catchments

PEERING prefixes carry no production traffic, so we can-
not passively observe traffic to infer catchments. Also, con-
cerns about executing Internet-wide scans from the PEER-
ING platform limits our ability to issue measurements from
the platform to the wide-area Internet. Instead, we measure
catchments using a combination of AS-paths observed on
BGP update messages toward PEERING prefixes collected from
public feeds and traceroutes issued from RIPE Atlas toward
PEERING prefixes [34]. We use all public BGP feeds from
RouteViews [35] and RIPE RIS [36]. We partnered with RIPE
and received permission to issue traceroute measurements
every 20 minutes from 4800 RIPE Atlas probes, a measure-
ment rate that is 7x larger than normally supported, which
helps increase the coverage of our measurements. We note the
measurement rate is still low, only targets PEERING prefixes,
and has not raised complaints.

We keep each announcement configuration active for 50
minutes to wait for route convergence and ensure, with high
probability, that we collect at least two rounds of traceroutes
after routes to our prefixes have converged, as convergence
takes less than 2.5 minutes 99% of the time [31].

We map traceroute hops into ASes using IP-to-AS data
from Team Cymru [37] and using IXP-specific data from
PeeringDB [38]. In a traceroute measurement, if consecutive
unresponsive hops are surrounded by responsive ones, we
check whether the surrounding hops have a single sequence
of responsive hops between them in other traceroutes; if that
is the case, we substitute the unresponsive hops with the
responsive ones. After this step, we map unresponsive hops
whose surrounding responsive hops map to a single AS a to
the same AS a. If surrounding hops map to different ASes,
we check whether public BGP feeds have a single sequence
of ASes between them in AS-paths; if that is the case, we
substitute the unresponsive hops to match the public AS-paths.
If we still have unmapped or unresponsive hops, we ignore
those hops on the AS-level path.

C. Source Granularity

Our techniques are orthogonal to the granularity at which
sources are defined. The only requirement is that each source
appears in at most one catchment for each announcement
configuration. For the evaluation, we define sources at the
AS granularity. Different routers within an AS may choose
different routes to a destination [39], e.g., routers in the US and
Europe may choose different routes toward the announced pre-
fix. In our dataset, this may also happen due to incorrect IP-to-
AS mapping. Whenever we observe multiple routing decisions
by an AS from multiple vantage points, we give higher priority
to BGP measurements (over traceroute) to minimize errors due
to IP-to-AS mapping. If multiple measurements of the same
type remain, we assign the AS to the catchment most common
across the available measurements. On average, we observe
4.35% of ASes in multiple catchments in an announcement
configuration.



D. Source Visibility

Our dataset covers a total of 3636 ASes across both BGP
and traceroute measurements. However, changing announce-
ment configurations forces route changes and may cause ASes
to route through less preferred alternate or backup paths,
leading to some ASes appearing in just a few configurations
(e.g., where a specific backup link is used). Whenever an AS
is not observed during an announcement configuration, we
cannot infer the catchment where the missing AS belongs.

We address this limitation in two steps. First, we only
consider 2398 ASes that are observed in at least 80% of all
configurations. This set includes all tier-1 ASes as well as
73.8% of ASes with customer cone larger than 300 ASes [40].
We use CAIDA’s inferred clique [40] as the set of tier-1 ASes.

Second, we compute the frequency that an AS @ and each
other AS are in the same catchment across all configurations
where a was observed. We define S[a] as the AS which a
appears most frequently with (i.e., a and S[a] route similarly).
For each deployed configuration where source a was not
observed, we assign a to the same catchment as S[a]. We
apply this search recursively: if S[a] is also missing, we
assign a to the same catchment as S[S[a]], and so on. This
approach is conservative as it keeps catchments similar across
configurations, and prevents separation of a and S[a] into
different clusters due to missing coverage.

E. Ethical Concerns

PEERING prefixes do not carry production or user traffic,
so no user traffic was impacted during our experiments. In
practice, we expect networks to use prefixes dedicated to the
location of sources of spoofed traffic to avoid impacting real
users or applications.

Our route manipulation does not affect other prefixes or
networks in the Internet. We note that anycast and AS-path
prepending are common traffic engineering practices and can
be observed on thousands of prefixes in routing tables today.
The rate at which we inject BGP updates is negligible relative
to BGP churn [41].

