A TAUBERIAN APPROACH TO WEYL’S LAW FOR THE KOHN LAPLACIAN ON
SPHERES
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ABSTRACT. We compute the leading coefficient in the asymptotic expansion of the eigenvalue counting
function for the Kohn Laplacian on the spheres. We express the coefficient as an infinite sum and as an
integral.

1. INTRODUCTION

Let S?»~! denote the unit sphere in C® where n > 2. The hypersurface S?*~! is an embedded CR. manifold
and the tangential Cauchy-Riemann operators 0, and 82 are defined on the corresponding Hilbert spaces.
Furthermore, the Kohn Laplacian on L?(S?"~1)

Oy = 0,0

is a linear self-adjoint densely defined closed operator. We refer to |[Bog91] and [CSO01] for the detailed
definitions.

Our inspiration is the celebrated Weyl’s law for Riemannian manifolds. In that setting, the eigenvalue
counting function of the Laplace-Beltrami operator on a manifold M has leading coefficient proportional to
the volume of M with a constant depending only on the dimension of M. There is also a corresponding
result for the extension of this operator (also called the Hodge Laplacian, or the Laplace-de Rham operator)
to differential forms.

Motivated by the spectral theory for the Laplacian on Riemannian manifolds, one can investigate the
spectrum of [0, on CR manifolds and its relation to the complex geometry of the underlying manifold.
For example, in [Fu05] and [Fu08] Fu studied the spectrum of the d-Neumann Laplacian [J on smooth
pseudoconvex domains €2 and related the distribution of the eigenvalues of O to the D’Angelo type of bQ). In
[Fol72| Folland computed the spectrum of (J, on S?"~! on all differential form levels. Recently, in [ABRZ19)
and [ABB™19] the authors used the spectrum of the Kohn Laplacian to prove the non-embeddability of the
Rossi sphere.

For A > 0, let N()\) denote the number of positive eigenvalues (counting multiplicity) of O, on L?(S?"~1)
that are less or equal to A. It was noted in [ABB119] that N()\) grows on the order of A" and later, in
[BZ20] (see the erratum), the leading coefficient in the asymptotic expansion was calculated as an infinite
sum. In particular, [BZ20| obtained

NN 1 1 [(n+qg-2 q—1
/\151010 AT Z”n!;q"[< q >+<n—2

by using careful counting arguments.

1.1. Main Result. In this paper, we obtain the same leading coefficient by another argument, namely
by Karamata’s Tauberian Theorem. We highlight that this technique is different than the one in [BZ20).
Furthermore, we formulate the leading coefficient as a product of the volume of S?*~! and an integral
that only depends on n. This representation resonates better with Weyl’s law and is more amenable to
generalization to other CR manifolds.
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Theorem 1.1. Let N(\) be the eigenvalue counting function for O, on L*(S*™~1) as above. Then
N(A I 1 -2 —1
i S L §h L a2y
A—=oo A 2nn! = qm q n—2

-1 o t\"
— vol(S2n—1 . n=-° / _ —(n—2)t )
vol(S )n(QW)”F(n +1) J_o \sinht ¢ dt

The integral representation is strikingly similar to (and indeed inspired by) a similar formula for the leading
coeficient of the eigenvalue counting function for [J, acting on (0, ¢)-forms (where ¢ > 1) in [ST84,[Sta84].
However, we note that the expression in Theoremis not a special case of the expression in [ST84|. Stanton
and Tartakoff’s formula doesn’t cover the case of functions; the improper integral in their representation
diverges for ¢ = 0. Furthermore, in the case of functions, the kernel of 0, is infinite dimensional (unlike
(0, q)-forms where ¢ > 1). Therefore, a careful regularization idea and some non-trivial adjustments are
necessary to formulate the correct expression for the case ¢ = 0.

We anticipate that, for a general pseudoconvex CR manifold M of hypersurface type embedded in C”,
the leading coeflicient of the Kohn Laplacian on functions should be given by

. NV n—1 ot N oy
(1.1) lim — _VOI(M)T[,(QW)"F(H—FI) /_Oo <sinht) e dt.

This conjecture is modeled after Theorem and is further supported by a connection with Stanton and
Tartakoff’s formula. In the last section, we recover formula[L.1]by extending Stanton and Tartakoff’s formula
to a meromorphic function and evaluating the non-singular part at ¢ = 0. Although in Section [3] we present
only the computation for the case of spheres, the same computation holds for general hypersurfaces in C™.

1.2. Ingredients. Before we present a proof of Theorem in the next section, we state some known facts
about the eigenvalues of [, on S?”~! and Karamata’s Tauberian Theorem.

The Kohn Laplacian acts on the space of L? differential forms on the sphere. In [Fol72|, Folland uses
unitary representations to explicitly compute the eigenvalues and corresponding eigenspaces for the Kohn
Laplacian on (0, j)-forms. In particular, he shows that eigenforms

Jj+1 L
797122 Zdz_l A ANdZ A NdZj
i=1

have corresponding eigenvalue 2(¢+ j)(p+n — j — 1), where the hat over a form indicates its exclusion from
the wedge product.

