
Adaptive Coding for Matrix Multiplication at Edge
Networks

Elahe Vedadi and Hulya Seferoglu
University of Illinois at Chicago

Email: {evedad2, hulya}@uic.edu

Abstract—Edge computing is emerging as a new paradigm to
allow processing data at the edge of the network, where data is
typically generated and collected, by exploiting multiple devices
at the edge collectively. However, exploiting the potential of edge
computing is challenging mainly due to the heterogeneous and
time-varying nature of edge devices. Coded computation, which
advocates mixing data in sub-tasks by employing erasure codes
and offloading these sub-tasks to other devices for computation,
is recently gaining interest, thanks to its higher reliability, smaller
delay, and lower communication cost. In this paper, our focus is
on characterizing the cost-benefit trade-offs of coded computation
for practical edge computing systems, and develop an adaptive
coded computation framework. In particular, we focus on matrix
multiplication as a computationally intensive task, and develop
an adaptive coding for matrix multiplication (ACM2) algorithm by
taking into account the heterogeneous and time varying nature
of edge devices. ACM2 dynamically selects the best coding policy
by taking into account the computing time, storage requirements
as well as successful decoding probability. We show that ACM2

improves the task completion delay significantly as compared to
existing coded matrix multiplication algorithms.

I. INTRODUCTION

Massive amount of data is generated at edge networks with
the emerging Internet of Things (IoT) including self-driving
cars, drones, health monitoring devices, etc. Transmitting such
massive data to the centralized cloud, and expecting timely
processing are not realistic with limited bandwidth between an
edge network and centralized cloud. We consider a distributed
computing system, where computationally intensive aspects
are distributively processed at the end devices with possible
help from edge servers (fog) and cloud. However, exploiting
the potential of edge computing is challenging mainly due to
the heterogeneous and time-varying nature of edge devices.

Coded computation is an emerging field, which studies the
design of erasure and error-correcting codes to improve the
performance of distributed computing through “smart” data
redundancy. This breakthrough idea has spawned a signif-
icant effort, mainly in the information and coding theory
communities [1], [2]. According to distributed computation, a
master device divides computationally intensive aspects/tasks
into multiple smaller sub-tasks, and offloads each of them
to other devices (end devices, edge servers, and cloud),
called workers, for computation. Coded computation (e.g., by
employing erasure codes such as Reed Solomon codes [3],

This work was supported in parts by the Army Research Lab (ARL) under
Grant W911NF-1820181, National Science Foundation (NSF) under Grants
CNS-1801708 and CCF-1942878, and the National Institute of Standards and
Technology (NIST) under Grant 70NANB17H188.

[4]), on the other hand, encodes the data in the sub-tasks,
and offloads these coded sub-tasks for computation. The next
example demonstrates the potential of coded computation.

Example 1: Consider a setup where a master wishes to
offload a matrix multiplication C = ATB task to three
workers. Assume A and B are K × K matrices and matrix
A is divided into two sub matrices A1 and A2, which are
then encoded using a (3, 2) Maximum Distance Separable
(MDS) code, which is further explained in Section II, to give
Z1 = A1, Z2 = A2 and Z3 = A1 + A2, and sends each
to a different worker. When the master receives the computed
values (i.e., ZTi B) from at least two out of three workers, it can
decode its desired task, which is the computation of ATB. The
power of coded computations is that it makes Z3 = A1 +A2

acts as an extra task that can replace any of the other two tasks
if they end up straggling or failing. �

Significant effort is being put on constructing codes for fast
and distributed matrix-vector multiplication [1], [5], matrix-
matrix multiplication [6]–[9], dot product and convolution of
two vectors [10], [11], gradient descent [12]–[14], distributed
optimization [15], [16], Fourier transform [17], and linear
transformations [18]. The trade-off between latency of compu-
tation and load of communication for data shuffling in MapRe-
duce framework is characterized in [2], and optimum resource
allocation algorithm is developed in [19]. This coding idea is
extended for cellular networks [20], multistage computation
[21], and heterogeneous systems [22], [23].