BGP poisoning has been used for more than a decade in
research as a mechanism to route around failures and traffic
blackholes [31], identify static default routes [29], discover
network links [30], and characterize interdomain routing poli-
cies [24]. BGP poisoning does not impact the poisoned AS,
routes to its prefixes, or its traffic. The PEERING platform
conservatively limits each announcement to two poisoned
ASes. To clearly signal BGP poisoning, PEERING requires
experiments to surround each poisoned AS with PEERING’S
own AS47065. This avoids incorrect inference of peering links
from BGP AS-paths (any false links inferred from poisoning
would be with AS47065, which is easy to filter), and makes
attribution to the PEERING platform trivial. PEERING maintains
a blacklist of ASes that opt-out of BGP poisoning from the
platform, but this list is currently empty as no ASes have
complained about poisoning.

V. EVALUATION

In this section, we provide results on cluster sizes and show
that we can manipulate routes to locate sources of spoofed
traffic with good precision. Our results also indicate that large
networks can apply the technique proposed to even greater
effect, and that our techniques may potentially be used to
locate sources of spoofed traffic during DDoS attacks.

A. Cluster Sizes

Figure 3 shows the complementary cumulative distribution
of cluster sizes, with logarithmic scales on both axes. We
show one distribution at the end of each phase (i.e., after 255
configurations varying locations, 1279 varying locations and
prepending, and 1572 including all techniques). We find all
our techniques are effective in reducing cluster sizes. After
deploying all 1572 configurations built by the three techniques,
84.7% of clusters have a single AS (95% of clusters have one
or two ASes). This indicates that, depending on the number
and locations of the sources of spoofed traffic, our techniques
may precisely locate them. Although most clusters are small
and most ASes are in small clusters, large clusters account for
a non-negligible number of ASes. After deploying all 1572
configurations, 15 clusters are larger than 5 ASes and contain
6.9% of the ASes considered in our study. Reducing cluster
sizes at the tail is important to identify sources of spoofed
traffic into small clusters and allow targeted intervention.

The lines in Figure 5 show the mean and maximum of clus-
ter sizes as a function of the number of configurations. Axes
use a logarithmic scale, and we sort configurations by the order
in which they were deployed. We indicate when each phase
finishes with vertical lines. We observe diminishing returns in
our ability to reduce the mean cluster sizes (solid blue line) by
deploying additional announcement configurations. However,
an origin AS can effectively manipulate routes toward each
prefix, systematically causing catchment changes even after
hundreds of configurations. In particular, the results indicate
we could have obtained even smaller clusters by performing
more announcements. The evolution of the size of the largest
cluster (dashed gray line) has a different behavior. We observe
that the line may remain stable for several configurations
while the mean cluster size decreases. The plateaus in the
evolution of the size of the largest cluster indicate that there
are some clusters harder to partition and might be more quickly
split by deploying targeted announcement configurations. The
small steps following the vertical bars indicate that changing
techniques used to generate configurations induces different
route changes (new routes) that reduce the largest cluster size.

B. Longitudinal Analysis

The dataset we analyze in this work includes more an-
nouncement configurations and has better coverage than the
dataset we collected in 2019 and analyzed in an earlier version
of this work [23]. Table II compares the two datasets.

Figure 4 is equivalent to Figure 3, but it shows results
from the 2019 dataset. The graphs are qualitatively similar,
providing evidence that running the technique multiple times
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Figure 3: Distribution of cluster sizes
after each phase.

Table II: Datasets Compared in Longitudinal Analysis

PEERING Number of Configurations ASes
Dataset PoPs Locations Prepending Poisoning | Covered
2019 [23] 7 64 294 347 1885
2020 8 255 1024 293 2398

on one network (PEERING) would yield similar results. We
also note that although our new dataset has larger coverage,
it still manages to separate ASes into smaller clusters than
the 2019 dataset. This follows from a larger number of
announcement configurations being able to force route changes
that effectively contribute to splitting clusters.

C. Localization Speed

The number of possible announcement configurations grows
exponentially with the number of peering links |£|. A straight-
forward approach to speed up localization is to use multiple
prefixes and deploy multiple configurations concurrently. This
approach, however, requires spare IP space, which may be
limited in IPv4. In the following we discuss heuristics that do
not depend on additional resources.

