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ABSTRACT
Numerical simulations are used to investigate large-scale (mean) magnetic field generation in rotating spherical dynamos.
Beyond a certain threshold, we find that the magnitude of the mean magnetic field becomes nearly independent of the system
rotation rate and buoyancy forcing. The analysis suggests that this saturation arises from the Malkus-Proctor mechanism in
which a Coriolis-Lorentz force balance is achieved in the zonal component of the mean momentum equation. When based on the
large-scale magnetic field, the Elsasser number is near unity in the saturated regime. The results show that the large and small
magnetic field saturate via distinct mechanisms in rapidly rotating dynamos, and that only the axisymmetric component of the
magnetic field appears to follow an Elsasser number scaling.
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1 INTRODUCTION

The Sun and the majority of Solar System planets possess global,
or large-scale, magnetic fields that are sustained by a convection-
driven dynamo operating within their interiors (e.g. Jones 2011).
Observations show variability in both the magnitude and structure
of these fields. Whereas Mercury, Earth, and the gas giant planets
Jupiter and Saturn have predominantly dipolar magnetic fields that
show preferential alignment with the planetary rotation axis, Uranus
and Neptune have more complex, multipolar fields (Stanley &
Glatzmaier 2010). Understanding the underlying physical processes
and parameters that control both the structure and amplitude of these
self-generated magnetic fields are two fundamental goals of dynamo
theory. The present work uses numerical simulations to explore the
behaviour of the large-scale magnetic field for varying rotation rates
and buoyancy forcing.

The magnitude of a dynamo generated magnetic field is thought to
be related either to the dominant forces in the fluid region, or to the
power that is available to convert kinetic energy into magnetic energy
(Christensen 2010). We refer to these two possibilities as the force
balance hypothesis, and the energy hypothesis, though they need
not be mutually exclusive (e.g. Christensen & Aubert 2006). The
Coriolis force is known to play an important role in the generation of
large-scale magnetic fields, and the force balance hypothesis assumes
that the magnetic field strength is such that the Lorentz force is
comparable in magnitude to the Coriolis force (Stevenson 1979).
In contrast, the energy hypothesis assumes that the magnetic field
strength is controlled by the power provided by the buoyancy force
(Christensen & Aubert 2006). Since the Coriolis force does no work,
it does not directly enter into the energy hypothesis.
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Dynamos are commonly distinguished by comparing the typical
length scales that characterize the magnetic and velocity fields
(Tobias 2021). Large-scale dynamos have magnetic field length
scales that are large relative to the typical scales of the velocity field.
In contrast, small-scale dynamos are dominated by magnetic field
scales that are comparable to, and smaller than the velocity length
scales (e.g. Yan, Tobias & Calkins 2021). While dynamos are often
characterized by a range of length scales, it is generally assumed
that a dynamo is large-scale if the magnetic field is energetically
dominated by the dipolar component in spherical geometries.

The force balance in rotating dynamos can depend on the length
scale under consideration. Simulations show that the large-scale
force balance in rotating convection-driven dynamos is thermal wind,
i.e. the mean (azimuthally averaged) Coriolis force is comparable to
both the mean pressure gradient force and the mean buoyancy force
(Aubert 2005; Wicht & Christensen 2010; Sheyko et al. 2018). In
contrast, the force balance on the small, fluctuating convective length
scale is geostrophic: the fluctuating Coriolis force is balanced by the
fluctuating pressure gradient force. The fluctuating Lorentz force
enters a second, subdominant balance along with the ageostrophic
fluctuating Coriolis force and the fluctuating buoyancy force (Yadav,
Gastine & Christensen 2016; Aubert, Gastine & Fournier 2017;
Schaeffer et al. 2017). These observations suggest that the mech-
anism(s) responsible for the strength of the magnetic field might also
be scale dependent. Indeed, Malkus & Proctor (1975) showed that
a large-scale magnetic field can saturate through the formation of a
corresponding large-scale flow.

Dynamo models find that for a fixed rotation rate, the magnetic
field shows a relatively sudden transition from a dipole dominated
state to a multipolar state as the buoyancy force is increased.
Moreover, Kutzner & Christensen (2002) found that, for certain
parameter values, the energy contained within the dipole component
of the magnetic field reaches a regime in which it no longer increases
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with the buoyancy force, but instead shows a slight decrease at the
investigated rotation rate, followed by a sudden drop in magnitude
that is associated with the change from a dipolar dominant state to a
multipolar state.

In the present work, we investigate the behaviour of the axisym-
metric (mean) component of the magnetic field in spherical dynamo
models. Our findings show that the mean magnetic field reaches a
regime in which it no longer increases with increasing buoyancy
forcing, and is approximately independent of the system rotation
rate. The analysis suggests that this phenomenon is related to the
force balance in the mean zonal momentum equation. In this sense,
the force balance hypothesis is observed to hold for the large-scale
magnetic field since it is observed to become nearly independent
of the buoyancy forcing beyond a certain threshold. This saturation
of the mean magnetic field is consistent with the Malkus-Proctor
mechanism.