We are interested in the case where j = 0, corresponding to functions on the sphere. Folland (see also
[ABRZ19,/ABB"19]) explicitly shows that in this case

L2(S2n_1) _ @Hk(g%z—l) _ @ 7_[})@(8271—1)7
k=0 p,q=0
where H, ,(S*"~1) is the space of spherical harmonics of bidegree p, g. Furthermore, each space H,, ,(S*"~!)
is an eigenspace of [, with dimension

dim(rty () = (") (TN - () (M),

as computed by an inclusion-exclusion argument (see [K1i04]). These spaces have corresponding eigenvalues
2q(p+n—1).

Karamata’s Tauberian Theorem has been in used in [Kac66,[ST84] to understand the distribution of
eigenvalues. We follow the statement in [ANPS09, Theorem 1.1, page 57] where the reader can find further
references.

Theorem 1.2 (Karamata). Let {A;};en be a sequence of positive real numbers such that 3,y et con-

verges for every t > 0. Then forn > 0 and a € R, the following are equivalent.
(1) Timy o+ "> e et = g



where N(X) = #{)\; : A\; < A} is the counting function.

The next section is dedicated to the proof of Theorem [I.1] First, we prove the expression for the leading
coefficient as a series (recovering the result in [BZ20]). Next7 we express the leading coefficient as the volume
of S~ times an integral.

2. ToNELLI TAcTIC TO TIE TOGETHER TWO TAUBERIAN TERMS

Instead of considering NV (A) directly we define the function G(t) =>_,ye ~Ast and consider

where the sequence {\;},cn is the sequence of all positive eigenvalues (with multiplicity) of [, on the sphere.
Once we compute this limit we can invoke Karamata’s Theorem. Using the preliminaries from section
we have

G(t)=) e M= i i dim (g )e 241t

jeN g o
(Y () () () e

Applying the standard recursive formula for binomial coefficients to the first product of binomial coefficients

gives ug]
0 )

()
0900 )
S Ry e NG (!

as a sum of two positive pieces by noticing that
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H
=
=
17
I
=
Q
=
o
==t
17
=+
o
=]
@
=
=
=
&
[e]
Q
~—~
~
=

DS (T e

q=1p=0

Z Z (n +p— 2) (n +q- 2) o~ 2ta(pn—1)
== p q—1 ’

and

so that G(t) = G1(t) + Ga(t).

Our goal is to calculate lim;_,o+ t"G(¢), which we do by calculating lim;_,¢+ " G1(t) and lim;_,q+ t"G2(t)
separately.

Theorem |1.1| claims that limy_, o % can be written either as an infinite series or as an improper
integral. The key to obtaining these two distinct forms is Tonelli’s Theorem (see [Rud87, Theorem 8.8]).
Since the summands in G1(t) and Ga(t) are positive, we can exchange the order of the infinite sums in each.
When the outer sum is over ¢, we can show that lim;_,g+ G1(¢) is an infinite series and lim;_,o+ G2(t) is an
improper integral; exchanging the order of summation allows us to express lim;_,q+ G1(t) as an integral and
lim;_,o+ G2(t) as an infinite series.

INote that we set (‘;) =0ifa<0.



2.1. Serious Series for Spherical Spectra. In this part we prove the infinite series formula for limy o, A;(,f‘ ),

The computations for G1(t) and Go(t) are quite similar. In each instance we will apply the Dominated Con-
vergence Theorem by leveraging Lemma

In each computation we eventually exchange the limit as ¢ — 07 with a sum and in each case we require
the following limit calculation, which follows from L’Hopital’s rule.

Lemma 2.1. Let o« > 0. Then
. "
M eanyn — @

—n

In order to exchange limits with sums we will apply the Dominated Convergence Theorem. This next
technical lemma will come in handy for showing the conditions of the Dominated Convergence Theorem are
satisfied in each case.

Lemma 2.2. Forn € N, there exists M > 0 such that

xne2x(n—1)
e oy
f(l') (621 — 1)" <

for all x € (0,00).

Proof. The function f is continuous on (0,00). If we show that lim, ,~ f(z) < co and lim,_,g+ f(z) < 0o
it will follow that there exists some M such that f(z) < M on (0,00). Indeed, lim,_, f(x) = 0. Further,

. . . . n 2x(n—1)
L’Hopital’s rule gives lim,_,g+ eh%l = % and so lim,_,qg+ %236771)71 = 2% 0

Now we are ready to compute lim;_,q+ t"G1(t).

Proposition 2.3.

