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Abstract. We compute the leading coe�cient in the asymptotic expansion of the eigenvalue counting
function for the Kohn Laplacian on the spheres. We express the coe�cient as an infinite sum and as an
integral.

1. Introduction

Let S2n�1 denote the unit sphere in Cn where n � 2. The hypersurface S2n�1 is an embedded CR manifold
and the tangential Cauchy-Riemann operators @b and @

⇤
b are defined on the corresponding Hilbert spaces.

Furthermore, the Kohn Laplacian on L2(S2n�1)

⇤b = @
⇤
b@b

is a linear self-adjoint densely defined closed operator. We refer to [Bog91] and [CS01] for the detailed
definitions.

Our inspiration is the celebrated Weyl’s law for Riemannian manifolds. In that setting, the eigenvalue
counting function of the Laplace-Beltrami operator on a manifold M has leading coe�cient proportional to
the volume of M with a constant depending only on the dimension of M . There is also a corresponding
result for the extension of this operator (also called the Hodge Laplacian, or the Laplace–de Rham operator)
to di↵erential forms.

Motivated by the spectral theory for the Laplacian on Riemannian manifolds, one can investigate the
spectrum of ⇤b on CR manifolds and its relation to the complex geometry of the underlying manifold.
For example, in [Fu05] and [Fu08] Fu studied the spectrum of the @-Neumann Laplacian ⇤ on smooth
pseudoconvex domains ⌦ and related the distribution of the eigenvalues of ⇤ to the D’Angelo type of b⌦. In
[Fol72] Folland computed the spectrum of ⇤b on S2n�1 on all di↵erential form levels. Recently, in [ABRZ19]
and [ABB+19] the authors used the spectrum of the Kohn Laplacian to prove the non-embeddability of the
Rossi sphere.

For � > 0, let N(�) denote the number of positive eigenvalues (counting multiplicity) of ⇤b on L2(S2n�1)
that are less or equal to �. It was noted in [ABB+19] that N(�) grows on the order of �n and later, in
[BZ20] (see the erratum), the leading coe�cient in the asymptotic expansion was calculated as an infinite
sum. In particular, [BZ20] obtained

lim
�!1

N(�)

�n
=

1

2nn!

1X

q=1

1

qn

✓
n+ q � 2

q

◆
+

✓
q � 1

n� 2

◆�

by using careful counting arguments.

1.1. Main Result. In this paper, we obtain the same leading coe�cient by another argument, namely
by Karamata’s Tauberian Theorem. We highlight that this technique is di↵erent than the one in [BZ20].
Furthermore, we formulate the leading coe�cient as a product of the volume of S2n�1 and an integral
that only depends on n. This representation resonates better with Weyl’s law and is more amenable to
generalization to other CR manifolds.
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Theorem 1.1. Let N(�) be the eigenvalue counting function for ⇤b on L2(S2n�1) as above. Then

lim
�!1

N(�)

�n
=

1

2nn!

1X

q=1

1

qn

✓
n+ q � 2

q

◆
+

✓
q � 1

n� 2

◆�

= vol(S2n�1)
n� 1

n(2⇡)n�(n+ 1)

Z 1

�1

✓
t

sinh t

◆n

e�(n�2)tdt.

The integral representation is strikingly similar to (and indeed inspired by) a similar formula for the leading
coeficient of the eigenvalue counting function for ⇤b acting on (0, q)-forms (where q � 1) in [ST84, Sta84].
However, we note that the expression in Theorem 1.1 is not a special case of the expression in [ST84]. Stanton
and Tartako↵’s formula doesn’t cover the case of functions; the improper integral in their representation
diverges for q = 0. Furthermore, in the case of functions, the kernel of ⇤b is infinite dimensional (unlike
(0, q)-forms where q � 1). Therefore, a careful regularization idea and some non-trivial adjustments are
necessary to formulate the correct expression for the case q = 0.

We anticipate that, for a general pseudoconvex CR manifold M of hypersurface type embedded in Cn,
the leading coe�cient of the Kohn Laplacian on functions should be given by

(1.1) lim
�!1

N(�)

�n
= vol(M)

n� 1

n(2⇡)n�(n+ 1)

Z 1

�1

✓
t

sinh t

◆n

e�(n�2)tdt.

This conjecture is modeled after Theorem 1.1 and is further supported by a connection with Stanton and
Tartako↵’s formula. In the last section, we recover formula 1.1 by extending Stanton and Tartako↵’s formula
to a meromorphic function and evaluating the non-singular part at q = 0. Although in Section 3 we present
only the computation for the case of spheres, the same computation holds for general hypersurfaces in Cn.

1.2. Ingredients. Before we present a proof of Theorem 1.1 in the next section, we state some known facts
about the eigenvalues of ⇤b on S2n�1 and Karamata’s Tauberian Theorem.

The Kohn Laplacian acts on the space of L2 di↵erential forms on the sphere. In [Fol72], Folland uses
unitary representations to explicitly compute the eigenvalues and corresponding eigenspaces for the Kohn
Laplacian on (0, j)-forms. In particular, he shows that eigenforms

z̄1
q�1zpn

j+1X

i=1

dz̄1 ^ · · · ^ cdz̄i ^ · · · ^ dz̄j+1

have corresponding eigenvalue 2(q+ j)(p+n� j� 1), where the hat over a form indicates its exclusion from
the wedge product.

We are interested in the case where j = 0, corresponding to functions on the sphere. Folland (see also
[ABRZ19,ABB+19]) explicitly shows that in this case

L2(S2n�1) =
1M

k=0

Hk(S2n�1) =
1M

p,q=0

Hp,q(S2n�1),

where Hp,q(S2n�1) is the space of spherical harmonics of bidegree p, q. Furthermore, each space Hp,q(S2n�1)
is an eigenspace of ⇤b with dimension

dim(Hp,q(S2n�1)) =

✓
n+ p� 1

p

◆✓
n+ q � 1

q

◆
�

✓
n+ p� 2

p� 1

◆✓
n+ q � 2

q � 1

◆
,

as computed by an inclusion-exclusion argument (see [Kli04]). These spaces have corresponding eigenvalues
2q(p+ n� 1).

Karamata’s Tauberian Theorem has been in used in [Kac66, ST84] to understand the distribution of
eigenvalues. We follow the statement in [ANPS09, Theorem 1.1, page 57] where the reader can find further
references.