Our focus in this work is on matrix multiplication, where
a master device divides its matrix multiplication computations
into smaller tasks and assigns them to workers (possibly in-
cluding itself) that can process these tasks in parallel. Product
[7], polynomial [6], and MatDot (and its extension PolyDot)
codes [8] are recently developed for matrix multiplication.
Their main focus is to minimize/optimize the recovery thresh-
old, which is the minimum number of workers that the master
needs to wait for in order to compute matrix multiplication
(C = ATB in Example 1). Although this metric is good for
large scale computing systems in data centers, it fails short in
edge computing, where other resources including computing
power, storage, energy, networking resources are limited.

In this paper, we analyze the computing time, storage cost,
and successful decoding probability of some existing codes for
matrix multiplication. Then, we develop an adaptive coding for
matrix multiplication (ACM2) algorithm that selects the best
coding strategy for each sub-matrix.

We note that rateless codes considered in [24], [25] also



provide adaptive coded computation mechanisms against het-
erogeneous and time-varying resources. However, the coding
overhead in rateless codes can be high in some scenarios,
which makes adaptive selection of fixed-rate codes a better
alternative. Multi-message communication by employing La-
grange coded computation is considered in [26] to reduce
under-utilization due to discarding partial computations carried
out by stragglers as well as over-computation due to inaccurate
prediction of the straggling behavior. A hierarchical coded
matrix multiplication is developed in [27] to utilize both slow
and fast workers. As compared to [26], [27], we propose an
adaptive code selection policy for heterogeneous and time-
varying resources. A code design mechanism under a hetero-
geneous setup is developed in [22], [23], where matrix A is
divided, coded, and offloaded to worker by taking into account
heterogeneity of resources. However, available resources at
workers may vary over time, which is not taken into account
in [22], [23]. Thus, it is crucial to design a coded computation
mechanism, which is dynamic and adaptive to heterogeneous
and time-varying resources, which is the goal of this paper.

The following are the key contributions of this paper:
• We provide computing time analysis of some existing

codes designed for matrix multiplication including prod-
uct [7], polynomial [6], and MatDot codes [8].

• We characterize storage requirements of existing matrix
multiplication codes [6]–[8] at master and workers.

• We design ACM2 for an iterative procedure (e.g., gradient
descent) that selects the best code as well as the optimum
number of partitions for that code at each iteration to
minimize the average computing time subject to storage
and successful decoding probability constraints.1

• We evaluate the performance of ACM2 through simu-
lations and show that ACM2 significantly improves the
average computing time as compared to existing codes.

II. MODEL, BACKGROUND, AND MOTIVATION

A. Model
1) Setup: We consider a master/worker setup at the edge

of the network, where the master device offloads its compu-
tationally intensive tasks (matrix multiplication computations)
to workers wn, n ∈ N

(
where N , {1, . . . , N}

)
via device-

to-device (D2D) links such as Wi-Fi Direct and/or Bluetooth.
The master device divides a task (matrix) into smaller sub-
matrices, and offloads them to parallel processing workers.

2) Task Model: The master wants to compute functions of
its collected data, which is determined by the applications. We
will focus on computing linear functions; specifically matrix
multiplication C = ATB, where A ∈ RL×K , B ∈ RL×K .
Matrix multiplication forms an essential building block of
many signal processing (convolution, compression, etc.) and
machine learning algorithms (gradient descent, classification,
etc.) [1]. We consider an iterative procedure (gradient descent)
where a matrix multiplication is calculated at each iteration.

1We note that ACM2 is generic enough to work with any matrix multiplica-
tion codes although we consider a subset of existing codes in this paper such
as product, polynomial, and MatDot codes.

3) Worker Model: The workers may experience: (i) fail-
ures: workers may fail or “sleep/die" or leave the network
before finishing their assigned tasks. (ii) stragglers: workers
will incur probabilistic delays in responding to the master.

