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Abstract—Emerging Edge Computing (EC) technology has
shown promise for many delay-sensitive Deep Learning (DL)
based applications of smart cities in terms of improved Quality-
of-Service (QoS). EC requires judicious decisions which jointly
consider the limited capacity of the edge servers and provided
QoS of DL-dependent services. In a smart city environment, tasks
may have varying priorities in terms of when and how to serve
them; thus, priorities of the tasks have to be considered when
making resource management decisions. In this paper, we focus
on finding optimal offloading decisions in a three-tier user-edge-
cloud architecture while considering different priority classes for
the DL-based services and making a trade-off between a task’s
completion time and the provided accuracy by the DL-based
service. We cast the optimization problem as an Integer Linear
Program (ILP) where the objective is to maximize a function
called gain of system (GoS) defined based on provided QoS and
priority of the tasks. We prove the problem is NP-hard. We then
propose an efficient offloading algorithm, called PGUS, that is
shown to achieve near-optimal results in terms of the provided
GoS. Finally, we compare our proposed algorithm, PGUS, with
heuristics and a state-of-the-art algorithm, called GUS, using
both numerical analysis and real-world implementation. Our
results show that PGUS outperforms GUS by a factor of 45% in
average in terms of serving the top 25% higher priority classes of
the tasks while still keeping the overall percentage of the dropped
tasks minimal and the overall gain of system maximized.

Index Terms—Edge Computing, Task Offloading, Resource
Management, Deep Learning, Quality-of-Service, Priority

I. INTRODUCTION

The rapid increase of data produced by different devices
in smart cities era brings the necessity of developing tech-
nologies to process such data. Recently, Deep learning (DL)
techniques [1] have emerged as promising technologies to
process large scale data. Cloud Computing (CC) has facilitated
running different computationally-intensive tasks including
DL-dependent services in the past. However, due to long delay
caused by the large distance between the cloud server and
users, a geographically closer server to the users is needed for
delay-sensitive applications such as self-deriving cars [2].

Edge Computing (EC) as a promising paradigm is in-
troduced to solve different issues generated by using CC
such as large delay for delay-sensitive applications [3], [4].
Moreover, EC systems have shown a great potential in terms
of completion time reduction of serving DL-dependent appli-
cations [2], [5]. Although EC has provided many opportunities
for different types of applications, edge servers have limited
computation, communication, and storage capacities. There-

fore, resource management plays a key role in such systems.
Different resource management strategies for EC systems such
as optimal service placement [2], [6], [7] and optimal task
scheduling/offloading [8]-[10] have been introduced in the
literature. In this paper we focus on task offloading in the
EC systems for running DL-dependent services. DL models
are evaluated based on different metrics such as accuracy,
Mean Squared Error (MSE), etc., depending on the deep
learning task [1]. In this paper, we focus on classification tasks
and as such we consider accuracy to evaluate the quality of
the provided service. Usually, better DL models have higher
accuracy and need more computational resources to run. Both
the completion time of serving a task and the accuracy of the
DL model used for serving that task play a key role in making
the users satisfied in terms of the Quality-of-Service (QoS).
Moreover, given the wide range of DL-dependent services
offered by smart cities, priority classes have to be defined
in order to accommodate different applications based on their
importance. For example, serving smart fire detection tasks in
a smart home is more important than serving the small plant
watering tasks. Additionally, from a service provider’s point of
view, users should be served based on their payments. As such,
considering priority of the tasks is of fundamental importance.