Theorem 1.2 (Karamata). Let {�j}j2N be a sequence of positive real numbers such that
P

j2N e��jt con-
verges for every t > 0. Then for n > 0 and a 2 R, the following are equivalent.

(1) limt!0+ tn
P

j2N e��jt = a

(2) lim�!1
N(�)
�n = a

�(n+1)
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where N(�) = #{�j : �j  �} is the counting function.

The next section is dedicated to the proof of Theorem 1.1. First, we prove the expression for the leading
coe�cient as a series (recovering the result in [BZ20]). Next, we express the leading coe�cient as the volume
of S2n�1 times an integral.

2. Tonelli Tactic To Tie Together Two Tauberian Terms

Instead of considering N(�) directly we define the function G(t) =
P

j2N e��jt and consider

lim
t!0+

tn
X

j2N
e��jt

where the sequence {�j}j2N is the sequence of all positive eigenvalues (with multiplicity) of ⇤b on the sphere.
Once we compute this limit we can invoke Karamata’s Theorem. Using the preliminaries from section 1.2,
we have

G(t) =
X

j2N
e��jt =

1X

q=1

1X

p=0

dim(Hp,q)e
�2q(p+n�1)t

=
1X

q=1

1X

p=0

✓✓
n+ p� 1

p

◆✓
n+ q � 1

q

◆
�

✓
n+ p� 2

p� 1

◆✓
n+ q � 2

q � 1

◆◆
(e�2tq)p+n�1.

Applying the standard recursive formula for binomial coe�cients to the first product of binomial coe�cients
gives us1
✓
n+ p� 1

p

◆✓
n+ q � 1

q

◆
=

✓
n+ p� 1

p

◆✓
n+ q � 2

q

◆
+

✓
n+ q � 2

q � 1

◆�

=

✓
n+ p� 1

p

◆✓
n+ q � 2

q

◆
+

✓
n+ p� 1

p

◆✓
n+ q � 2

q � 1

◆

=

✓
n+ p� 1

p

◆✓
n+ q � 2

q

◆
+

✓
n+ p� 2

p

◆
+

✓
n+ p� 2

p� 1

◆�✓
n+ q � 2

q � 1

◆

=

✓
n+ p� 1

p

◆✓
n+ q � 2

q

◆
+

✓
n+ p� 2

p

◆✓
n+ q � 2

q � 1

◆
+

✓
n+ p� 2

p� 1

◆✓
n+ q � 2

q � 1

◆
.

This allows us to rewrite G(t) as a sum of two positive pieces by noticing that

G(t) =
1X

q=1

1X

p=0

✓✓
n+ p� 1

p

◆✓
n+ q � 2

q

◆
+

✓
n+ p� 2

p

◆✓
n+ q � 2

q � 1

◆◆
e�2tq(p+n�1).

We label the parts as

G1(t) =
1X

q=1

1X

p=0

✓
n+ p� 1

p

◆✓
n+ q � 2

q

◆
e�2tq(p+n�1)

and

G2(t) =
1X

q=1

1X

p=0

✓
n+ p� 2

p

◆✓
n+ q � 2

q � 1

◆
e�2tq(p+n�1),

so that G(t) = G1(t) +G2(t).
Our goal is to calculate limt!0+ tnG(t), which we do by calculating limt!0+ tnG1(t) and limt!0+ tnG2(t)

separately.
Theorem 1.1 claims that lim�!1

N(�)
�n can be written either as an infinite series or as an improper

integral. The key to obtaining these two distinct forms is Tonelli’s Theorem (see [Rud87, Theorem 8.8]).
Since the summands in G1(t) and G2(t) are positive, we can exchange the order of the infinite sums in each.
When the outer sum is over q, we can show that limt!0+ G1(t) is an infinite series and limt!0+ G2(t) is an
improper integral; exchanging the order of summation allows us to express limt!0+ G1(t) as an integral and
limt!0+ G2(t) as an infinite series.

1Note that we set
�a
b

�
= 0 if a  0.
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2.1. Serious Series for Spherical Spectra. In this part we prove the infinite series formula for lim�!1
N(�)
�n .

The computations for G1(t) and G2(t) are quite similar. In each instance we will apply the Dominated Con-
vergence Theorem by leveraging Lemma 2.2.

In each computation we eventually exchange the limit as t ! 0+ with a sum and in each case we require
the following limit calculation, which follows from L’Hopital’s rule.

Lemma 2.1. Let ↵ > 0. Then

lim
t!0

tn

(1� e�↵t)n
= ↵�n.

In order to exchange limits with sums we will apply the Dominated Convergence Theorem. This next
technical lemma will come in handy for showing the conditions of the Dominated Convergence Theorem are
satisfied in each case.

Lemma 2.2. For n 2 N, there exists M > 0 such that

f(x) =
xne2x(n�1)

(e2x � 1)n
< M

for all x 2 (0,1).

Proof. The function f is continuous on (0,1). If we show that limx!1 f(x) < 1 and limx!0+ f(x) < 1

it will follow that there exists some M such that f(x) < M on (0,1). Indeed, limx!1 f(x) = 0. Further,

L’Hopital’s rule gives limx!0+
x

e2x�1 = 1
2 and so limx!0+

xne2x(n�1)

(e2x�1)n = 1
2n . ⇤

Now we are ready to compute limt!0+ tnG1(t).

Proposition 2.3.

lim
t!0+

tnG1(t) =
1

2n

1X

q=1

✓
n+ q � 2

q

◆
1

qn
.

Proof. We start by coming up with an expression for G1(t) containing only a single sum. For |z| < 1, there
is the Taylor series expansion

1

(1� z)n
=

1X

p=0

✓
n+ p� 1

p

◆
zp =

1X

p=1

✓
n+ p� 2

p� 1

◆
zp�1.

Let z = e�2tq; then

G1(t) =
1X

q=1

1X

p=0

✓
n+ p� 1

p

◆✓
n+ q � 2

q

◆
e�2tq(p+n�1)

=
1X

q=1

 ✓
n+ q � 2

q

◆ 1X

p=0

✓
n+ p� 1

p

◆
(e�2tq)p+n�1

!