4) Coding Model: We design and employ an adaptive
coding for matrix multiplication (ACM2) that selects the best
coding strategy among repetition, MDS [1], [28], polynomial
[6], MatDot [8], and product codes [7] by taking into account
the computing time, storage cost, and successful decoding
probability of these codes. The master device divides the ma-
trix A into pπ partitions (sub-matrices), where π ∈ {rep,mds}
for repetition and MDS codes. Both A and B matrices are
divided into pπ partitions, where π ∈ {poly,matdot, pro} for
polynomial, MatDot, and product codes.

5) Delay Model: Each sub-matrix transmitted from the
master to a worker wn, n ∈ N , experiences the following
delays: (i) transmission delay for sending the sub-matrix from
the master to the worker, (ii) computation delay for computing
the multiplication of the sub-matrices, and (iii) transmission
delay for sending the computed matrix from the worker wn
back to the master. We model the composite delay using
the shifted exponential distribution (f(t) = λe−λ(t−1) for
t ≥ 1) [1], [29], with λ referred to as the straggling parameter
and each sub-task with shifted-scaled exponential distribution
(f(t) = αλe−αλ(t−

1
α ) for t ≥ 1

α ) where the scale parameter,
α is selected from α ∈ {prep, pmds, p

2
poly, pmatdot, p

2
pro}.

B. Background on Existing Codes for Matrix Multiplication

In this section, we provide a short background on existing
coded computation mechanisms for matrix multiplication.

1) Repetition Codes: The master device divides matrix A
column-wise into prep parts, where prep|N , and generates N

prep

copies of each sub-matrix. Sub-matrix Ai, i = 1, . . . , prep is
transmitted to N

prep
workers as well as matrix B. Workers calcu-

late and return ATi B to the master, which finishes matrix mul-
tiplication calculation when it receives ATi B, ∀i = 1, . . . , prep.

2) MDS Codes [1], [28]: The master device divides the
matrix A column-wise to pmds partitions. An (N, kmds) MDS
code sets kmds = pmds and codes kmds sub-matrices into N sub-
matrices using existing MDS codes like Reed-Solomon codes.
Ai, ∀i = 1, . . . , N as well as B are transmitted to N workers.
When the master device receives kmds A

T
i B calculations, it

can decode and calculate ATB.
3) Polynomial Codes [6]: The master device divides A and

B column-wise into ppoly partitions, where p2poly ≤ N . The
master constructs polynomials; α(n) =

∑ppoly
j=1A

T
j n

j−1 and
β(n) =

∑ppoly
j=1Bjn

(j−1)ppoly , and sends them to worker Wn,
which calculates α(n)β(n). When the master receives kpoly =
p2poly α(n)β(n) multiplication, decoding is completed.

4) MatDot Codes [8]: Both matrices A and B are divided
row-wise into pmatdot partitions, where 2pmatdot − 1 ≤ N . The
master constructs the polynomials; α(n) =

∑pmatdot
j=1 ATj n

j−1

and β(n) =
∑pmatdot
j=1 Bjn

pmatdot−j , and sends them to worker
wn for processing, where worker wn calculates α(n)β(n)
multiplication. When the master receives kmatdot = 2pmatdot−1
results from workers, it can decode and calculate ATB.



5) Product Codes [7]: Product codes extend MDS codes
in a way that both A and B are partitioned column-wise
and coded. In particular, both A and B are divided into ppro
partitions, and these partitions are put into ppro × ppro array.
Then, every row of the array is encoded with an (

√
N, ppro)

MDS code, which results ppro ×
√
N array. This array is also

coded with an (
√
N, ppro) MDS code, which results into

√
N -

by-
√
N array. Each coded sub-matrix in this array is sent to a

worker (out of N workers) for calculation. Product codes are
decodable if at least one entry of any possible sub-array with
size larger than or equal to (

√
N−ppro+1)× (

√
N−ppro+1)

is received successfully.

