2021 International Conference on Computer Communications and Networks (ICCCN) | 978-1-6654-1278-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICCCN52240.2021.9522156

QoS-Aware Placement of Deep Learning Services
on the Edge with Multiple Service Implementations

Nathaniel Hudson®, Hana Khamfroush®, and Daniel E. Lucani’
“University of Kentucky, Lexington, KY, USA. Email: nathaniel.hudson@uky.edu, khamfroush@cs.uky.edu
TAarhus University, Aarhus, Denmark. Email: daniel.lucani@eng.au.dk

Abstract—Mobile edge computing pushes computationally-
intensive services closer to the user to provide reduced delay
due to physical proximity. This has led many to consider
deploying deep learning models on the edge — commonly known
as edge intelligence (EI). EI services can have many model
implementations that provide different QoS. For instance, one
model can perform inference faster than another (thus reducing
latency) while achieving less accuracy when evaluated. In this
paper, we study joint service placement and model scheduling of
EI services with the goal to maximize Quality-of-Servcice (QoS)
for end users where EI services have multiple implementations to
serve user requests, each with varying costs and QoS benefits. We
cast the problem as an integer linear program and prove that it is
NP-hard. We then prove the objective is equivalent to maximizing
a monotone increasing, submodular set function and thus can
be solved greedily while maintaining a (1 — 1/¢)-approximation
guarantee. We then propose two greedy algorithms: one that
theoretically guarantees this approximation and another that
empirically matches its performance with greater efficiency. Fi-
nally, we thoroughly evaluate the proposed algorithm for making
placement and scheduling decisions in both synthetic and real-
world scenarios against the optimal solution and some baselines.
In the real-world case, we consider real machine learning models
using the ImageNet 2012 data-set for requests. Qur numerical
experiments empirically show that our more efficient greedy
algorithm is able to approximate the optimal solution with a
0.904 approximation on average, while the next closest baseline
achieves a (0.607 approximation on average.

Index Terms—Service Placement, Edge Intelligence, Edge
Computing, Deep Learning, Optimization, Quality-of-Service

I. INTRODUCTION

The growth of the Internet has given birth to the advent
of the Internet-of-Things (IoT). This ecosystem consists of
countless different devices, or things (e.g., sensors, home ap-
pliances), that can seamlessly communicate with one another.
More importantly, these devices also serve to generate/collect
data. In order to acquire meaningful information from these
data, they must first be processed. The scale of the IoT poses a
problem for processing these data in a timely fashion through
a centralized approach (e.g., cloud computing). As such, MEC
is a promising framework to approach this problem [1]-[4].

The MEC framework considers the deployment of edge
clouds (or edge servers) that provide communication, com-
pute, and storage resources closer to the end user devices
to ameliorate latency incurred from physical distance. This
physical proximity allows for more immediate and timely data
processing for nearby devices in IoT. However, MEC is not
without challenges. The hardware resources available at an

978-1-6654-1278-0/21/$31.00 ©2021 IEEE

DenseNet
GooglLeNet
ResNet
SqueezeNet

Central Cloud Layer

Placed image classification
models on this edge cloud.

DenseNet .
SqueezeNet l.

Response provided
by DenseNet.

l. l. Edge Cloud Layer

End User Layer

Request: Image
classification!

Fig. 1: 3-tier MEC architecture where an edge cloud has two
image classification models to serve requests for that service.

individual edge cloud pales in comparison to that available at
the far away central cloud server. As such, decisions related to
how these resources are spent must be optimized. Regardless,
MEC remains a promising framework for performing timely
data processing for IoT devices, such as smart sensors.

The popularity of machine learning (ML) for performing
the task of data processing has skyrocketed in recent years.
ML has been shown to be capable of achieving remarkable
accuracy for complex tasks (e.g., image classification). Due to
the flexibility and performance of ML technologies, deploying
such models on the edge to process IoT data is promising.
Thus, the notion of edge intelligence (EI) has gained promi-
nence. A notable feature of EI services, such as image clas-
sification, is that several different EI architectures (i.e., deep
neural networks) can be implemented to perform inference
for some input for a service. These different architectures
can have varying trade-offs in terms of the time they take to
perform inference, the size of input data they require, and their
associated accuracy. Given these observations, in this work, we
adapt the well-studied problem of service placement in MEC
to consider EI services with different model implementations.
Most notably, our work aims to maximize the Quality-of-
Service (QoS) provided by the edge when EI services can
have multiple implementations to serve user requests.

To the best of our knowledge, this is the first EI service
placement work that considers each service to have multiple
implementations. We summarize our contributions as follows:

o Introduce the NP-hard Placement of Intelligent Edge

Services (PIES) problem for optimal placement and
scheduling of EI services with multiple implementations
to maximize QoS provided by the edge.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 15:43:03 UTC from IEEE Xplore. Restrictions apply.

o Propose two greedy algorithms: one with a (1 — 1/e)-
approximation guarantee and another more -efficient
greedy algorithm that empirically matches this approx-
imation algorithm with much greater efficiency.

e Our empirical results show that both greedy algorithms
outperform their minimal approximation guarantee and
each achieve an approximation of roughly 0.9 on average.