=
1X

q=1

✓
n+ q � 2

q

◆ 1X

p=0

✓
n+ p� 1

p

◆
zp+n�1

=
1X

q=1

✓
n+ q � 2

q

◆
zn�1

1X

p=0

✓
n+ p� 1

p

◆
zp

=
1X

q=1

✓
n+ q � 2

q

◆
zn�1

(1� z)n

=
1X

q=1

✓
n+ q � 2

q

◆
(e�2tq)n�1

(1� e�2tq)n

=
1X

q=1

✓
n+ q � 2

q

◆
e2tq

(e2tq � 1)n
.
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For positive t, tn(e2tq)
(e2tq�1)n 

1
qn

(qt)n(e2tq(n�1))
(e2tq�1)n = f(qt)

qn 
M
qn where f is as in Lemma 2.2. Hence, tn

�n+q�2
q

� (e2tq)
(e2tq�1)n 

M
�n+q�2

q

�
1
qn for all t and since

P1
q=1 M

�n+q�2
q

�
1
qn converges, we are free to apply the Dominated Conver-

gence Theorem to limt!0+ tnG1(t).
This technical justification allows us to exchange the order of the limit and summation in limt!0+ tnG1(t)

and conclude that

lim
t!0+

1X

q=1

✓
n+ q � 2

q

◆
tn(e�2tq)n�1

(1� e�2tq)n
=

1X

q=1

lim
t!0+

✓
n+ q � 2

q

◆
tn(e�2tq)n�1

(1� e�2tq)n
=

1X

q=1

✓
n+ q � 2

q

◆
1

(2q)n
,

where the final equality follows from Lemma 2.1.
⇤

Next we move to the second piece and compute limt!0+ tnG2(t).

Proposition 2.4.

lim
t!0+

tnG2(t) =
1

2n

1X

q=1

✓
q � 1

n� 2

◆
1

qn
.

Proof. We start out by manipulating the form of G2(t) as we did with G1(t) but this time we apply Tonelli’s
Theorem to switch the order of summation. In our calculation we will make use of the substitutions z =
e�2t(p+n�1) and w = p+ n� 1 and we will apply the power series expansion of 1

(1�z)n�1 .

G2(t) =
1X

q=1

1X

p=0

✓
n+ p� 2

p

◆✓
n+ q � 2

q � 1

◆
e�2tq(p+n�1) =

1X

p=0

✓
n+ p� 2

p

◆ 1X

q=1

✓
n+ q � 2

q � 1

◆
e�2tq(p+n�1)

=
1X

p=0

✓
n+ p� 2

p

◆
z

1X

q=1

✓
n+ q � 2

q � 1

◆
zq�1 =

1X

p=0

✓
n+ p� 2

p

◆
z

(1� z)n

=
1X

p=0

✓
n+ p� 2

n� 2

◆
e�2t(p+n�1)

(1� e�2t(p+n�1))n
=

1X

w=n�1

✓
w � 1

n� 2

◆
e�2tw

(1� e�2tw)n

=
1X

w=1

✓
w � 1

n� 2

◆
e�2tw

( e
2tw�1
e2tw )n

=
1X

w=1

✓
w � 1

n� 2

◆
e2tw(n�1)

(e2tw � 1)n
.

By Lemma 2.2, tn
�w�1
n�2

�
e2tw(n�1)

(e2tw�1)n =
�w�1
n�2

� f(tw)
wn  M

�w�1
n�2

�
1
wn . As

P1
w=0 M

�w�1
n�2

�
1
wn converges, we apply the

Dominated Convergence Theorem to limt!0+ tnG2(t) in order to exchange the limit and the sum. Thus,

lim
t!0+

tnG2(t) =
1X

w=1

lim
t!0+

✓
w � 1

n� 2

◆
tne�2tw

( e
2tw�1
e2tw )n

=
1

2n

1X

w=1

✓
w � 1

n� 2

◆
1

wn
.

⇤

Applying the Tauberian Theorem 1.2 in combination with Propositions 2.3 and 2.4 proves that

lim
�!1

N(�)

�n
=

1

2nn!

1X

q=1

1

qn

✓
n+ q � 2

q

◆
+

✓
q � 1

n� 2

◆�
.

This concludes the proof of the first identity in Theorem 1.1.

2.2. Isn’t it Interesting: Intense Integral is Identical In Immensity. In this subsection we will prove
the second part of Theorem 1.1. We start o↵ by re-analyzing G1(t):

G1(t) =
1X

q=1

1X

p=0

✓
n+ p� 1

p

◆✓
n+ q � 2

q

◆
e�2tq(p+n�1)

=
1X

p=0

1X

q=1

✓
n+ p� 1

p

◆✓
n+ q � 2

q

◆
e�2tq(p+n�1)
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=
1X

p=0

✓
n+ p� 1

p

◆ 1X

q=1

✓
n+ q � 2

q

◆
(e�2t(p+n�1))q

=
1X

p=0

✓
n+ p� 1

p

◆✓
1

(1� e�2t(p+n�1))n�1
� 1

◆

=
1X

w=n�1

✓
w

n� 1

◆✓
1

(1� e�2tw)n�1
� 1

◆

where the switching of the order of summation is justified by Tonelli’s Theorem and we have taken w =
n+ p� 1. To calculate the limit as t ! 0+, we need the following lemma.

Lemma 2.5. Fix an integer r � 1 and consider the function

fr(x) = xr

✓
1

(1� e�2x)r
� 1

◆

defined for x > 0. Then

(1) fr(x) > 0.
(2) f 0

r(x) < 0 for su�ciently large x.
(3) fr is bounded and

R1
0 fr(x)dx < 1.

Proof. We can tell fr(x) > 0 since e�2x < 1 so 0 < 1� e�2x < 1 and hence 1
(1�e�2x)r > 1, proving (1).

To establish (2), a derivative calculation shows that

f 0
r(x) = rxr�1

✓
1

(1� e�2x)r
� 1

◆
� xr 2re�2x

(1� e�2x)r+1

=
rxr�1

(1� e�2x)r+1

⇥
1� e�2x

� (1� e�2x)r+1
� 2xe�2x

⇤

=
rxr�1

(1� e�2x)r+1e2x
⇥
e2x � 1� (1� e�2x)r+1e2x � 2x

⇤
.

Define l(x) = e2x � 1� (1� e�2x)r+1e2x � 2x. To prove (2), it su�ces to show that l(x) < 0 for su�ciently
large x. For this, let y = e�2x and note that

lim
x!1

e2x � 1� (1� e�2x)r+1e2x = lim
y!0+

1� y � (1� y)r+1

y
= lim

y!0+
�1 + (r + 1)(1� y)r = r.

