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Strong large scale magnetic fields in rotating convection-driven dynamos:
The important role of magnetic diffusion
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Natural dynamos such as planets and stars generate a global scale magnetic field despite the inferred presence
of small scale turbulence. Such systems are known as large scale dynamos and are typically driven by convection
and influenced by rotation. Previous numerical studies of rotating dynamos generally find that the large scale
magnetic field becomes weaker as the flow becomes more turbulent. The underlying physical processes necessary
for sustaining so-called large scale dynamos is therefore still debated. Here, we use a suite of numerical
simulations to show that strong large scale magnetic fields can be generated in rotating convective turbulence
provided that two conditions are satisfied: (1) The flow remains rotationally constrained, and (2) magnetic
diffusion is important on the small convective length scale. These findings are in agreement with previous
asymptotic predictions and suggest that natural dynamos might satisfy these two conditions.
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Planets and stars generate magnetic fields through the dy-
namo process that converts the kinetic energy of fluid motion
into magnetic energy (e.g., Refs. [1,2]). These fields are often
dominated by their global (e.g., dipolar) components, whereas
the underlying fluid motion that powers the dynamo is turbu-
lent and characterized by length scales much smaller than the
global scale. The Coriolis force likely plays a fundamental
role in the generation of such large scale structures by leading
to domain-scale correlations in the flow field that generate
coherent large scale magnetic fields [3–5]. This correlation
can be quantified by the helicity of the fluid motion [6],
defined as the dot product between the velocity field and the
curl of the velocity field. However, simulations tend to find
that the relative contribution of the large scale component of
the dynamo generated magnetic field decreases as the fluid
becomes more strongly forced and turbulent [7–10]. This loss
of a predominantly large scale magnetic field is associated
with a decrease in the relative (as measured to a maximum
value) helicity. The fundamental question pertaining to natural
systems is then how a large scale dynamo is maintained in the
presence of strongly forced, small scale turbulence. Asymp-
totic theory relevant to rapidly rotating flows suggests that the
deficit in relative helicity can be overcome by enhancing the
influence of magnetic diffusion on the small convective length
scale [11]. In the present Letter we utilize direct numerical
simulations (DNS) of rapidly rotating convective turbulence
to confirm these asymptotic predictions, thus helping to shed
light on a major problem in dynamo theory.

Buoyancy is thought to provide the main source of power
for natural dynamos. Rayleigh-Bénard convection, consisting
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of a fluid layer of depth H heated from below and cooled from
above, is a canonical system for studying buoyancy-driven
turbulence and dynamos. The buoyancy force is controlled by
the nondimensional Rayleigh number,

Ra = gα�TH3

νκ
, (1)

where g is the (constant) gravitational acceleration, α is the
thermal expansion coefficient, �T is the temperature dif-
ference between the top and bottom boundaries, ν is the
kinematic viscosity, and κ is the thermal diffusivity. The rel-
ative importance of viscous and inertial forces to the Coriolis
force is quantified by the Ekman number and the Rossby
number defined by, respectively,

E = ν

2�H2
, Ro = U

2�H
, (2)

where � is the system rotation rate andU is the characteristic
dimensional flow speed. The Reynolds number, quantifying
the relative importance of inertia and viscous forces, is then
related via Re = Ro/E .

The electrical properties of the fluid are specified by the
magnetic Prandtl number, Pm = ν/η, where η is the magnetic
diffusivity. Dynamos require sufficiently large flow speeds to
overcome, or at least balance, the resistive effects of ohmic
diffusion. Therefore, the magnetic Reynolds number, Rm =
RePm, must exceed a threshold value so that the self-induced
magnetic field does not diffuse away. Planetary and stellar dy-
namos are in a regime of rapidly rotating magnetized convec-
tive turbulence in which E � Ro � 1 and Re � Rm � 1,
which is a parameter space that is challenging to study nu-
merically given the broad range of scales characterizing the
dynamics.