Previous papers that addressed the offloading problem in
EC systems can be classified into two categories. The first
category focused on maximizing the QoS in EC system [2],
[8], [9], [11]-[14] and the second category focused on the
priority of the tasks in EC systems [15]-[19]. The first
category papers addressed maximizing QoS in EC systems
either for a general service type [11]-[14] or specifically for
DL-dependent services [2], [8], [9]. These papers focused on
different goals [14], such as jointly minimizing both end users’
energy consumption and the task’s completion time [11], min-
imizing task completion time [12], reducing latency [13], and
maximizing the QoS considering DL-dependent services [2],
[8]-[10]. However, none of these papers considered challenges
related to priority aspects of the tasks. On the other hand, the
second category of related work has investigated offloading
tasks based on tasks priority in the EC systems [15]-[19],
however, to the best of our knowledge none of these works
fully investigated the QoS-performance trade-off incurred by
serving DL-dependent tasks based on their priorities in a three-
tier system. For example, authors in [15]-[19] focused on
priority-based offloading decision making from user devices
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Fig. 1: System Architecture

to only one edge server in a two tier EC system. However,
we consider a three tier EC system consisting of multiple
edge servers allowed to have Device-to-Device (D2D) com-
munication and offloading the tasks from edge servers to
either cloud server or neighbourhood edge server. Additionally,
they have not considered the completion time-accuracy trade-
off for running DL-dependent services in the EC systems
in their proposed offloading decision making approach. The
most similar work to this paper is [9]. The main difference
between this paper and [9] is we aim at maximizing the Gain
of System (GoS) as a function of priority of the tasks and
the QoS, whereas the focus of [9] is on maximizing the QoS
without considering the priority of the tasks. In short, main
contributions of this paper are as follow:

o We focus on the problem of optimal offloading decision
making while considering tasks’ priorities and making
optimal trade-off between the completion time of serving
DL-based tasks and the provided accuracy of the DL
model used for serving that task. We define a new metric,
“Gain of System” (GoS), to incorporate all of the above-
mentioned criteria.

e We cast the problem as an Integer Linear Program-
ming (ILP) model where the goal is to maximize the
GoS. We prove that the problem is NP-hard and propose
a greedy algorithm, called PGUS, to solve the proposed
ILP in polynomial time.

¢ We provide numerical analysis and real-world implemen-
tation and show PGUS outperforms all of the baseline
algorithms in terms of providing optimal trade-off and
serving larger numbers of higher priority tasks, thus
providing larger GoS.

II. PROBLEM FORMULATION

System Setup. We consider a three layer cloud-edge-users
system as shown in 1. The top layer represents the cloud layer
which could be seen as a powerful cloud or a set of cloud
servers that are more powerful than the other entities of the
system in terms of computation power and communication
capability. In this paper we consider one single cloud server,
shown by cl, however, the model is designed so that it could be
easily generalized to more than one cloud server. At the second

TABLE I: Model nomenclature and descriptions.

Notation | Description
N Set of total tasks.
M Set of edge servers.
M Set of both the cloud server and the edge servers.
K Set of total service types.
L Set of total deep learning models.
P Set of priority classes.
cl The cloud server.
A;’Zm Minimum predefined accuracy that should be
£ provided for task ¢ with priority class p;.
A @ijkl Accuracy provided for serving task ¢ by server
‘é j using service type k and DL model type [.
5 C’Z’)'L“M Maximum predefined completion time that
should be provided for serving task 7 with pri-
ority class p;.
Cijkl Completion time provided for serving task 7 at
server j using service type k£ and DL model [.
Uikl Communication cost of serving task ¢ on server
j for service type k using DL model type [.
Vijkl Computation cost of serving task 7 on server j
for service type k£ using DL model type [.
S; The local edge server that directly covers task .
1ij A matrix showing task ¢ is covered by device j.
Mazqs The best available accuracy in the system.
Mings The minimum available accuracy in the system.
Maz.s The worst completion time in the system.
Mincs The minimum completion time in the system.
Wai The weight of accuracy requested by user for
the task 3.
Wei The weight of completion time requested by user
for the task <.
Ti’g Average Queue delay of task ¢ at edge server j.
Ti'}‘;v'z”' Average processing time of task ¢ at server j for
service type k using DL model type I.
l'ibj"j',”m Average communication time needed to send
task 7 from server j to server j’.
v Computation capacity of device j.
1; Communication capacity of device j.
w, w’, W | Three real values for GoS function definition.
> Xijkt A decision variable to show whether the task 7
A will be served at server j for service type k using
DL model type [ or not.