Looking at the definition of l, the first three terms converge to r and the last goes to �1, so l(x) < 0 for
su�ciently large x.

To prove (3) we will show that fr(x) is bounded by a constant near 0 and bounded by an exponentially
decaying function for large x. The function fr(x) isn’t defined at x = 0, but Lemma 2.1 implies that

limx!0 fr(x) < 1 so the discontinuity at 0 is removable. This implies that fr(x) is bounded on [0, log(2)
2 ].

To bound fr(x) on [ log 2
2 ,1) we note

1

(1� e�2x)r
� 1 =

1

((e2x � 1)/e2x)r
� 1 =

(e2x)r � (e2x � 1)r

(e2x � 1)r
.

Using the formula for a di↵erence of rth powers we obtain the following expression for the numerator of the
above fraction

(e2x)r � (e2x � 1)r = (e2x � (e2x � 1))
r�1X

i=0

(e2x)i(e2x � 1)r�1�i



r�1X

i=0

(e2x)i(e2x)r�1�i = re2x(r�1).
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Hence,
1

(1� e�2x)r
� 1 

re2x(r�1)

(e2x � 1)r
.

Note e2x � 1 �
e2x

2 for x �
log(2)

2 so

1

(1� e�2x)r
� 1 

re2x(r�1)

(e2x/2)r
=

r2r

e2x
.

Applying this to fr(x) gives that when x �
log(2)

2 ,

fr(x) 
r2rxr

e2x
.

Thus fr(x) is dominated by an exponentially decaying function for su�ciently large x, so
R1
0 fr(x) dx < 1.

⇤
It will be helpful to make the following definition:

Definition 2.6. For real ↵ 6= 0, define the scaled ceiling function d·e↵ : R ! R by

dxe↵ = ↵dx/↵e.

For example, d7e3 = 3d 7
3e = 3 · 3 = 9 and d6e2 = 2d 6

2e = 2 · 3 = 6. Then we have the following:

Proposition 2.7. dxe↵ is x rounded up to the nearest integral multiple of ↵, i.e.

dxe↵ = min{n↵ : n 2 Z, n↵ � x}.

Proof.
dxe↵ = ↵min{n 2 Z : n � x/↵} = ↵min{n 2 Z : ↵n � x}

and the result follows. ⇤
The scaled ceiling function has the following properties:

(1) Fix x 2 R, ↵ > 0. Then 0  dxe↵ � x < ↵.
(2) Fix x 2 R. Then lim↵!0+dxe↵ = x.
(3) Let f : [a, b] ! R be monotonically decreasing. Fix 0 < ↵  b � a. Then for all x 2 [a, b � ↵],

f(dxe↵)  f(x).

The next few propositions will allow us to compute limt!0+ tnG1(t).

Proposition 2.8.

lim
t!0+

tn
1X

w=n�1

wn�1

✓
1

(1� e�2tw)n�1
� 1

◆
=

Z 1

0
xn�1

✓
1

(1� e�2x)n�1
� 1

◆
dx.

Proof. Manipulating the sum, we have

tn
1X

w=n�1

wn�1

✓
1

(1� e�2tw)n�1
� 1

◆
=

1X

w=n�1

tnwn�1

✓
1

(1� e�2tw)n�1
� 1

◆

=
1X

w=n�1

Z w

w�1
tndw0

e
n�1

✓
1

(1� e�2tdw0e)n�1
� 1

◆
dw0

=

Z 1

n�2
tndw0

e
n�1

✓
1

(1� e�2tdw0e)n�1
� 1

◆
dw0

=

Z 1

t(n�2)
(tdx/te)n�1

✓
1

(1� e�2tdx/te)n�1
� 1

◆
dx

=

Z 1

t(n�2)
dxen�1

t

✓
1

(1� e�2dxet)n�1
� 1

◆
dx

=

Z 1

t(n�2)
fn�1(dxet)dx.
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Fix C such that f 0
n�1(x) < 0 for x � C and fix M such that fn�1(x) < M . Then

fn�1(dxet)  M {x<C} + fn�1(x)

for all x > 0. Since the integral of the right hand side is finite, we may apply dominated convergence to see
that

lim
t!0+

1X

w=n�1

tnwn�1

✓
1

(1� e�2tw)n�1
� 1

◆
dx =

Z 1

0
xn�1

✓
1

(1� e�2x)n�1
� 1

◆
dx

which completes the proof. ⇤

The following proposition will help us compute the rest of the limits we need before we can tackle
limt!0+ tnG(t) in its entirety.

Proposition 2.9. Suppose that at(w) is a positive function of real t and integer w � 1 such that limt!0+ at(w) =
0 for each w and limt!0+

P1
w=1 at(w) = M < 1. Then

lim
t!0+

1X

w=1

at(w)

w
= 0.

Proof. Let ✏ > 0 be arbitrary and let k > 2M
✏ � 1 be an integer. Since limt!0+ at(w) = 0 for each w, there

exists some T such that for all 0 < t < T and all w  k, at(w) 
✏
2k . Thus for t < T , we have

1X

w=1

at(w)

w
=

kX

w=1

at(w)

w
+

1X

w=k+1

at(w)

w



kX

w=1

at(w) +
1

k + 1

1X

w=k+1

at(w) 
kX

w=1

at(w) +
1

k + 1

1X

w=1

at(w)



kX

w=1

✏

2k
+

M

k + 1


✏

2
+

✏

2
= ✏.

Therefore limt!0+
P1

w=1
at(w)
w = 0. ⇤

Proposition 2.10. Fix 0  k < n� 1. Then

lim
t!0+

tn
1X

w=n�1

wk

✓
1

(1� e�2tw)n�1
� 1

◆
= 0.

Proof. The observation that 0 
P1

w=n�1 t
nwk

⇣
1

(1�e�2tw)n�1 � 1
⌘

P1

w=n�1
1
w tnwn�1

⇣
1

(1�e�2tw)n�1 � 1
⌘

allows us to apply Propositions 2.9 and 2.8 and arrive at the desired conclusion. ⇤

With Propositions 2.8 and 2.10 in hand, we can move forward. We break
� w
n�1

�
into a polynomial in w,

as follows:
✓

w

n� 1

◆
=

w!

