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Abstract

In this study, we developed a numerical finite-difference model for 2D transient diffusion in lamellar
structures. The explicit application is heat transfer, but it could equally be applied to dielectric constants,
magnetic susceptibilities, electron/ion conduction, and mass diffusion as well. The control volume contains
two phases A and B. The phases have different transport parameters. The modeling aims to evaluate the
effect of grain size, grain boundaries, and phase contrast on apparent transport properties of composite
materials, such as laminates, polycrystalline materials, and block copolymers, by examining a progression of
increasingly complex structures. To validate the model, effective transport parameters of parallel and
perpendicular structures from the numerical model are compared to analytical expressions. Effective
Medium Theory provides an analytical expression in the limit of many, small, randomly oriented grains. The
impact of coarse grains on transport is investigated. Specifically, the model is used to examine how the
apparent transport parameters trend from the limit of a homogeneous material to small randomly oriented
grains containing two different phases. The effective thermal conductivity (averaged over many random
structures) was found not to be a function of grain size. However, the standard deviation decreased
exponentially with decreasing grain size, reaching less than 2% variation for transport through 15 grains.
Thus, the appropriate Effective Medium prediction is reliable for a surprisingly few number of grains, and
connectivity of the more conducting phase is important only in coarse grains with significant contrast.

Keywords: Heterogeneous, Inhomogeneous, Numerical Model, Block Copolymer, Thermal
Conductivity, Finite Difference Method.



. Introduction

Lamellar composites may be considered as any multiphase material in which at least one phase has a
roughly planar shape. For example, platelet-shaped particles, such as clay, and 2D materials, such as
graphene dispersed in a polymer matrix, could be grouped in this category. These inorganic materials are
essentially impermeable to molecules and ions but enhance thermal conductivity. The continuum
approach used in this work assumes isotropic transport properties within each phase. Thus, it is more
relevant to particles that impact macroscopic transport properties but are not intrinsically anisotropic
within the particle, as opposed to 2D materials such as black phosphorus[1] that possess anisotropic
transport properties within the particle. Also relevant to this work are polycrystalline materials, in
particular semicrystalline polymers. Crystal lamellae contain well-ordered packing of polymer segments
that are denser and less permeable/conductive to molecules/ions than the intervening amorphous
regions.[2, 3] Conversely, thermal conductivity has been found to increase with degree of crystallinity in
semicrystalline polymers.[4, 5] In fact, ultradrawn polyethylene has orders of magnitude greater thermal
conductivity in the draw direction than in the transverse direction.[6] This is thought to be due to crystal
alignment. Molecules containing liquid crystal moieties are yet another class of materials that can form
lamellar structures.[7] A final example is block copolymers (BCPs). BCPs are a type of polymer in which
chemically distinct monomer units are grouped in different blocks along the polymer chain. Under certain
conditions, interactions between chemically distinct blocks along with molecular connectivity result in
microphase separation into extraordinary structures.[8] When the blocks are of roughly equal volume
fraction, the microphase separated structure is typically lamellar. The objectives of this study are to
examine how transport is impacted by grain size, phase contrast, and connectivity of the more conductive
phase, as well as to evaluate the most accurate effective medium expression for conduction in 2D
lamellae.

Platelet particles and 2D materials are incorporated into polymers in order to slow transport of
undesirable species (such as methanol in a fuel cell, lithium sulfides in a battery, or oxygen through a
barrier material), improve thermomechanical properties (such as clay in nylon), and increase thermal
conductivity (such as graphene in epoxy).[9-13] Although much more emphasis has been placed on
thermal management applications in which high thermal conductivity is desired,[14] composites have also
been designed for exceptional insulation properties[15] and for use as artificial muscles.[16] Similarly,
block copolymer and semicrystalline materials have been used to control mechanical properties and
transport of species such as gases, water, and ions. [17-20] One such example is the combination of rapid
ion transport coupled with mechanical strength.[8]

Thermal transport in block copolymers has received limited attention. Mehra et al. reviewed the
fundamentals of thermal transport in polymer composites, covered effective medium theories, and
discussed design rules for material selection.[21] The application of BCPs to improve heat dissipation has
been investigated by Alzina and coworkers.[22] They used metallization in a polymer containing active
nanoelectronic and optoelectronic devices. Organic material can degrade if heat is not extracted
efficiently. Therefore, it is important to measure and predict the thermal conductance of such polymer-
based structures. Thermal transport in block copolymer films formed of polystyrene and poly(methyl
methacrylate) (PS-b-PMMA) were studied by George et al.[23] Based on their results, the effective
thermal conductivity of the BCP is not influenced by the film thickness nor phase separation this is due to
the low thermal conductivity contrast between PS and PMMA. Phases with greater differences in thermal



conductivity than PS and PMMA might be expected to introduce a dependence of the effective thermal
conductivity on structure. The possibility of selective incorporation of metal nanoparticles into one phase
of a BCP[24-29] or in situ synthesis of metals within one phase of a BCP[30-32] are two exciting approaches
for achieving nanostructured materials with large contrast in thermal conductivity, and it opens a new
prospect in the control of heat transport for applications in thermal management.

Gas,[17, 33, 34] vapor,[18] and liquid[35] permeability through nanostructured membranes, as well as ion
conduction have received much more attention than thermal transport. Due to their mathematical
equivalence, additional insight into thermal transport through lamellar structures can be gained by
considering these other types of transport. Petropoulos has reviewed effective medium equations for
spherical and cylindrical inclusions as they pertain to the permeability of neutral molecules through two-
phase structures.[36] Here, we focus on lamellar structures in BCPs. A number of studies have successfully
analyzed gas transport through unaligned lamellar BCP membranes using either equations of Sax and
Ottino[17, 34, 37], the Random Column Model (RCM)[33, 37], or both.

Effective medium theory defines a transport parameter of a homogeneous isotropic medium that behaves
the same as a given composite material. The earliest and most prevalent effective medium theories
(EMTs) have been derived by considering a heterogeneous material in a field and solving for the
macroscopic average property of that material that recovers the appropriate field. Landauer has reviewed
the earliest developments of EMTs.[38] The majority of effective medium expressions have been
developed for spheres or ellipsoids dispersed in a matrix.[38, 39] Starting with Rayleigh, EMT models were
also developed for cylinders.[39] The modern version of EMT is attributed to Bruggeman whose
symmetrical expression has been generalized to ellipsoids, more than 2 phases, as well as 1, 2, and 3D.[38]
For 2 phases with spheres in a matrix, the dimensionally generalized expression for the effective
conductivity follows.

1
Kewr = 5055 (B +VB? +4(d = Dkaks) (eq.1)

where d is the dimensionality, and 8 = (¢psk, + Ppk)(d — 1) — (Pakp + Ppka).