_ 1 =/n+qg—2\1
lim "G4 (t) = — —.
tim ey =55 (")

q=1 a

Proof. We start by coming up with an expression for Gy (t) containing only a single sum. For |z| < 1, there
is the Taylor series expansion

1 = /n+p-1 = (n+p—2\ ,
(1—2:)”;0( p )Zp];( p—1 )Zp '
Let z = e~2%4; then
Gr(t) = i = <n +p— 1) (n +q— 2) o—2ta(p+n—1)
==\ q
:i( ”"“1—2)50:<n+p—1>(e—2tq)p+n—1>
q=1 q p=0 p
i<n+q2>§:<n+p 1> pin—1
q=1 q p=0 P
S (e ()
q=1 q p=0 p
(n4+qg—2\ 2!
;( q >(1—2)”
_i(nﬂz—?) (7!
= q (1—e )
SO
q (€2t —1)m
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L. n 2tq n( 2tq(n—1) 2tq
For positive , (;t(qe_l))n < q%(qt)(egfq_l)n ) — <(1”) S = where fisasin Lemma Hence, t" (nJr;] 2)% <

M (”*(‘1172) q% for all ¢ and since Y 02, M (”+g )q% converges, we are free to apply the Dominated Conver-
gence Theorem to lim;_ o+ t"G1(2).
This technical justification allows us to exchange the order of the limit and summation in lim,_,q+ t"G1 (¢)

and conclude that
o0 o0 (oo}
-9 n(,—2tg\n—1 ) n(,—2tqg\n—1 ) 1
hmz<n+q )t (e 2) =3 lim (”+q )t (e 2) :Z<”+q ) ,
10+ q (1 —e2ta)n ety q (1 —e—2ta)n = q (2q)"

where the final equality follows from Lemma

Next we move to the second piece and compute lim;_,o+ t"G2(t).

Proposition 2.4.
1 = /g—1\1
lim t"Gy(t) = — —.
i 6= 323 (1)
Proof. We start out by manipulating the form of G2(t) as we did with G (¢) but this time we apply Tonelli’s

Theorem to switch the order of summation. In our calculation we will make use of the substitutions z =
e~ 2tp+tn=1) and w = p+n — 1 and we will apply the power series expansion of W

(e (S (e
P q—1

ﬁﬁ

q=1p=0 ¢—1 p=0 q=1
(oo} oo
=ZC“’6 S ()
=\ =\ a- =\ p /(-2
= /n4+p—2 e~ 2t(ptn—1) > w—1 e~ 2tw
= Z ( ) 1 — e—2t(ptn— 1)) = Z (Tl _ 2) (1 _ 672tw)n

0 w=n—1

S
I

M

<w - 1> e—2tw i <w _ 1> 2tw(n—1)
1\~ 2 (62;;:,;1)” - —\n— 2) (e2tw — 1)’

_ 2tw(n—1) _ t _ _
By Lemma " (V2) Gy = (=) fiuff) <M(Y7)) 2 As o0 M(“Z1) L converges, we apply the
Dominated Convergence Theorem to lim;_,o+ t"G2(t) in order to exchange the limit and the sum. Thus,

oo

o0
w—1\ tre 2w 1 w—1\ 1
lim "Gy(t) = ) i T = om o
tim v 6t =3 i (07 ) e = 5 > ()

w

Applying the Tauberian Theorem [T.2] u in combination with Propositions 2.9 and [2.4] proves that

N(A n+q—2 q—1
i S = (077 ()]

This concludes the proof of the first identity in Theorem [I.1]

2.2. Isn’t it Interesting: Intense Integral is Identical In Immensity. In this subsection we will prove
the second part of Theorem (1.1} n We start off by re-analyzing G (¢):

Z Z <n +p— > <TL +q— 2> 672tq(p+n71)
q

q=1p=0

= Z Z <n TP= 1) (n taq- 2) e 2ta(p+n—1)
q

p=0g¢=1
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_ g <n +Z — 1) g:l (n +Z - 2) (e~ +n-1)ya
- i (")) (=)
B w_i 1 (nw 1) ((1 — 1)

where the switching of the order of summation is justified by Tonelli’s Theorem and we have taken w =
n + p — 1. To calculate the limit as ¢t — 0T, we need the following lemma.

Lemma 2.5. Fiz an integer r > 1 and consider the function

. 1
fr(z) =2 ((1 —e2z)r - 1)
defined for x > 0. Then

(1) fr(x)>0.
(2) fl(x) <0 for sufficiently large x.
(3) [, is bounded and [} f,(z)dx < cc.

Proof. We can tell f,.(z) > 0 since e72* <1500 < 1—e2® <1 and hence C L

17872;2)1‘

> 1, proving (1).
To establish (2), a derivative calculation shows that

1 2re~2®
/ _ r—1 _ _ 5T —
fr(x) =TT ((1 _ 672w)7‘ 1) x (1 _ 672z)r+1

-1
’I”.TT 1_ 672m _ (1 _ 6721’)7’4»1 _ 2l'€72z:|

=

ra” 1

_ 2 —2z\r41 2
_(17672x)r+162x [ex—l—(l—e “yr ex—Qm].