II. RELATED WORKS

Service Placement. Deciding which services to place on
edge clouds in MEC is commonly known as the service place-
ment problem. Many works study the problem with the goal
to optimize resource utilization, energy consumption [5], [6],
and Quality-of-Service (QoS) [7], [8]. Some works consider
a static placement decision where the placement decision is
made in a single shot [9], [10]. Other works focus on dynamic
placement where placement decisions are made over some
timespan [11], [12]. The case where edge clouds can share
their resources with one another to collaboratively serve user
requests has been studied by He et al. in [13]. Mobile end users
have encouraged research studying placement with service
migration, where a service processing a request migrates
between edge clouds [14]. For a recent and comprehensive
survey on service placement, please refer to [15]. Quality-
of-Service (QoS) is very domain specific. Gao et al. in [7]
study maximizing QoS, defined as a function of latency,
through a joint decision problem for both service placement
and network selection where users can be served by more
than one edge cloud. Skarlat et al. define FSPP, a QoS-aware
service placement problem, as an ILP where QoS is defined
as a function of application deadlines — using the Gurobi
solver to provide the optimal solution [16]. Yousefpour et al.
in [17] propose a dynamic fog computing framework, called
FogPlan, for dynamic placement and release of services on fog
nodes in IoT infrastructure. They consider QoS-aware service
placement where QoS is considered exclusively w.r.t. delay
latency and user’s delay tolerance. Wang et al. in [5] study
a similar problem that focuses on the placement of virtual
machines for software-defined data centers to maximize energy
efficiency. An application placement policy using a fuzzy
logic-based approach is proposed by Mahmud et al. in [8] that
maximizes QoE. Farhadi et al. in [18] study service placement
and request scheduling on MEC systems for data-intensive
applications. They pose the problem of service placement
as a set optimization problem and provide an algorithm that
demonstrates an approximation bound on optimal solutions.

Edge Intelligence. The advent of pushing machine learning
services to the edge led to the established field of edge intelli-
gence (EI) [19]. Due to the limited resource capacities of MEC
environments, a central focus of EI is the design of models that
are less costly in terms of resources to run [20]. One proposed
solution is to simply prune the elements comprising the deep
neural network for the EI service (e.g., remove the number
of neurons/units or entire layers) [21]-[23]. Another proposed
idea is to consider a EI model’s architecture being split across
different tiers of the MEC architecture (e.g., one half is run on

the edge and the other on the central cloud) [24]. Other works
have studied optimizing the QoS provided by deep learning
EI models on the edge. Zhao et al. in [25] study the trade-
off between accuracy and latency for offloading decisions
regarding deep learning services for provided optimal QoS
on the edge through compression techniques. Hosseinzadeh
et al. in [26] study the related problem of offloading and
request scheduling in edge systems to maximize QoS for deep
learning models under the assumption that placement of these
models has been done a priori. There are few works that have
formally studied the service placement problem specifically for
EI models. Recently in 2021, Zehong, Bi, and Zhang study the
problem of optimally placing EI services with the objective of
optimizing energy consumption and completion time [27].

Our work departs from the literature in that we focus on
EI service placement where each service can have multiple
implementations. To the best of our knowledge, this is the
first work to do so.

III. SYSTEM MODEL
A. System Architecture Definition

We consider a 3-tier MEC architecture consisting of a
central cloud, edge clouds, and end users (see Figure 1). The
central cloud hosts all model implementations for each service
in the environment. However, the objective of this work is to
maximize expected QoS provided by the edge clouds and thus
we do not closely consider the central cloud. For this work, we
focus on three aspects of this environment: edge clouds, end
user requests, and available EI service models. For simplicity,
we consider requests processed by the cloud to be dropped.

Edge Clouds. We denote the set of edge clouds £ =
{1,--- ,E} where E is the number of edge clouds. We
consider edge clouds to be deployed computational devices
that are associated with a wireless access point to connect to
users. Each edge cloud is equipped with hardware resources
to process the requests provided by end users. Specifically, we
consider each edge cloud e € £ to have resource capacities
K., W, and R, for communication, computation, and storage
capacities, respectively. For simplicity, we do not consider the
possibility of edge clouds collaborating to serve user requests.
Thus, either a user’s request is served by the user’s covering
edge cloud or is offloaded to the central cloud (dropped).

User Requests. We denote the set of user requests as
U = {1,---,U} where U is the number of user requests.
For simplicity, we consider each user to make a single service
request. For users that request multiple services, we represent
this as separate user requests altogether. Each user is covered
by some edge cloud, which will process their service request.
We denote the edge cloud covering user u by e,,. Additionally,
we denote the set of users an edge cloud e covers by
U. = {u €U : e, = e}. The service some user u requests is
denoted by s,,. When submitting a request, users also provide
thresholds for accuracy and delay inform the MEC system
for how to make decisions w.r.t. QoS. The accuracy threshold
provided by user u is denoted by v, € [0, 1]; the delay thresh-
old provided by user w is denoted by &, € [0, dmax|, Where

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 15:43:03 UTC from IEEE Xplore. Restrictions apply.

Omax represents the maximum possible delay. These thresholds
are used to prioritize the needs of end users. For instance,
some applications that use deep learning are more sensitive
to inaccurate answers and others are more time-sensitive. For
instance, a self-driving vehicle that uses object detection to
detect nearby pedestrians would be more accuracy-sensitive
and delay-sensitive than a game on a smartphone.

