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Abstract

Anomaly detection presents a unique challenge in
machine learning, due to the scarcity of labeled
anomaly data. Recent work attempts to mitigate
such problems by augmenting training of deep
anomaly detection models with additional labeled
anomaly samples. However, the labeled data often
does not align with the target distribution and in-
troduces harmful bias to the trained model. In this
paper, we aim to understand the effect of a biased
anomaly set on anomaly detection. Concretely, we
view anomaly detection as a supervised learning
task where the objective is to optimize the recall
at a given false positive rate. We formally study
the relative scoring bias of an anomaly detector,
defined as the difference in performance with re-
spect to a baseline anomaly detector. We establish
the first finite sample rates for estimating the rela-
tive scoring bias for deep anomaly detection, and
empirically validate our theoretical results on both
synthetic and real-world datasets. We also provide
an extensive empirical study on how a biased train-
ing anomaly set affects the anomaly score function
and therefore the detection performance on differ-
ent anomaly classes. Our study demonstrates sce-
narios in which the biased anomaly set can be use-
ful or problematic, and provides a solid benchmark
for future research.

1 Introduction

Anomaly detection [Chandola et al., 2009] trains a formal
model to identify unexpected or anomalous instances in in-
coming data, whose behavior differs from normal instances.
It is particularly useful for detecting problematic events such
as digital fraud, structural defects, and system malfunctions.
Building accurate anomaly detection models is a well-known
challenge in machine learning, due to the scarcity of labeled
anomaly data. The classical and most common approach is
to train anomaly detection models using only normal data',

*Contact Author

'Existing literature has used different terms to describe such
models, e.g., semi-supervised anomaly detection [Chandola et al.,
2009] and unsupervised anomaly detection [Ruff er al., 2018].
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i.e., first train a model using a corpus of normal data to cap-
ture normal behaviors, then to configure the model to flag
instances with large deviations as anomalies. Researchers
have also developed deep learning methods to better cap-
ture the complex structure in the data [Ruff er al., 2018;
Zhou and Paffenroth, 2017]. Following the terminology in-
troduced by [Chandola et al., 2009], we refer to these models
as deep semi-supervised anomaly detection models.

Recently, a new line of anomaly detection models propose
to leverage available labeled anomalies during model train-
ing, i.e., train an anomaly detection model using both nor-
mal data and additional labeled anomaly samples as they be-
come available [Ruff et al., 2020b; Yamanaka et al., 2019;
Ruff et al., 2020a]. Existing works show that these new mod-
els achieve considerable performance improvements beyond
the models trained using only normal data. We hereby refer
to these models as deep supervised anomaly detection mod-
els? [Chandola et al., 2009].

When exploring these models, we found when the labeled
anomalies (used to train the model) do not align with the
target distribution (typically unknown), they can introduce
harmful bias to the trained model. Specifically, when compar-
ing the performance of a supervised anomaly detector to its
semi-supervised version, the performance difference varies
significantly across test anomaly data, some better and some
worse. That is, using labeled anomalies during model training
does not always improve model performance; instead, it may
introduce unexpected bias in anomaly detection outcomes.

In this paper, we aim to devise a rigorous and system-
atic understanding on the effect of labeled anomalies on deep
anomaly detection models. We formally state the anomaly
detection problem as a learning task aiming to optimize the
recall of anomalous instances at a given false positive rate—
a performance metric commonly used by many real-world
anomaly detection tasks [Liu er al., 2018; Li et al., 2019].
We then show that different types of anomalous labels pro-
duce different anomaly scoring functions. Next, given any
reference anomaly scoring function, we formally define the
relative scoring bias of an anomaly detector as its difference
in performance with the reference scoring function.

2Some works termed these models as semi-supervised anomaly
detection [Ruff et al., 2020b; Yamanaka et al., 2019; Ruff et al.,
2020a] while others termed them as supervised anomaly detec-
tion [Chandola et al., 2009].
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Task Type Distribution Shift Known Target Distribution Known Target Label Set
Imbalanced Classification [Johnson and Khoshgoftaar, 2019] No N/A N/A
Closed Set Domain Adaptation [Saenko et al., 2010] Yes Yes Yes
Open Set Domain Adaptation [Panareda Busto and Gall, 2017] Yes Yes No
Anomaly Detection [Chalapathy and Chawla, 2019] Yes No No

Table 1: Comparison of anomaly detection tasks with other relevant classification tasks.