Asymptotic theory can provide insight into the extreme
parameter space that characterizes most natural dynamos. A
brief summary of this theory is provided here to aid in the
interpretation of the simulation results. For details the reader
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is referred to Refs. [11,12]. In the limit E → 0 and Ro → 0,
the dynamics of convection depend on the reduced Rayleigh
number (e.g., Ref. [13]),

R̃a ≡ RaE4/3. (3)

At leading asymptotic order the flow is geostrophically bal-
anced on O(E1/3) horizontal convective length scales. Thus,
when the governing equations are nondimensionalized on
this small convective length scale, horizontal derivatives are
O(1) and vertical derivatives are O(E1/3). Variables are
decomposed into horizontal averages (mean) and fluctuat-
ing quantities such that the magnetic field and velocity
field become B = B(z, t ) + B′(x, y, z, t ) and u = u(z, t ) +
u′(x, y, z, t ), respectively. In the plane layer geometry studied
here the mean velocity field is negligibly small and so u ≈ u′.
In the asymptotic regime, the small scale magnetic Reynolds
number, defined as

R̃m = RmE1/3, (4)

plays the key role in determining the relative sizes of the
mean and fluctuating magnetic field. In particular, accessing
what we refer to as the energetically robust large scale dy-
namo regime, in which the energy contained in the large scale
(mean) component of the magnetic field is asymptotically
larger than the energy contained in the fluctuating magnetic
field, is achieved by balancing the emf with large scale
magnetic diffusion, ẑ × ∂z(u′ × B′) ∼ R̃m

−1
∂2
z B, and mean

stretching with small scale magnetic diffusion, B · ∇u ∼
R̃m

−1 ∇2B′; these two balances give, respectively,

|B′|/|B| ∼ E1/3/R̃m, |B′|/|B| ∼ R̃m, (5)

where we have used the fact that |u′| = O(1) to ensure
geostrophic balance at leading order [11]. For the two rela-
tions given above to be consistent we then require

R̃m = O
(
E1/6

)
. (6)

This relationship states that the energetically robust large scale
dynamo regime requires that both E and R̃m are small, i.e.,
Eq. (6) is the distinguished limit that allows for the large scale
magnetic field to be energetically larger than the small scale
magnetic field.

Connecting the asymptotic scaling of Eq. (6) with Pm can
be made upon noting that R̃m = Pm R̃e, where R̃e = ReE1/3

is the small scale Reynolds number. In a given simulation,
R̃e is controlled by R̃a. Thus, reaching small values of R̃m
requires that Pm is reduced; since R̃e = O(1) this implies
we need Pm = O(E1/6). Importantly, the energetically robust
large scale dynamo regime is not limited to small values of
R̃a (i.e., limited to near the onset of convection), and is there-
fore not limited to convective states in which the helicity is
maximal. We note that the simulations are consistent with an
E1/3 scaling for the convective length scale, though a depen-
dence on R̃a is also observed. The inertial theory for rotating
convection suggests that the length scale should behave as
Ro1/2 (e.g., Refs. [14,15]). Though we do not test this inertial
scaling with the present simulations, such a scaling would still
imply that R̃m must be small to observe a strong large scale
magnetic field.

In the present study we simulate dynamo action of a
Boussinesq fluid driven by rotating convection as E , Ra, and
Pm are varied. Reduced Rayleigh numbers up to R̃a ≈ 80 are
reached for each value of E ; the so-called geostrophic turbu-
lence regime occurs for R̃a � 40 [13]. For Ekman numbers
within the range 10−6 � E � 10−4 we use Pm = 1, and for
E � 10−6 we reduce the magnetic Prandtl number down to
Pm = 0.05 at the smallest Ekman number considered, E =
10−8. The largest Reynolds number achieved in the survey
was Re = 1.53 × 104 for E = 10−8 and R̃a ≈ 80. The max-
imum Rossby was Ro = 0.06 for E = 10−4 and R̃a ≈ 80.
The simulations use a dealiased pseudospectral method in
which all flow variables are expanded as Chebyshev poly-
nomials in the vertical dimension and Fourier series in the
horizontal dimensions. Resolutions up to 432 Fourier modes
and 864 Chebyshev polynomials were used for the most de-
manding calculations. A third-order accurate implicit-explicit
time-stepping scheme is used (e.g., Refs. [16,17]) in which
time-step sizes (in nondimensional rotation time) down to
�t = 5 × 10−4 were used. Each simulation was run until a
statistically stationary state was achieved and statistics were
computed only once this state was reached. We found that
this state was reached in approximately hundreds to thousands
of rotation times. Approximately 5 × 106 CPU hours were
required to generate the data set used in the present study.
In all cases shown the horizontal dimension of the simulation
domain is scaled such that ten critical wavelengths are present.
The boundary conditions are stress free, isothermal, and the
magnetic field is required to be purely vertical at the top and
bottom boundaries. The thermal Prandtl number is fixed at
Pr = ν/κ = 1.