layer, a set of edge servers, M’, are located each equipped
with a base station. The edge servers are connected to both
the cloud server and the neighbourhood edge servers through
backhaul network and D2D communication, respectively. Both
cloud server and edge servers can serve the tasks in the system.
Hence, we define the set of possible servers to serve the tasks
as M = {M’ U cl}. Each server j € M has a limited
communication capacity 7; and computation capacity -;,
except the cloud server ¢l which is assumed to have unlimited
communication and computation capacity (i.e. 7., = oo and
Ye1 = 00). For simplicity, hereafter, we assume that the last
index of the set M is always the cloud server. The third layer
represents the set of users shown by N that are connected to
the edge layer through a wireless network. We assume that
each user ¢ € N is directly covered by (connected to) one
edge server and users can request tasks by sending their tasks
to the edge server covering them. The edge server covering
user ¢ is shown by s;, where we also call it local/source
edge server. We assume that a user can only submit one task,
and users that submit multiple tasks are modeled by multiple
users that are geographically located at the same location.
Hence, we will use the term user and task interchangeably
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throughout the paper. We consider a time-slotted system where
at a given time slot there are N tasks in the system and
M possible edge/cloud servers to serve the tasks. We also
define P as the set of different priority classes indexed by
p where each task i € N belongs to the priority class p;.
Each priority class p has a minimum preferred accuracy and
maximum preferred completion time. Users can have tasks
with different priority classes. We assume that system has
provided K different service types indexed by k where each
service type can be served by several different DL models £
indexed by [ each providing different levels of accuracy and
consuming different levels of computation resources. Our goal
is to find optimal offloading decisions while maximizing the
Gain of System (GoS) which is defined as a function of User
Satisfaction (US) and the priority class of each served task.

GoS Definition. We define the GoS for serving task ¢ at
server j using service type k and DL model [ as:

w(lfz‘ xUSijr1)

w/(ﬁiXUSz‘jkz)

if Aagjrt > 0N Acij >0
if Aaijkl <06 ACz‘jkl <0
if Aaijr <O0AAcijm <0
0 dropping the task

GOSU‘M =

W BixUSijki)

(D
where w, w’, and w” are hyper-parameters such that w”’ <
w’ < w. In Eq. 1, A is the and operator and & is the exclusive
or operator. We define 0 < p; < 1 as p; = pi t” that
represents the normalized value of priority class p; where p.,q.
is the highest value of priority classes values. Note that the
higher p value represents the higher priority class (i.e. the more
important classes have higher p value). US;;i; represents the
US for serving task ¢ at server j for service type k using DL
model type [ which is defined in Eq. 2. Ac;jji and Aagjp
represent difference between the level of service (in terms
of completion time and accuracy, respectively) that the user
expected to receive and the level of service that is actually
provided by the system, and are defined in Eq. 4 and Eq. 3.

US Definition. We define the user satisfaction, U.S;;x;, for
serving task ¢ at server j for the requested service type k using
deep learning model [ based on:

/

USijri = wai(Aaijr) + wei(Acijrr) 2

where wg;, and w.; are weights (hyper-parameters) assigned
to each of the US criteria—accuracy and completion time,
respectively. We define Aa;j,; and Ac;ji as the difference
between the level of service that user expected to receive and
the level of service that we provide as following:

A5kl — Mins _ Amin (3)

Aajipy = —————— )
J Mazas — Mings Pi

where 0 < Agfm < 1 represents the normalized minimum
preferred accuracy for priority class p of task i. a;;x; is the
provided accuracy for the tasks ¢ by server j using service
type k and DL model . Maz,s and Min,s are defined as
maximum possible accuracy and minimum possible accuracy
in the system, respectively. Similarly, we define the Ac;;

as the difference between provided completion time and the
completion time that the user expects to receive as following:

_ ~maz Cijkl — Mincs

Acym = G = Mazx.s — Mings
where 0 < C’;ﬁf” < 1 shows the normalized maximum
preferred completion time for task ¢ belonging to priority class
p. Cijkt is the provided completion time for the tasks 7 by
server j using service type k and DL model [. Maz.s and
Min.s are respectively the worst possible completion time and
the best possible completion time in the system.

The task will be counted as served-satisfied, iff the provided
accuracy and the provided completion time are equal or better
than the requirements of that task’s priority class. Otherwise,
they might receive less than their priority class requirements,
which we call served-not satisfied. In the case that there is no
capacity remaining in the system, the tasks will be dropped
and so the GoS for that task will be zero. Now, we define the
completion time of serving a task, c¢;jx;.

Completion time. We assume that each task may expe-
rience the following types of delay throughout the system:
queuing delay, processing delay, and communication delay
(due to offloading). We ignore the communication delay due
to sending the tasks (and their dependencies) from users to
the edge servers and receiving the results from the edge
servers, as this delay is equal for any decision made (e.g.,
offloading vs. local processing) and the focus of this work is on
finding the optimal task offloading decision at the edge servers
considering the priority of the tasks. Moreover, we suppose
that the delay due to running the decision making algorithms
at each edge server is negligible. The running time of our
proposed decision making algorithm is discussed in §III. Now,
we formally define each type of delay that we consider in this
paper: 1) Queuing Delay ( T;é ). We consider admission control
queuing delay (queuing delay due to accepting tasks into the
system) and assume that queuing delay due to processing is
negligible. Hence, we assume the queuing delay equal to the
time between the arrival of task ¢ to edge server j and when
a decision regarding how to process the task is made on that
edge server. We consider a time-slotted scenario where at each
time slot, the tasks that arrived at edge server j will be held
in a queue until a decision is made at the end of a time
frame. Each time frame consists of multiple time slots. We
assume that each edge server broadcasts its remaining commu-
nication and computation capacity and average computation,
communication, and queuing delay to the neighbourhood edge
servers frequently, so, we assume these values are known. 2)
Computation Delay (T;7;'"). We consider the computation
delay to be the time that takes for the task ¢ to be processed on
server j € M using service type k and deep learning model
type l. 3) Communication Delay (T7;;"™). Communication
delay is assumed to be the the time needed to send task i
from edge server j to another edge/cloud server ;' € M in
the case that an offloading decision is made. Now, we formally
define the completion time of serving a task ¢ at the j-th server
using service type k£ and DL model type [ as:

“4)
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if j=si
if j#si
where s; is the local server covering the task (user) .

Model Definition. Now, we formally define the ILP model
where the goal is to maximize the gain of the system as:

q comp
o Tisi+Tijkl
Cijkl =

comm q q comp
T + T, + 155 + T

Max: Y > (GoSiju Xijw) ®)
iEN,JEM kEK,leL
s.t.: Z Xijkl <1, Vi € N, (5a)
JEMKEK,LEL
Z Xijrt vijet < 75, Vi e M, (5b)
iEN,kEK,lEL
Z Z Lij Xijre wijre < mj, VjeM, (5¢)
JTEM#FIEN KEK,IEL
Xijr € {0,1}, VieN,je M keK,leLl (5d)