There are fewer studies that detail transport through lamellae. Cohen and coworkers developed RCM,
which was originally applied numerically to gas permeation in BCPs.[33, 37] Like the current study, their
model was built from series and parallel building blocks. For series conduction, transport must occur
through both phases, and the effective thermal conductivity is a harmonic (volume fraction weighted)
average of the thermal conductivity of the two phases.[40-42]

Pa ¢B> (eq.2)

kseries = <kA kg

Kgeries 1S the effective thermal conductivity for the series model. ¢4 and ¢ are the volume fractions of
phases A and B, respectively. k, and kg are the thermal conductivities of phases A and B, respectively.
For parallel conduction, transport can occur through both phases simultaneously, and the effective
thermal conductivity is a simple rule of mixtures.

kparallel = ¢aka + Pppkp (eq.3)



RCM studies focused on the limit of many grains, which prevents more in-depth comparison with the
current work that focuses on few grains. An analytical expression for randomly oriented grains in RCM has
been reported.[43] The analytical expression evaluates an integral over grain orientations, but it is unclear
what is the appropriate upper limit of this integration, which renders the expression of limited utility.
Another approach, also built using series and parallel building blocks, was reported by Sax and Ottino.[42]
This too applies in the limit of random orientation of many grains. Based on Minelli et al. the equation for
the effective thermal conductivity of a 3D complex geometry is [34]

1
kso—gmr = § kparallel + §kseries (eq.4 — a).

For a 2D complex geometry (Figure S1) it would be

1 1
kso-gmr = kspa = E kparallel + Ekseries (eq- 4 —b).

In 2D, the Sax and Ottino expression, kgo_gmT, is equivalent to ksp4, Which is the arithmetic mean of
kseries and Kpqaraiier that are taken from equation 2 and equation 3, respectively.[44, 45] Since these
studies did not examine the effects of grain size nor alignment, we shift focus to ionic conductivity, where
there has been the most extensive experimental effort. Using the terminology of polycrystalline materials,
"grain" is used to refer to a region of coherently oriented lamellae.

Anisotropic ionic conductivity in lamellar structures has been observed in semicrystalline polymer
electrolytes,[46, 47] graphene oxide-polymer composites,[47, 48] halographically polymerized
polymers,[47, 49, 50] organic ionic plastic crystals,[51] smectic liquid crystals[52-54], and lamellar block
copolymers[35, 55-60]. In these systems, structures composed of one ionically conductive layer alternate
with a poorly or nonconductive layer. Alignment of the structures was achieved with a variety of
approaches, including molecular interactions (especially surface interactions),[52, 53] applied stress to
induce flow,[56] magnetic fields,[58] electric fields,[56] and solvent casting.[35, 57] In most cases, ionic
conductivity parallel to the oriented layers was found to be dramatically greater than that perpendicular
to the layers, i.e. 1 to nearly 4 orders of magnitude difference. In some cases, the improvement in parallel
conductivity over randomly oriented grains was similar to that predicted by Sax and Ottino,[56, 58, 61]
but in many cases the improvement was much greater than the prediction.[35, 52, 53, 55, 57] Moreover,
conductivity has been found to trend proportionally[55] or inversely[62, 63] with grain size in different
systems. Lack of knowledge regarding structural connectivity across grain boundaries and transport along
grain boundaries is often implicated to describe disagreements such as these. Although measurement of
transport through lamellar defects has been achieved with pulsed field gradient-nuclear magnetic
resonance,[64] experimental measurement of transport in grain boundaries is extremely challenging, if
not impossible at this time. This is due to numerous factors. For example, in soft materials, grain boundary
structure is usually poorly defined and difficult to characterize. Lack of precise knowledge of grain
boundary structure precludes accurate measurement of dynamics within them.

Analytical solutions for 1D transient conduction are possible for laminated structures, but are quite
complicated for more than two layers.[65, 66] Steady-state analytical solutions are also possible for
uniform spheres on a regular lattice and other periodic media, as well as random distributions of a discrete
phase in a matrix of different conductivity.[67, 68] We are not aware of studies investigating more
complex structures; this is likely due to the complexity or impossibility of analytical approaches.



The Finite Difference Method (FDM) is a powerful numerical technique to solve partial differential
equations. Dusinberre used FDM to solve different heat transfer problems in his book.[69] Also, this
method was used to develop a powerful code called Trump, by Edwards, to calculate transient and steady-
state temperature distributions in multidimensional systems.[70] Claiborne et al. compared the results of
several heat transfer computer codes when applied to a hypothetical nuclear waste repository. All the
codes agreed within £5%,[71] motivating the use of numerical methods.

This work uses a numerical model to examine how idealized structures affect apparent conductivity. In
particular, diffusive thermal energy transport is modeled through increasingly complex arrangements of
substructures. While the structures are motivated by BCPs, the findings are relevant to the other lamellar
composites discussed above. While the model is developed explicitly for transient diffusion of thermal
energy, the mathematical handling is equivalent for mass diffusion and electron/ion conduction.[65, 72]
Table 1 shows the equations for different types of transport that could be applied in the same way as the
thermal diffusion problem described here. The form of the governing equations for transient diffusion of
heat, mass, momentum and ions are similar, with time derivatives on the left-hand side. The parameters
multiplying the Laplacian operator (V?) and the dependent variables are different. In heat transport the
variable is the temperature (T), and the parameter is thermal diffusion (@) where k is thermal
conductivity, p is density, and C,, is specific heat. In mass transport the variable is concentration of species
i (c;), and the parameter is molecular diffusion coefficient (D;). In momentum transport the variable is
velocity (u), and the kinematic viscosity parameter (v) is the ratio of dynamic viscosity (u) over p. In ion
transport electrostatic interaction between charged components leads to more complicated expressions.
The concentration of ion i (c;) is related to the gradient of potential (V¢) via the heterogeneous
reactions at the control volume boundaries. The ionic conductivity (k) is related to the mobility of ion
i (u;), its valence (z;), Faraday’s constant (F), the gas constant (R), and T.



Table 1. Mathematical equivalence of transport of various types, including key coefficients, empirical
flux relations, and transient diffusion equations.

Transport Transport Constitutive Governing
type Parameter” Flux Equation® Equation”
Heat Thermal diffusion Fourier's Law

k [cm? = —kVT aT
@ = | q w — =aV?T
pCy | s _] ot
cm?
Mass Molecular diffusion Fick's 1% Law
D; [em?/s] Ji :r;(ﬁivci gci _ D, V2,
[ ] ot
cm? s
Momentum? Kinematic viscosity Newton's Law
2 7 =puVv ov
g N,u — =vV?
pl s _] ot
cm?
lon® lonic conductivity Ohm's Law
K mol i = kVd de; K
—=FZZ-2c-u- [—] — ==V
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t 2
D; [mol cm? cm
u. _ —_— —
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#Example metric units provided.

*Subject to assumptions of no convective transport, no homogeneous reaction, and constant transport parameter.
2Governing equation assumes there is no pressure gradient.

bFor simplicity of presentation, governing equation assumes no concentration gradient, as is the case for single-ion
conduction. Ohm's Law is the more useful expression in this case. Note that ] = V(.

In this study, an FDM model of 2D transient diffusion in lamellar structures was implemented in MATLAB.
The lamellar structure contains 2 phases, A and B, with different transport parameters. The goals of the
modeling are 1) to evaluate the effect of grain size and grain boundaries on the apparent macroscopic
conductivity by examining a progression of increasingly complex structures, 2) to evaluate the
effectiveness, in idealized lamellar structures, of various EMT expressions that predict apparent
conductivity, and 3) to examine the impact of phase contrast on heterogeneous transport. Starting with
the simplest models in a homogeneous control volume, as well as horizontal and vertical lamellar
structures, the numerical results are compared to exact (analytical) expressions in order to validate the
custom numerical model. This research addresses the three goals and examines how the effective
transport parameters trend from the limit of a perfectly ordered structure to that predicted by EMT
expressions.