The mean helicity is denoted by H(z) ≡ u′ · ζ′, where
ζ′ = ∇ × u′ is the vorticity. Helicity can stretch and twist
magnetic field lines collectively over the horizontal plane,
and therefore induce a large scale magnetic field. It is well
known that when strongly influenced by rotation, convection
is helical (e.g., Ref. [18]). Figure 1(a) shows the rms value
of the helicity for all simulations. All combinations of E and
Pm follow similar behavior with increasing Ra and larger val-
ues of helicity are observed for decreasing Ekman numbers,
whereas Pm tends to have only a weak influence on H. In our
DNS we nondimensionalize the equations using the depth H
and speed ν/H ; adapting this scaling to the asymptotic the-
ory gives |u′| = O(E−1/3) and |ζ′| = O(E−2/3) so that |H| =
O(E−1) as E → 0. Figure 1(b) shows the asymptotically
rescaled rms helicity versus R̃a; the collapse of the data shows
that these simulations are in a quasigeostrophic dynamical
state [19].

It is further helpful to define the relative helicity Hr =
H/(u ζ ), where u and ζ are volumetric rms values, such that
maximally helical flows are characterized by |Hr | = O(1). In
agreement with previous studies, Fig. 2(a) shows that |Hr |
becomes small as R̃a increases for all of the simulations, yet
remains finite (e.g., Refs. [20–22]). These results suggest that
natural dynamos, for which R̃a � 1, are also characterized
by small values of the relative helicity. However, reducing
the magnetic Prandtl number shows that despite the small
relative helicity, large scale dynamo action remains possi-
ble, as predicted by theory. Figures 2(b)–2(e) compare flow
visualizations for E = 10−7 and Pm = 0.3 [Figs. 2(b) and
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FIG. 1. Helicity (rms) for all simulations: (a) H vs Ra; (b) asymptotically rescaled rms helicity EH vs reduced Rayleigh number,
R̃a = RaE 4/3. For the symbols the colors denote different values of Pm and the shapes denote different values of E .

2(d)] with E = 10−8 and Pm = 0.05 [Figs. 2(c) and 2(e)].
As indicated by the black arrow in Fig. 2(a), both cases are
characterized by similar values of Hr . The renderings of the
vertical component of the vorticity shown in Figs. 2(b) and
2(c) provide visual evidence that both simulations are char-
acterized by dynamically similar turbulent flows. Whereas
the large scale Reynolds numbers are Re ≈ 4.5 × 103 and
Re ≈ 1.1 × 104 for E = 10−7 and E = 10−8, respectively, the
corresponding small scale Reynolds numbers for both cases
are R̃e ≈ 21 and R̃e ≈ 24. The corresponding x component
of the magnetic field vector is shown for the two cases in

Figs. 2(d) and 2(e) where we find a more obvious coherent
large scale component for the E = 10−8 (Pm = 0.05) case.

The relative size of the large scale magnetic field can be
quantified by computing M/M, where M is the magnetic
energy of the mean magnetic field andM is the total magnetic
energy. Figure 3(a) shows this mean energy fraction versus
R̃a. We find that smaller values of Pm typically yield larger
values of M/M for a given value of R̃a. For a fixed value
of Pm the mean energy fraction decreases with increasing
R̃a. Conversely, for a fixed value of R̃a, decreasing Pm typ-
ically yields larger values of M/M. Figure 3(b) shows that a