C. Motivation for Adaptive Coding

Assume a canonical setup, where A and B are K×K matri-
ces and divided into two sub-matrices A0, A1, B0, and B1. The
product codes divide matrices column-wise, i.e., Ai and Bi are
K×K

2 matrices, for i ∈ {0, 1}, and use two-level MDS codes.
Considering that A2 = A0+A1 and B2 = B0+B1, nine codes
are constructed by ATi Bi, for i, j ∈ {0, 1, 2}. In polynomial
codes the master device, by dividing matrices column-wise,
creates polynomials α(n) = A0+A1n and β(n) = B0+B1n

2

for worker wn, which multiplies α(n)β(n). MatDot follows a
similar idea of polynomial codes with the following difference:
A and B are divided row-wise.

Table I shows the recovery threshold (k) [6]–[8], computing
load per worker (γ) (this is the simplified analysis presented
in Section III-A and further detailed in Appendix A in [30]),
which shows the number of required multiplications, storage
load per worker (µ), which shows the average amount of
memory needed to store matrices and their multiplication
(as detailed in Section III-B), and probability of successful
computation (ρ), which is calculated assuming that the failure
probability of workers is 1

3 and independent. As seen, although
MatDot is the best in terms of recovery threshold (k), it
introduces more computing load per worker (because of row-
wise partitioning). Also, MatDot codes perform worse than
polynomial and product codes in terms of storage load per
worker. Product codes require at least N = 9 workers due to
their very design, but polynomial and MatDot codes are more
flexible. As seen, there is a trade-off among {k, γ, µ, ρ}, which
we aim to explore in this paper by taking into account the
limited edge computing resources including computing power
and storage. For example, if there is no constraint on the total
number of workers, but only on computing load, we will likely
select product or polynomial codes. Next, we will provide a
computing time and storage analysis of existing codes, and
develop ACM2 that selects the best code.

III. ADAPTIVE CODING FOR MATRIX MULTIPLICATION

A. Computing Time Analysis

Assuming a shifted-scaled exponential distribution as a
computation delay model with λ as the straggling parameter
and α ∈ {prep, pmds, p

2
poly, pmatdot, p

2
pro} as the scale parameter

for each worker, average computing time for repetition codes
Trep and MDS codes Tmds are expressed [1] as

Trep ≈
1

prep

(
1 +

prep

Nλ
log(prep)

)
, (1)

Tmds ≈
1

pmds

(
1 +

1

λ
log

(
N

N − kmds

))
. (2)

Corollary 1: The average computing time for polynomial
codes Tpoly and MatDot codes Tmatdot is expressed as the fol-
lowing assuming that a shifted-scaled exponential distribution
is used as a delay model.

Tpoly ≈
1

p2poly

(
1 +

1

λ
log

(
N

N − kpoly

))
, (3)

Tmatdot ≈
1

pmatdot

(
1 +

1

λ
log

(
N

N − kmatdot

))
. (4)

Proof: The proof is provided in Appendix B in [30]. �
The product codes have different performance in two differ-

ent regimes. In the first regime the number of workers scales
sublinearly with p2pro, i.e., N = p2pro + O(ppro), while in the
second regime, the number of workers scales linearly with
p2pro, i.e., N = p2pro +O(p2pro). The computing time analysis of
product codes is provided in these two regimes next.

Corollary 2: Assume a shifted-scaled exponential distribu-
tion as a delay model with λ as the straggling parameter and
p2pro as the scale parameter for each worker, average computing
time Tpro for (ppro +

τ
2 , ppro)

2 product codes and (ppro +
τ
2 )

2

workers, where τ is an even integer, as ppro grows to infinity,
is expressed in the first regime as

Tpro ≈
1

p2pro

(
1 +

1

λ
log

(
ppro +

τ
2

cτ/2+1

))
, (5)

where cτ/2+1 ≈ (1 + τ/2) +
√

(1 + τ/2) log(1 + τ/2)
[31], [32]. Assuming the same delay distribution, the lower
bound and upper bound of average computing time Tpro for
(
√
1 + δppro, ppro)

2 product codes and (1+ δ)p2pro workers, for
a fixed δ, as ppro grows to infinity, is expressed in the second
regime as

T low
pro =

1

p2pro

(
1 +

1

λ
log

(
1 + δ

δ

))
, (6)

T up
pro =

1

p2pro

(
1 +

2

λ
log

(
1 + δ +

√
1 + δ

δ

))
. (7)

Proof: The proof is provided in Appendix C in [30]. �

B. Storage Analysis

In this section, we provide storage requirements of the
codes that we explained in Section II-B. These codes have
storage requirements both at the master and worker devices.
In particular, we assume that each entry of matrices A and
B requires a fixed amount of memory. Our analysis, which is



TABLE I
COMPARISON OF PRODUCT, POLYNOMIAL, AND MATDOT CODES FOR MATRIX-MATRIX MULTIPLICATION.