where X £ (X)) Vi€ N,j € M,k € K,l € L is the set
of decision variables and X;;z; = 1 iff task ¢ is served by
device j using service £ and DL model /, and O otherwise.
The computation cost and the communication cost of serving
task ¢ on server j for service type k using model type [ are
represented by v, and w,jr;, respectively. The computation
capacity and the communication capacity of server j are shown
by 7; and n;, respectively. I is an |N| x |M| matrix where
I;; =1 (Vie N,j € M) if and only if (user) task 7 is directly
covered by edge device j, and 0 otherwise (i.e. I;; = 1 where
7 = s;). Constraint (5a) ensures that each task will be served
by only one server using one service and one DL model or
it will be dropped. Constraint (5b) guarantees that the total
computation cost needed to process all tasks served by device
J should be less than or equal to the computation capacity of
device j. Note that we assume cloud server has unlimited com-
putation capacity, hence v, = o0o. Constraint (5c) ensures that
the total communication cost required to offload the tasks from
device j to other servers should be less than or equal to the
overall communication capacity of device j. Constraint (5d)
defines the binary decision variables. Depending on the value
of decision variable Xj;z;, one of the following occurs: 1)
Local processing. The task will be served on the edge server if
Xijr = 1 & j = 845 2) Offloading. The task will be offloaded
to either a cloud server or one of the neighboring edge servers
if X5, =1& j # 5435 3) Drop. The task will not be served
and will be dropped if X;;z; = 0. Note that in 1) and 2) cases,
the task could be either served-satisfied or served-not satisfied.

Theorem 1. The proposed optimization problem is NP-hard.

Proof. We prove Theorem 1 through a reduction from the
MUS problem initially studied in our previous paper [9]. The
MUS problem is proved to be NP-hard using a reduction
from the NP-hard Maximum Cardinality Bin Packing (MBCP)
problem. By setting p;, = 1 (Vi € N) in Eq. (2), then MUS
would be a special case of this problem (i.e. this problem is
the general problem). The proposed ILP is then equivalent to

Algorithm 1: Proposed Priority-Greedy Algorithm (PGUS)
Input : Given N, M, K, L, P,I, Maz,s, Mazx.s,
Mings, Min.s, A, C
Output: Choosing X ;; for each task 4
1 N <« sort N based on higher p € P;
2 foreach task i € N do

3 SZ(*{]|I7J:1},

4 k <+ requested service by user i;

5 Initialize G as a list of tuples;

6 foreach server j in M which has service type k do

7 foreach model | placed on j for service type k
do

8 Xijr < 0;

9 Calculate GoS using Eq. (1);

10 Append (Gos, j,1) to G;

11 sortedGoS < sort G based on first element (GoS
value) in descending order;
12 foreach server j € sortedGoS do

13 if j = s; then

14 if Vijkl < i then

15 Xijkl < 1; // Locally process task
¢ on edge server j =3;

16 update v;;

17 break;

18 else

19 if w0 < ns, and v < Elv;] then

20 Xijer < 13 // Offload task i to
server j

21 update v; and 7;;

22 break;

23 if X, =0Vj € M then
24 L Drop i;

the MUS problem and can be solved with a solution to the
MUS problem. This concludes the proof. O

III. PROPOSED ALGORITHM

Given that the proposed ILP is NP-hard based on Theo-
rem 1, we propose a greedy algorithm to solve the problem
in polynomial time (see Alg. 1). The idea of the algorithm is
simple: First, all of the tasks are sorted based on their priority
classes in a descending order (higher priority classes go first)
(line 1). Then, for each task the algorithm finds the local edge
server (s;) of it (lines 2,3) and its requested service, k (line
4). We select set of all candidate servers which have at least
one already placed DL model [ for service type k& (line 6,7).
Next, we calculate the completion time of serving task ¢ using
the selected server sets and their relevant service type and
DL model types, ie., ciju Vi € M,k € K,l € L (line
9). We assume that a;;z; is known based on the accuracy of
the DL model type [ available on server j for service type
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k. Then we calculate the expected GoS based on c;jx; and
ai;jr values (line 10), ie., GoSiji Vj € M,k € K,l € L.
We sort the candidate servers j based on the value of GoS,
descendingly (line 11), and then start from the top server
with the highest GoS (line 12). If the selected server is the
local server (s;), the candidate edge server must have enough
computation capacity (line 13-17). If the task is offloaded, both
the communication capacity of the local server and the com-
putation capacity of the serving place must be available (line
18-22). If the algorithm does not find any server with enough
capacity, the task will be dropped (line 23-25). The process
will be repeated until there is no task remaining in the queue.
Algorithm Complexity. The complexity of the pro-
posed PGUS algorithm in the worst case is of or-
der O((|N]log |N]) + IN[(IL[IM] + [M]|£]|(log [ M]|£]) +
|L|IM])) = O(JN||L]?|M]?). This is because, sorting tasks
in line 1 is of order size of tasks, |[N|log|A/|. Sorting the
candidate combination of servers and models at line 10 at
most is of order |[N|(|M]|L£|(log |M||L£])) and checking each
of these combinations at most is of order |A|(|M]|L]).