(n� 1)!(w � n+ 1)!
=

w(w � 1) · · · (w � n+ 2)

(n� 1)!
=

wn�1

(n� 1)!
+

n�2X

k=0

akw
k.

We write

lim
t!0+

tnG1(t) = lim
t!0+

tn
1X

w=n�1

✓
w

n� 1

◆✓
1

(1� e�2tw)n�1
� 1

◆

= lim
t!0+

"
tn

(n� 1)!

1X

w=n�1

wn�1

✓
1

(1� e�2tw)n�1
� 1

◆
+ tn

n�2X

k=0

ak

1X

w=n�1

wk

✓
1

(1� e�2tw)n�1
� 1

◆#

=
1

(n� 1)!

Z 1

0
xn�1

✓
1

(1� e�2x)n�1
� 1

◆
dx.(2.1)

The final equality was obtained by applying Propositions 2.8 and 2.10.
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Now we move on to G2(t). We have

G2(t) =
1X

q=1

1X

p=0

✓
n+ p� 2

p

◆✓
n+ q � 2

q � 1

◆
e�2tq(p+n�1)

=
1X

q=1

✓
n+ q � 2

q � 1

◆
e�2tq(n�1)

1X

p=0

✓
n+ p� 2

p

◆
(e�2tq)p

=
1X

q=1

✓
n+ q � 2

q � 1

◆
e�2tq(n�1)

(1� e�2tq)n�1

=
1X

q=1

✓
n+ q � 2

n� 1

◆
e�2tq(n�1)

(1� e�2tq)n�1
.

This next lemma plays a role in our analysis of G2(t) which is analogous to the role of Lemma 2.5 in our
analysis of G1(t).

Lemma 2.11. Fix integers r � 0 and s � 1, and consider the function

gr,s(x) = xr e�2xs

(1� e�2x)s

defined for x > 0. Then

(1) gr,s(x) > 0.
(2) g0r,r(x) < 0 .

(3) If r � s, gr,s(x) is bounded and
R1
0 gr,s(x)dx < 1.

(4) If r � s+ 1, limx!0 gr,s(x) = 0.

Proof. Suppose r � 0 and s � 1 are integers and that x > 0. As xr > 0, e�2xs > 0, and 1 � e�2x > 0, we
have gr,s(x) > 0 which shows (1). To prove (2) notice that we may write

gr,r(x) = xr e�2xr

(1� e�2x)r
=

xr

(e2x � 1)r
.

Since the function x/(e2x � 1) is decreasing, it follows that g0r,r(x) < 0.

For part (3), fix M 2 R such that for all x � M , e2x � 1 �
e2x

2 and (e2x)1/2 � xr. Then for x � M ,

gr,s(x) =
xr

(e2x � 1)s


xr

�
e2x

2

�s = 2s
xr

(e2x)s
 2s

(e2x)1/2

(e2x)s
=

2s

(e2x)s�1/2
.

As s � 1, the right-hand side has finite integral over [M,1) and hence
R1
M gr,s(x) dx < 1. The integral

of gr,s(x) over [0,M ] is also finite because we can extend gr,s(x) to a continuous, bounded function on this
compact interval. Adding these two parts together shows that

Z 1

0
gr,s(x) dx < 1.

It remains to show limx!0 gr,s(x) = 0 whenever r � s + 1. First notice that Lemma 2.1 can be used to
show that

lim
x!0

xr

(1� e�2x)s
= lim

x!0
xr�s lim

x!0

xs

(1� e�2x)s
= 0 · 2�n = 0.

Therefore, when r � s+ 1, we have

lim
x!0

xr e�2sx

(1� e�2x)s
= lim

x!0
e�2xs lim

x!0

xr

(1� e�2x)s
= 1 · 0 = 0

as we needed to show, this proves (4). ⇤

Now we move on to propositions which, similarly to our strategy for analyzing G1(t), allow us to break
up the binomial coe�cient in G2(t) into a polynomial and analyze the resulting sums separately.
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Proposition 2.12. Fix 0  k < n� 1. Then

lim
t!0+

tn
1X

q=1

qk
e�2tq(n�1)

(1� e�2tq)n�1
= 0.

Proof. We recognize that this expression can be rewritten in terms of gn,n�1(tq):

tn
1X

q=1

qk
e�2tq(n�1)

(1� e�2tq)n
=

1X

q=1

1

qn�k
(tq)n

e�2tq(n�1)

(1� e�2tq)n�1
=

1X

q=1

1

qn�k
gn,n�1(tq).

Since gn,n�1 is bounded and n � k � 2, the summand is dominated by some constant times 1
q2 . Therefore

we can apply dominated convergence to conclude that the limit is 0, since the summand converges pointwise
to 0 by the previous lemma. ⇤

Proposition 2.13.

lim
t!0+

tn
1X

q=1

qn�1 e�2tq(n�1)

(1� e�2tq)n�1
=

Z 1

0
xn�1 e�2x(n�1)

(1� e�2x)n�1
dx.

Proof. Write

tn
1X

q=1

qn�1 e�2tq(n�1)

(1� e�2tq)n�1
=

1X

q=1

Z q

q�1
tndq0en�1 e�2tdq0e(n�1)

(1� e�2tdq0e)n�1
dq0

=

Z 1

0
tndq0en�1 e�2tdq0e(n�1)

(1� e�2tdq0e)n�1
dq0

=

Z 1

0
(tdx/te)n�1 e�2tdx/te(n�1)

(1� e�2tdx/te)n�1
dx

=

Z 1

0
dxen�1

t
e�2dxet(n�1)

(1� e�2dxet)n�1
dx.

The integrand is exactly gn�1,n�1(dxet), and is thus dominated by gn�1,n�1 since gn�1,n�1 is a decreasing
function. Therefore we can apply dominated convergence to find that

lim
t!0+

tn
1X

q=1

qn�1 e�2tq(n�1)

(1� e�2tq)n�1
=

Z 1

0
xn�1 e�2x(n�1)

(1� e�2x)n�1
dx.

⇤

We can expand
�n+q�2

n�1

�
as

✓
n+ q � 2

n� 1

◆
=

qn�1

(n� 1)!
+

n�2X

k=0

bkq
k.