Recovery
threshold

(k)

Computing
load

per worker (γ)

Storage
load

per worker (µ)

Probability of
successful

computation (ρ)
N=6 N=7 N=8 N=9

Product 6 K3

4 K2 + K2

4 N/A N/A N/A 0.63
Polynomial 4 K3

4 K2 + K2

4 0.67 0.82 0.91 0.96
MatDot 3 K3

2 2K2 0.89 0.95 0.98 0.99

provided next, quantifies how many of these entries are needed
to be stored at the master and worker devices.

1) Storage at Master: In all codes, we first store matrices
A and B, where each matrix contains KL components. Also,
we store the final result, ATB ∈ RK×K , which contains K2

components. Therefore, 2KL + K2 entries should be stored
at the master device for each code.

In repetition codes, we store the first krep results obtained
from krep workers, where krep = N − N

prep
+ 1; i.e., Smrep =

krep
K2

prep
+ 2KL+K2.

In MDS codes, we store N−kmds coded sub-matrices. Each
coded matrix contains KL

pmds
components. Then, we need to store

the first kmds results obtained from kmds workers. The storage
requirement of MDS codes at the master device is Smmds =

(N − kmds)
KL
pmds

+ kmds
K2

pmds
+ 2KL+K2.

In polynomial codes, we store 2N coded sub-matrices. Each
coded matrix contains KL

ppoly
components. Then, we need to store

the first kpoly results obtained from kpoly workers. In other
words, we have Smpoly = 2N KL

ppoly
+ kpoly

K2

p2poly
+ 2KL+K2.

In MatDot, we store 2N coded sub-matrices. Each coded
matrix contains KL

pmatdot
components. Then, we need to store the

first kmatdot results collected from kmatdot workers, so Smmatdot =
2N KL

pmatdot
+ kmatdotK

2 + 2KL+K2.
In product codes, we store 2(N −kpro) coded sub-matrices.

Each coded matrix contains KL
ppro

components. Then, we need
to store the first kpro results collected from kpro workers, where
kpro = 2(ppro − 1)

√
N − (ppro − 1)

2
+1 [6], so Smpro = 2(N −

kpro)
KL
ppro

+ kpro
K2

p2pro
+ 2KL+K2.

2) Storage at Workers: In repetition codes, each worker
receives one matrix of size KL

prep
and one matrix of size KL,

as we decompose only one of the matrices to prep parts. So,
the size of resulting matrix is K2

prep
. Similarly, in MDS codes

we decompose only one of the matrices to pmds parts. Each
worker receives one matrix with size of KL

pmds
and one matrix

with size of KL. Thus, the size of resulting matrix is K2

pmds
.

Thus, the storage requirement of repetition and MDS codes is
expressed as Swx = KL

px
+KL+ K2

px
, ∀x ∈ {rep,mds}.

In polynomial and product codes, each worker receives two
matrices of size KL

px
, x ∈ {poly, pro}. The size of the matrix

after multiplication is K2

p2x
. Therefore, the storage requirement

of polynomial and product codes at each worker is

Swx =
2KL

px
+
K2

p2x
, ∀x ∈ {poly, pro}. (8)

On the other hand, the size of the matrix after computation
is K2 in MatDot as matrix partitioning is done differently
(i.e., row-wise, which means that Ai ∈ R

L
pmatdot

×K and Bi ∈
R

L
pmatdot

×K after partitioning and finally, ATi Bi ∈ RK×K)
as compared to polynomial and product codes (partitions
column-wise, which means that we have Ai ∈ RL×