We discuss the model setup and mean field decomposition in
Section 2. Results are discussed in Section 3, followed by a discussion
in Section 4.

2 METHODS

We investigate convection-driven dynamos in a spherical shell
with inner radius ri and outer radius ro, that rotates with angular
frequency �. The fluid is Oberbeck-Boussinesq with density ρ,
thermal expansion coefficient α, thermal diffusivity κ , kinematic
viscosity ν, and magnetic diffusivity η. The shell thickness is given
by D = ro − ri, the gravitational acceleration at the outer boundary
is denoted go, and the temperature difference between the inner and
outer boundaries is 	T. The non-dimensional control parameters
are the Rayleigh number (Ra), the Ekman number (Ek), the thermal
Prandtl number (Pr), the magnetic Prandtl number (Pm), and the
aspect ratio (χ ), defined by, respectively,

Ra = αgo	T D3

νκ
, Ek = ν

�D2
, Pr = ν

κ
, Pm = ν

η
, χ = ri

ro
.

(1)

The non-dimensionalization is carried out using the shell depth D,
large-scale viscous diffusion time D2/ν, pressure scale P = ρν�,
and magnetic field scale B2 = μ0ρη�, where μ0 is the vacuum
permeability.

To compare cases with different Ekman numbers we use the
asymptotically rescaled, or reduced, Rayleigh number (e.g. Julien,
Knobloch & Werne 1998; Jones, Soward & Mussa 2000) defined as

R̃a = RaEk4/3. (2)

In the limit Ek → 0, we expect the dynamics to depend on R̃a, rather
than Ra and Ek independently.

We use no-slip, isothermal, and electrically insulating boundary
conditions. The governing equations are solved numerically using the
pseudospectral code Rayleigh (Featherstone & Hindman 2016;
Matsui et al. 2016). In all simulations presented here, we fix χ =
0.35 and Pr = 1, while varying Ra, Ek, and Pm. All statistics
are computed from statistically stationary states. The most extreme
simulation with Ek = 3 × 10−6 and R̃a ≈ 40 use a resolution of
N= 180 Chebyshev polynomials in radius and a maximum spherical
harmonic degree �max = 383. A subset of these simulations was
utilized in another recent study (Calkins, Orvedahl & Featherstone
2021).

We decompose all variables into axisymmetric (mean) and non-
axisymmetric (fluctuating) components. For instance, the magnetic

field is decomposed according to

B(r, t) = B(r, θ, t) + B′(r, t), (3)

where the overline denotes an average in longitude (φ). The mean
and fluctuating magnetic energies are then defined as, respectively,

Emag =
[

1

2PmEk

∣∣B(r, t)
∣∣2
]

, E′
mag =

[
1

2PmEk

∣∣B′(r, t)
∣∣2
]

,

(4)

where the square brackets indicate a time and volume average over
the entire domain.

The mean and fluctuating magnetic field power spectra are com-
puted according to

PB =
{∣∣∣ Bm=0

� (r, t)
∣∣∣2
}

, P ′
B =

⎧⎨
⎩
∑
m�=0

∣∣ B′m
� (r, t)

∣∣2

⎫⎬
⎭ , (5)

where Bm
� denotes a (complex) spherical harmonic coefficient of

degree � and order m. The curly braces indicate an average over time
and radius. The spectra showed only small variations with depth,
therefore the radial average involved 14 radial grid points, evenly
spaced across the shell depth.

3 RESULTS

Fig. 1 shows the magnetic energy decomposed into (a) mean and
(b) fluctuating components. At all values of Ek, the total magnetic
energy (not shown) grows as the Rayleigh number is increased,
primarily owing to contributions from E′

mag. For smaller values of

R̃a, we find that Emag increases with R̃a until transitioning to a
regime in which it remains approximately constant. We refer to the
latter state as the saturated mean field regime. The transition to the
saturated regime occurs around R̃a ≈ 20 − 35 for all Ekman numbers
investigated here, though the data shows a trend that smaller Ekman
numbers saturate for smaller values of R̃a. In addition to these first
two regimes, the largest Ekman number case of Ek = 10−4 and Pm =
2 shows an abrupt transition to a state that is characterized by a small
mean magnetic energy; this regime represents the transition to a
multipolar dynamo discussed previously (Kutzner & Christensen
2002; Christensen & Aubert 2006; Soderlund, King & Aurnou
2012).