Therefore,

lim
t!0+

tnG2(t) = lim
t!0+

tn
1X

q=1

✓
n+ q � 2

n� 1

◆
e�2tq(n�1)

(1� e�2tq)n�1

= lim
t!0+

"
1

(n� 1)!
tn

1X

q=1

qn�1 e�2tq(n�1)

(1� e�2tq)n�1
+ tn

n�2X

k=0

bk

1X

q=1

qk
e�2tq(n�1)

(1� e�2tq)n�1

#

=
1

(n� 1)!

Z 1

0
xn�1 e�2x(n�1)

(1� e�2x)n�1
dx

=
1

(n� 1)!

Z 1

0
xn�1 1

(e2x � 1)n�1
dx.

Next, we put the two parts of G back together in the limit. This gives us

lim
t!0+

tnG(t) = lim
t!0+

tnG1(t) + lim
t!0+

tnG2(t)
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=
1

(n� 1)!

Z 1

0
xn�1

✓
1

(1� e�2x)n�1
� 1

◆
dx+

Z 1

0
xn�1 1

(e2x � 1)n�1
dx

�

=
1

(n� 1)!

Z 1

0
xn�1

✓
1

(1� e�2x)n�1
� 1 +

1

(e2x � 1)n�1

◆
dx.

We now have an expression for limt!0+ G(t) in terms of an integral so we could have chosen to stop here.
Instead, we will press on and apply a few more tricks in order to arrive at the expression in Theorem 1.1.
One reason we prefer the expression in Theorem 1.1 is its similarity to a closely related result in [ST84].

To continue on our path of manipulating the combined integral, we apply integration by parts with

u =
1

(1� e�2x)n�1
� 1 +

1

(e2x � 1)n�1
,

dv = xn�1dx,

du = �(n� 1)

✓
2e�2x

(1� e�2x)n
+

2e2x

(e2x � 1)n

◆
dx = �2(n� 1)

e(n�2)x + e�(n�2)x

(ex � e�x)n
dx = �

n� 1

2n�2

cosh((n� 2)x)

sinh(x)n
dx,

and v = n�1xn. This gives us

lim
t!0+

tnG(t) =
1

n!
xn

✓
1

(1� e�2x)n�1
� 1 +

1

(e2x � 1)n�1

◆ ����
1

0

+
n� 1

2n�2n!

Z 1

0
xn cosh((n� 2)x)

sinh(x)n
dx

=
n� 1

2n�2n!

Z 1

0

xn cosh((n� 2)x)

sinh(x)n
dx.

The boundary term clearly vanishes at 1 because xn
⇣

1
(1�e�2x)n�1 � 1

⌘
and xn

(e2x�1)n�1 each vanish at 1.

To see that it vanishes at 0, apply L’Hopital’s rule to the quotients x
1�e�2x and x

e2x�1 . Since the integrand
is even, we further have

lim
t!0+

tnG(t) =
n� 1

2n�2n!

Z 1

0

xn cosh((n� 2)x)

sinh(x)n
dx

=
n� 1

2n�1n!

Z 1

�1

xn cosh((n� 2)x)

sinh(x)n
dx

=
n� 1

2n�2n!

✓Z 1

�1

xn

sinh(x)n
ex(n�2)dx+

Z 1

�1

xn

sinh(x)n
e�x(n�2)dx

◆
.

As x
sinh(x) is an even function, the value of the first integral is unchanged if we change the ex(n�2) in the

integrand to e�x(n�2). Thus,

lim
t!0+

tnG(t) =
n� 1

2n�2n!

✓Z 1

�1

xn

sinh(x)n
e�x(n�2)dx+

Z 1

�1

xn

sinh(x)n
e�x(n�2)dx

◆

=
n� 1

2n�1n!

Z 1

�1

✓
x

sinh(x)

◆n

e�x(n�2)dx

=
2⇡n

(n� 1)!
·
n� 1

(2⇡)nn

Z 1

�1

✓
x

sinh(x)

◆n

e�x(n�2)dx

= vol(S2n�1)
n� 1

(2⇡)nn

Z 1

�1

✓
x

sinh(x)

◆n

e�x(n�2)dx.

Therefore, by the Tauberian Theorem due to Karamata, we obtain the following limit

lim
�!1

N(�)

�n
= vol(S2n�1)

(n� 1)

n(2⇡)n�(n+ 1)

Z 1

�1

✓
x

sinh(x)

◆n

e�x(n�2)dx,

and complete the proof of Theorem 1.1.

3. The Formula for Functions versus the Formula for Forms

In [ST84], Stanton and Tartako↵ prove the following formula, reminiscent of Weyl’s law, for the Kohn
Laplacian on CR manifolds of hypersurface type.
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Theorem 3.1 ([ST84, Theorem 6.1]). Let M be a CR submanifold of Cn, n � 3. Let N(�) be the eigenvalue
counting function of ⇤b on M acting on (p, q) forms, 0  p < n, 0 < q < n�1. Then we have the asymptotic
equivalance

lim
�!1

N(�)

�n
= cnvol(M),

where

cn =

✓
n� 1

p

◆✓
n� 1

q

◆
1

(2⇡)n�(n+ 1)

Z 1

�1

⇣ ⌧

sinh ⌧

⌘n�1
e�(n�1�2q)⌧ d⌧,

and the Kohn Laplacian and the volume of M are defined with respect to a Levi metric.

For spheres embedded in Cn, the induced metric is a Levi metric (see Definition 1.5 and the following
remark in [ST84]). However, as stated, this only applies to (p, q) forms with q � 1. We analyze how this
expression relates to Theorem 1.1. Towards this end, we define the function

f(q) =

✓
n� 1

q

◆
vol(S2n�1)

(2⇡)n�(n+ 1)

Z 1

�1

⇣ ⌧

sinh ⌧

⌘n�1
e�(n�1�2q)⌧ d⌧,

which for q = 1, . . . , n� 2 is the leading coe�cient on �n for the asymptotic growth of N(�), the eigenvalue
counting function of ⇤b on M acting on (0, q) forms.

The following statement shows that this function is closely related to our formula.

Theorem 3.2. The definition of f given above is convergent for complex q satisfying 0 < <(q) < n � 1.
Further, f is holomorphic on this strip, and has an analytic continuation to a meromorphic function on the
strip �1 < <(q) < n� 1 whose only pole is at q = 0. Finally, the Laurent expansion of f about 0 is

f(q) = an/q
n + vol(S2n�1)

(n� 1)

n(2⇡)n�(n+ 1)

Z 1

�1

✓
x

sinh(x)

◆n

e�x(n�2)dx,

where an 6= 0.