K
px

and Bi ∈ RL×
K
px after partitioning, and the final result is

ATi Bi ∈ R
K
px

× K
px , ∀x ∈ {poly, pro}). Therefore, the storage

requirement of MatDot is expressed as

Swmatdot =
2KL

pmatdot
+K2. (9)

C. Design of ACM2 Algorithm

In this section, we present our ACM2 algorithm. We consider
an iterative process such as gradient descent, where matrix
multiplications are required at each iteration. Our goal is to
determine the best matrix multiplication code and the optimum
number of matrix partitions by taking into account the task
completion delay, i.e., computing time, storage requirements
and decoding probability of each code. In particular, ACM2

solves an optimization problem at each iteration, and deter-
mines which code is the best as well as the optimum number
of partitions for that code. For example, MDS codes may be
good at iteration i, while polynomial codes may suit better in
later iterations. The optimization problem is formulated as

min
π,pπ

Tπ

subject to Szπ ≤ Szthr, z ∈ {m,w},
ρπ ≥ ρthr, kπ ≤ N, pπ ≥ 2,

π ∈ {rep,mds, poly,matdot, pro}. (10)

The objective function selects the best code π from the set
{rep,mds, poly,matdot, pro} as well as the optimum number
of partitions pπ . The first constraint is the storage constraint,
which limits the storage usage at master and worker devices
with thresholds Smthr and Swthr. The term ρπ ≥ ρthr in the second
constraint is the successful decoding constraint, where success-
ful decoding probability ρπ should be larger than the threshold
ρthr. The successful decoding probability is defined as the
probability that the master receives all the required results
from workers. If we assume that the failure probability of each
worker is (1−φ) and independent, the total number of workers
is N and the number of sufficient results is kπ , one may
formulate the probability of success for each coding method



10 20 30 40 50N
0

0.05

0.1

0.15

0.2

0.25

 A
v
e

ra
g

e
 C

o
m

p
u

ti
n

g
 T

im
e

 (
s
e

c
)

MDS
Product
Polynomial
MatDot
Repetition

ACM
2

(a) There are no storage or successful decoding
probability constraints.

10 20 30 40 50N
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 A
v
e

ra
g

e
 C

o
m

p
u

ti
n

g
 T

im
e

 (
s
e

c
)

MDS

Product

Polynomial

MatDot

Repetition

ACM
2

(b) Storage is constrained.

10 20 30 40 50 60 70N
0

50

100

150

200

 A
v
e

ra
g

e
 C

o
m

p
u

ti
n

g
 T

im
e

 (
s
e

c
) 

MDS

Product

Polynomial

MatDot

Repetition

ACM
2

(c) Storage and success probability are constrained.

Fig. 1. Task completion delay versus number of workers.

as a binomial probability ρπ =
∑N
i=kπ

(
N
i

)
(φ)i(1 − φ)N−i.

The term kπ ≤ N in the second constraint makes sure that
the recovery threshold kπ is less than the number of workers.
The term pπ ≥ 2 in the second constraint makes the number
of partitions larger than or equal to 2, otherwise there is no
matrix partitioning, which is a degenerate case.

IV. PERFORMANCE ANALYSIS OF ACM2

In this section, we evaluate the performance of our algo-
rithm; ACM2 via simulations. We consider a master/worker
setup, where per sub-matrix computing delay λ is an i.i.d.
random variable following a shifted exponential distribution.
We compare ACM2 with the baselines; repetition, MDS, poly-
nomial, MatDot, and product codes.