When locating the sources of spoofed traffic, a network can
reuse previous catchment measurements or remeasure catch-
ments during identification at run time. For example, an origin
AS employing our techniques can deploy time-consuming
announcement configurations and measure catchments prior
to the occurrence of an amplification DDoS attack. While
an attack is ongoing, the origin AS can then assume that
catchments remain unchanged since their last measurement
and deploy configurations in optimal order to quickly reduce
cluster sizes. This involves a trade-off between identification
accuracy (reusing previous catchment measurements may in-
cur errors due to route changes since the last measurement)
and identification delay (measuring catchments during identifi-
cation takes time), which depends on route stability and could
be improved by resource-efficient solutions for inferring path
changes.

The solid line in Figure 6 shows the mean cluster size as
function of the number of announcement configurations when
the origin AS chooses the sequence of configurations at ran-

Cluster Size [ASes] (log)

Figure 4: Distribution of cluster sizes
on smaller 2019 dataset [23].

Number of Configurations

Figure 5: Cluster sizes as function of
number of configurations.

dom, without repetition. The shaded area shows the variance
across 1,000 random sequences. The dashed line shows the
mean cluster size as a function of the number of announcement
configurations deployed when the origin AS greedily chooses
the configuration that results in the smallest mean cluster size
before deploying each configuration. Compared to the solid
line, we observe that localization can be made significantly
faster if catchments are measured prior to an attack, and
configurations deployed in optimal order. For example, after
running ten configurations, while the random sequence yields
a mean cluster size of 5.48 ASes, the optimal sequence yields
a cluster size of 3.1 ASes. While our techniques can be used
offline to identify networks that allow spoofed packets and
drive adoption of filtering, this result indicates the techniques
might be useful at run time as a source of information for
active attack mitigation mechanisms.

Another approach to increase localization speed is to pre-
dict the catchments of announcement configurations and only
deploy the most promising configurations, discarding or post-
poning configurations predicted to provide little additional
information (i.e., not induce new, different route changes).

An AS in the Internet can receive multiple routes from
its neighbors via BGP and choose the best according to its
policy. We evaluate routing choices of ASes in our dataset
according to BGP’s first two decision criteria: (i) best rela-
tionship, which states an AS prefers routes through a client
network first, through a peer second, and through a provider
last; and (ii) shortest path, which states that, when multiple
equally-preferred routes are available (tied according to the
relationship criterion), the AS chooses the shortest one. We
do not consider additional decision criteria as we cannot
observe them from AS-paths we collect from BGP updates
or traceroute measurements.

We compare the route chosen by each AS a with alternate
routes AS a had available during deployment of configuration
c. Because it is often impossible to know what (alternate)
routes AS a has available while configuration c¢ is deployed,
we consider AS a has available all routes observed across
all configurations that could exist in configuration c. More
precisely, any route observed from AS a that goes to a location
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Figure 6: Mean cluster size as function
of announcement schedule.
configurations.

in A., has prepending if and only if it goes to a location in P,
and does not traverse a poisoned AS in Q. is considered as a
possible alternate route. We compare the next hop neighbor on
the route chosen by AS a in configuration ¢ with the next hop
neighbor on each of the possible alternate routes. We say AS
a’s choice follows the best relationship criterion if the chosen
next hop neighbor is more preferred or tied for most preferred
when compared to all possible alternate routes. In addition, we
say the choice follows the shortest path criterion if the route
is shorter or tied for shortest when compared to all possible
alternate routes that are tied for best relationship.

The dashed line in Figure 7 shows the distribution of the
fraction of ASes observed to follow the best relationship
criterion across all configurations. We observe that most ASes
in the Internet follow the best relationship criterion. The solid
line shows the distribution of ASes observed to follow both
best relationship and shortest path criterion (also referred to as
the Gao-Rexford model [42]). This result indicates that most
ASes in the internet follow a well-defined, known behavior.
Note that our methodology considers the existence of alternate
routes that do not exist in practice, making these results a
worst-case scenario. In practice, an even larger fraction of
ASes than what we report may follow the Gao-Rexford model.
Although predicting routes in the Internet is challenging [43],
our techniques could benefit from future advances in catch-
ment prediction strategies to boost attack localization speed.