Following our definition?, we establish the first finite sam-
ple rates for estimating the relative scoring bias for deep
anomaly detection. We empirically validate our assumptions
and theoretical results on both synthetic and three real-world
datasets* (Fashion-MNIST, StatLog (Landsat Satellite), and
Cellular Spectrum Misuse [Li et al., 2019]).

Furthermore, we provide an extensive empirical study on
how additional labeled data affects the anomaly score func-
tion and the resulting detection performance. We consider the
above three real-world datasets and six deep anomaly detec-
tion models. Our study demonstrates a few typical scenarios
in which the labeled anomalies can be useful or problematic,
and provides a solid benchmark for future research. Our main
contributions are as follows:

e We systematically expose the bias effect and discover the
issue of large performance variance in deep anomaly detec-
tors, caused by the additional labeled anomalies in training.

e We model the effect of biased training as relative scoring
bias, and establish the first finite sample rates for estimat-
ing the relative scoring bias of the trained models.

e We conduct empirical experiments to verify and character-
ize the impact of the relative scoring bias on six popular
anomaly detection models, and three real-world datasets.
To the best of our knowledge, we are the first to for-

mally study the effect of additional labeled anomalies on deep
anomaly detection. Our results show both significant positive
and negative impacts from them, and suggest model trainers
must treat additional labeled data with extra care. We believe
this leads to new opportunities to improve anomaly detectors
and deserves more attention from the research community.

2 Related Work

Anomaly detection models. While the literature on

anomaly detection models is extensive, the most relevant to

our work are deep learning based models. Following the term

in Chandola et al. [2009], we consider two types of models:

o Semi-supervised anomaly detection refers to models
trained on only normal data, e.g., [Zhou and Paffenroth,
2017; Ruff et al., 2018; Goyal et al., 2020];

o Supervised anomaly detection refers to models trained on
normal data and a small set of labeled anomalies [Pang
et al., 2019; Yamanaka et al., 2019; Ruff et al., 2020a;
Ruff et al., 2020b; Goyal et al., 2020]. Due to the increas-
ing need of making use of labled anomalies in real-world
applications, this type of work has gain much attention re-
cently.

3Our definition of scoring bias for anomaly detection aligns with
the classical notion of bias in the supervised learning setting, with
the key difference being the different performance metric.

“The Appendix containing additional proofs and experiement re-
sults can be found in the long version of our paper [Ye et al., 2021].

Another line of recent work proposes to use synthetic
anomalies [Golan and El-Yaniv, 2018; Hendrycks et al.,
2019; Lee et al., 2018], “forcing” the model to learn a more
compact representation for normality. While the existing
work has shown empirically additional labeled anomalies in
training may help detection, it does not offer any theoretical
explanation, nor does it consider the counter-cases when ad-
ditional labeled anomalies hurt detection.

Deep anomaly detection models can also be categorized
by architectures and objectives, e.g., hypersphere-based mod-
els [Ruff ef al., 2018; Ruff et al., 2020b] and reconstruction
based models [Zhou and Paffenroth, 2017; Yamanaka et al.,
2019] (see Table 2). We consider both types in this work.

Bias in anomaly detection. While the issue of domain mis-
match has been extensively studied as transfer learning in
general supervised learning scenarios, it remains an open
challenge for anomaly detection tasks. Existing work on
anomaly detection has explored bias in semi-supervised set-
ting when noise exists in normal training data [Tong et al.,
2020; Liu and Ma, 2019], but little or no work has been done
on the supervised setting (i.e., models trained on both normal
data and some labeled anomalies). Other well-studied super-
vised tasks, as summarized in Table 1, generally assume that
one can draw representative samples from the target domain.
Unlike those studies, anomaly detection tasks are constrained
by limited information on unknown types of anomalies in
testing, thus additional labeled data in training can bring sig-
nificant undesired bias. This poses a unique challenge in in-
ferring and tackling the impact of bias in anomaly detection
(e.g., defending against potential data poisoning attacks). To
the best of our knowledge, we are the first to identify and
systematically study the bias caused by an additional (pos-
sibly unrepresentative) labeled anomaly set in deep anomaly
detection models (as shown in Section 5).