Il. Methods section

Table 2 presents schematics of different structures that were modeled. The structure contains two phases.
Phase A is shown in yellow, and phase B is shown in blue. The properties of the phases are reported in
Table 3. Initially the entire region is at a constant temperature, T(x,y,t = 0) = 25 °C. The boundary
conditions are specified in Figure 1 for dimensionless position, where it has a constant-temperature heat
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source of T = 100 °Catx = 0, and a constant-temperature heatsinkof T = 25°Cat x = 1.Aty = 0 and
y = 1 there is no flux. The given structure from Table 2 would occupy the control volume (CV) depicted
in Figure 1, yielding a complete description of the given simulation. Our primary objective is to determine
the heat flux at x = 1 at steady state to determine the apparent thermal conductivity of the composite
and compare to effective medium predictions to see the effect of grain size, connectivity of grain
boundaries, and phase contrast on transport in an idealized system.

Table 2. Schematics of material structures to be modeled.
Homogeneous
(Phase A)

Vertical
(series
resistance)

Horizontal
(parallel
resistance)

———

Coarse Grains

Fine Grains

[l Illlﬁ




No Fluxaty =1

>y

Heat Source at Heat Sink at
x=0,T =100°C x=:1,T = 25°C

Ay

No Fluxaty = 0 X

Figure 1. Example control volume, coordinate system, and boundary conditions.

Table 3. Material properties

Phase k pC,
(W/mK) (N/m?K)

A 2 2% 1076

B 0.2 2% 1076

The governing equation for transient heat conduction without generation and without convection within
the CVis

A(pCyT) _
T— -V q (eq 5)

The accumulation of thermal energy term is equal to the negative of the divergence of heat flux, g.
Fourier’s Law defines g and is shown in equation 6 for flux in the x-direction.

dar
x = _kxa (eq.6)

Various types of boundary conditions could be applied, including constant temperature (Dirichlet
conditions), no flux or constant heat source (Neumann conditions), and phase change (Robin conditions).
For all simulations in this work, no flux boundary conditions have been used in the y-direction, which in
dimensionless form is as follows:

At y =0, j—;zo
At y=1, g—;=o



These boundary conditions simplify the determination of effective thermal conductivity by only needing
to consider macroscopic heat transfer in the x-direction. However, local transport in the y-direction is
accounted for within the control volume in order to capture the 2D effect of the lamellar structure.

Schematic 1. Phase B in blue is the central node in contact with other Phase B nodes and a Phase A node
depicted in yellow.

Using FDM requires that the governing equations and boundary conditions be discretized. Calculations at
nodes that occur adjacent to an interface between phases must be considered in order to ensure that the
FDM approach accurately captures transport. For this purpose consider heat flux g in phase B represented
by the central blue grid point in Schematic 1, sharing an interface with phase A (node in yellow). All nodes
are set in the middle of each block so that the phase properties at each node are well defined. The flux
between the A and B nodes can be shown to obey the following equation.

kyg+kg Ax

q= (eq.7)

Equation 7 is derived in Appendix A. It begins with conservation of energy and assumes that there is
neither resistance to heat transfer nor accumulation at the interface. This means that heat flux is equal
on both sides of A/B interfaces. As shown in Appendix A, the harmonic mean of thermal conductivities
that appears in equation 7 is derived by solving for the temperature of the A/B interface.

This same approach can be used if an additional resistance to heat transfer exists at the interface, Rjy;- In
such a case, it can be assumed that the temperature on either side of the interface is not the same,[39]
but that the flux through the interface is the same as that on either side, i.e. that there is no accumulation
at the interface. Then the flux would be

q=- -
h+@+ﬁ%¥ﬂ Ax

It is apparent from this expression that interfacial resistance would dominate in the limit as R;,,; become
much larger than k, and kg. Since the purpose of the present study is to examine the impact of structure
on conduction, R;,; has been taken to be zero so as not to convolute interfacial effects, including Kapitza
resistance, with structural effects. Such effects that are likely to be material specific and appear to become
significant in grain sizes below 50 nm would be better examined with molecular dynamic simulations.[73]
Enhancement of thermal conductivity due to nanotwin boundaries could be captured empirically by using
a negative R;,;, but it would be more appropriate to use molecular dynamic simulations.[74]



Considering multiple phases and multiple nodes, equation 5 can be written

oT
PiCp; (E)U =-V-q;; (eq.8),

where i and j will be used to refer to nodes that could be phase A or phase B. It is assumed 1) that p, G,
and k are constants, 2) that transport occurs in two-dimensions (the x and y directions), 3) that there is
no convection, and 4) that there is no homogenous heat generation.

In order to implement FDM, the time derivative was discretized following equation 9, where n is number
of time iterations.

n+1 n
Ny -

(6T> i, ij 9
ot/ At (eq.9)

The divergence of flux was discretized according to equation 10 — a.

04y aQy 9i+1,j — 4qi-1,j  9ij+1 — 4i,j-1
V-g:: = —=+ = 2 = - eq.10 —a
Ui = 5x dy Ax Ay (eq )
Although equation 10 — a appears to be a centered space discretization, a '2' does not belong in the
denominator because the flux is being calculated a half step before or after position i, j, such that the

divergence of flux spans only 1 node step.

Equations 9 and 10-a are inserted into equation 8 to give equation 10-b.

1
T =T __[9n =iy Gier = 4o
At Ax Ay

piCpi (eq.10 —b)

Explicitly, each term in equation 10 — b for q;41,j, qi—1,j, Qi j+1, and q; j_1 can be generalized from
equation 7. By explicitly using the thermal conductivity of each node. The following generalized flux
expressions apply regardless of whether there is an interface present or not.

=2k Ty - T
Qi+1,j = ki Ax
14—
kiyqj
q _ _Zki—l,j Tll:} - Tln—l,]
i_lrj - k . A
i—1,j X
. —2k;; Tije1 — T
14— Y
ij+1
S —2k; ;4 Tij — Tijoq
g =
L] 1+ ki,j—l Ay

ki j

Each term in equation 10-b is replaced by its equivalent above yielding equation 11.
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n+1 __ n
T =T+

The validity of equation 11 can be verified by setting all k; ; equal to show that the usual Forward Time

(eq.-11)

At [/ 2ki;  Thay =T —2kiq; T — Ty
Pi,iCpij \1 ki ; Ax? ki1  Ax?
+ L 14—t
l ki+1j k@j
]
L Pk T — TG —2ki T~ T
14 Ay 14 Moz B2
iL,j+1 i,j

Centered Space FDM expression for a homogeneous CV is recovered.

To calculate the temperature after the first time step, all the nodes are set to 25 °Cinitially. When the first
time iteration starts, the temperature of the nodes at x = 0 are equal to 100 °C, and at x = 1 they are
setto 25 °C. The temperature after each time iteration is calculated explicitly, and the boundary conditions
in the x and y directions are reinforced for each new time iteration. As described by Rice and Do, the

nodes are shifted by a half step (to force their location to not coincide with interfaces).[75]

.1 .1
x; = (i —E)Ax andy; = (i —E)Ay

In equation 11, the term x; does not appear. Therefore, this shifting only needs to be applied in the

boundary conditions. Below are the new x-direction boundary conditions after shifting.