Service Models. We consider a set of services that are
available for users to request, denoted by S = {1,---,S}
where S is the number of available services. We assume that
there is at least 1 implementation for each service s € S.
However, we also allow for EI services to be implemented by
several different machine learning architectures. For brevity,
we refer to a single service implementation as a ‘“‘service
model” for short. The set of implemented service models for
service s is denoted by Mg = {1,--- ,m,} where mgs > 1
is the number of models implemented for service s. For
simplicity, we also denote the set of all individual implemented
service models by SM = {(s,m) : Vs € S,m € M,}. Each
service model (s,m) € SM is associated with an accuracy
metric Ay, € [0,1]. We assume this value is provided by
evaluation using some test data-set (as is typical in machine
learning). We denote the expected delay for performing service
model (s,m) for user u by Dgy,(u) — this is defined
more explicitly in §III-B2. Finally, we denote communica-
tion, computation, and storage costs for each service model
(s,m) € SM by kg, Wsm, and 74, respectively.

B. Quality-of-Service (QoS) Definition

We consider QoS for EI models to be comprised of two
components: provided model accuracy and incurred delay. As
mentioned earlier in §1II-A, each user request submitted to the
system includes thresholds for requested minimum accuracy,
vy, and requested maximum delay, 6,. As such, we use
these threshold values to compute the expected QoS a service
model (s,m) can provide to user u. The formal definition is
provided below in Eq. (1),

N {Q[dsm(u) +dsm(u)] if s=s, 0

u,s,m) = .
@l) 0 otherwise

where Ggm(u) and dg,(u) represent how much service
model (s,m) satisfies user u’s accuracy and delay thresholds,
respectively. The summation of these two terms is multiplied
by 1/2 because the maximum possible values for both G, (+)
and dg,,(-) is 1.0, thus normalizing the range to Q(-) € [0, 1].

1) Accuracy Satisfaction: As stated, each user submits a
minimum accuracy threshold, «,, € [0, 1], which indicates the
amount of accuracy needed to satisfy them. This accuracy
of a service model, A,,,, is a metric retrieved from model
evaluation (as is standard with machine learning models). We
define this as a nonlinear function in Eq. (2) below,

i >
() = o 2 00)
— Ag)) otherwise

where the first case represents when a user’s accuracy request
has been met and the second case provides reduced satisfaction
based on the difference between user-requested accuracy and
the evaluated accuracy for service model (s, m).

2) Delay Satisfaction: Similarly, each user submits a maxi-
mum delay threshold, §,, € [0, d;nax], to indicate the amount of
accuracy they are willing to tolerate. If they receive a response
for their request within ., time units, then they are satisfied;
otherwise, their satisfaction will degrade. The formal definition
is provided below in Eq. (3),

dA 1 if Dsm(u) < 5u
om (1) = max (0, 1- 7135"5(“)75“) otherwise

3)
where Dy, (u) is the expected delay from processing user u’s
request using service model (s, m). This is defined below in
Eq. (4) as the sum of two terms of the transmission delay,
Dtran(.), and the computation delay, D™P(.). See below
for the formal definition:

Dy (u) = D™ (u) + DG (u).)

The transmission delay is a function of the communication
cost of service model (s, m) and the communication capacity
of user u’s covering edge cloud, e,. Additionally, the edge
cloud’s bandwidth is evenly shared across all of the users it
covers — see Eq. (5),

ksm ksm ‘Z/[e

tran _ _ 'u.‘
Pt R] T R ©

where kg, is the communication cost for service model
(s, m). Similarly, computation delay is a function of the com-
putation cost of service model (s,m) and user u’s covering
edge cloud, e,, and its computation resources — see Eq. (6),

Wsm, |ue
= w 6
W, (6)

wsm

T We, /e,

D ()

where ws,, is the computation cost for service model (s, m).
We assume that an edge cloud’s computation capacity is evenly
shared across its covered users.

IV. PROBLEM DEFINITION

Given the system model, we now define the Placement for
Intelligent Edge Services (PIES) problem. PIES performs ser-
vice placement for EI models with multiple implementations
with the goal of maximizing QoS, defined in Eq. (1). The
PIES problem also decides which placed service model will
serve a user’s request if there are more implementations for
a requested service available. For instance, given each user u
makes a request for service s,, if u’s covering edge cloud e,
has had more than 1 model of service s, placed on it, then the
PIES problem will choose which model processes u’s request.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 15:43:03 UTC from IEEE Xplore. Restrictions apply.

A. PIES Formulation

The PIES problem is defined as an integer linear pro-
gram (ILP) and consists of two types of decisions: (i) model
placement and (ii) model scheduling. For the former, we con-
sider a binary decision variable X = (25")veeg, ses,mem, = 1
if service model (s, m) is placed on edge cloud e, 0 otherwise.
For the latter, we consider another binary decision variable y =
(Y)Wuett;mem,, = 1 if user u’s service request is served
by its covering edge cloud e, with service model (s,,m), 0
otherwise. We formally define the PIES problem below:

max Z Z Yu Q(u, 8y, m) @)

ueU meMs,,
s.t. Z Y <1 YuelU (Ta)

meMs,
Z Z 25 em < Re Vee & (7b)
SES mEM,
yzl < mzzm Yu € Z/I,m S Msu (7c)
zg™ €40,1} Ve € &, (s,m) € SM (7d)
ya € 40,1} YueU,me M, (Te)

The objective function is defined in Eq. (7) and maximizes
the expected QoS provided by the edge clouds to all users.
Constraint (7a) ensures that no more than 1 model is used
to process a user’s request. Constraint (7b) guarantees that
all edge clouds’ storage capacities are not exceeded by the
summation of the storage costs of their placed service models.
Constraint (7c) ensures that users can only be served if their
covering edge cloud has placed at least 1 implementation
of their requested service. Finally, constraints (7d) and (7e)
defines x and y as binary decision variables.