PAC guarantees for anomaly detection. Despite signifi-
cant progress on developing theoretical guarantees for clas-
sification [Valiant, 1984], little has been done for anomaly
detection tasks. Siddiqui er al. [2016] first establish a PAC
framework for anomaly detection models by the notion of
pattern space, but it is challenging to be generalized to deep
models. Liu et al. [2018] propose a model-agnostic approach
with PAC guarantees on unsupervised models. We follow the
basic setting from this line to address the convergence of the
relative scoring bias. Closely aligned with the empirical risk
minimization framework [Vapnik, 1992], our definition for
bias facilitates connections to fundamental concepts in learn-
ing theory and brings rigor in theoretical study of anomaly
detection. In contrast to prior work, our proof relies on a
novel adaption of the key theoretical tool from Massart et
al. [1990], which allows us to extend our theory to charac-
terize the notion of scoring bias as defined in Section 3.2.
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3 Problem Formulation

We now formally state the anomaly detection problem. Con-
sider a model class © for anomaly detection, and a (labeled)
training set D sampled from a mixture distribution D over the
normal and anomalous instances. A model § maps each in-
put instance x to a continuous output, which corresponds to
anomaly score sg(x). The model uses a threshold 74 on the
score function to produce a binary label for x.

Given a threshold 7y, we define the False Positive Rate
(FPR) of 6 on the input data distribution as FPR(sg,79) =
P[so(z) > 79 | y = 0], and the True Positive Rate (TPR,
a.k.a. Recall) as TPR(sg, 79) = P[sg(x) > 79 | y = 1]. The
FPR and TPR are competing objectives—thus, a key chal-
lenge for anomaly detection algorithms is to identify a con-
figuration of the score, threshold pair (sg,7y) that strikes a
balance between the two metrics. W.l.o.g.%, in this paper
we focus on the following scenario, where the objective is
to maximize TPR subject to a target FPR. Formally, let 1 — ¢
be the target FPR; we define the optimal anomaly detector as®

(sg,75) € argmax TPR(sg, 79) s.t. FPR(sg,79) <1 —gq.
(s9,79):0€0
3.1

3.1 A General Anomaly Detection Framework

The performance metric (namely TPR) in Problem 3.1 de-
pends on the entire predictive distribution, and cannot be eas-
ily evaluated on any single data point. Thus, rather than di-
rectly solving Problem 3.1, practical anomaly detection al-
gorithms (e.g., Deep SVDD [Ruff et al., 2018]) often rely
on a two-stage process: (1) learning the score function sy
from training data via a surrogate loss, and (2) given sy from
the previous step, computing the threshold function 7 on the
training data. Formally, given a model class O, a training set
D, a loss function ¢, and a target FPR 1 — ¢, a two-staged
anomaly detection algorithm outputs:

59 € argming, gcg (59, D)
Tp € argmax,, gco TPR(39,79) s.t. FPR(39,79) < 1 —gq.
(3.2)

The first part of Equation 3.2 amounts to solving a super-
vised learning problem. Here, the loss function £ could be in-
stantiated into latent-space-based losses (e.g., Deep SVDD),
margin-based losses (e.g., OCSVM [Schélkopf er al., 1999]),
or reconstruction-based losses (e.g., ABC [Yamanaka et al.,
2019]); therefore, many contemporary anomaly detection
models fall into this framework. To set the threshold 7y,
we consider using the distribution of the anomaly scores
3¢(-) from a labeled validation set D ~ D. Let DY :=
Dy U DX where D§! and D} denote the subset of nor-
mal data and the subset of abnormal data of D3, Denote

>Our results can be easily extended to the setting where the goal
is to minimize FPR subject to a given TPR (cf. Appendix B).