Fig. 1(a) shows the average computing time versus number
of workers N when there is no storage or successful decoding
probability constraint in (10). K = 2000, L = 5000, φ = 0.95,
λ is randomly and uniformly selected from {2, . . . , 10}. In this
setup, workers are fast (since λ > 1), so all coding algorithms
prefer splitting matrices to more partitions. This causes low
computing load at workers, but the master needs to wait for
more results, i.e., recovery threshold k is large, to be able
to decode computed sub-matrices. The optimum number of
partitions of repetition codes is equal to N (p∗rep = N ), while
for MDS codes it is close to N (0.9 < p∗mds

N < 1). This means
that repetition codes are the same as no coding and MDS gets
closer to no coding as λ increases [1], [28]. When N is small,
no coding is the best, so ACM2 chooses MDS codes (which is
close to repetition codes) as they behave as no coding. When
N increases, MDS, polynomial, and product codes perform
better than repetition codes. Product codes operate in the first
regime, because workers are fast. Thus, the optimum number
of partitions is large and close to N , so, N = p2pro + τppro.
Product codes perform better in this regime [7]. When

√
N

is integer, product codes are the best as they can use all
existing workers and choose the number of partitions as large
as possible to decrease the computation load of each worker.
However, when

√
N is not integer, product codes may waste

resources of some workers (as they only use b
√
Nc workers),

so MDS and polynomial codes perform better. Computation
time of MDS is less than or equal to polynomial, because
computation load of polynomial is higher than MDS codes.
The optimum number of partitions for each code increases
with increasing N , which decreases the computation load at
each worker. Since all workers are fast (λ > 1), all codes

choose as large partitions as possible. Thus, they perform
close to each other. MatDot performs worse than the other
codes, because of its different way of partitioning; i.e., row-
wise versus column-wise. Thus, MatDot introduces almost 2
times more computation load. As seen, ACM2 exploits the best
code among all codes, so it performs the best.

Fig. 1(b) demonstrates average computing time versus num-
ber of workers when there exists storage constraint in (10).
In this setup, K = 2000, L = 5000, φ = 0.95, λ is
selected randomly and uniformly from λ ∈ { 1

10 , . . . ,
1
2}, and

the storage constraint is set to Swthr = 15M entries. As the
workers are slow, i.e., λ < 1, all codes prefer to choose small
number of partitions. There is a trade-off between the number
of partitions and storage requirement. It means that the storage
requirement reduces with increasing number of partitions as
smaller matrices are multiplied by each worker, so less storage
is needed. Since there is a storage constraint, all codes prefer to
increase the number of partitions. ACM2 exploits this trade-off
and selects the best code and optimum number of partitions.

Fig. 1(c) illustrates average computing time versus number
of workers when there exists both storage and success proba-
bility constraints in (10). In this setup, K = 2000, L = 5000,
φ = 0.9, λ is selected randomly and uniformly from λ ∈
{ 1
2000 ,

1
1000 ,

1
900 ,

1
800 ,

1
700 ,

1
600 ,

1
500}, the storage constraint is

set to Swthr = 10M entries and the success probability constraint
is set to ρthr = 0.98. Our proposed algorithm selects any
of the MDS, product, polynomial, MatDot and repetition
codes at least one time during these iterations. MatDot and
polynomial codes perform better as compared with Fig. 1(a)
and Fig. 1(b). Polynomial codes work better due to the tighter
storage constraint and MatDot codes perform better because
of the existence of success probability constraint, which has
an inverse relation with the recovery threshold.

V. CONCLUSION

In this paper, we focused on characterizing the cost-benefit
trade-offs of coded computation for practical edge computing,
and develop an adaptive coded computation framework. In
particular, we studied matrix multiplication as a computa-
tionally intensive task, and developed an adaptive coding for
matrix multiplication (ACM2) algorithm by taking into account
the heterogeneous and time varying nature of edge devices.
ACM2 dynamically selects the best coding policy by taking
into account the computing time, storage requirements as well
as successful decoding probability.



REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, March 2018.

[2] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp.
109–128, Jan 2018.

[3] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting
codes. Elsevier, 1977.

[4] S. Lin and D. Costello, Error-Correcting Codes. Prentice-Hall, Inc,
1983.

[5] N. S. Ferdinand and S. C. Draper, “Anytime coding for distributed com-
putation,” in 2016 54th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, 2016, pp. 954–960.

[6] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017.

[7] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in 2017 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2017, pp. 2418–2422.