D. Usefulness of Techniques

To evaluate the importance of each announcement genera-
tion technique (i.e., varying announcement locations, prepend-
ing, and poisoning), we investigate which ones were used
by the first 100 announcement configurations chosen by the
greedy algorithm (dashed line in Figure 6). Among the first
100 announcement configurations, we find 18 vary announce-
ment locations, 8 add prepending to a set of locations A seen
a previously-deployed configuration, 50 include prepending
and announce to a set of locations A not seen in previous
configurations, and 24 poison a specific target AS. The spread
across all techniques indicates that, with prior knowledge of

Percentage of ASes

Figure 7: Percentage of ASes follow-
ing well-known routing policies across
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Figure 8: Mean cluster size when re-
moving peering locations.

catchments, all techniques would be actively employed to
quickly track down sources of spoofed traffic.

E. Impact of Peering Footprint

Figure 8 is similar to Figure 6, but it shows different lines
for cases where we consider only a subset of our configu-
rations, emulating networks with fewer PoPs by discarding
one, two, three, or four of the eight PoPs we used. The “all
locations” line includes all 255 + 1024 = 1279 configurations
using all 8 locations and prepending. The “seven locations”
line includes a subset of >0_, {(7130) +[7— 2] (7zm)} =
575 configurations using up to 7 locations. The shaded area
shows the minimum and maximum mean cluster sizes across
all (}) = 8 possible subsets (each subset discarding one
of the 8 PEERING PoPs we used). The “six locations” line
includes a subset of 32°_, {(62) + [6 — ] (62)} = 255
configurations using up to 6 locations, and the shaded area
shows the minimum and maximum mean cluster sizes across
all (5) = 28 combinations of six locations. Lines for five
and four locations are similar. We sort the announcement
configurations on the z axis using the greedy algorithm to
focus on the number of locations used in announcements, not
their sequencing.

The graph shows that having more locations allows the gen-
eration of more configurations, leading ultimately to smaller
cluster sizes, and also yields smaller cluster sizes for the same
number of announcements. This result indicates that a network
with a footprint larger than PEERING’s could achieve even
higher localization precision.

Figure 9 is similar to Figure 3 and shows the complementary
distribution of cluster sizes but considering fewer announce-
ment locations. The five lines and shaded areas correspond
to the same five scenarios described in Figure 8. The “all
locations”, “seven locations”, “six locations”, “five locations”,
and “four locations” lines show the distributions of cluster
sizes after 1279, 575, 255, 111, and 47 announcements,
respectively; in other words, we show the distribution of
cluster sizes at the end of the curves in Figure 8. We observe
that using less announcement locations leads to larger cluster
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Figure 12: Distribution of cluster size as function of traffic
volume for different distributions of spoofed sources.

sizes at the tail. While the “all locations” line shows 0.7% of
clusters with more than 10 ASes, the “seven locations”, ‘“‘six
locations”, “five locations”, and “four locations” lines show
1.48%, 2.40%, 3.75%, and 6.75% of clusters with more than
10 ASes, respectively.

We evaluated the distribution of cluster sizes as a function
of the distance, in number of AS-hops, between PEERING
PoPs and ASes. Figure 10 shows the distribution of cluster
sizes across all ASes in our dataset. We break ASes into
groups based on their AS-hop distance to the closest PEERING
location observed in the first anycast configuration. We find
that ASes that are 1 or 2 AS-hops away from PEERING PoPs
are in clusters with 1.55 ASes on average, while ASes 3 or
more AS-hops away are in clusters with 2.51 ASes on average.
As we expected, ASes closer to announcement locations are
easier to isolate (in smaller clusters), but most ASes farther
away are also in small clusters, indicating that we may still
be able to identify sources of attacks that are farther away
with actionable precision. Figure 10 shows that large clusters
(e.g., with 10 ASes or more) are usually farther away from
announcement locations.

Figure 11 shows the average cluster size as a function of
the number of deployed configurations (similar to Figure 8).
We group ASes by their AS-hop distance from PEERING and
sort the announcement configurations on the z axis using the

Figure 10: Cluster size as function of
AS-hop distance from origin AS.