PGUS In Real-World Implementation. For the sake of real-
world implementation, we need to approximate average delays
of the system to calculate c;;; given that the completion time
of a task may not be fixed and will change over time. We
use a D2D sub-procedure where edge servers announce their
remaining resources and their average queue and average com-
putation delay and average communication speed to other edge
servers every one second. We use three other sub-procedures to
estimate each type of delay. PredictCommDelay predicts
the expected communication delay, E,, [Tfs"’]"m], for each
task ¢ based on size(i)/Eg, [speed] where size(i) is the data
size of task ¢ and Eg,[speed| is the expected transmission
speed in the sliding window of the size sw based on the most
recent update received from the D2D sub-procedure. Similarly,
PredictCompDelay calculates the expected computation
delay, E,,, [Té‘;:fp ], based on historical data using information
obtained from the D2D sub-procedure. For the queue delay,
PredictQueueDelay uses the time that a task joins the
queue until the time a decision is made for the loqcal processing
case (T7,); and By, [T}] = T}, + mnd(EW[ZT”’],Esw[TZ%,])
for the offloading case where ]Esw[Tiqj/] is the most recent
update of average queue delay received from server j'.

IV. RESULTS

System Setup For Numerical Analysis. For the numerical
results, we use the following system setup, unless stated oth-
erwise. A set up consisting of nine edge servers and one cloud
server has been used. The edge servers are categorized based
on their storage, communication, and computation capacity
into three categories. The communication capacity of the
network is equal to 600 bytes/milliseconds (ms) on average.
The number of servers, services, and DL models providing
each service is set to |[M| = 10, |K| = 50, |£] = 10,
respectively. We set w = 64, w’ = 4, and w” = 2. We assume
that services are randomly placed on the edge servers based
on their associated storage capacity. We define 20 different

W Served-Satisfied
PGUS, #Tasks=210

Served-Not Satisfied
ILP, #Tasks=210

Priority Class

Priority Class
|‘|||"' -

o

20 40 60 80 100
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o

20 40 60 80 100
Percent Per Class

Fig. 2: Numerical results: PGUS vs. ILP

priority classes (i.e. |P| = 20) where the higher value of
p represents the higher priority. Different combinations of
completion time and accuracy are defined for priority classes.
The preferred completion time and accuracy for each priority
class p € P is randomly selected between the range of
8000 ms and 17500 ms and 45% and 80%, respectively, such
that the higher priority classes are more delay-sensitive and
require higher accuracy. The maximum completion time in
the system, Maz s, is 25000 ms and the minimum of that,
Mincs, is 1000 ms. The maximum provided accuracy in the
system, Maz,s, is 100% and the minimum of that, Mins, is
41%. We set w,; = we; = 0.5, hence, both the Aa;;i; and
the Ac;;x; have equal weights. Additionally, for the numerical
results, we assume that all the hyper-parameters of the system
needed to calculate the GoS such as c;;;; are given/known.
For the real-world implementation these need to be measured
by sending some control messages as explained in §III.