B. PIES Problem Complexity & Properties

Next, we provide proofs related to the hardness of the PIES
problem, as well as theoretical properties that can be used to
provide approximation guarantees for algorithm design.

Theorem 1. The service model placement sub-problem of the
PIES problem is NP-hard.

Proof. We prove Theorem 1 using a reduction from the
0/1 Knapsack problem, which is one of Karp’s 21 classical
problems proven to be NP-complete [28]. To review, the
0/1 Knapsack problem considers 1,--- ,n items with each
item having a weight cost ¢; and a value v;, as well as
a maximum capacity C' for the knapsack. The problem’s
objective is to maximize Y ., v;x; subjectto > ., w;z; < C
and z; € {0,1}. Here, z; = 1 if and only if the i*" item is
selected to be placed in the knapsack.

We can reduce the 0/1 Knapsack problem to the PIES
problem as follows. Suppose that there are |S| = n available
services in the MEC system and only 1 model per service,
ie, IMs] = 1 (Vs € §). Each service i has v; users
requesting it — meaning there are || = Y., v; users in
total. Suppose there is || = 1 edge cloud in the MEC system
with storage capacity R; = (C, communication capacity
K1 = o0, and computation capacity W7 = oo. Let all users

be covered by this 1 edge cloud, such that e, = 1 (Vu € U).
Let the storage costs associated with each service model be
rs1 = ¢s (1 < s < n) and the communication/computation
costs kg1 = L, wsy = 1 (1 < s < n). We assume that
the QoS requirements of all users are relaxed, meaning that
a, = 0.0,0, = Omax (Yu € U). Then we claim that the
0/1 Knapsack problem is feasible if and only if we can
maximize expected QoS across all users, i.e., the optimal
decision variable of the constructed PIES instance equals
2l = x;. First, given the optimal solution to the 0/1 Knapsack
problem, placing the services corresponding to the decisions
in x; on the single edge cloud in our constructed instance
gives the optimal solution to the PIES problem that maximizes
QoS by maximizing the number of user requests served on
the edge. Moreover, given an optimal solution to the PIES
problem that maximizes QoS across all users, placing the
corresponding items in the knapsack gives an optimal solution
to the 0/1 Knapsack problem. Given the decision problem of
the 0/1 Knapsack problem is NP-complete, it follows that the
PIES problem is NP-hard. This concludes the proof. O

Theorem 2. Given a service model placement, x, the optimal
solution to the PIES model scheduling sub-problem is given
by a greedy algorithm.

Proof. For brevity, we do not include the complete proof. In
short, Theorem 2 can be proved by constructing an auxiliary,
undirected multigraph to represent the scheduling sub-problem
space. The optimal solution can then be produced by finding
a maximum spanning tree through a greedy algorithm (e.g.,
Kruskal’s [29]). A complete proof, with a description of the
graph construction steps, can be found in [30]. O

Proving Submodularity. In order to provide an approxima-
tion guarantee for the NP-hard PIES placement sub-problem,
we prove the PIES service placement sub-problem is maxi-
mizing a monotone submodular set function, we rewrite our
problem as a set optimization. Let P(x) £ {(e, (s,m)) €
E X SM : zf™ = 1} denote the set of service model
placements according to decision variable x, where (e, (s,m))
means service model (s,m) is placed on edge cloud e. Next,
let o(P(x)) denote the optimal objective value of PIES for
a given x. By writing P(x) as P, we can rewrite the PIES
placement sub-problem as:

max o(P) 8)

s.t. Z Tem < Re YVeec & (8a)
(e,(s,m))ePNP,

PCEXSM (8b)

where P, £ {e} x {(s,m) € SM : ry, < R.} is the set of
all possible single service model placements at edge cloud e.
From here, we observe the following:

e Matroid constraint: Let I be the collection of all P

satisfying constraints (8a), (8b). It is then easy to verify
that M = (£ xSM, Z) is a matroid. This is known as the

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 15:43:03 UTC from IEEE Xplore. Restrictions apply.

partition matroid as {P,}.c¢ is a partition of the ground
set (€ x SM).

o Monotone submodular objective function: We show that
the objective function (8) has the following properties.

Theorem 3. Function o(P) is monotone increasing and
submodular for any feasible P.

Proof. First, adding an element (e, (s,m)) to P corresponds to
adding new possible users to serve. Thus, the objective value,
Eq. (7), will either increase or remain unchanged. Thus it is
sufficient to say that o(P) is monotone increasing.

The PIES service model placement sub-problem is submod-
ular iff for every A, B C £ x SM where A C B and some
p ¢ B, the following condition holds: o(A U {p}) — o(A4) >
o(BU{p}) — o(B). We can define the objective value under
optimal scheduling given a set of placements P as

a(P) 2> 0u(P) ©)

ueU
where o, (P) is the optimal QoS provided to user u with
service model placements P. We can define o, (P) as follows:

ou(P) £ ma§<) P{Q(u, s,m)ie=e, ANs=5,}1U{0}.
,m))e

(e,(s

(10)
Next, we claim that for every user v € U the following holds:
o (AU{p})—0u(4) > 0, (BU{p})—0o.(B). We verify this by
elaborating on what these expressions represent and by exploit-
ing their definitions. First, by definition, o,,(AU{p}) — 0, (A4)
is the increase {p} provides to the objective. It should be
noted that {p} can only provide increase if o, ({p}) > o, (A).
Additionally, we note o, (A U {p}) € {ou(A),0.({p})}. We
claim this because o, (AU{p}) = 0, (A) if 0,(4) > o, ({p}),
meaning an already placed model in A is scheduled to serve
u’s request, or o, (AU {p}) = o.({p}) if ou(A) < o, ({p}),
meaning the new service model placed by the new place-
ment {p} is scheduled to serve u’s request. These observations
similarly hold for B as well. Now, we prove the following
inequality o, (A U {p}) — ou(A) > o, (B U {p}) — ou(B)
directly by its possible cases:'

e Case 1: 0, (AU{p}) = 0, (A) and 0, (BU{p}) = o.(B).
It is easy to verify that o, (AU {p}) — 0u(A) > 0, (BU
{p}) — ow(B) becomes 0 > 0, which holds.

e Case2: 0, (AU{p}) > 0,(A) and 0, (BU{p}) = o.(B).
It is easy to verify that the left-hand side of the original
inequality becomes a value > 0 and the right-hand side
becomes 0, thus the inequality holds.

o Case 3: 0, (AU{p}) > ou(A) and o, (BU{p}) > 0, (B).
Since A C B, any service model placed under A is
also placed under B. Intuitively, any increase to QoS for
user u provided by AU {p} can be matched by B U {p}
because B has every service model to serve u’s request
that A has. B could also have service models that provide
greater QoS for u than A due to it having more service

'Note the case that oy (AU {p}) = ou(A) and o4, (B U {p}) > ou(B)
can never occur. This is due to the fact that A C B and thus if {p} provides
greater QoS for user v than B, then it follows that is also true for A.

models placed. Thus, it must follow that the original
inequality holds because A’s increase in QoS for w is
always at least as large as B’s increase.

Thus, o, (+) (Vu € U) is submodular. Since any function that is
a summation of submodular functions is also submodular [31],
then o(-) is also submodular. This concludes the proof. [J

V. EFFICIENT ALGORITHM DESIGN

Scheduling Sub-Problem. In §IV-B, we proved the model
scheduling sub-problem can be optimally solved with a greedy
solution. Thus, we consider a simple greedy algorithm, Opti-
mal Model Scheduling (OMS). OMS is straightforward: given
service placement decisions, x, and the PIES input parameters,
OMS iterates through each user v € U and if there is at
least 1 placed model of their requested service, s,, on their
covering edge cloud, e,, then OMS serves u with the model
that provides the greatest QoS to user u. The runtime for OMS
is O(|U||M™) where [M™| = max, s (|M,]).

Placement Sub-Problem. Here, we introduce two algo-
rithms that can be used to solve the service model placement
sub-problem for PIES. The first is an approximation algorithm
that exploits the theoretical properties of the PIES objective
(discussed in §IV-B) to achieve an approximately optimal
solution. The latter algorithm mimics some of the logic of
this algorithm while reducing computational heft.

1) Approximation Algorithm: Because of Theorem 3,
a standard greedy algorithm can provide a (1 — 1/e)-
approximation of the optimal solution [32]. Thus, we introduce
Approximate Greedy Placement (AGP) which serves as an
approximation algorithm for the PIES placement sub-problem.
Its pseudocode is provided in Algorithm 1. AGP iterates
through each edge cloud e € £ and, in each iteration, it finds
the set of service models (s,m) € SM that can be placed
on e without violating the storage capacity constraint. It then
computes the objective value using optimal model scheduling
via Eq. (9) to find the immediate best choice. Once there are no
more legitimate choices to choose from, it moves on to the next
edge cloud. Once iteration through edge clouds is finished, it
converts the placement decisions (represented as a set) into
the standard format for the decision variable. However, AGP’s
runtime is not desirable due to its need to compute optimal
scheduling for each possible option at each iteration.

2) Efficient Algorithm: Due to the heavy runtime complex-
ity of AGP, there is a need for a more efficient algorithm that
can relatively match AGP’s performance w.r.t. approximating
the optimal solution without the large computational cost.
Thus, we introduce the Efficient Greedy Placement (EGP)
algorithm. EGP iteratively places models by keeping a record
of anticipated benefit of placing any given service model on an
edge cloud. It does this without computing optimal scheduling,
thus reducing its computational cost. EGP’s pseudocode is
provided in Algorithm 2. In line 1, the placement decision
variable is initialized. Then, on line 2, we begin to iterate
through each edge cloud to decide which service models
should be placed on the current edge cloud. Line 3 initializes
an empty hash-map and lines 4-6 compute the total QoS

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 15:43:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Approx. Greedy Placement (AGP)

Input : Input parameters of (7)
Output: Service placement (x)
1 Initialize X <= (2" = 0)veece,seS,meM:

2 P+ {}; // Placement decisions Ve € €.
3 foreach e € £ do
4 Pe{}; // Placement decisions for this e.
5 R+ Re;
6 repeat
7 L+ {(s,m) € SM\ P :rsp < R};
8 s*,m* < argmax o (P U {(e, (s,m))});
(s,m)eL
9 P (s*,m*);
10 P+ PU{(e, (s*,m™))};
11 R R—rgeme;
12 until |L\ P| = 0;

13 foreach (e, (s,m)) € P do
14 L xS 1

15 return Xx;

Algorithm 2: Efficient Greedy Placement (EGP)

Input : Input parameters of (7)

Output: Service placement (x)
1 Initialize X <= (2" = O)veece,seS,meM:
2 foreach edge e € £ do