8This formulation aligns with many contemporary works in deep
anomaly detection. For example, [Li et al., 2019] show that in real
world, it is desirable to detect anomalies with a prefixed low false
alarm rate; [Liu et al., 2018] formulate anomaly detection in a simi-
lar way, where the goal is to minimize FPR for a fixed TPR.
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the empirical CDFs for anomaly scores assigned to  in D}
and DY as Fyand F, respectively. Given a target FPR value
1— g, similar to Liu et al. [2018], one can compute the thresh-
old as 7y = max{u € R : Fy(u) < ¢}. Algorithm 1 sum-
marizes the steps to solve the second part of Equation 3.2.

Algorithm 1: Computing the anomaly detection
threshold for Problem 3.2

Data: A validation dataset DY and a scoring function
Result: A score threshold achieving a target FPR and
the corresponding recall on DY,

1 Get anomaly score s(x) for each x in D"¥.
» Compute empirical CDF Fy(z) and F, () for

anomaly scores of z in D} and DY,
3 Output detection threshold

7 =max{u € R : Fy(u) < ¢}.
4 Output TPR (recall) on D' as # = 1 — F, (7).

3.2 Scoring Bias

Given a model class © and a training set D, we define the
scoring bias of a detector (8¢, Ty) as:
bias(§97 ?9) = argmax TPR(897 7'9) — TPR(§97 729).
(s0,70):0€0
(3.3)

We call (3¢, 7g) a biased detector if bias(8g, 79) > 0. In prac-
tice, due to the biased training distribution and the fact that
the two-stage process in Equation 3.2 is not directly optimiz-
ing TPR, the resulting anomaly detectors are often biased by
construction. One practically relevant performance measure
is the relative scoring bias, defined as the difference in TPR
between two anomaly detectors, subject to the constraints
in Equation 3.2. It captures the relative strength of two al-
gorithms in detecting anomalies, thus is an important indi-
cator for model evaluation and selection’. Formally, given
two arbitrary anomaly score functions s, s’ and correspond-
ing threshold functions 7,7’ obtained from Algorithm 1, we
define the relative scoring bias between s and s’ as:

(s, s') := bias(s, 7) — bias(s’, 7’)
= TPR(s’,7") — TPR(s, 7). (3.4)
Note that when s’ = s, the relative scoring bias (equa-

tion 3.4) reduces to the scoring bias (equation 3.3). We further
define the empirical relative scoring bias between s and s’ as

£(s,s') == TPR(s',7') — TPR(s, 7), (3.5)

where TPR(s, 7) = L3 Ly(a,)>7sy,—1 denotes the TPR
(recall) estimated on a finite validation set of size n. In the
following sections, we will investigate both the theoretical
properties and the empirical behavior of the empirical relative
scoring bias for contemporary anomaly detectors.

"This TPR-based definition for bias is also useful for group fair-
ness study. For example, in Figure 3, we have shown how model
performances vary across different sub-groups of anomalies.
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Type Semi-supervised (trained on normal data)

Supervised (trained on normal & some abnormal data)

Hypersphere-based Deep SVDD [Ruff et al., 2018]

Deep SAD [Ruff et al., 2020b], Hypersphere Classifier (HSC) [Ruff e7 al., 2020a]

Reconstruction-based | Autoencoder (AE) [Zhou and Paffenroth, 2017]

Supervised AE (SAE), Autoencoding Binary Classifier (ABC) [Yamanaka et al., 2019]

Table 2: The anomaly detection models considered in our case study. Deep SAD and HSC are the supervised versions of Deep SVDD (the
semi-supervised baseline model); SAE and ABC are the supervised versions of AE (the semi-supervised baseline model). Note that we design
SAE by forcing the reconstruction errors to be maximized for additional labeled anomalies encountered in training the autoencoder.

4 Finite Sample Analysis for Empirical
Relative Scoring Bias

In this section, we show how to estimate the relative scor-
ing bias (Equation 3.4) given any two scoring functions s, s’.
As an example, s could be induced by a semi-supervised
anomaly detector trained on normal data only, and s’ could
be induced by a supervised anomaly detector trained on a bi-
ased anomaly set. We then provide a finite sample analysis
of the convergence rate of the empirical relative scoring bias,
and validate our theoretical analysis via a case study.