T(0,y) +T(0 + Ax,y)

=373K

2

T(1,y)+T(1-Ax,y)

= 298K

2

The discretized boundary conditions in the y direction are not affected by shifting.

T(x,0) =T(x,0+ Ay)

T(x,1) =T(x,1—Ay)

The stability condition for the explicit FDM in 2D is

To ensure stability, the following constraint was applied to the time step size:

0=

aiAt

AxZ =2

(eq.12)

1 Ax? 1 Ax?
At=rmn(—*——'—*——) eq.13
4 (ZA,4 ap (q )
w
Ax =
Ny—1
H
Ay =
Ny-1
_ _ka kp
paCp.a’ pPBCp,B
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The step size in the x-direction, Ax, is set equal to Ay because W and H are equal. As shown in Figure
2(a), W is the overall width of the CV, and H is the CV height. H and W have been set to 10* cm in all
simulations. Ny and N,,, the number of nodes in the x and y directions, respectively, are also equal.

The temperature of each node is calculated through a matrix Ti’?j(Nx,Ny) using equation 11, where i
represents the x index and j represents the y index. The final value of n, for all cases other than the
homogeneous case, is t*/At, where t* is the time for the system to reach steady state, which has been
estimated as

w2 w? w?
¢ = max () =
ap ap ap
Upon reaching steady state, the effective thermal conductivity, k.sr, of each FDM simulation was

determined. First, the flux in the x direction at x = 10~* cm and every y position was calculated as dx,j =

Ty j=Tm-nj
—km m"Tml’], where m is the final node in the x direction and j is the y-direction index. These fluxes

14
Zj:]_ Qx,j

were averaged to yield (g,) = , where p is the final node in the y direction. Finally, k.rf was

calculated according to

_AgW
keff - AT

The temperature difference across the CV in the x direction, i.e. betweenx = 0andx = 10™% cm, is AT =
(373 —298) = 75 K. Thus, k¢ is readily determined from (q,).

Figure 2(a) shows an example of how the 2 phases are separated. In this example, there are 60 lamellae
in the horizontal direction. Figure 2(b) shows how each phase contains the same number of nodes, which
are designated by orange squares. The thickness of each lamella is 17 nm, and it is divided into 5 nodes.
The nodes are shifted a half step as described above. This was necessary because the appropriate thermal
conductivity is ill-defined at the interface between two phases that have different values. The number of
lamellae and number of nodes per lamella were chosen to maintain a constant number of total nodes in
each direction. So, the total structure has 300 X 300 = 90,000 nodes. This was found to yield smooth,
accurate temperature profiles while maintaining acceptable simulation time. Figure 2 (c) helps to clarify
the index notation of the nodes used in equation 11.

12
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Figure 2. (a) Example CV with 2-phase structure, (b) Indication of location and number of nodes within
each phase, and (c) Index notation for FDM calculations at the central node.

The most challenging part was to generate a random distribution of structures when combining series and
parallel grains in complex combinations and to assign transport properties to nodes within grains. The
orientation of grains was determined by a function that randomly generated 0 or 1. Vertical grains were
assigned a value of 0, and horizontal grains were assigned a value of 1. For example, in the 6 x 6 structure
shown in Figure 3, the random function generated each block 0 or 1 to give the output structure as shown
in the figure. Based on the specific structure, a set of functions defined matrices containing the material
properties of each node at position i, j. Each function had inputs from the main code to define the size
and the number of grains of the composite. Based on these inputs the function generated matrices such
as k (for thermal conductivity related to each phase) and pC,, (for the product of density and specific heat
in each phase). These matrices were used in the calculation of the temperature in equation 11. By
explicitly using the transport properties of each node in equation 11, it applies regardless of whether there
is an interface present or not. In other words, as long as there are matrices containing the transport
properties associated with the structure being simulated, it is not necessary to otherwise account for the
presence of interfaces within the FDM calculations. This is a powerful aspect of the specific FDM approach
developed here.
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Figure 3. Characteristic 6 x 6 structure with node number specified on each axis.

I1l. Results and Discussion
1. Homogeneous Material

The result of the numerical model was compared to an analytical solution, with the same boundary
conditions and assumptions. 1D is sufficient for the homogenous case due to the no flux boundaries
conditions in y-direction and the boundary conditions in the x-direction not being a function of y.

pCI=-V-q (eq.14) BC: x=0 Ty = 100°C
oT _ | 9°T 14 _ o

pCE = kax2 (eq.15) x =10 Ty =25°C
t=0 T =25°C

The solution of equation 15 is derived in Appendix A, and the result is

o . X

T_TW x Sin (Tlﬂw) — 2t

_=1—-—)-=-2 _— nn’)t* .16).

Ty — T,y ( W) ZO e (eq.16)
n=

2

) . - . w
Temperature profiles generated from equation 16 are presented in Figure 4 as curves, where t* = o
A

and 10,000 terms are included in the series summation. At time equal to 0, the temperature is equal to
25 °C throughout the control volume, except at x = 0 where it is 100 °C as defined by the boundary
condition. The flux and temperature profiles have been examined for increasing times up to steady state
at t*. As shown in Figure 4, the temperature at x = 0is 100 °C and decreases with increasing x until it
reaches 25 °C at x = 1, according to the boundary condition there. The steepness of the temperature
profile near x = 0 decreases with increasing time until the steady state is reached, which is a linear profile.
This is due to the fact that before reaching steady state the material is gaining heat from the source and
with time the material will be saturated with the maximum amount of thermal energy that it can hold
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subjected to these boundary conditions. At steady state, i.e. at t*, the temperature profileisaline of T =
-75 + 100, and the flux is constant.

X
1074
Using the finite difference method described in the experimental section, a homogeneous control volume
of phase A material was modeled. The same boundary conditions described above are applied. The
numerical model ran from time zero up to t*, the same as that used for the analytical solution. The
temperature profiles resulting from the FDM calculations are presented in Figure 4 as open circles. The
steady state temperature profile is reached at time equal to t*, and it agrees with the analytical one. The

results of FDM agree with the analytical solution at all times shown in Figure 4, which validates the

w 15050%10~* W
m

numerical model. For the homogeneous case, (g,) = 15050 7 ° keff == = 0.02

cmK

2 ﬁ, which is equal to the specified thermal conductivity of phase A, another validation of the model.

~
o

Temperature (°C)
(@)] (@]
o o

N
o

w
(@)

1
x (cm) x107

Figure 4. Temperature profiles of homogeneous CV at times noted in legend from the analytical solution
(curves) and from the finite difference model (open circles).

2. Vertical, Horizontal, and Diagonal Lamellae
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Two structures were used to validate the finite difference model applied to heterogeneous structures: 1)
vertical lamellae in which heat flux in the x-direction is via series resistance depicted in Figure 5(a) and 2)
horizontal lamellae in which x-direction heat flux is via parallel resistance shown in Figure 5(d). In this
work, the volume fractions of phase A and phase B are equal at 0.5. For series conduction (vertical

: . . . 05 , 05\71 w
lamellae), equation 2 predicts the effective thermal conductivity as Kkgepies = (— —) = 0.36ﬁ.