[8] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix multipli-
cation,” in 2017 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, 2017, pp. 1264–1270.

[9] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” in 2018 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2018, pp. 2022–2026.

[10] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Advances
In Neural Information Processing Systems, 2016, pp. 2100–2108.

[11] ——, “Coded convolution for parallel and distributed computing within
a deadline,” arXiv preprint arXiv:1705.03875, 2017.

[12] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in International
Conference on Machine Learning, 2017, pp. 3368–3376.

[13] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed
gradient descent using reed-solomon codes,” in 2018 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2018, pp. 2027–2031.

[14] N. Raviv, R. Tandon, A. Dimakis, and I. Tamo, “Gradient coding from
cyclic MDS codes and expander graphs,” in Proceedings of the 35th
International Conference on Machine Learning, J. Dy and A. Krause,
Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 4305–4313.

[15] C. Karakus, Y. Sun, and S. Diggavi, “Encoded distributed optimization,”
in 2017 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2017, pp. 2890–2894.

[16] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in
distributed optimization through data encoding,” in Advances in Neural
Information Processing Systems, 2017, pp. 5434–5442.

[17] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded fourier trans-
form,” in 2017 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, 2017, pp. 494–501.

[18] Y. Yang, P. Grover, and S. Kar, “Computing linear transformations with
unreliable components,” IEEE Trans. on Information Theory, 2017.

[19] Q. Yu, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “How to
optimally allocate resources for coded distributed computing?” in 2017
IEEE International Conference on Communications (ICC). IEEE, 2017.

[20] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Transactions
on Networking, vol. 25, no. 5, pp. 2643–2654, 2017.

[21] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed
computing: Straggling servers and multistage dataflows,” in 2016 54th
Annual Allerton Conference on Communication, Control, and Comput-
ing (Allerton). IEEE, 2016, pp. 164–171.

[22] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous
coded distributed computing,” in GLOBECOM 2017-2017 IEEE Global
Communications Conference. IEEE, 2017, pp. 1–7.

[23] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Transactions on Infor-
mation Theory, vol. 65, no. 7, pp. 4227–4242, 2019.

[24] A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi,
“Rateless codes for near-perfect load balancing in distributed matrix-
vector multiplication,” Proceedings of the ACM on Measurement and
Analysis of Computing Systems, vol. 3, no. 3, pp. 1–40, 2019.

[25] Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic heterogeneity-
aware coded cooperative computation at the edge,” in 2018 IEEE 26th
International Conference on Network Protocols (ICNP). IEEE, 2018,
pp. 23–33.

[26] E. Ozfatura, S. Ulukus, and D. Gündüz, “Straggler-aware dis-
tributed learning: Communication–computation latency trade-off,” En-
tropy, vol. 22, no. 5, p. 544, 2020.

[27] S. Kiani, N. Ferdinand, and S. C. Draper, “Hierarchical coded matrix
multiplication,” in 2019 16th Canadian Workshop on Information Theory
(CWIT). IEEE, 2019, pp. 1–6.

[28] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” in 2016 IEEE
International Symposium on Information Theory (ISIT), July 2016, pp.
1143–1147.

[29] G. Liang and U. C. Kozat, “Tofec: Achieving optimal throughput-delay
trade-off of cloud storage using erasure codes,” in IEEE INFOCOM
2014-IEEE Conference on Computer Communications. IEEE, 2014,
pp. 826–834.

[30] E. Vedadi and H. Seferoglu, “Adaptive coding for matrix multiplication
at edge networks,” arXiv preprint arXiv:2103.04247, 2021.

[31] J. Justesen and T. Hoholdt, “Analysis of iterated hard decision decoding
of product codes with reed-solomon component codes,” in 2007 IEEE
Information Theory Workshop, Sep. 2007, pp. 174–177.

[32] B. Pittel, J. Spencer, and N. Wormald, “Sudden emergence of a
giantk-core in a random graph,” Journal of Combinatorial Theory,
Series B, vol. 67, no. 1, pp. 111 – 151, 1996. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0095895696900362