Although both the mean and fluctuating magnetic energies in-
crease with decreasing Ekman number, this increase is due to the
prefactor, 1/(PmEk), in the definition of the magnetic energy. A
commonly employed non-dimensional parameter for characterizing
the strength of dynamo generated magnetic fields is the Elsasser
number,

� = B2

2μ0ρη�
, (6)

though other definitions are also used (e.g. Soderlund et al. 2012,
2015; Aurnou & King 2017). In our non-dimensional units, the
(squared) magnetic field strength can be recast in Elsasser number
units by dividing by a factor of two and an overline is used to
emphasize it is based on the mean magnetic field only. Thus, we

compute the mean Elsasser number as � = [B
2
/2]. As Fig. 2(a)

demonstrates, the mean Elsasser number is approximately unity and
shows a very weak dependence on the Ekman number, where it is
plotted as a function of the global Rossby number, Ro ≡ U/(�D),
where U is a characteristic flow speed computed as a root mean
square (rms) of the full velocity over the entire domain. Open symbols
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Figure 1. Magnetic energy for all simulations as a function of reduced Rayleigh number, ˜Ra: (a) mean magnetic energy; and (b) fluctuating magnetic energy.
The symbols and line styles correspond to the Ekman numbers, and the colors indicate the magnetic Prandtl number. Mean magnetic energy increases with ˜Ra
until saturating at an Ek-dependent value of ˜Ra. Fluctuating magnetic energy shows no such behaviour and continues to increase with ˜Ra.

Figure 2. (a) The mean Elsasser number for all cases as a function of the Rossby number. Solid (open) symbols indicate cases that are in the saturated
(unsaturated) regime. The mean Elsasser number saturates at a value of roughly unity for all models in the saturated regime, with the exception of the three
high-Ro, multipolar cases that use Ek = 10−4. (b) Ratios of the mean Lorentz force to the mean Coriolis force for both the radial and zonal components. Mean
Coriolis and mean Lorentz forces are of roughly the same amplitude in the zonal direction for all models, with the exception of the three high-Ro, multipolar
cases. In the radial direction, the mean Lorentz force is typically an order of magnitude smaller than the mean Coriolis force.

are used to denote field strengths prior to the saturated regime; we
find that the onset of the saturated regime occurs at smaller Rossby
number as Ek is reduced, implying that this regime occurs over an
increasingly larger range of R̃a. This finding suggests that natural
systems are likely in the saturated mean field regime since they are
characterized by (Ek, Ro) � 1 and R̃a 	 1. We observe a slight
increase in � with increasing Pm and decreasing Ek; these results
suggest that the natural dynamo regime (Ek, Pm) � 1 will maintain
order unity mean Elsasser numbers.

Provided that the Rossby number is not too large, the leading order
mean force balance in the zonal direction is between the Coriolis
force and the Lorentz force (Aubert 2005; Wicht & Christensen
2010; Sheyko et al. 2018). However, the zonal component of the
Lorentz force is measurably smaller than the leading order forces
in the meridional components of the mean momentum equation so
that a fully magnetostrophic large-scale force balance is not present
(Calkins et al. 2021). Instead, we refer to this balance as semi-
magnetostrophic. To illustrate these balances, we compute the ratio

of the Lorentz and Coriolis forces component-wise according to

F l,r

F c,r

=
〈(

J × B
)

r

〉〈
2Pm

(
u× ẑ

)
r

〉 ,
F l,φ

F c,φ

=
〈(

J × B
)

φ

〉
〈

2Pm
(
u× ẑ

)
φ

〉 , (7)

where the angled brackets indicate an rms over the whole domain.
Fig. 2(b) shows both of these force ratios. When based on the
radial components, the force ratio is less than unity, showing that
the Lorentz force is always smaller than the Coriolis force in the
radial component of the mean momentum equation. In the zonal
direction, the force ratio is approximately unity for the rapidly
rotating cases, indicating that the force balance hypothesis is valid
within the saturated mean field regime provided Ro is sufficiently
small.

The mean Lorentz force consists of two components: the ‘mean–
mean’ contribution J×B and the ‘eddy–eddy’ term J ′×B′. Fig. 3
shows meridional views of the time averaged zonal components of
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Figure 3. Balance between mean Lorentz and Coriolis force in the zonal direction for Ek = 10−5, ˜Ra = 21.5, and Pm = 2. (a) The mean–mean contribution
to the mean Lorentz force, (b) the eddy–eddy term, (c) the total mean Lorentz force, and (d) the Coriolis force. The Coriolis force is largely balanced by the
Lorentz force, due mainly to contributions from the mean magnetic field, though fluctuating magnetic fields do still contribute.