Figure 11: Cluster sizes as function
of number of configuration by AS-hop
distance.

greedy algorithm. We observe that the mean cluster size of
ASes closer to PEERING (blue and orange dashed lines) is
smaller than the mean cluster sizes of ASes farther away
(green and red lines) after the deployment of a few configu-
rations. More importantly, however, we note that cluster sizes
decrease for all ASes throughout the experiment regardless of
distance from PoPs. As future work, we plan to investigate
targeted poisoning of distant ASes to induce specific route
changes to split these distant clusters.

FE. Study of Spoofed Traffic

Given the impossibility of attracting real spoofed traffic
using PEERING testbed resources,! we study identification
accuracy using simulation. We perform simulations where
we choose the number of sources of spoofed traffic across
ASes according to the uniform and Pareto distributions. For
the Pareto distribution, we set the shape parameter such
that 80% of sources of spoofed traffic are concentrated in
20% of ASes. We also run simulations with a single source
of spoofed traffic placed in an AS chosen at random. We
assume the volume of spoofed traffic originated in an AS
is proportional to the number of sources in it. The first two
scenarios are challenging scenarios, although previous work
indicate that amplification attacks usually originate from a
single source [15]. For each distribution, we generate and run
simulations for 1000 placements.

For each distribution, Figure 12 shows the cumulative
fraction of spoofed traffic (y-axis), averaged over the 1000
placements, in clusters up to a given size (x-axis). We observe
that for all three distributions, most spoofed traffic originates
from ASes in small clusters, which follows from Figure 3,
where we showed that most clusters are small.

'PEERING operators expressed concerns about hosting a honeypot on
PEERING, subsequent blacklisting of PEERING resources, and deterioration
of the platform’s future usability by the community. Some PEERING locations
have bandwidth limitations which complicates hosting honeypots: although
AmpPot [15] can enforce a limit on the sending rate, one cannot control the
rate at which malicious packets are received from attackers.



VI. OPERATIONAL CONSIDERATIONS

In this section we discuss operational considerations for the
deployment of our techniques by networks in the Internet.

A. Deployment Requirements

Our techniques generate anycast announcements. Any net-
work with multiple peering links can deploy anycast and our
techniques. We use the PEERING testbed to emulate a network
with multiple peering links. Although small networks with
few peering links may not be able to apply our techniques
effectively, multiple small networks can cooperate to announce
the same prefix and operate as a larger network that controls all
of their peering links. Also, any network with a large peering
footprint that deploys our techniques to identify the sources of
spoofed traffic can share this information with other networks.
To make an announcement, a network will also need network
prefixes that preferably does not carry production traffic, as
frequent announcement changes disrupts connectivity.

Our techniques are orthogonal to and compatible with the
RPKI. The resource (prefix) owner needs only create a Route
Origin Authorization (ROA) for the network(s) that will make
the announcements; configuration generation and deployment
work unmodified. BGP poisoning is also compatible with the
RPKI and Route Origin Validation (ROV) as the origin of
the announcement is unchanged: the poisoned AS’s number is
added to the middle of the AS-path.

Finally, an operator must setup infrastructure to automat-
ically compute and deploy the sequence of announcement
configurations, measure catchments (see §IV-B and §VI-C),
and calculate clusters to identify the networks possibly sending
the spoofed traffic. After identifying the network or set of
networks responsible by the spoofed packets, the network
operator can take several measures, e.g., contact network
administration to notify the issue, or use either one or a
combination of BGP flowspec [44] and blackholing [21] to
limit propagation and impact of the spoofed traffic.

B. Requirements on Spoofed Traffic

Another requirement for deploying our techniques in prac-
tice is identifying spoofed traffic arriving on peering links. One
approach is to classify traffic as either spoofed or legitimate,
which is a challenging topic and active area of research [17],
[45]. A practical approach is to run an amplification honeypot
[15] to attract spoofed traffic and identify from which peering
link the spoofed traffic is coming from. Using a honeypot has
the benefit of guaranteeing accurate identification of spoofed
traffic, as no benign traffic should reach the honeypots.