ILP vs PGUS. Given the NP-hardness of the proposed
problem, solving the ILP and finding the optimal solution
is infeasible for large system setups. So, we evaluate the
performance of the PGUS with respect to the solution obtained
by the ILP solver for small system setups. We use Python for
implementing our PGUS algorithm and Python Pulp package
to implement the ILP. A set-up consisting of nine edge servers
and one cloud server is used. We run the tests for a small
number of tasks || = 210 and run each test over 100 Monte
Carlo runs. We explore the percent of served-satisfied and
served-not satisfied of ILP solver vs. that of PGUS. Based on
Fig. 2, PGUS closely matches the results of the ILP solver
in terms of serving tasks from the higher priority classes.
Additionally, total GoS for PGUS is almost 80% of that of
the ILP solver. We test a similar scenario with different values
of w =4, w =2, and w” = 1. The total GoS for PGUS is
almost 81% of that of the ILP solver, so different values of w,
w’ and w” do not decrease the performance of PGUS. Now,
we focus on numerical results for a larger number of tasks.

Baseline Algorithms. We implement different baseline al-
gorithms to evaluate the performance of PGUS. The baseline
algorithms are listed as following: 1) GUS. GUS is based
on [9] where a greedy algorithm is proposed for offloading de-
cision making whilst making a trade-off between the accuracy
and the completion time for DL-dependent services. GUS does
not distinguish between the priority of the tasks. Moreover,
GUS assumes hard constraints regarding the provided accuracy
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Fig. 3: Numerical results: PGUS vs. baseline algorithms performance comparison

and the provided completion time; i.e., the provided accuracy
and provided completion time should be equal or better than
what the user requested. 2) Random. This baseline sorts the
tasks based on their priority at first. Then, one of the servers
(edge/cloud) is randomly chosen to serve the tasks. If the
server has enough computation capacity and the source edge
server, s;, also has enough communication capacity to offload
the task, the server will be selected. Otherwise, the task will
be dropped. 3) Offload All. This baseline offloads all the tasks
from each edge server to the cloud, after sorting them based
on the priority. Therefore, it sequentially servers the tasks with
highest priority until there is no remaining communication
capacity to offload the tasks. 4) Local All. This baseline first
sorts the tasks based on their priority, and then tasks will be
processed on their source/local edge server sequentially until
there will be no remaining local computation resources.

Numerical Results. The numerical analysis are provided
using MATLAB 2019b. Each data point is an average of 20000
Monte Carlo runs. We change the number of tasks, A/, from
100 to 1000 and compare the performance of PGUS with that
of all provided baselines in Fig. 3 in terms of GoS, served-
satisfied tasks percent, served-not satisfied tasks percent, and
dropped tasks percent. Although the percent of served-satisfied
tasks of GUS is higher than that of PGUS, the total percent of
served tasks of PGUS is larger than that of GUS (less number
of dropped tasks in PGUS vs. GUS). The percent of served-not
satisfied of GUS is zero as it drops the tasks which it cannot
satisfy. As the GUS algorithm provides surpassing results
compared to other baseline algorithms in terms of dropped
percent of tasks, we focus on comparing PGUS and GUS in
terms of percent of served-satisfied and served-not satisfied
based on each priority class. Based on Fig. 3 (5th and 6th
columns), PGUS serves three higher priority classes by a factor
of almost 60% more than that of GUS on average (note that
both dark blue bars and light blue bars start from zero) while
still providing a smaller percentage of dropped tasks.