Figure 4. Power spectra for the (a) mean and (b) fluctuating component of the magnetic field. Only a subset of cases with Ek = 10−5 and Pm = 2 are shown.
For the mean magnetic field, the power grows with increasing ˜Ra until a critical value of ˜Ra = 32, beyond which, the spectral shape and amplitude remain
relatively unchanged. This behaviour is not observed in the spectra associated with the fluctuating magnetic field.

the mean Lorentz force as well as the zonal Coriolis force for the
case with Ek = 10−5 and R̃a = 21.5. To accelerate convergence
of the time averages, we treated data in the northern and southern
hemispheres as unique statistical realizations, reflected the data about
the equatorial plane, and computed the resulting average. The trend
toward an equatorially symmetric state was verified by averaging over
increasing time intervals. In general, the relationship between these
two components of the mean Lorentz force is complicated; there are
regions in which they are of the same sign and regions where they
are of opposite sign. However, both terms are of comparable size and
are both necessary to balance the mean Coriolis force.

Fig. 4 shows the power spectra for the (a) mean and (b) fluctuating
components of the magnetic field. The mean magnetic field spectra
are dominated by the dipolar component that is roughly an order of
magnitude larger than the � = 3 octopole component. The mean mag-
netic field shows larger contributions from odd spherical harmonics,
consistent with a largely equatorially antisymmetric configuration.
Within the saturated field regime, the dipole component saturates
with increasing R̃a. The spectra for R̃a = 32 and R̃a = 43 are nearly

the same, even for large values of �. This result suggests that the
near saturation of the dipole contribution observed by Kutzner &
Christensen (2002) is robust across all �, implying that the total
mean field saturates, not just a particular value of �. In contrast to the
mean field, as R̃a increases, the power in the fluctuating magnetic
field (Fig. 4b) increases at all spatial scales for smaller values of R̃a.
Beyond R̃a ≈ 22, the low-� power begins to decrease, whereas the
high-� power continues to increase slightly.

4 DISCUSSION AND CONCLUSIONS

Self-generated magnetic fields are common throughout the Solar
System and beyond. Understanding the processes that control the
strength of these fields and their structure are two basic problems
in dynamo theory. Although numerical simulations cannot currently
be used to study dynamos with parameter values comparable to
those in natural systems, parameter surveys with these models can
be used to identify asymptotic behaviour that allow for extrapolation
to planetary and stellar conditions. Our findings show that the
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large-scale, axisymmetric magnetic field becomes nearly indepen-
dent of the rotation rate and buoyancy forcing, as characterized by the
non-dimensional Ekman number and Rayleigh number, respectively.
To the extent that limited parameter space studies may be extrapolated
to the more extreme parameter regimes of natural systems, these
results suggest that a similar process may be at work in natural
dynamos.

As suggested by Malkus & Proctor (1975), our results show
that mean and fluctuating magnetic fields saturate through distinct
mechanisms. We find that the saturation of the mean magnetic
field is the result of the Coriolis-Lorentz force balance that occurs
in the zonal component of the mean momentum equation. The
corresponding strength of the mean magnetic field is characterized
by a mean Elssasser number that is order unity, suggesting that the
force balance hypothesis is valid for the large-scale magnetic field. In
contrast, the fluctuating magnetic field tends to grow with increasing
buoyancy forcing. That the mean magnetic field does not depend
on the Rayleigh number in the saturated regime may be understood
heuristically by noting that the mean buoyancy force does not enter
the zonal component of the mean momentum equation. This finding
should be contrasted with the force balance on the fluctuating scales,
which is dominated by a leading order geostrophic force balance, and
a higher order magnetostrophic balance that involves the buoyancy,
Coriolis, Lorentz, and pressure gradient forces (e.g. Yadav et al.
2016). The fact that the fluctuating buoyancy force and the fluctuating
Lorentz force are of comparable magnitude may be the reason that the
fluctuating magnetic field grows with increasing Rayleigh number.

Applying the present findings to planets and stars requires that
the observed magnetic field is separated into mean and fluctuating
components. Although Christensen (2010) suggests that the so-called
Elsasser number rule (i.e. the Coriolis and Lorentz forces balance and
determine the magnetic field strength) does not agree with available
numerical data, our findings suggest that this discrepancy is due to the
fact that the fields have not been separated into mean and fluctuating
components.

Observational studies find that inferred stellar magnetic activity
becomes independent of Rossby number below a certain threshold
value (Patten & Simon 1996; Mohanty & Basri 2003; Pizzolato et al.
2003; Reiners & Basri 2007). Our findings exhibit some similarity
to these studies, though it should be emphasized that the many
assumptions that are used in these investigations make it difficult
to relate to our numerical findings. In particular, stellar activity is
likely tied to small-scale magnetic features arising in the stellar
photosphere, a feature not captured in models such as those presented
here. It is possible that such small-scale features are directly or
indirectly linked to the large-scale, internal magnetic field of the star.
The nature of this linkage between large and small scales remains
a particularly active area of research, noteably within the context of
the Sun (e.g. Hotta, Rempel & Yokoyama 2016).
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