Define (z) = €2* — 1 — (1 — e~ 2%)" 12 — 22, To prove (2), it suffices to show that I(x) < 0 for sufficiently
large x. For this, let y = e~2* and note that
1—y—(1—y)+!
lim e?® — 1 — (1 — e %)™ 12 = lim y=(0-y) = lim -1+ (r+1)(1—-y) =r

T—>00 y*)0+ Yy y*)O‘F

Looking at the definition of I, the first three terms converge to r and the last goes to —oo, so I(z) < 0 for
sufficiently large x.

To prove (3) we will show that f,.(z) is bounded by a constant near 0 and bounded by an exponentially
decaying function for large x. The function f.(x) isn’t defined at * = 0, but Lemma implies that

lim, 0 fr(z) < oo so the discontinuity at 0 is removable. This implies that f,.(z) is bounded on [0, %]

To bound f,(z) on [1052,00) we note

1 1 (621)7" _ (621 _ l)r

1—e2r)r 1= ((e2v —1)/e2n)r 1= (e2r — 1)r

Using the formula for a difference of rth powers we obtain the following expression for the numerator of the
above fraction

—

r—

(e2a:)r _ (€2x _ 1)r — <62x _ (e2x _ 1)) Z(er)i<e2x _ 1)7"—1—1'

=0

|
—

s
< (62z)i(e2z)r717i _ 7,621(7’71).

%

Il
=



Hence,

1 re2aﬁ(r—1)
—_ 1<
(1 _ 6721)7" — (62m _ 1)7‘

1 re2e(r=1)  por

e I P

. . . log(2)
Applying this to f.(x) gives that when z > 2£=

r2"x”

fr($>§ o2

Thus f,.(x) is dominated by an exponentially decaying function for sufficiently large x, so fooo fr(z)dx < co.
O

It will be helpful to make the following definition:
Definition 2.6. For real a # 0, define the scaled ceiling function [-|, : R — R by
[7]a = alz/a].
For example, [7]3 =3[2] =3-3 =9 and [6]2 =2[$] =23 = 6. Then we have the following:
Proposition 2.7. [x], is x rounded up to the nearest integral multiple of o, i.e.
[2]o = min{na :n € Z,na > z}.

Proof.
[2]a =amin{n € Z:n >z/a} =amin{n € Z: an > x}
and the result follows. O

The scaled ceiling function has the following properties:

(1) Fixzx € R,a>0. Then 0 < [z]o — = < .
(2) Fix x € R. Then lim,_,o+ [7]0 = .
(3) Let f : [a,b] = R be monotonically decreasing. Fix 0 < a < b — a. Then for all x € [a,b — ],

f([x]a) < f(z).

The next few propositions will allow us to compute lim;_,o+ t"G1(t).

Proposition 2.8.

1 1
. n _ _ n—1 _
tgl(%t Z w ( 1 — e 2tw)n—1 1) /0 * ((1 — e 2z)n—1 1> de.

w=n—1

Proof. Manipulating the sum, we have

wzn: 1w (el‘”w)”1 - 1) i ! (Oelm)nl ~ 1)
- / e ((1 _ eﬁ;(ﬂﬂ)n?l _ 1) s
/ ' 1 ((1 — 6721[7”/])”71 _ 1) dw'
/t: (t[z/t])" ! (( e,ztlwﬂ)n,l — 1) dx
o0
- 2) ((1_621[ach)n1 - 1) dz

- / facr (T2 )de
t(n—2)
7

I
Mg

3




Fix C such that f_;(z) <0 for x > C and fix M such that f,_1(z) < M. Then
fn*l([x—‘t) < M]l{$<C} + fnfl(x)

for all x > 0. Since the integral of the right hand side is finite, we may apply dominated convergence to see

that .
lim Z "t (1 — 1) dr = /Oo "t (1 — 1> dz
=0t et (1 — e 2twyn—1 0 (1 —e—2x)n-1
which completes the proof. O

The following proposition will help us compute the rest of the limits we need before we can tackle
lim;_,¢+ t"G(t) in its entirety.

Proposition 2.9. Suppose that a;(w) is a positive function of real t and integer w > 1 such that lim;_,o+ ay(w) =
0 for each w and lim;_,o+ > oo, as(w) = M < oo. Then

o~ ar(w)
li B —o.
Jm 2=,

wl

Proof. Let € > 0 be arbitrary and let k& > 2% — 1 be an integer. Since lim;_,o+ a;(w) = 0 for each w, there
exists some T such that for all 0 < ¢ < T and all w <k, ay(w) < i Thus for ¢t < T, we have

w=1 w=1 w=k+1
k 1 [e's) k 1 &S]
< Z az(w) + Pl Z az(w) < Z ar(w) + il Z az(w)
w=1 w=k+1 w=1 w=1
k
€ M € €
T Y
*22k+k+1*2+2 ‘
w=1
Therefore limy; o+ Y oy “tfuw) =0 O
Proposition 2.10. Fizr 0 <k <n—1. Then
> 1
: n k _ _
! w;lw ((1 — e dwynt 1) 0
PT'OOf The observation that 0 < Zw n—1 "’wk (W ].) < Zw n—1 i}tn n—1 (W - 1)
allows us to apply Propositions [2.9] and 2.8 and arrive at the desired conclusion. O