2 0.2

w

2736.4—%+10"*cm

w om _ W W
From FDM, (q,) = 2736.4—, and kerr = DT 0.0036 — = 0.36 —, which is equal to

the prediction of kg.ries- The temperature profiles at different times up to steady-state are shown in
Figure 5(b). At times less than 0.5t*, the temperature did not reach steady state, and it decreased from
373 to 298 K with a steep slope. The steady state is reached at 0.5t*, where the temperature decreased
from 373 to 298 K with variable slope due to the variation of thermal conductivity as a function of x. In
other words, the temperature gradient is smaller in the A phase (that has higher thermal conductivity)
than in the B phase (that has lower thermal conductivity), because the flux through both phases must
match at steady state. In other words, the slope of the temperature profile changes on going from one
phase to another due to their different thermal conductivities. Finally, a 2D graph of the temperature as
a function of x and y is provided in Figure 5(c). For clarity, the grid for all 2D profiles is shown for every
10* data point. In Figure 5(c) this prevents the variable slope from being apparent. The variable slope is
apparent in Figure S2, a larger figure with every 5" data point shown

For parallel conduction (horizontal lamellae), equation 3 predicts kygrquer = 0.5% 2+ 0.5%0.2 =
(qow 82777 lez*lo_%m

w — w c - W _ 11
1.1 — . From FDM, (q,) = 8277.7 -2 and kepp = =7 = p— =0.011— =11—,

which is equal to the analytical prediction of kyq,q11¢1- The temperature profiles at different times up to

and including steady-state are shown in Figure 5(e). At 0.01t", the temperature does not reach steady
state, and it decreases with a sharp slope from 373 to 298 K. Interestingly, steady state is achieved more
rapidly in the horizontal structure than in the vertical lamellae, related to the higher k. of the former.
Steady state is reached at 0.1t" in the horizontal lamellae demonstrated by its overlapping with 5t* in
Figure 5(e) and having a fixed slope equal to (298 — 373)/10™* = —7.5 x 10> K/cm. Steady state is
achieved before t*, because t* has been defined using the thermal diffusivity of phase B (the phase with
lower thermal conductivity). Finally, a 2D graph of the temperature as a function of x and y is provided in
Figure 5(f). The agreement of FDM results for both vertical and horizontal lamellae with analytical
predictions is a validation that the FDM model can accurately capture diffusive transport in heterogeneous
media. Note that the analytical expressions for series and parallel conduction are only strictly valid for 1D
transport,[67] which is the case in these single grain calculations due to the no-flux boundary conditions
in the y direction.

A third structure composed of 60 diagonal lamellae is shown in Figure 5(g). The heat flux calculated from
FDM is 4702.1£, and k,¢r is 0.62 ﬂ. To the best of our knowledge, there is no analytical expression
cm? eff mK

to predict the thermal conductivity in such a structure. The diagonal structure can be decomposed into
series and parallel components, but it is not clear what is the appropriate average. An arithmetic mean

yields kspg = 0.5kgeries + 0.5kp0rq11e1 = 0.73 % On the other hand, a harmonic mean yields k¢pyy =

-1
( 95 + 9> ) = 0.55 % The FDM result is somewhat lower than the average of these limits,

kseries kparallel

which is kgyg = 0.5ksps + 0.5kgpy = 0.64%. As will be discussed in more detail later, effective
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medium approximations such as these tend to over predict effective transport coefficients when there is
a significant difference between the parameter values of the phases. In this case, the parameters of the
phases differ by an order of magnitude. The temperature profile of the diagonal structure at different
times is a function of x and is presented in Figure 5(h). Also, a 2D representation of the temperature as a
function of x and y is presented in Figure 5(i).
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Figure 5. (a) Sergies structure. (b) Series temperature profile as a function of x at y = 1. (c) Series 2D
temperature profile. (d) Parallel structure. (e) Parallel temperature profile as a function of x at y = 1. (f)
Parallel 2D temperature profile. (g) Diagonal structure. (h) Diagonal temperature profile as a function of
x aty = 1. (i) Diagonal 2D temperature profile.
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3. Complex Geometry

Using the knowledge gained in modeling the vertical and horizontal lamellae, the two models are
combined in complex geometries. Complex geometries were constructed from square subregions
containing either vertical or horizontal lamellae. Subregions will be referred to as grains. The complexity
of the structure was increased from 2x2 to 15x15 grains. The orientation of each grain (vertical or
horizontal) is randomly assigned. The same boundary conditions described in the experimental section
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are applied. To study the effect of the grain size on k.sf, the number of grains and number of lamellae
per grain are changed in each structure so that the lamellar thickness remains the same. As shown in Table
4, as the number of grains increase the number of lamellae per grain decrease, i.e. the grain size
decreases. The 2x2 structure has 4 grains each containing 30 lamellae. In the 3x3 structure, there exist 9
grains of 20 lamellae each. In the 5x5 structure, there are 25 grains of 12 lamellae each. Finally, the 6x6
structure contain 36 grains each with 10 lamellae; the grains in the 10x10 structure contain 6 lamellae;
and the grains in the 15x15 structure each contain 4 lamellae. So, the domain size (thickness of a pair of
lamellae) of all these structures is 33 nm. In all cases, each lamella contains 5 nodes so that all structures
contain 300x300 nodes.

Table 4. Details of complex geometries modeled. The first column describes the size of all structures
modeled in this study. The second column shows the total number of grains in the entire structure. The
third column includes the number of lamellae in each grain. The fourth column shows the grain size. The
last column is the number of nodes in each lamella. The number of nodes is 300 in each direction. This
can be seen by multiplying the fifth column with the third column with the number of grains in one
direction, i.e. 5 * 30 * 2 for the 2x2 structure.

Structure size # Total Grains | # Lamellae | Grain  Size | # Nodes
per grain (nm) per lamella
2x2 4 30 500 5
3x3 9 20 333 5
5x5 25 12 200 5
6X6 36 10 167 5
10x10 100 6 100 5
15x15 225 4 67 5

A characteristic set of the different structures are shown in Figures 6 to 11, starting with 2 x 2 and ending
with 15 x 15. At least five different random structures were simulated at each grain size. The depiction of
every simulated structure can be found in the Supporting Information. In Figures 6 to 11, part (a) shows a
characteristic structure, part (b) shows the temperature profile as a function of x at y = 1 for several
times up to steady state, and part (c) shows the steady-state temperature profile in 2D as a function of x
and y.
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Figure 6. (a) 2 x 2 structure. (b) 2 x 2 temperature profile as a function of x at y=1. (c) 2 x 2 2D
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Figure 8. (a) 5 x 5 structure. (b) 5 x 5 temperature profile as a function of x at y=1. (c) 5 x5 2D
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The 6 x 6 structure (Figure 9) is taken as an example. The temperature profile as a functionof x aty = 1
is shown at different times in Figure 9(b). From the temperature profile the steady state is reached at
0.5t*, due to the lack of variation of the temperature profile with further increase in time. In addition to
the visual check for steady-state, the heat flux at x = 0 and x = 1 are calculated, and the values agree to
within £1% indicating that steady state has been approximately reached. This check was conducted for all
simulations and is shown in Table B1 of Appendix B. In Figure 9(c) the 2D steady-state temperature is
shown. The time progression of the 2D profile is shown in Video S1 of the supporting information. It helps
visualize the importance of heat transfer between phases on the transient development of the 2D
temperature profile. In other words, Video S1 shows the impact of structure on transient heat conduction.
Video S1 shows how the temperature increases in different parts of the structure at different rates, due

to the difference in thermal properties and phase A connectivity in those regions. The effective thermal

conductivity of the 6 x 6 structure of Figure 9 is 0. 64 , based on (q,) = 4.2268 X 103 W The

p—
calculated thermal conductivity is lower than that predlcted by Sax and Ottino's effective medlum theory,