In other words, the constant term in the Laurent expansion of f about 0 is the expression from Theorem
1.1.

Proof. For notational convenience let m = n� 1. Then we may write f as

f(q) =

✓
m

q

◆
vol(S2n�1)

(2⇡)n�(n+ 1)

Z 1

�1

⇣ ⌧

sinh ⌧

⌘m
e�(m�2q)⌧ d⌧.

We first prove that the integrand is integrable (L1) whenever 0 < <(q) < m. For this, choose C > 0 and
↵ > 0 so that whenever |x| � C, | sinh(x)| � ↵e|x|. Therefore for |x| � C we have

x

sinh(x)
=

����
x

sinh(x)

���� 
|x|

↵e|x|
.

Since x/ sinh(x) has a removable singularity at 0, it is continuous and thus bounded on [�C,C]. Hence
xm/ sinh(x)m is bounded on [�C,C] as well, so we can choose D so that xm/ sinh(x)m  D whenever
|x|  C. Thus, we have the bound

xm

sinh(x)m


|x|m

↵mem|x| |x|�C +D |x|C

for all x 2 R.
Therefore, we may write

Z 1

�1

���
⇣ ⌧

sinh ⌧

⌘m
e�(m�2q)⌧

��� d⌧ =

Z 1

�1

⇣ ⌧

sinh ⌧

⌘m
e�(m�2<(q))⌧ d⌧

 ↵�m

Z C

�1
|⌧ |me�m|⌧ |�(m�2<(q))⌧ d⌧ + ↵�m

Z 1

C
⌧me�m⌧�(m�2<(q))⌧ d⌧ +

Z C

�C
Dd⌧

= ↵�m

Z 1

C
⌧me�m⌧+(m�2<(q))⌧ d⌧ + ↵�m

Z 1

C
⌧me�m⌧�(m�2<(q))⌧ d⌧ + 2CD

= ↵�m

Z 1

C
⌧me�2⌧<(q) d⌧ + ↵�m

Z 1

C
⌧me�2⌧(m�<(q)) d⌧ + 2CD.
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A repeated integration by parts shows that these integrals are finite if 0 < <(q) < m. To define the binomial
coe�cient, use the gamma function, i.e.

✓
m

q

◆
=

m!

�(q + 1)�(m� q + 1)
,

which is defined since � has no zeros. Thus, f is well defined on its domain of definition.
Now, rewrite f as follows:

f(q) =

✓
m

q

◆
vol(S2n�1)

(2⇡)n�(n+ 1)

Z 1

�1

⇣ ⌧

sinh ⌧

⌘m
e�(m�2q)⌧ d⌧

=
1

2

✓
m

q

◆
vol(S2n�1)

(2⇡)n�(n+ 1)

✓Z 1

�1

⇣ ⌧

sinh ⌧

⌘m
e�(m�2q)⌧ d⌧ +

Z 1

�1

⇣ ⌧

sinh ⌧

⌘m
e�(m�2q)⌧ d⌧

◆
.

As x
sinh(x) is an even function, the value of the second integral is unchanged if we change the e�(m�2q)⌧ in

the integrand to e(m�2q)⌧ . Therefore,

f(q) =
1

2

✓
m

q

◆
vol(S2n�1)

(2⇡)n�(n+ 1)

✓Z 1

�1

⇣ ⌧

sinh ⌧

⌘m
e�(m�2q)⌧ d⌧ +

Z 1

�1

⇣ ⌧

sinh ⌧

⌘m
e(m�2q)⌧ d⌧

◆

=

✓
m

q

◆
vol(S2n�1)

(2⇡)n�(n+ 1)

Z 1

�1

⇣ ⌧

sinh ⌧

⌘m
cosh((m� 2q)⌧) d⌧

= 2

✓
m

q

◆
vol(S2n�1)

(2⇡)n�(n+ 1)

Z 1

0

⇣ ⌧

sinh ⌧

⌘m
cosh((m� 2q)⌧) d⌧

where the last step follows since the integrand is even. Now, define the function g as follows:

g(q) = 2

✓
m

q

◆
vol(S2n�1)

(2⇡)n�(n+ 1)

Z 1

0
⌧m
✓
cosh((m� 2q)⌧))

(sinh ⌧)m
� 2m�1e�2q⌧

◆
d⌧.

We claim that g is holomorphic on the strip �1 < <(q) < m. Assuming this for now, consider

f(q)� g(q) = 2m
✓
m

q

◆
vol(S2n�1)

(2⇡)n�(n+ 1)

Z 1

0
⌧me�2q⌧ d⌧

defined for 0 < <(q) < m. This is easy to evaluate explicitly with the substitution u = 2q⌧ :
Z 1

0
⌧me�2q⌧ d⌧ =

1

(2q)m

Z 1

0
ume�u du =

�(m+ 1)

(2q)m

so

f(q)� g(q) =

✓
m

q

◆
vol(S2n�1)

(2⇡)n(m+ 1)

1

qm+1
=

✓
n� 1

q

◆
vol(S2n�1)

n(2⇡)n
1

qn
.

This is meromorphic in q on the whole complex plane. Thus, the function g + (f � g) is meromorphic in q
for �1 < <(q) < n � 1, and equal to f if 0 < <(q) < n � 1. Since f converges on its domain of definition,
f is holomorphic in q, and g + (f � g) is the desired continuation. To complete the proof, we need to show
that g(0) is our formula. We have

g(0) = 2
vol(S2n�1)

(2⇡)n�(n+ 1)

Z 1

0
⌧m
✓
cosh(m⌧)

(sinh ⌧)m
� 2m�1

◆
d⌧

= 2
2⇡n/�(n)

(2⇡)n�(n+ 1)

Z 1

0
⌧m
✓

em⌧ + e�m⌧

2m�1(e⌧ � e�⌧ )m
� 2m�1

◆
d⌧

=
1

�(n)�(n+ 1)

Z 1

0
⌧m
✓
em⌧ + e�m⌧

(e⌧ � e�⌧ )m
� 1

◆
d⌧

=
1

(n� 1)!�(n+ 1)

Z 1

0
⌧m
✓

em⌧

(e⌧ � e�⌧ )m
+

e�m⌧

(e⌧ � e�⌧ )m
� 1

◆
d⌧

=
1

(n� 1)!�(n+ 1)