Testbed Setup. We assess our proposed scheme using
a real-world testbed which consists of a cloud server, two
edge servers, and three user devices. A Linux desktop (Intel
core i5-3.20 GHz, 8GB RAM) serves as the cloud server.
The cloud server is connected to a roughly 8 meters away
NETGEAR R6020 router through the wireless connection.
The two edge servers are connected to the router through the

wireless connection. We provide a heterogeneous set of edge
devices with one NVIDIA Jetson Nano Kit (JN) (Quad-core,
4GB RAM) and one Raspberry Pi (RP)4B (Quad core 64-bit,
4GB RAM). The JN is roughly 4 meters from the router. The
RP4B is roughly 10 meters from the router. In addition to
being connected to the cloud server through the router, the
edge servers are connected to each other through a wireless
ad-hoc connection as D2D connection. The edge servers are
roughly 14 meters apart. We then have three RP3B that are
connected to the edge servers as the users through wireless
ad-hoc connections. Two RP3B are connected to the JN, and
one RP3B is connected to the RP4B. Each user is roughly 20
cm away from its respective edge server device. The RP4B
and its user are separated from the rest of the devices by two
walls to add some interference in wireless communication.

Testbed Implementation. We consider two pre-trained DL
models to provide image recognition service: GoogLeNet [20]
and SqueezeNet [21]. GooglLeNet is placed exclusively on the
cloud server, while SqueezeNet is used on the edge servers
due to its lighter resource consumption (at the cost of lower
accuracy). The images that are used in each service task
are from the ImageNet dataset [22]. We provide a client-
server program written in C++ to manage the communication
between the entities in the system. We have three users
where each user creates a task every 500 ms, assigns a
random priority class number, p;, between 1 and 20 (where
20 represents the top priority class) to it, and sends the task
to the connected edge server. Each server creates 1000 task
in total (i.e. |[A'] = 3000). The priority class corresponds to
a preferred accuracy, which ranges from 43% to 89%, and
a normalized preferred completion time, ranging from 0.4 to
1.0. The simulated bandwidth between the RP4B and the cloud
server is 7 bytes/ms, and between the JN and the cloud server
is 9 bytes/ms. We use this system setup for all implemented
algorithms. The edge servers run the algorithm when either the
queue is full or a time limit is passed. Additionally, we limit
the computation and communication capacity, y and 7, of each
edge server to 15 process and 10 tasks for JN and 10 process
and 10 tasks for RP4B, respectively, and the queue size of
the JN and RP4B to 15 and 10, respectively. The edge servers
also share a control message, D2D sub-procedures, with each
other every 1 sec. The cloud server simply accepts all tasks
that are offloaded to it and processes them. We simulate large
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Fig. 4: Testbed implementation: PGUS and baseline algorithms performance comparison

delay between the edge servers and the cloud server due to
the long distances by enforcing a synthetic sleep mode for the
cloud server before responding to the edge servers tasks.
Testbed Results. Fig. 4 represents the GoS, percentage of
served-satisfied tasks, percentage of served-not satisfied tasks,
percentage of dropped tasks for PGUS and all baseline al-
gorithms, and percentage of served-satisfied vs. served-not
satisfied tasks based on each priority class for the PGUS and
GUS algorithms. On average, our results show that PGUS
provides more than 9% higher GoS compared to GUS. Fig. 4
implies that not only PGUS satisfies more tasks of higher
priority classes compared to the best baseline algorithm, GUS,
but it also drops fewer tasks compared to all of the baselines.

V. CONCLUSION

We propose a new offloading scheme which considers the
priority of the tasks in a three-tier users-edge-cloud system for
DL-dependent services. We present the optimal offloading de-
cision problem as an ILP model where the goal is to maximize
the gain of system defined based on an accuracy-time trade-off
of serving the DL-dependent services considering the limited
capacity of the edge servers. We prove the proposed problem
is NP-hard and propose an offloading scheme which provides
near-optimal solutions compared to ILP model. Upon vetting
our offloading decision algorithm using both numerical results
and real-world implementation, we show that our proposed
algorithm can serve the top 25% higher priority classes of tasks
by a factor of 45% more than the state-of-the-art algorithm
while still keeping the overall percentage of the dropped tasks
minimal and the overall gain of system maximized.
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