3 Initialize hash-map v with default values of 0.0;
4 foreach user u € U do
5 foreach model type m € My, do
6 L L Vsym < Vsyum + Q(u7 SU7m);
A+—{}; // Considered service models.
B+ {}; // Satisfied users.
9 R+ R ; // Remaining storage.
10 repeat
11 s*,m* argmax {Vvsm};
(s,m)€Ekeys(v)\ A
© if 75+ m+ < R then
13 xg*m* — 1;
14 R« R—rgomn;
15 foreach m € M« where (s*,m) ¢ A do
16 L Vsm Z Q(u7 3*7m) - Q(u7 5*7 m*);
ueUNB
17 A+~ AU{(s*,m*)};
18 foreach u € U, do
19 | if Q(u,s*,m*) =1 then B+« BU{u};
20 | until (R=0)V (Ue] = |B]) V (JA| = |keys(v)]):

21 return Xx;

each service model relevant for the current edge cloud can
provide towards the objective function. This data structure
will be updated as decisions are made. Lines 7-9 initialize
some supporting variables for EGP’s logic. A records service
models that have been considered for placement at some
point for the current edge cloud; B keeps track of the set
of users who can be provided maximum QoS; and R tracks
the remaining storage capacity. Lines 10-20 find the service
model (s*,m*) that provide the maximum QoS among the
service models we have yet to consider from our hash-map. If
(s*,m*) can be placed without violating the storage constraint,
then it will be placed (line 13) and remaining storage will
be reduced (line 14). Then, in lines 15-16 we recalculate

—- OPT —- EGP AGP —— SCK —%— RND
\\I - a
081, o~y g 10 /
%) Q
o ,‘\. &2 /
o6 " o
8) \ ‘\. £ 10 7 a—>0
S o4l + = + + +——+ +
o 04 ~ 2 g——0—o—
< T T
=10
0.2 =
x % X % % % % % % bl
50 100 150 200 250 50 100 150 200 250

Number of Requests

(a) (b)

Number of Requests

Fig. 2: Validation Test. For these experiments, we consider
|U{| =[50, 100, 150, 200, 250], with 10 trials each. We perform
this validation test to confirm the efficacy of EGP relative to
the optimal solution and the approximation algorithm, AGP.

the benefit of each other model implementation for s* by
computing 3, oy \p @, s"m) — Q(u, s*,m*). Since the
newly placed model degrades the benefit from picking other
implementations of the same service, we sum the difference
between these other models and the newly placed model to
reevaluate the benefit of placing them. Lines 10-20 repeat
until either there is no more storage space, all of the edge
cloud’s user’s achieve maximum QoS, or we have considered
all models relevant for the edge cloud (according to the keys
recorded in the hash-map). The runtime complexity of EGP is
O[] + [U]|MF*]) where [MF*| = maxses (| Mi|)-

VI. EXPERIMENTAL DESIGN & RESULTS

We consider numerical simulations and a real-world imple-
mentation with real image data and ML models. Algorithms
are implemented in Python 3.8 and experiments are largely
run on a macOS 64 bit machine with a 3.2 GHz quad-core
Intel Core i5 processor and 32 GB 1600 MHz DDR3 memory.

Baselines. We compare AGP and EGP to the ILP defined
in Eq. (7) using the PuLP Python library [33] and the CBC
solver [34] (referred to as “OPT”). We adapt the standard dy-
namic programming algorithm for the 0/1 Knapsack problem
for the PIES problem (referred to as “SCK”). SCK considers
the individual service models as the separate items — with
their storage costs serving as their weights and Eq. (1) as
their values. SCK will use our OMS algorithm for scheduling.
We also consider a random placement and scheduling heuristic
(referred to as “RND”) as our other baseline.

Numerical Simulations. We sample uniformly random
integer values for edge capacities using the following distri-
butions K., W, € [300,600], and R. € [100,200] (Ve € &).
Service model storage costs are similarly uniformly sam-
pled integer values where kg, wsy, € [15,30] and 74, €
[10,20] (V(s,m) € SM). Service models’ cached accuracy,
Agp,, are sampled from a Gaussian distribution with a mean
of 0.65 and a standard deviation of 0.1 (sampled values are
clipped to the range [0, 1]). We assume users request service
types from S uniformly at random. User accuracy thresholds,
o, are set to 1 — e where € is sampled from an exponential

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 15:43:03 UTC from IEEE Xplore. Restrictions apply.

—- EGP —— SCK —%— RND
0814 g gt
\ 3201 —F
%)
O 0.6 <L
e} + ® ° 15
oy AN €
g4 LW 1.0
[} + ~e. 2
> \+ \0\’ 24
<02 T, + "0~¢ 051 . ’,0’0”
Tt | < e od
XN AN X% 0.01 e = oaNENEan
200 400 600 800 1000 200 400 600 800 1000

Number of Requests

(a) (b)

Number of Requests

Fig. 3: Numerical Results. Experiments with more user
requests U] = [100, 200, - - - , 1000], with 100 trials each.

distribution clipped to the range [0,1] with A = 0.125. User
delay thresholds, §,,, are set to a sampled value (clipped to
range [0, Omax] Where dmax = 10 seconds) from an exponential
distribution where A = 1.5. Finally, we consider |£| = 10 edge
clouds, |S| = 100 services with each service having a random
number of implementations in the range of [1,10] (sampled
uniformly). We increase the number of users for experiments.