Our techniques can be applied even when the volume of
spoofed traffic is small, as it only requires information about
which peering link is receiving (most of the) spoofed traffic.
However, identification of where spoofed traffic is coming
from requires that sources send spoofed traffic toward the
monitoring prefix. This implies identification of the sources of
amplification attacks is limited to the period while the attack
is ongoing. The number of configurations that can be deployed
and the accuracy of the resulting clusters are proportional to

how long an attack lasts: Longer attacks allow for more precise
identification of sources.

C. Measuring Catchments

In this paper we measure catchments using traceroutes from
RIPE Atlas and BGP updates from public collectors (§IV-B).
We chose this approach as PEERING prefixes receive very little
traffic and restricts active probing using its resources. Next we
discuss alternate mechanisms to measure catchments available
to networks that can lift these constraints.

Networks can identify non-attack traffic received on each
peering link by identifying whether packets received from
a neighboring network are spoofed or not [17], [45]. This
approach is limited by the accuracy of the identification,
but has the benefit of working passively and not generating
any measurement traffic. An operational constraint of this
approach is how to attract enough traffic to identify catchments
without disrupting production traffic during announcement
configuration changes. In case the volume of traffic is too
high, packet sampling can be used to control the processing
overhead.

Another approach is to send ping measurements to IP ad-
dresses from /24 prefixes covering the globally-routed address
space (e.g., using Verfploeter [16]) and calculate catchments
from the responses. This approach has the benefit of not
needing external vantage points (e.g., RIPE Atlas probes) to
measure catchments.

D. Real-time Attack Detection

The time required to run a measurement round for an
announcement configuration is decisive for real-time detection
of amplification DDoS attacks. We do not tackle real-time
detection of amplification attacks in this work, but discuss the
duration of measurement rounds.

A measurement round must include time for route con-
vergence, to measure the catchments, and to estimate where
spoofed traffic is arriving from. Route convergence takes less
than 2.5 minutes 99% of the time (§IV-B) and is outside the
control of the network deploying our techniques.

The biggest contributor to the length of a measurement
round is the time required for measuring catchments. In our
study, we wait 50 minutes to collect at least two rounds of
traceroutes, which is a function of the frequency at which
traceroutes are triggered from RIPE Atlas. Other catchment
measurement approaches, however, can operate faster. To
speed up catchment measurement, an operator using pings to
measure catchments can increase the probing rate to com-
plete a scan of the IPv4 address space in less than five
minutes [16], [46], [47]. Operators identifying non-spoofed
traffic to measure catchments would need to adjust the time
required to measure catchments as a function of the traffic
volume received by their prefixes.

In most cases, we expect the time to estimate where spoofed
traffic is arriving from to be shorter than the time to measure
catchments, as amplification attacks send a continuous stream
of spoofed packets while underway.



VII. OTHER APPLICATIONS

Although we designed our techniques to generate configu-
rations with the goal of tracking down the sources of spoofed
traffic, route manipulation has several other applications. In
this section we discuss how our techniques can be adapted
or extended to benefit other work. We also discuss how our
dataset,2 which we make publicly available, can be used as a
starting point of analysis. Although PEERING and RIPE Atlas
are publicly accessible, deploying hundreds of announcement
configurations takes weeks, and our measurements have higher
coverage than usually possible as we partnered with RIPE to
collect a larger body of traceroute measurements.

Our techniques generate configurations that systematically
explore routes and are applicable to previous work that ma-
nipulate BGP announcements to identify alternate paths [31],
[48], trigger route changes with specific properties [49], dis-
cover network links [30], and characterize interdomain routing
policies [24]. In general, our techniques and dataset can be of
use to research in these areas: our dataset contains at least
eight alternate routes towards PEERING for each observed
AS, has thousands of route changes (with different properties),
and may discover new links (particularly as a result of our
poisoning experiments). More specifically, while Anwar et
al. [24] generate announcement configurations to infer routing
policies of a single target AS, our techniques deterministically
force routing changes and explore routing decisions across
all ASes in the Internet; such an approach could significantly
speed up (and scale) inference of routing policies.