. . : w
i.e. kgpy, whichin 2D is 0.73 X

The effective thermal conductivity of each simulation is reported in Table B1 along with the steady-state
check described above. It was notable that all the results were below the predicted value of Sax and
Ottino's EMT expression for all the grain sizes with only a few exceptions. The average effective thermal
conductivity for each grain size, along with the specific structures that yielded the minimum and maximum

kess are reported in Table 5. For the 2 x 2 grain size, (k.sf) = 0.64 + 0.12 % In the 2 x 2 structures of

. . . . w
random generation, the maximum effective thermal conductivity was 0.84Hfor structure 2 x 2(5). Refer
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to the supporting information for a schematic of the structure. This was the first exception where the
effective thermal conductivity calculated from FDM is higher than the one calculated from Sax and

Ottino's EMT expression. The minimum effective thermal conductivity is 0.54% for structure 2 x 2(4).

This variation between the maximum and minimum is due to which phase comprises the grain boundary,
which plays an important role in determining effective thermal conductivity and will be discussed shortly.

For the 3 x 3 grain size, (keff) = 0.656 + 0.10 % In the 3 x 3 structures of random generation, the
maximum effective thermal conductivity is 0.76% for 3 x 3(5), which is the second exception where the
FDM result is higher than Sax and Ottino's EMT prediction. For the 5 x 5 grain size, (k.sf) = 0.636 +

0.10 % In the 5 x 5 structures of random generation, the maximum effective thermal conductivity is

0.76% for 5 x 5(4), which is the third and final exception where the FDM result is higher than Sax and

Ottino's EMT prediction. For the 6 x 6 grain size, (k.rr) = 0.624 £ 0.05 % For the 10 x 10 grain size,

(kerr) = 0.672 £ 0.025 % Finally, the 15 x 15 structures have an average effective thermal conductivity
w

(kesp) = 0.624 £ 0.011 X

Table 5. Summary of effective thermal conductivity as a function of grain size, where 2 x 2 has the
largest grains and 15 x 15 has the smallest grains. The average and standard deviation of all randomly
generated structures for a given grain size are reported, as well as the instances that yielded the
minimum and maximum values. Refer to the supporting information for the minimum and maximum
structures.

Minimum min Maximum max
Grain size (V(\;c/e{r{i() structure (W/erflfl() structure (W;I;;: K)
2x2 0.640 +£0.120 | 2 x2(4) 0.54 2 x2(5) 0.84
3x3 0.656 + 0.100 | 3 x 3(4) 0.51 3 x3(5) 0.76
5x5 0.636 £ 0.100 | 5x5(2) 0.51 5x5(4) 0.76
6x6 0.624 +0.050 | 6x6(2) 0.56 6 x 6(4) 0.69
10x 10 0.672 +0.025 | 10 x 10(3) 0.64 10 x 10(5) 0.70
15 x 15 0.624 +0.011 | 15x15(2) 0.61 15 x 15(4) 0.64

These results are summarized graphically in Figure 12, where (keff) can be seen to vary around a value
of 0.63 %, which is similar to that for a single diagonal grain 0.62 % Moreover, (keff) of the 15 x 15
structure is essentially the same as the FDM result for a single diagonal grain. The average of all multi-
grain simulations (2 x 2 through 15 x 15) is 0.642 + 0.074 W/m K. This value agrees remarkably well with
kg, the average of kgpy and kgpy. Remember that kgpy is the arithmetic mean of series and parallel
conduction, while kgpy is the harmonic mean of series and parallel conduction.

2 2
kseries + kparallel 2 _ kseries + 6kserieskprallel + kparallel

2 1 + 7 1 4'(kseries + kparallel)

kseries parallel

1
kavg = E

Expressed explicitly in terms of k4 and kg, it is
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a-|e~

(824 22) "+ (@uka + k) )

kavg = +
’ 4 (2 -+ 2) + Gaka + D)2

As indicated by Figure 12, this recursive average appears to be the best prediction for two-phase lamellar
systems with significant contrast, i.e. large difference in transport parameters of the two phases. The
recursive average approach is a logical approach to build an effective medium expression from simple
building blocks: series and parallel conduction. Take the upper left grain of Figure 6(a) as an example. It
contains phase A and B in series configuration (for conduction in the x direction). In turn, the grain is in
series with a parallel grain (upper right grain). It is also in parallel with a parallel grain (lower left grain).

For more complex grain structures, the recursive averaging process could be conducted ad infinitum. Let
us call kgpy4 the first arithmetic mean recursion and kgpy the first harmonic mean recursion. Then, kg4
is the second arithmetic mean recursion. For a contrast of 10, it agrees with the second harmonic mean
for 1 significant figure. By the third recursion, arithmetic and harmonic averages agree up to 4 significant
figures. For four recursions, they agree up to 8 significant figures. The recursions converge to the
geometric mean.[76, 77] In other words, the better approach is the following:

1/2
kspc = (kserieskparallel) . (eq.17)
The sensitivity of this recursive average approach to phase volume fraction has not been examined in this
work, where ¢4, = ¢ = 0.5 in all cases.

Using series and parallel building blocks is quite powerful because simple expressions can be used without
sacrificing generality. For an arbitrary number of phases,

kparallel = Z oik;

s =[3 2]
series — k_
i

As was cleverly proposed by Chaudhary and Bhandari,[78] the geometric mean can also be generalized to
account for non-random distribution of series and parallel
— 1-
keff - kzr)larallelkserrileS' (eq- 18)
Of course, n = 1/2 for a random distribution. Equation 18 is a valid equation for thermal conductivity
because it satisfies Woodside and Messmer's requirement for 2 phases that[79]

dk
<i> = ¢parallel-

dkparallel

kparallel=kseries

It is worth emphasizing that the recursive averaging approach dictates that the series and parallel
transport parameters be used in the geometric mean, not the transport parameters of the two phases.
The latter approach, first proposed by Woodside and Messmer, occurs in Bruggeman's expression in the
specific case of 2D with equal volume fractions (¢, qraiier = Pseries = 0.5), but it does not yield the same
value as equation 18 if there are more than 2 phases.
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Figure 12. Average effective thermal conductivity, (keff), versus number of grains.