First, we compare our proposed algorithms (EGP and AGP)
to the optimal solution. Due to the hardness of the PIES
problem, we consider a validation case to demonstrate EGP’s
performance relative to the optimal solution and AGP. Note in
some larger scenarios, the optimal solver took over 20 hours to
complete. In Fig. 2a, we see that the AGP and EGP algorithms
perform well w.r.t. approximating the optimal solution pro-
vided by the solver. We find that EGP is able to match AGP’s
performance. Numerically, we find that, on average, AGP
and EGP achieve an approximation ratio of 0.900 and 0.904,
respectively. In Fig. 2b, we see that EGP greatly outclasses
both Optimal and AGP in terms of efficiency. The excessive
cost associated with AGP’s runtime is due to its reliance
on performing optimal model scheduling for each candidate
service model at each selection step. EGP also manages to
best SCK. When considering more requests, we see in Fig. 3
that our EGP solution achieves roughly 50% more QoS than
SCK while still managing to be more efficient.

Real-World Implementation. We consider a simple real-
world setup using set of 2 Nvidia Jetson Nano and 1 Raspberry
Pi 3B+ nodes as IoT devices and an Apple iMac serving
as the edge cloud. Each IoT device hosts roughly a third of
the 2012 ImageNet dataset [35] via non-overlapping subsets.
Each IoT device submits 100 requests with randomly sampled
images from these data. Requests are submitted wirelessly
for image classification service models hosted on the edge
cloud. Here we focus on the multi-implementation aspect of
the PIES placement sub-problem and how QoS is affected
by multiple implementations for image classification. Using
PyTorch, we evaluate pre-trained image classification models
to record their accuracy metric over the ImageNet 2012 data
and record the average time needed for each model to perform
inference, see Table I. The edge cloud can place |R.| = 1
model where each ML model is associated with r,,, = 1

TABLE I: Image classifications models used for the real-world
implementation with model accuracy metrics and average
computational delay from evaluation with ImageNet 2012 data.

Models Accuracy, Asm Avg. Comp. Delay (sec.)
AlexNet [36] 56.52% 0.04
DenseNet [37] 77.14% 0.47
GoogLeNet [38] 69.78% 0.13
MobileNet [39] 71.88% 0.06
ResNet [40] 69.76% 0.08
SqueezeNet [41] 58.09% 0.07
101 10
c = 4 AlexNet
% Ogl l l l E . i
-:g § 0.6+ GoogLeNet
£0.81 — MobileNet
?) DE;,OA’ ResNet
I 0.7 2 02 ”llll SqueezeNet

0
OPT EGP AGP SCK RND
Avg. Placement

OPT EGP AGP SCK RND
Algorithm

(a) (b)

Fig. 4: Real-world implementation. (5a) QoS distribution
achieved by each of the algorithms. (5b) Average placement
decision for each image classification model across 100 trials.

storage cost. Since all the models accept the same data size,
we fix the communication costs w,,, = 1 for all the ML
models. Communication and computation capacities for the
edge cloud are tuned to match the observed computation and
communication delay. Each request’s a, is sampled from 1 —e¢
where € is sampled from an exponential distribution clipped to
the range [0.0,1.0] with a rate parameter A = 0.0625. Delay
threshold d,, (Yu € U) is sampled from a Gaussian distribution
with a mean of 0.5 and a standard deviation of 0.125, clipped
to the range [0, dax] Where dpmax = 1.0 second. QoS for each
request is calculated using Eq. (1) using the real-time incurred
latency (in seconds) and the evaluated model accuracy.

In Fig. 4a, all considered algorithms but random are able to
match the optimal solution — with all non-random algorithms
exclusively placing MobileNet in Fig. 4b. In Fig. 4a, the QoS
distribution of the non-random algorithms are much more
concentrated on the upper end when compared to random.
In this setup, random does better than in Figs. 2, 3 because
a request will never be dropped (i.e., there is always an
image classification available to provide some QoS). Thus,
future real-world implementations must consider various ser-
vice types. These results show promise but elicit further
investigation by considering a more robust real-world setup
with more EI service types (e.g., video classification).

VII. CONCLUSIONS

The PIES problem, to the best of our knowledge, is the
first service placement and scheduling problem that explicitly
considers the case of EI services having multiple implemen-
tations available for the same service. We proved that the
PIES problem is NP-hard and prove a greedy set optimization
algorithm can provide a (1 — 1/e)-approximation guarantee

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 15:43:03 UTC from IEEE Xplore. Restrictions apply.

of the optimal solution. We then introduce a streamlined
greedy algorithm that empirically matches this algorithm’s
performance with much greater efficiency. While these results
are preliminary, they serve as a foundational first step towards
this breed of service placement. For future work, we plan to
consider more dynamic extension of this work where service
placement decisions are made over a time horizon rather than
all at once. Additionally, we will expand the real-world setup
to include more EI services (e.g., video classification) with
multiple implementations for placement and scheduling.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under grant no. CSR-1948387. This work
was also partially funded by Cisco Systems Inc. under the re-
search grant number 1215519250. We thank both our sponsors
for their generous support.

[1]
[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

ETSI, “Mobile edge computing - introductory technical white paper,”
Sept. 2014.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, 2016.
Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, pp. 2322-2358, 2017.
P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.

S.-H. Wang, P. P.-W. Huang, C. H.-P. Wen, and L.-C. Wang, “EQVMP:
Energy-efficient and QoS-aware virtual machine placement for software
defined datacenter networks,” in IEEE ICOIN.