Research that involves prefix hijacks and defenses against
it frequently deploys BGP announcements in the Internet to
perform controlled hijacks and evaluate the effectiveness of
their approaches in realistic scenarios (e.g., [50]). A scenario
commonly studied in the literature is that of subprefix hijacks,
where the hijacker announces a more specific route. This
scenario, however, has a predictable outcome: the hijack is
guaranteed to attract all traffic as Internet routing follows
longest-prefix matching. A partial mitigation to subprefix
hijacks is to announce more specific routes. In this context, the
impact of a hijack depends on how competing announcements
of /24 IPv4 and /48 IPv6 prefixes from a given set of locations
propagate, which our announcements can be used to study. Our
technique to generate configurations varying announcement
locations generates all possible scenarios of prefix hijacking
from a predefined set of announcement locations. Consider
a configuration announcing from n locations: each location
can be considered a legitimate announcement or an attempted
hijack. Under this view, a configuration announcing from n
locations covers 2™ possible hijack scenarios.

VIII. RELATED WORK

a) DDoS attacks: Denial-of-Service (DoS) attacks intend
to exhaust the resources of a service, making it unavailable
for legitimate users. The attack can exhaust server resources
(e.g., CPU, memory, network connections) [51]-[53] or send a

Zhttps://homepages.dcc.ufmg.br/~osvaldo.morais/dataset_tnsm2020/
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torrent of requests to exceed the bandwidth capacity of the net-
work link where the service is hosted (volumetric attacks) [1],
[15], [53]. A Distributed Denial-of-Service (DDoS) attack uses
a large number of devices across the network to launch the
attack and overwhelm a target.

Attacks can use reflection or amplification to empower their
impact. A service vulnerable to reflection replies to requests
without verifying the source (e.g., classic DNS over UDP),
and a service vulnerable to amplification sends large responses
to short requests. A server running a service vulnerable to
both reflection and amplification is usually referred to as an
amplifier. Attackers exploit amplifiers by generating small
requests falsifying the source IP address of the requests with
the IP address of the victim, causing the amplifier to send
large responses to the victim instead. Amplification reflection
DDoS attacks [1], [7] are particularly challenging because
they generate large volumes of traffic and are hard to track
down since the source IP address of the malicious traffic is
spoofed. This type of attack is perpetrated in practice, and have
increased in power over time, leading to recent record-breaking
attacks that reached 2,3 Tbps [7]. Our work complements
efforts to mitigate amplification reflection attacks, tracking
down the sources of spoofed packets.

b) DDoS mitigation: Distinguishing legitimate from ma-
licious traffic is an essential task for many DoS mitigation
techniques. Solutions to detect attacks propose to differentiate
between classes of anomalous traffic (e.g., flash crowd, equip-
ment failures, and DoS attacks) by (i) applying black-box mod-
els obtained from machine learning algorithms on traffic [54]-
[56] or (ii) identifying signatures of normal and anomalous
traffic, and creating white-box traffic filtering rules [57].
In practice, traffic scrubbing services [58], [59] detour the
victim’s traffic through a scrubbing center, classify traffic into
malicious and legitimate, discard the malicious traffic, and
send only the legitimate traffic to the victim network. Although
popular, this approach is very expensive since it demands high
network bandwidth capacity and also advanced hardware to
process and filter large volumes of packets associated with
DDoS attack [60], leading many works to address the costs
associated with scrubbing centers [61]-[63].

These techniques reduce the impact on the victims by
detecting and filtering the malicious packages or absorbing
the attacks. However, they do not address the root cause of
amplification attacks, which requires identifying the source
of the attacks (i.e., the sources of the spoofed packets) for
targeted intervention and mitigation at the origin.

c) IP Traceback: A common approach to perform IP
traceback is to iferatively contact operators, either directly or
through mailing lists such as Outages.org or NANOG, of ASes
along the path toward the source of spoofed traffic and have
them identify which links are carrying the malicious traffic.
This approach however, requires coordination and coopera-
tion between several humans, incurring arbitrary identification
delay and not scaling to the wide area.

Controlled flooding [8] was the first automated approach
for IP traceback, and relied on temporarily congesting links



Table III: Summary of proposals for IP traceback.