It is worthwhile to note that in practice, e.g. in experimental measurements of effective transport
parameters, the structure is not known in nearly the detail that can be achieved with the modeling
approach used here. Although grains in series and parallel in Figure 6(a) were used to motivate the
recursive averaging approach, knowledge of the exact structure is not actually needed to implement
recursive averaging. What the exact structure will impact is how well effective-medium predictions agree
with experimental measurement. As shown in Table 5 and in Figure 12, the standard deviation of (keff)
decreases with decreasing grain size. It is 0.12 W/m K for the largest grains (2 x 2) and decreases in a more
or less exponential fashion with number of grains, as shown in Figure S3. For the smallest grains studied
(15 x 15), the standard deviation of (keff) is an order of magnitude smaller at 0.011 W/m K. Specific
manifestations of large grain structures have greater potential to diverge from effective-medium
predictions than do smaller grain structures. Exactly this result has been observed by Romanenko and
coworkers in plastic crystal electrolytes,[51] where rapidly crystallized samples contained smaller
randomly oriented grains with small standard deviation of ionic conductivity. On the other hand, slow
cooling resulted in larger, more oriented grains and much larger variation in conductivity. Thus, the
specific structure plays a greater role in large grains and could, at least partially, explain counterintuitive
effects such as the decrease of ionic conductivity in lamellar block copolymers with increasing grain
size.[62] In other words, because there is greater variability from one specific structure to another in
larger grains, the standard deviation of the thermal conductivity increases with increasing grain size.

It was notable how significantly certain features of specific structures impacted the effective thermal
conductivity. In particular, k.rs was strongly affected by the connectivity of the more conductive phase,
especially on the side closest to the heat source. This was observed in two structures that were identical
except for a difference in the boundary between grains. This was seen in 2 examples. Structures from the
first example, referred to as 2 x 2(4) and 2 x 2(6), are shown in Figure 13 (a) and (b), respectively. The
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boundary between grainsatx = 0.5 isblue (phase B, kg = 0.2 %) in 2 x 2(4) with a thermal conductivity

of 0.54 ﬁ Whereas, in 2 x 2(6) the boundary between the grains at x = 0.5 is yellow (phase A, k; =

2 %), which increases the overall thermal conductivity to 0.55 % The second example is 2 x 2(1) and 2

x 2(2), shown in Figure 14. The grain boundary at 0 < x < 0.5 and y = 0.5 changes from blue in 2 x 2(1)
to yellow in 2 x 2(2). In this case, the effective thermal conductivity increases more dramatically from 0.56

t0 0.63 % This is due, for the most part, to the change to yellow border with higher thermal conductivity

in Figure 14 (b) being able to conduct heat from the source across the entire region of 0.5 <y < 1.
Conversely, in Figure 14 (a) the heat across the region 0 <y < 0.5 at x = 0 is not connected to a yellow
pathway.
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Figure 13. (a) 2 x 2(4) structure; (b) 2 x 2 (6) structure
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Figure 14. (a) 2 x 2(1) structure; (b) 2 x 2 (2) structure
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To study the effect of varying the phase contrast, the thermal conductivity of phase A was varied so that

B
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’;—A was 3, 10, or 100. The 6 x 6 structure in Figure 9 (a) was used for all cases in this study. The results of



this study are shown in Table 6. In the first scenario with k—A = 3, the effective thermal conductivity
B

calculated from FDM is 0.35 % Sax and Ottino's EMT expression predicts kspy = 0.35 %for this case,

. . .k .
as does the geometric mean of series and parallel, ksp;. For the second scenario k—A = 10, the effective
B

thermal conductivity calculated from FDM is 0.64 % Sax and Ottino's EMT predicts kgpy = 0.73 % for

this case, while ksp; = 0.63. For the last case Z—A = 100, the effective thermal conductivity calculated
B

from FDM is 2.1 % . Sax and Ottino's expression predicts kspy = 5.25 %, and kgp; = 2.0. Torquato
reports that EMT expressions over predict k. ¢ except when :—A is small.[80] Over prediction of EMT has
B

been observed experimentally for gas transport through lamellar block copolymers.[37] The results of
FDM calculations agree with these findings and indicate that the geometric mean of series and parallel
configurations, i.e. kgpg, is a better predictor than Sax and Ottino's EMT expression, at least for lamellar
structures with significant phase contrast.

Table 6. Results of phase contrast study, in which ka/k, was varied. Predictions from various effective
medium expressions are also shown. (All units are in W/m K).

Geometric
FDM Parallel Series EMT Mean
k, kp ky/kgp keff kparattet Kseries kspa kspg
0.6 0.2 3 0.35 0.40 0.30 0.35 0.35
2 0.2 10 0.64 1.1 0.36 0.73 0.63
20 0.2 100 2.1 10.1 0.40 5.25 2.00

IV. Conclusions

The effects of grain size, grain boundary connectivity, and phase contrast were evaluated with numerical
simulations of 2D lamellar structures, and the best EMT prediction for such structures was identified. A
validation of the model is shown by applying the Finite Difference Method to Homogeneous, Series and
Parallel structures, where the results of FDM and analytical expressions agreed. A calculation of the
thermal conductivity of the diagonal form gives an idea of how heat transport and effective thermal
conductivity are affected by rotation of the grain. A set of different grain sizes has been modeled starting
with 4 grains up to 225 grains with random orientation to see the impact of the grain size on effective
thermal conductivity. Specific manifestations of random structures with large grains, in which the grain is
a significant fraction of the transport length, were examined. The connectivity of the more conductive
phase at the boundary of large grains can dramatically impact the effective thermal conductivity. The
variation in effective thermal conductivity is much greater in large grain structures than in small grain
structures, which agrees with experimental observations of ionic conductivity in plastic crystals. Thus,
alignment of grains in the direction of desired transport is expected to have a greater effect in large grains
than in small grains, and EMT predictions are expected to be less useful for large-grain structures. In
general, the predicted thermal conductivity from Sax and Ottino's EMT expression is higher than that
calculated from the FDM simulations that explicitly account for specific structures. On the other hand, a
geometric average of the series and parallel thermal conductivities accurately predicts the average
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simulation results. The geometric mean prediction indicates that a completely non-conductive phase
would result in no conduction in the limit of small randomly oriented grains. In other words, orders of
magnitude improvement due to alignment is entirely possible in the context of the recursive average
prediction for lamellar structures. On the other hand, by using solely the arithmetic mean of series and
parallel, the Sax and Ottino expression underweights the detrimental impact of the more poorly
conducting phase. Increasing contrast between the transport properties of the phases exacerbates this
disagreement. A key component of the FDM model is a general flux expression that handles structured
control volumes automatically, only requiring a matrix of transport parameters for each position in the
control volume. The flux expression is powerful because it can handle any structure that can be
represented in a matrix of transport parameters. This FDM model could readily be extended to account
for interfacial resistance, 3D transport, and anisotropic transport properties within a phase (for
application to 2D materials). It could also be easily adapted to types of transport other than heat. For
future work, an investigation on more complex heat sources, boundary conditions, and structures (like
cylinders and spheres) would be interesting.
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Appendix A

Consider 2 nodes: A in yellow and B in blue. The temperature at A is T4, and the temperature at B is Tj.
The temperature at the A/B interface is Tj,:. Imposing flux matching at the interface, i.e. there is no
accumulation nor consumption/generation at the interface, yields

q~ =q" (A1) =
_kAVTA = _kA —(TIEL;ZA) = _kB —(TIZ;’;;TII) = _kBVTB (AZ)

kaTy + kgTg = kgTint + kpTine (A3)

_ kAT p+kpTg

Tint - ka+kg (A4)