4.1 Finite Sample Guarantee

Notations. Assuming when determining 7, scoring func-
tions s, s’ are evaluated on the unbiased empirical distribu-
tion of normal data; the empirical TPR 7 are estimated on
the unbiased empirical distribution of abnormal data. Let
{si = s(x;) | =i, y; = 0}7°, be anomaly scores eval-
uated by s(-) on ng iid. random normal samples. Let
Fo(t) = P[s(x) <t|y=0] be the CDF of s(z), and
Ey(t) = n%) >0 1, <t:y,—0 be its empirical CDF. For ny
i.i.d. samples {s; := s(v;) | zj,y; = 1}]1,, we denote the
CDFas F,(t) .= P[s(z) <t |y = 1], and the emprical CDF
as F, (t) = n% Z;’;l 1, <t;y,—1. Similarly, we denote the
CDF and emiprical CDF for {s] | y; = 0};2, as Fy(t) and
F}(t), and those for {s'; | y; = 1 Lo as Fy(t) and EY(¢).
Infinite sample case. In the limit of infinite data (both nor-
mal and abnormal), Fy, F,, EjandF! converge to the true
CDFs (cf. Skorokhod’s representation theorem and Theorem
2A of [Parzen, 1980]), and hence the empirical relative scor-
ing bias also converges. Proposition 1 establishes a connec-
tion between the CDFs and the relative scoring bias.

Proposition 1. Given two scoring functions s, s’ and a tar-
get FPR 1 — q, the relative scoring bias is £(s,s') =
Fo(F5 ' (a) = Fo(Fg ' (a)-

Here, F~1(-) is the quantile function. The proof of Propo-
sition 1 follows from the fact that for corresponding choice
of 7,7’ in Algorithm 1, TPR(s,7) = 1 — F,(F;*(g)), and
TPR(s',7') = 1 — FL(F} " (q)).

Next, a direct corollary of the above result shows that, for
the special cases where both the scores for normal and abnor-
mal data are Gaussian distributed, one can directly compute
the relative scoring bias. The proof is listed in Appendix A.

Corollary 2. Let 1 —q be a fixed target FPR. Given two scor-
ing functions s, ', assume that s(z) | (y = 0) ~ N (1o, 00),
s(@) | (y = 1) ~ N(pa,0a), s'(x) | (y = 0) ~ N (g, 05),
s'(z) | (y =1) ~ N(1y, 0l,). The relative scoring bias is

—1 / a—1 ’ ’
5(875/) — P (qu’ (9) =+ Moa—ua) P (0 oj (9) + Ho(;ﬂa)7

Oq a

where ® denotes the CDF of the standard Gaussian.
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Finite sample case. In practice, when comparing the per-
formance of two scoring functions, we only have access to fi-
nite samples. Thus, it is crucial to bound the estimation error
due to insufficient samples. We now establish a finite sample
guarantee for estimating the relative scoring bias. Our result
extends the analysis of Liu er al. [2018]. The validation set
contains a mixture of n = ng + n; i.i.d. samples, with ng
normal samples and n; abnormal samples where % = a.
The following result shows that under mild assumptions of
the continuity of the CDFs and quantile functions, the sample

complexity for achieving | — £ < e:

Theorem 3. Assume that F(L,F(;,Fo_l,F(’)_1 are Lipschitz

continuous with Lipschitz constant {,, 0, ¢y, £, , respec-
tively. Let o be the fraction of abnormal data among n i.i.d.
samples from the mixture distribution. Then, w.p. at least
1 — 6, with

2 2
8 2 2—a\2 21 Lo [
n26—2~<10g717 1—6'( ad) +log3-—17a ((E) +(%,) >>,

the empirical relative scoring bias satisfies |€ — £| < e.

We defer the proof of Theorem 3 to Appendix B. The
sample complexity for estimating the relative scoring bias n
grows as O (=3- log 1 ). Note the analysis of our bound in-
volves a novel two-step process which first bounds the esti-
mation of the threshold for the given FPR, and then leverages

the Lipschitz continuity condition to derive the final bound.