Cooperation Router Router Identification  Identification
Approach Manipulates from networks  updates  overhead precision delay
Manual Logs/monitoring Required No No Path prefix Long
Flooding [8] Packet loss Required No High Path prefix Moderate
Marking [9]-[11] IP ID field Deployment Yes Low Closest router & sampling
Out-of-band [12] — Deployment Yes High Closest router & sampling
Digest-Based [13], [14] | Local state at router Deployment Yes High Closest router Short
Routing (this paper) Routes No No No AS Long

to disrupt traffic on a link, allowing the victim to iteratively
identify links on the path toward the attacker. Although this
approach does not require upgrading routers, it is not viable
today as the ability to trigger congestion at will (e.g., using
UDP chargen) is considered a serious vulnerability.

Several packet marking approaches propose encoding infor-
mation about routers traversed by a packet on a small fraction
of packets (usually in the IP ID field) [9]-[11]. Similarly,
routers can inform destinations using out-of-band data about
a small fraction of packets they have forwarded toward each
destination [12]. Under the assumption that attackers generate
many packets toward the amplifier, the amplifier can correlate
information across multiple packets and identify routers on the
path to the attacker. Another approach is to compute a digest
(e.g., a bloom filter) of packets traversing a router, and provide
an interface for querying routers for a packet’s signature [13],
[14]. These techniques allow for fast identification, but require
upgrading routers, incur significant overhead, and require
widespread deployment across the Internet to provide accurate
identification.

Table III provides an overview of IP traceback proposals and
compares with the proposal in this paper. Our routing-based
approach manipulates routes to find the AS that originates the
malicious traffic. Our proposal does not require any coopera-
tion from remote networks nor router updates, addressing most
of the drawbacks observed in previous work.

d) Locating sources of spoofed traffic: Previous ap-
proaches to locate the sources of spoofed packets either lack
coverage or are not deployable. One way to prevent spoofed IP
packets is filtering them at the source network. The problem
with this approach is the lack of incentive that the network has
to carry out the filtering of spoofed packets since the network
itself does not benefit from the filtering. Although it prevents
the network from participating in amplification attacks, the
network is still vulnerable to these attacks. Some reports
analyze the positive impact that the adoption of spoofed packet
filtering can have and how to deploy the filtering [64] while
others try to quantify the percentage of networks vulnerable to
the use of IP spoofing [65]-[67]. A study that relied on active
tests included data from volunteers at 12,500 IP addresses [66],
a small fraction of the billion client IP addresses seen by large
Internet services that are the victims of attacks.

A recent work proposes an approach that identifies scanning
infrastructures used for amplification attacks and correlates
scan events with amplification attacks to identify amplification
sources [68]. The scanning infrastructure may not be used
for running the attacks, which would be a limitation of the
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technique. The results of this work are in line with previous
works whose findings show that most amplification attacks
come from a single source.

Finally, there are also studies that proposed techniques to
detect spoofed IP packets in IXPs [17], [45], [69]. These
techniques check if the packets entering the IXP come from
a valid customer of the AS that injects the packet in the
IXP fabric, i.e., checks whether a packet’s source IP address
belongs to a prefix owned by an AS in the IXP member’s
customer cone.

IX. CONCLUSION AND FUTURE WORK

Our control-plane traceback technique can be deployed by
any network with rich connectivity today, without changes to
routers, and does not require cooperation from other networks.
Our results using the PEERING platform indicate that our pro-
posed techniques to generate announcement configurations can
effectively manipulate routes and induce catchment changes,
allowing tracking down the sources of spoofed traffic. If
sources of amplification DDoS attacks are few, as reported by
analyzing logs from AmpPot honeypots [15], our techniques
can map sources of spoofed traffic into sets that average
1.29 ASes. Our results indicate that precision will be higher
if networks with a footprint larger than PEERING’s were to
deploy our techniques.

We envision two research fronts for future work. One is to
expand our techniques to reduce cluster sizes even more, e.g.,
designing new algorithms for choosing targets for poisoning,
and using BGP communities for controlling export policies
(and influence routing decisions) on remote networks. Another
is to expand the system to allow identification of sources
of spoofed traffic during DDoS attacks, e.g., by (i) jointly
optimizing for cluster size and traffic volume, giving higher
utility to reducing the size of clusters inferred to send more
spoofed traffic; and (ii) improving existing catchment pre-
diction techniques [18] to allow generation of announcement
configurations without prior knowledge and reducing the need
for measuring catchments in advance.
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