Tg-T Tg=Tint+Tint—T 1[(Tg-T; Tint—T
VT = 8774 _ T8~ Tint*Tine=Ta _ 1 (Tg—Tint) | (Tint A)] (A5)
Ax Ax 2 Ax/2 Ax/2

Solving the gradient in the A phase by substituting for Tj,;
kATA+kBTB_TA)

VT :(Tint_TA):( katkp __k (Tp-Ta)
A Ax/2 Ax/2 ka+kp Ax/2

(A6)

Similarly, the gradient in the B phase is

_ ka (Tg-Ta)
VTB_kA+kB Ax/2 (A7)

From equation A5 the gradient between the two nodes is

VT4 +VTs  kat+kg (T —Ta) _ (Tp —Ty)

vT =
2 ky+kg Ax Ax

+

Sinceq=q~ =q",
q-= _kAVTA = _kBVTBI or

_ ZkAkB Tp—Ta
ka+kp Ax

’

which is equation 7.
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Appendix A

Derivation of Equation 16

First, a non-dimensionalization of the governing equation is required to simplify the solution, where Ty,
and T, are stated in the boundary conditions, W = 1074,

T-T
@ _ w

b
T To-Tw S_W =%

t*

Plugging the new change of variables in equation 15

(Ty — Ty) 00 0%0
Co—————=k(Ty —Ty) ———=
plp t* ot ( 0 W) Wzafz
Since t* = Y2eCr
k
00 _ 0%0 A8
ot 0&2 (A8)

The non-dimensionalized governing equation is equation A8, and the new boundaries conditions relative
to the new variables are shown below.

£=0 ©0=1
f=1 0=0
=0 ©=0

As shown in Deen’s book, the solution for this case is a Fourier series solution of the following form [81]

0(5,1) = ) P@®B(E) (A9)

Y(7) is the time dependent solution and ®(§) is the basis function. Based on 2 Dirichlet boundary

conditions, the basis function is defined by ®(&) = /2 sin(nn&), and the derivative of the basis function
g 49©

aé
transformed to an ordinary differential equation (ODE) by integrating over the control volume with
respect to the dependent variable of the basis function.

=+2nm cos(nmé). The partial differential equation (PDE) and the boundaries condition are

fld>(f) 00 _0°0 dé =0 (A10
0 ot 9&z| (410)
The time dependent function results from this finite Fourier Transform.

[ 0(8) 08, D)dE = Y(x) (A1)

Each term of equation A10 is integrated in turn. The first term is

%fol cp(f) @(g, T)d{ _ 61/;51).

The second term requires 2 integration by parts.
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Appendix A

920 0 o® ' (' 9%
f‘b@afzdf v~ ag®), * |, O5gr s

applying the boundary conditions ®(0) = 0 = ®(1) = (1), and 6(0) = 1.

f o(6) 20 = O 48 = VZnm — (nm)?(x) (A12)

Substituting equations A11 and A12 into A10, the PDE is transformed to an ODE, and the non-homogenous
boundary condition is incorporated into the transformed PDE as a non-homogenous term.

61/)( ) + (nm)2yY (1) = V2nm (A13)

With the initial condition 1 (0) = 0, the solution of equation A13 is

2 2
P(r) = %(1 — e~ (™)) (A14)

Combining equation A14 and the basis function in equation A9 yields
sin(nm
0 = Y YO =2y T (1 -t (a15)

3%e
Finally, the steady-state solution should be involved in the solution, where 5 = 0. The solution of the

steady-state case after applying the boundary condition is O, = 1 — £. Transforming the steady state
\/— , S0 Qg = ZZsm(mE) The
final solution analytically expressed exactly for the steady-state part and as an infinite series for the
transient part is

solution to recognize it in the Fourier series solution, f D(&) 04,dE =

0% = Y YOO = (L —8) 2 ) ) p-tm s (p16)

Replace each term in equation A16 by its corresponding variable defined earlier in this section to find the
final solution of the temperature profile,

. X
ot S R L
Ty — TVVIT/ =3 _W) —2 nm w € () (A17)
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Appendix B

Table B1. Summary of FDM results, including average flux at x = 0 (Q1) and at x = 1 (Q2) and their
percent difference (% diff), as well as effective thermal conductivity and structure.

Grain size* W(/Iimz W;lczmz % diff W’;?;{K Vg;egi( :tei?:t?;: Structure Prekclei:fted
1x1 15050 15050 0 2.0 - - Homogeneous | 2.0 (k,)
1x1 2736.4 | 2736.4 0 0.36 - - Vertical 0.36 (kgeries)
1x1 8277.7 | 8277.7 0 1.1 - - Horizontal 1.1 (kparatter)
1x1 4674 4563.2 2.37 0.61 - - Diagonal -
1x1(2) 4781.1 | 4702.1 1.65 0.62 - - Diagonal 10 T 0.63 (kspc)
2x2(1) 4225.7 4226.8 0.026 0.56
2x2(2) 4729.4 | 4759.4 0.63 0.63
2x2(3) 4729.4 4759.4 0.63 0.63 0.64 0.12 Random Grains 0.63 (ksp¢)
2x2(4) 4082.5 4082.3 0.004 0.54
2x2(5) 6333.2 6349.6 0.26 0.84
3x3(1) 5380.3 5363.4 0.31 0.71
3x3(2) 4508.4 | 4525.3 0.37 0.60
3x3(3) 5278.7 | 5295.1 0.31 0.70 0.656 0.10 Random Grains | 0.63 (kspg)
3x3(4) 3822.6 3841.9 0.5 0.51
3x3(5) 5689 5689.8 0.015 0.76
5x5(1) 4442.1 44394 0.0607 0.59
5x5(2) 3813.9 3819.4 0.14 0.51
5x5(3) 51619 | 5166.2 0.08 0.69 0.636 0.10 Random Grains | 0.63 (kspg)
5x5(4) 5700.2 5709.6 0.16 0.76
5 x 5(5) 4761.2 4724.8 0.76 0.63
6x6(1) 4808.7 4808.4 0.0062 0.64
6x6(2) 4225.7 4226.8 0.026 0.56
6 x 6(3) 4831.9 4855.7 0.49 0.65 0.624 0.05 Random Grains 0.63 (kgp¢)
6 x 6(4) 5249.7 5234.5 0.29 0.69
6 x 6(5) 4336.3 4339.8 0.08 0.58
10 x 10(1) 5099.7 5113 0.26 0.68
10 x 10(2) 4873.1 4862.2 0.22 0.65
10 x 10(3) 4789.8 4813.4 0.49 0.64 0.672 0.025 Random Grains | 0.63 (ksp;)
10 x 10(4) 5183.2 5188.4 0.1 0.69
10 x 10(5) 5208.8 5225.5 0.32 0.70

15 x 15(1) 4742.8 4738.6 0.08 0.63

15 x 15(2) 4577.5 4601.5 0.52 0.61
15 x 15(3) 4638.5 4669.1 0.66 0.62 0.624 0.011 Random Grains | 0.63 (kspg)
15 x 15(4) 4803.1 4809.6 0.14 0.64
15 x 15(5) 4650.8 | 4650.9 0.0021 0.62
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* The number in parentheses in the first column refers to the trial number. The first column entry is used to label
each structure in the Supporting Information.
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