With Propositions and in hand, we can move forward. We break (n'fl) into a polynomial in w,
as follows:

w . w! _w(w—l)...(w_n+2>_ w1 n—2
<”1> S (n=Dl(w—n+1)! (n—1)! BRG] +kz=;)akwk-

We write
lim t"G1(t) = lim t" i v . -1
t—0+ T ot W \n—1 (1 — e~ 2tw)n—1
10t (n—1)! W (1 — e 2twyn—1 W (1 — e—2twyn—1

(2.1) :(nil ( 621“_1)@5.

The final equality was obtamed by applying Propositions [2.8] and [2.10]
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Now we move on to Go(t). We have

Z Z (n +p— 2) (n +q - 2) o—2ta(p+n—1)

q=1p=0 q_l

_ — (n+q 2) —2tq(n— 1)Z(n+P 2>( ~2tayp
=\ a1l P

n+q_2 72tqn1
qg—1

o

1 _e—2tq n—1

=]
Il
_

M

n+q—2 e—2tq(n—1)
( n—1 ) (1 — e~2tayn—1"
This next lemma plays a role in our analysis of Gs(t) which is analogous to the role of Lemma in our
analysis of G1(t).

1

=]
I

Lemma 2.11. Fiz integers v > 0 and s > 1, and consider the function
—2xs
e
) = e

defined for x > 0. Then

(1) grs(z) > 0.

(2) grp(x) <O

(3) If r > s, gr.s(x) is bounded and [;° grs(z)dz < co.
(4) If r > s+ 1, lim,_,0 g, s(z) = 0.

Proof. Suppose » > 0 and s > 1 are integers and that = > 0. As 2" > 0, e 2%* > 0, and 1 — e~ 2* > 0, we
have g, s(x) > 0 which shows (1). To prove (2) notice that we may write

—2xr r
r e T

gror(x) =a (1—e2o)r = (e — 1)

Since the function z/(e** — 1) is decreasing, it follows that g,.,.(z) < 0.
For part (3), fix M € R such that for all z > M, e** —1 > % and (e*)1/2 > 27, Then for 2 > M,

" " " (621:)1/2 98
() = < T 9 <92 - .
gr.s(x) (e — 1) = () (e22)s (€27)s  (e22)s—1/2

As s > 1, the right-hand side has finite integral over [M,o0) and hence [} grs(2) dz < co. The integral
of g, s(x) over [0, M] is also finite because we can extend g, s(x) to a continuous, bounded function on this
compact interval. Adding these two parts together shows that

oo
/ gr.s(x) dz < oco.
0

It remains to show lim, ¢ g, s(z) = 0 whenever » > s+ 1. First notice that Lemma can be used to
show that

: z" : rT—S8 1; z° _ -n __
I ey — A M ey 02 =0

Therefore, when r > s + 1, we have

—2sx 5 T
. r — T —2xs 1: — 1.0 =
BT Aoy TR Mgy O
as we needed to show, this proves (4). O

Now we move on to propositions which, similarly to our strategy for analyzing G1(t), allow us to break
up the binomial coefficient in G(t) into a polynomial and analyze the resulting sums separately.
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Proposition 2.12. Fizr 0 <k <n—1. Then
el —2tq(n—1)
: n k € _
tl_l)%’lth Zq (]_ _ 672tq)n71 =0.
q=1

Proof. We recognize that this expression can be rewritten in terms of g, n,—1(tq):

—2tq(n—1) —2tq(n—1) e

oo
E_© e B 1
tnzlq ( — e~ 2tq Z qn ]C 672tq)n71 - Z qnikgn)n—l(tq).
q=

g=1 q=1

Since gn,n—1 is bounded and n — k > 2, the summand is dominated by some constant times (Tz Therefore
we can apply dominated convergence to conclude that the limit is 0, since the summand converges pointwise
to 0 by the previous lemma. O

Proposition 2.13.
> —2tq(n—1) 0 —2z(n—1)
. n n—1 € o n-1 €
tg%ﬂ t q;q (1— e—2tayn—1 /0 T A= e 2mynt dz.

Proof. Write
72tq n—1) 6*2”‘1/}("*1)

n n— 1 n n— 1
t Zq (1 — e 2tayn—1 Z/ t"[q'] _ e—2t]'q"|)n—1dq/
N . e—2tld"1(n—1) ,
= /0 ¢ |7q 1 ( — e—2t[¢ ])n—l dq
) _— —2t[z/t](n—1)
= [ are g s
% afal(n-1)
_ n—1 €
= /0 [z]} (1= e—2leliyn—1 dz.