I. Althamary, C.-W. Huang, P. Lin, S.-R. Yang, and C.-W. Cheng,
“Popularity-based cache placement for fog networks,” in 2018 14th IEEE
IWCMC, pp. 800-804, IEEE, 2018.

B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line: Joint
network selection and service placement for mobile edge computing,”
in IEEE INFOCOM, pp. 1459-1467, 1EEE, 2019.

R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality
of experience (QoE)-aware placement of applications in fog computing
environments,” Journal of Parallel and Distributed Computing, 2019.
T. He, N. Bartolini, H. Khamfroush, I. Kim, L. Ma, and T. La Porta,
“Service placement for detecting and localizing failures using end-to-end
observations,” in 2016 IEEE ICDCS, pp. 560-569, IEEE, 2016.

M. Turner and H. Khamfroush, “Meeting users’ QoS in a edge-to-cloud
platform via optimally placing services and scheduling tasks,” in 2020
IEEE ICNC, pp. 368-372, IEEE, 2020.

S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 1002-1016, 2016.

T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive user-
managed service placement for mobile edge computing: An online
learning approach,” in IEEE INFOCOM, 2019.

T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard
to share: joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in 20/8 IEEE ICDCS.

T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, 2018.

F. A. Salaht, F. Desprez, and A. Lebre, “An overview of service
placement problem in fog and edge computing,” ACM Computing
Surveys (CSUR), vol. 53, no. 3, pp. 1-35, 2020.

O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar, “Towards QoS-aware
fog service placement,” in 2017 IEEE ICFEC, IEEE, 2017.

A. Yousefpour, A. Patil, G. Ishigaki, I. Kim, X. Wang, H. C. Cankaya,
Q. Zhang, W. Xie, and J. P. Jue, “FogPlan: a lightweight QoS-aware
dynamic fog service provisioning framework,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 5080-5096, 2019.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

[36]

[37]

[38]

[39]

[40]

[41]

V. Farhadi, F. Mehmeti, T. He, T. F. L. Porta, H. Khamfroush,
S. Wang, K. S. Chan, and K. Poularakis, “Service placement and request
scheduling for data-intensive applications in edge clouds,” IEEE/ACM
Transactions on Networking, pp. 1-14, 2021.

D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, and P. Hui, “A survey on edge
intelligence,” arXiv preprint arXiv:2003.12172, 2020.

X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, 2020.

F. Manessi, A. Rozza, S. Bianco, P. Napoletano, and R. Schettini,
“Automated pruning for deep neural network compression,” in 2018 24th
International Conference on Pattern Recognition (ICPR), IEEE, 2018.

T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proceedings
of the IEEE CVPR, pp. 5687-5695, 2017.

P. S. Chandakkar, Y. Li, P. L. K. Ding, and B. Li, “Strategies for re-
training a pruned neural network in an edge computing paradigm,” in
2017 IEEE EDGE, IEEE, 2017.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, 2019.

X. Zhao, M. Hosseinzadeh, N. Hudson, H. Khamfroush, and D. E. Lu-
cani, “Improving accuracy-latency trade-off of edge-cloud computation
offloading for deep learning services,” in IEEE Globecom Workshop on
Edge Learning over 5G Networks and Beyond, 2020.

M. Hosseinzadeh, A. Wachal, H. Khamfroush, and D. E. Lucani,
“Optimal accuracy-time trade-off for deep learning services in edge
computing systems,” arXiv preprint arXiv:2011.08381, 2020.

Z. Lin, S. Bi, and Y.-J. A. Zhang, “Optimizing Al service placement and
resource allocation in mobile edge intelligence systems,” arXiv preprint
arXiv:2011.05708, 2021.

L. Caccetta and A. Kulanoot, “Computational aspects of hard knapsack
problems,” Nonlinear Analysis, vol. 47, no. 8, pp. 5547-5558, 2001.

J. B. Kruskal, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathematical
society, vol. 7, no. 1, pp. 48-50, 1956.

N. Hudson, H. Khamfroush, and D. E. Lucani, “QoS-aware
placement of deep learning services on the edge with mul-
tiple service implementations.” GitHub, Apr. 30, 2021. [On-

line]. https://github.com/khamfroush-lab/Fed-MEC/blob/master/PIES_
Service_Placement/extended_manuscript.pdf.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—I,” Mathe-
matical programming, vol. 14, no. 1, pp. 265-294, 1978.

G. Calinescu, C. Chekuri, M. Pdl, and J. Vondrdk, “Maximizing a
submodular set function subject to a matroid constraint,” in International
Conference on Integer Programming and Combinatorial Optimization,
pp. 182-196, Springer, 2007.

S. Mitchell, S. M. Consulting, and I. Dunning, “PuLP: A linear pro-
gramming toolkit for Python,” 2011.

johnjforrest, S. Vigerske, H. G. Santos, T. Ralphs, L. Hafer, B. Krist-
jansson, jpfasano, EdwinStraver, M. Lubin, rlougee, jpgoncall, h-i
gassmann, and M. Saltzman, “coin-or/Cbc: Version 2.10.5,” Mar. 2020.
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), 2015.

A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” arXiv preprint arXiv:1404.5997, 2014.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE CVPR,
pp. 4700-4708, 2017.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE CVPR, pp. 1-9, 2015.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE CVPR, pp. 4510-4520, 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE CVPR, pp. 770-778, 2016.
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters andj 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 15:43:03 UTC from IEEE Xplore. Restrictions apply.