Z 1

0
⌧m
✓

1

(1� e�2⌧ )m
+

1

(e2⌧ � 1)m
� 1

◆
d⌧

=
1

�(n+ 1)
lim
t!0

tnG(t)
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= lim
�!1

N(�)

�n

where we have used the expression appearing in the discussion after Proposition 2.13, and Karamata’s
Theorem. Thus we have our theorem, modulo showing that g is holomorphic for �1 < <(q) < m. We move
on to this now. It clearly su�ces to show that the expression

h(q) =

Z 1

0
⌧m
✓
cosh((m� 2q)⌧))

(sinh ⌧)m
� 2m�1e�2q⌧

◆
d⌧

is holomorphic for �1 < <(q) < m.
As a stepping stone towards proving that h(q) is holomorphic, we will first prove that for � > 0,

�(�) =

Z 1

0
e�2�⌧

✓
⌧

1� e�2⌧

◆m

d⌧

is convergent and continuous. By di↵erentiating with respect to �, we see that the integrand is motonically
increasing, for each ⌧ , as � ! 0. Fix some �0 > 0. Now, for ⌧ near 0, the integrand is bounded since it has
a limit at 0. For large ⌧ , it is bounded by a constant times e�2�⌧ ⌧m, which is integrable on [0,1). To see
continuity at �0, fix some �1 with 0 < �1 < �0, and note that the integrand at �1 dominates the integrand
at � for all � > �1. Continuity of � at �0 follows then by dominated convergence. Thus, we have shown
that � is convergent and continuous for � > 0.

Next, we compute
Z 1

0

����⌧
m

✓
cosh((m� 2q)⌧))

(sinh ⌧)m
� 2m�1e�2q⌧

◆���� d⌧ = 2m�1

Z 1

0
⌧m
����
e(m�2q)⌧ + e�(m�2q)⌧

(e⌧ � e�⌧ )m
� e�2q⌧

���� d⌧

 2m�1

Z 1

0
⌧m
����
e�(m�2q)⌧

(e⌧ � e�⌧ )m

���� d⌧ + 2m�1

Z 1

0
⌧m
����

e(m�2q)⌧

(e⌧ � e�⌧ )m
� e�2q⌧

���� d⌧.

To analyze the first term, we have
Z 1

0
⌧m
����
e�(m�2q)⌧

(e⌧ � e�⌧ )m

���� d⌧ =

Z 1

0
⌧m

e�(m�2<(q))⌧

(e⌧ � e�⌧ )m
d⌧ =

Z 1

0
⌧m

e�(2m�2<(q))⌧

(1� e�2⌧ )m
d⌧ = �(m�<(q)).

For the second term, we have
Z 1

0
⌧m
����

e(m�2q)⌧

(e⌧ � e�⌧ )m
� e�2q⌧

���� d⌧ =

Z 1

0
⌧m
����e

�2q⌧

✓
em⌧

(e⌧ � e�⌧ )m
� 1

◆���� d⌧ =

Z 1

0
⌧me�2<(q)⌧

����
1

(1� e�2⌧ )m
� 1

���� d⌧.

We bound the latter expression in the integrand by
����

1

(1� e�2⌧ )m
� 1

���� =
����
1� (1� e�2⌧ )m

(1� e�2⌧ )m

���� =

�����
1�

Pm
k=0(�1)k

�m
k

�
e�2k⌧

(1� e�2⌧ )m

����� =

�����
�
Pm

k=1(�1)k
�m
k

�
e�2k⌧

(1� e�2⌧ )m

�����



Pm
k=1

�m
k

�
e�2k⌧

(1� e�2⌧ )m
= e�2⌧

Pm
k=1

�m
k

�
e�2(k�1)⌧

(1� e�2⌧ )m
 e�2⌧

Pm
k=1

�m
k

�

(1� e�2⌧ )m
 e�2⌧ 2m

(1� e�2⌧ )m
.

Thus for the second term we have
Z 1

0
⌧m
����

e(m�2q)⌧

(e⌧ � e�⌧ )m
� e�2q⌧

���� d⌧ 

Z 1

0
⌧me�2<(q)⌧e�2⌧ 2m

(1� e�2⌧ )m
= 2m�(<(q) + 1).

In total we have shown thatZ 1

0

����⌧
m

✓
cosh((m� 2q)⌧))

(sinh ⌧)m
� 2m�1e�2q⌧

◆���� d⌧  2m�1�(m�<(q)) + 22m�1�(<(q) + 1).

Using this bound, we now show that h is holomorphic via Morera’s Theorem. Fix some triangle � ⇢ {q 2

C : �1 < <(q) < m}. Parameterize � by arc length with the piecewise di↵erentiable curve �(t), a  t  b
(so |�0(t)| = 1) for all t). Then

Z

�
h(q) dq =

Z b

a

Z 1

0
h(�(t))�0(t) d⌧ dt.

The estimate above,
Z 1

0

����⌧
m

✓
cosh((m� 2�(t))⌧))

(sinh ⌧)m
� 2m�1e�2�(t)⌧

◆
�0(t)

���� d⌧  2m�1�(m�<(�(t))) + 22m�1�(<(�(t)) + 1),
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is uniformly bounded in t by the compactness of � and the continuity of the upper bound in t, so

Z b

a

Z 1

0

����⌧
m

✓
cosh((m� 2�(t))⌧))

(sinh ⌧)m
� 2m�1e�2�(t)⌧

◆
�0(t)

���� d⌧ dt < 1.

Therefore we may apply Fubini’s Theorem to see that

Z b

a

Z 1

0
⌧m
✓
cosh((m� 2�(t))⌧))

(sinh ⌧)m
� 2m�1e�2�(t)⌧

◆
�0(t) d⌧ dt =

Z 1

0

Z b

a
⌧m
✓
cosh((m� 2�(t))⌧))

(sinh ⌧)m
� 2m�1e�2�(t)⌧

◆
�0(t) dt d⌧ =

Z 1

0
0 d⌧ = 0

by Cauchy’s Theorem. This shows (by Morera’s Theorem) that

h(q) =

Z 1

0
⌧m
✓
cosh((m� 2q)⌧))

(sinh ⌧)m
� 2m�1e�2q⌧

◆
d⌧

is a holomorphic function of q for �1 < <(q) < m, and thus g(q) is holomorphic for �1 < <(q) < m,
completing the proof. ⇤
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