The integrand is exactly gn—1,n—1([2]:), and is thus dominated by g,—1,—1 since gn—1,n—1 is a decreasing
function. Therefore we can apply dominated convergence to find that

e e—2tq(n—1) 0 e—2w(n—1)
lim ¢" qnil— :/ $n717d$.
qz::l (1 _ e—2tq)n—1 0 (1 _ e—2x)n—1

t—0t

n+q—2

n—1 ) as

We can expand (

qnfl n—2
k
7(TL ) + Zbkq .
k=0

n+q—2
n—1
Therefore,

o0 _ —2tq(n—1)
. . n+q—2 e =4
lim ¢"Go(t) = lim t" ————
10 2(t) 101 Z ( n—1 ) (1 —e2ta)n—1

q=1
. 1 . ) . —2tq(n 1) 72tq(n 1)
:tg%l+ [(n—l)!t Zq (1 — e—2ta)n— 1+t Zbkzq _ —thn 1
qg=1

1 00 . e—2;v(n 1)
= — n 7d
(n— 1)!/0 T — e ™

1 > 1
= — el .
<n—1>!/o SN G T

Next, we put the two parts of G back together in the limit. This gives us
lim t"G(t) = lim t"Gq(¢ lim t"Go(t
iy, 17G00) = g, G0+ L, °G2(0)

t—0+
10



_ 1 > n—1 1 _ * n—1 1
il " (e e [ e

o, 7 (e )

We now have an expression for lim,_,o+ G(¢) in terms of an integral so we could have chosen to stop here.
Instead, we will press on and apply a few more tricks in order to arrive at the expression in Theorem [L.1
One reason we prefer the expression in Theorem is its similarity to a closely related result in [ST84].

To continue on our path of manipulating the combined integral, we apply integration by parts with
B 1 1
YT A eyt 1+ (€2 — 1)n—1’

dv = 2" tdx,

2e~ 2% 2e%% e(n=2)r 4 g=(n=2)z n — 1 cosh((n — 2)x)
du=—(n-1 der=-2(n—-1 =—
u (n ) <(1 _ e—Qx)n + (6237 _ 1)n> x (TL ) (ex _ e—x)n x on—2 sinh(x)”
and v = n~'2". This gives us

1
lim t"G(t) = —z" (

dx,

dx

t—0+ n!

1 " °°+ n—1 /°° ncosh((n —2)x)
(1 —e=2z)n—1 (e2x —1)n=1 )|, ~ 2n=2n! ), v sinh(x)"
_n—1 /°° " cos'h((n —2)x) .
2n=2p! [y sinh(z)"

The boundary term clearly vanishes at oo because =" (W - 1) and # each vanish at oo.

T

To see that it vanishes at 0, apply L’Hopital’s rule to the quotients ——; and
is even, we further have

-za—7- Since the integrand

) n—1 [% z™cosh((n — 2)x)
lim t"G(t) = d
10+ G(t) 2”—211!/0 sinh(z)™ .
—1 [ 2"cos —
_n / x COb.h((n 2)x) da
2n=Ipl J_ o sinh(z)™

n—1 A ey /°° " —a(n—2
z(n d z(n )d )
2n—2n] (/DQ Sinh(x)”e v o sinh(m)”e *

As ﬁ(m) is an even function, the value of the first integral is unchanged if we change the e*("~2) in the

integrand to e~*("=2), Thus,

_ 1 oo n o0 n
lim tnG(t) _ n </ T efw(n72)dx+/ xew(n2)dx)

t—0+ 2n=2n! \ J_, sinh(z)” oo Sinh(z)™

_ nh- 1 /oo T " e—m(n—Q)dx
~2n-1pl [\ sinh(z)
QT _ o n
_ 2t n—l / . x o—(n-2) gy
(n—1! (2m)"n J_,, \sinh(z)

_ 2n—1 n—1 > z " —z(n—2)
= vol(S )(27r)"n/ (sinh(m)) e dzx.

— 00

Therefore, by the Tauberian Theorem due to Karamata, we obtain the following limit

: N(A) _ 2n—1 (TL 7 1) > €T " —x(n—2
/\h_)rr;o A vol(S )n(27r)"1"(n +1) / (sinh(x)) e " e,

— 00

and complete the proof of Theorem [1.1

3. THE FORMULA FOR FUNCTIONS VERSUS THE FORMULA FOR FORMS

In [ST84], Stanton and Tartakoff prove the following formula, reminiscent of Weyl’s law, for the Kohn
Laplacian on CR manifolds of hypersurface type.
11



Theorem 3.1 (|ST84] Theorem 6.1]). Let M be a CR submanifold of C*, n > 3. Let N(X) be the eigenvalue
counting function of Oy on M acting on (p,q) forms, 0 <p <mn, 0 < g <n—1. Then we have the asymptotic

equivalance
. N
lim —~ = (M
LT

n—1\/n-1 1 > T n—1
= _— _r ~(n—1-29)7 4
o ( p ) < q ) (2m)"I'(n+1) /m (sinhf) ‘ T’

and the Kohn Laplacian and the volume of M are defined with respect to a Levi metric.

where

For spheres embedded in C", the induced metric is a Levi metric (see Definition 1.5 and the following
remark in [ST84|). However, as stated, this only applies to (p,q) forms with ¢ > 1. We analyze how this
expression relates to Theorem [1.1] Towards this end, we define the function

_ (n—1Y\ wvol(s"1) > TN (asisag)r
fla) = ( q >(27T)”I‘(n—|—1)/ (SinhT) c ‘T ar,

— 00

which for ¢ =1,...,n — 2 is the leading coeflicient on A" for the asymptotic growth of N()), the eigenvalue
counting function of O, on M acting on (0, ¢) forms.
The following statement shows that this function is closely related to our formula.