FIG. 2. (a) Relative (rms) helicity for all simulations vs R̃a; the arrow shows the parameter space location for the visualizations shown
in (b)–(e). (b), (d) Visualizations of (b) vertical vorticity and (d) x component of the magnetic field for E = 10−7, Pm = 0.3, and R̃a ≈ 44.
(c), (e) Visualizations of (c) vertical vorticity and (e) x component of the magnetic field for E = 10−8, Pm = 0.05, and R̃a ≈ 44. The symbols
have the same meaning as in Fig. 1.
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FIG. 3. Fraction of the mean magnetic energy to the total magnetic energy,M/M, in all simulations: (a)M/M vs R̃a; (b)M/M vs R̃m. The
symbols have the same meaning as in Fig. 1.

collapse of the data occurs when M/M is plotted versus R̃m.
In particular, we find energetically robust large scale dynamos,
as characterized by M/M → 1, only when R̃m � O(1).

We note that the data shown in Fig. 3(b) also demonstrate
that dynamo action is achieved for smaller values of R̃m as
both E and Pm are reduced. This reduction in the value of
R̃m needed for dynamo action as the parameter values are
made more extreme is because these dynamos are intrinsically
multiscale and anisotropic; convective motions take place over
the depth H of the system, yet the small O(HE1/3) horizontal
length scale of the convection is crucial to these dynamics.
Although R̃m is becoming smaller as both E and Pm are
reduced, the large scale magnetic Reynolds number scales
as Rm = O(E−1/6), and therefore becomes large even as
R̃m = O(E1/6) becomes small as E → 0.

The relationship between the mean energy fraction and
relative helicity is shown in Fig. 4. We find that robust large
scale dynamo action is achieved at smaller values of the rel-
ative helicity as both E and Pm are reduced. These findings

FIG. 4. The fraction of the mean magnetic energy to the total
magnetic energy M/M vs the rms relative helicity Hr . The symbols
have the same meaning as in Fig. 1.

show that small relative helicity by itself does not imply
that large scale dynamo action is not achievable, and that
a deficit of helicity can be offset by enhancing the influ-
ence of magnetic diffusion on the small convective length
scale. A possible explanation for these observations is that
the stretching-diffusion balance present in the small scale
induction equation prevents small scale magnetic field from
cascading to smaller length scales. We note that simulations
of nonrotating helical turbulence have found a similar ef-
fect in which large scale dynamos can be maintained with
decreasing helicity so long as the forcing wave number is
increased [23].

In comparison to previous studies of rotating dynamos
in the plane parallel geometry, the present investigation ex-
tends the parameter space to smaller Ekman numbers and
smaller magnetic Prandtl numbers. References [24,25] find
that so-called large scale vortices (LSVs), generated by
the inverse kinetic energy cascade mechanism, can play
an important role in sustaining a large scale magnetic
field. However, none of the cases reported in Refs. [24,25]
show evidence of what we refer to as the energetically
robust large scale dynamo regime in which M/M ≈ 1.
This finding is consistent with the trends observed in our
simulations. Moreover, no general conclusion on the im-
portance of LSVs in our simulations could be reached;
whereas some cases show relatively strong LSVs, in many
of the cases reported they are not energetically domi-
nant, similar to the findings of Ref. [26]. Reference [9]
found transitions in dynamo behavior for Pm � 1 when
R̃m � 13, though we do not observe a similar be-
havior that may be due to the smaller Ekman and
Rossby numbers employed here. Reference [27] finds large
scale dynamos for sufficiently small Ekman numbers and
Pm � 1, though energetically robust large scale dynamos are
not observed.

The combination of the plane parallel geometry and the
Boussinesq approximation has enabled a systematic explo-
ration of parameter space in which E � 1 and Pm < 1.
Sphericity and compressibility are both important physical
effects in natural systems such as stars and planets. However,
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due to their global nature, spherical simulations require enor-
mous resolution requirements as the Ekman number reduced
(e.g. Ref. [28]). Small Mach number compressible convec-
tion simulations are regularly used [26,27,29], but the in-
creased computational cost relative to Boussinesq simulations
nevertheless prevents such studies from accessing values of
E and Pm comparable to those studied here. We note that
neither compressibility [30] nor sphericity [28] influence the
leading-order balances on the small convective length scales,
suggesting that the distinguished limit identified in Ref. [10]
and studied here may still play the key role in controlling the
relative size of the large scale magnetic field.
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