Theorem 3.2. The definition of f given above is convergent for complex q satisfying 0 < R(q) < n — 1.
Further, f is holomorphic on this strip, and has an analytic continuation to a meromorphic function on the
strip —1 < R(q) < n — 1 whose only pole is at ¢ = 0. Finally, the Laurent expansion of f about 0 is

=ay/q" + vo 2"71(71;1) = r nefr(n*Q)x
fa) = g +vols ) i [ (Smh(x)> i,

where a, # 0.

In other words, the constant term in the Laurent expansion of f about 0 is the expression from Theorem

L1l

Proof. For notational convenience let m = n — 1. Then we may write f as

Ha) = (T;) (2:;175§Z_41r)1) / ) (sinThT)me_(m_zq)T dr.

— 00

We first prove that the integrand is integrable (L!) whenever 0 < R(g) < m. For this, choose C' > 0 and
a > 0 so that whenever |z| > C, |sinh(z)| > ael*!. Therefore for |z| > C we have
r x ||
sinh(x)  |sinh(z)
Since z/sinh(z) has a removable singularity at 0, it is continuous and thus bounded on [-C, C]. Hence
2™ /sinh(z)™ is bounded on [—C,C] as well, so we can choose D so that 2 /sinh(z)™ < D whenever
|z| < C. Thus, we have the bound

- a@|x| ’

sinh(z)™ — amemlz|

Lizj>c + Dljgi<c

for all x € R.
Therefore, we may write

> T m —(m—2q)T
L ‘(SinhT) ©

o0

dT:/OO( T )me—mfzm(q))%
— oo \sinhT

C ) C
< O[fm/ |T|m67m|7|7(m729?(q))‘r dr + afm/ 7,m6777’L'r7(m72§)‘€(q))'r dr +/ Ddr
—o0 C -C

—a ™ /OC Tme—m7'+(m—28?(q))‘r dr +a ™ /OO Tme—mT—(m—2§R(q))‘r dr +2CD
C C

= a*m/ e 2R gr 4 o™ / Me=2(m=R) qr 4 20D.
c c
12



A repeated integration by parts shows that these integrals are finite if 0 < R(q) < m. To define the binomial
coefficient, use the gamma function, i.e.

<m) B m!

q) T@+H0(m—q+1)

which is defined since I' has no zeros. Thus, f is well defined on its domain of definition.
Now, rewrite f as follows:

0= ()t [ )"

1/m\ vol(S*"~1) o T\ _(m-2¢) > T O\N™
= — B a—— m T d (m—2q)T d .
2<q>(27r)nI‘(n+1) /_Oo (sinhr) € T+/_Oo <sinh7') € T

As ﬁ is an even function, the value of the second integral is unchanged if we change the e~ (=297 in

the integrand to e

10=35(3) ey (L Gair) i [ () ")
- <TZ) (2:;17518“?231) /, °; (sinThT)m cosh((m —2q)r) dr
m\ vol(S2n—1 i T \™
= 2<q> (ZW)ITEI%(n +)1) /0 (sopz) cosh(tm —2q)r)ar

where the last step follows since the integrand is even. Now, define the function g as follows:
2n—1 o]
o(g) =2 m\ vol(S ) / m cosh((.m—2q)7)) _ogm—1,-27) gy

q) @2m)"T(n+1) Jo (sinh 7)™

We claim that g is holomorphic on the strip —1 < R(g) < m. Assuming this for now, consider
m\ vol(S?"~1) e 9
o — 9om e S m ar 4

s a0 =2 (") ey | e

defined for 0 < R(gq) < m. This is easy to evaluate explicitly with the substitution v = 2¢7 :

> 1 > I 1
/ e dr = —— / ue Y du = 7(771 +1)
0 (29)™ Jo (2¢)™

) — o) = (7:;) (vol(s%—l) 1 (n— 1) vol(§271) 1

2m)"(m + 1) gmH q n(2m)" q
This is meromorphic in ¢ on the whole complex plane. Thus, the function g + (f — ¢) is meromorphic in ¢
for —1 < R(¢) < n —1, and equal to f if 0 < R(g) < n — 1. Since f converges on its domain of definition,
f is holomorphic in ¢, and g + (f — g) is the desired continuation. To complete the proof, we need to show
that g(0) is our formula. We have

., vol(S*h) OOT’" cosh(mr) .4 .
9(0) _2(277)”F(n+1)/0 ((sth)m 2 ) d

2ﬂ.n/1‘\(n) o ern‘r _|_ e—m,‘r _
=92 7 m _gm
2r)"T(n + 1) /0 T (2m1(eT —erym dr

1 oo m eTVLT+e—mT
= e 1) d
r<n>r<n+1>/ ! ( f>m )

(m=29)7  Therefore,

SO

1 e—mT
_ om 1) 4
(n—D!T(n+1) ( (eT —e T)m > 4
1 1
_ om ~1)d
(n _ 1)] F(n + 1 < 1— 6_2T m (627' _ 1)’m ) T
1 . n
= m%ﬂ%t G(t)

13



= lim N
A—oo AT
where we have used the expression appearing in the discussion after Proposition and Karamata’s
Theorem. Thus we have our theorem, modulo showing that g is holomorphic for —1 < R(g) < m. We move
on to this now. It clearly suffices to show that the expression

o= [ (SO s ar)

is holomorphic for —1 < R(q) < m.
As a stepping stone towards proving that h(q) is holomorphic, we will first prove that for 8 > 0,

O A e

is convergent and continuous. By differentiating with respect to 5, we see that the integrand is motonically
increasing, for each 7, as § — 0. Fix some Sy > 0. Now, for 7 near 0, the integrand is bounded since it has
a limit at 0. For large 7, it is bounded by a constant times e~2#77™  which is integrable on [0, c0). To see
continuity at Sy, fix some 1 with 0 < 81 < By, and note that the integrand at 8; dominates the integrand
at @ for all g > B;. Continuity of ¢ at By follows then by dominated convergence. Thus, we have shown
that ¢ is convergent and continuous for 5 > 0.

Next, we compute

e(m—2q)‘r + e—(m—2q)‘r

/OO L cosh((-m — 2(1)7')) _ 2m—1e—2q7 dr = gm—1 /OO Fm — _ 2T dr
0 (sinh 7)™ 0 (em —eT)m
o] —(m—2q)T o] (m—2¢)T
< Zm_l/ o dr + 2m_1/ | — e 27| dr.
0 0

To analyze the first term, we have
ef(m72q)'r

/°° . . /00 e /oo e Cm2m)T .
T | dr = M dr = M dr = ¢(m — R(q)).
0 (eT —e 7)™ 0 ( 0 (

eT — e*‘r)m 1— 6727')177,
For the second term, we have
e(m—?q)T

/ T — dT_/ T eT2am (e — —1)‘ dT:/ e 2R(a)T
0 (T —e7) 0 (em—e™T) 0

We bound the latter expression in the integrand by

-
(1 _ 6—27—)m

—2q'r

—1‘ dr.

L= e 1 S D e | |- () (e
(1 _ e—ZT)m (1 _ e—QT)m (1 _ e—27’)m (1 _ e—27’)m
NI e SR ST a2
(1 _ e—2‘r)m (1 _ e—QT)m (1 _ e—27’>m — (1 _ e—QT)m
Thus for the second term we have
/VOO m 6(m72q)7' *Qt]‘r dr < /OO m ,—2R(q)T ,—27 2" 2m¢(§R( )_|_1)
T — T e e —r = q )
0 (e —e ) 0 (I—e27)

In total we have shown that

[ o (cobitm =207 _ g )

Using this bound, we now show that h is holomorphic via Morera’s Theorem. Fix some triangle A C {q €
C: -1 < R(¢q) < m}. Parameterize A by arc length with the piecewise differentiable curve y(¢), a <t <b

(so |¥'(¢)| = 1) for all t). Then
/ q) dq —/ / t) dr dt.
The estimate above,
- cosh((m — 2y(t))7)) 12
m _9gm y(t)T ’
/0 g ( (sinh 7)™ € 7 (®)

dr <271 o(m — R(q)) + 22" 1p(R(qg) + 1).

dr < 2™ Tp(m — R((1))) + 22" TH(R(V(1) + 1),
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is uniformly bounded in ¢ by the compactness of A and the continuity of the upper bound in ¢, so

/ab /Ooo ’T’" <cosh((m —29(t)7)) 2m—1e—27(t)7') p/(t)’ dr dt < oo.

(sinh 7)™

Therefore we may apply Fubini’s Theorem to see that

/ab /Ooo " (cosh((m —2y(t)7) Qm_le—zwtw) A (t) dr dt =

(sinh 7)™

/0°° /ab m (cosh((m —29(t)7)) Qm—le—%(tﬁ) v (t)dtdr = /OOO 0dr=0

(sinh 7)™

by Cauchy’s Theorem. This shows (by Morera’s Theorem) that

h(q) = /OOO ™ <C05h((m —29)7)) leequ> dr

(sinh 7)™

is a holomorphic function of ¢ for —1 < R(q) < m, and thus g(q) is holomorphic for —1 < R(q) < m,
completing the proof. O
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