4.2 Case Study

We conduct a case study to validate our main results above
using a synthetic dataset and three real-world datasets. We
consider six anomaly detection models listed in Table 2, and
they lead to consistent results. For brevity, we show results
when using Deep SVDD as the baseline model trained on nor-
mal data only and Deep SAD as the supervised model trained
on normal and some abnormal data. Later in Appendix D, we
include results of other models, including Deep SVDD vs.
HSC, AE vs. SAE, and AE vs. ABC.

Synthetic dataset. Similar to Liu et al. [2018], we gener-
ate our synthetic dataset by sampling data from a mixture
data distribution S, w.p. 1 — « generating the normal data
distribution Sy and w.p. « generating the abnormal data dis-
tribution S,. Data in Sy are sampled randomly from a 9-
dimensional Gaussian distribution, where each dimension is
independently distributed as A(0,1). Data in S, are sam-
pled from another 9-dimensional distribution, which w.p. 0.4
have 3 dimensions (uniformly chosen at random) distributed
as N'(1.6,0.8), w.p. 0.6 have 4 dimensions (uniformly chosen
atrandom) distributed as N'(1.6, 0.8), and have the remaining
dimensions distributed as A'(0,1). This ensures meaningful
feature relevance, point difficulty and variation for the abnor-
mal data distribution [Emmott et al., 2015].
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We obtain score functions s and s’ by training Deep SVDD
and Deep SAD respectively on samples from the synthetic
dataset (10K data from Sy, 1K data from S,). We configure
the training, validation and test set so they have no overlap.
Thus, the training procedure will not affect the sample com-
plexity for estimating the bias. To set the threshold, we fix the
target FPR to be 0.05, and vary the number of normal data in
the validation set n from {100, 1K, 10K}. We then test the
score function and threshold on a fixed test dataset with a
large number (20K) of normal data and ax20K of abnormal
data. We vary « from {0.01, 0.05, 0.1, 0.2}.

Real-world datasets. We consider 3 real-world datasets
targeting disjoint subjects: Fashion-MNIST [Xiao er al.,
2017], StatLog [Dua and Graff, 2017] and Cellular Spectrum
Misuse [Li et al., 2019]. Detailed descriptions of datasets and
training configurations are in Appendix C.

Distribution of anomaly scores. Figure 1 is a sample plot
of score distributions on the test set of the synthetic dataset
with « = 0.1. We make two key observations. First, the
distribution curves follow a rough bell shape. Second and
more importantly, while the abnormal score distribution can
closely mimic the normal score distribution under the unsu-
pervised model, it deviates largely from the normal score dis-
tribution after semi-supervised training. This confirms that
semi-supervised training does introduce additional bias.

0.0000 0.0005 0.001 0o 1 2 3 3
Anomaly Score Anomaly Score

~
N

—————— normal data
—— abnormal data

————— normal data
—— abnormal data

=N W
~

=

Estimated PDF
Estimated PDF
-

0

I
|
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Figure 1: Anomaly score distributions for Deep SVDD (left) and
Deep SAD (right) on the synthetic dataset.

We also examine the anomaly score distributions for mod-
els trained on real-world datasets, including Fashion-MNIST
and Cellular Spectrum Misuse. While the score distributions
are less close to Gaussian, we do observe the same trend
where normal and abnormal score distributions become sig-
nificantly different after applying semi-supervised learning.
The results are shown in 7 and 8 in Appendix D.

Convergence of relative scoring bias (f) and FPR. Here
we present the convergence results in Figure 2 for the syn-
thetic dataset in terms of the quantile distribution of é (com-
puted as the difference of the empirical TPR according to
Equation 3.5) between Deep SVDD and Deep SAD and the
quantile distribution of Deep SAD’s FPR. Results for other
models and three real-world datasets are in Appendix D, and
show consistent trends.

Similar to our theoretical results, we observe a consistent
trend of convergence in FPR and £ as the sample complexity
goes up. In particular, as n goes up, FPR converges to the
prefixed value of 0.05 and é also converges to a certain level.

We also examine the rate of convergence w.r.t to n. Sec-
tion 4.1 shows that n required for estimating é grows in the
same order as ﬁ log %. That is, the estimation error € de-

creases at the rate of %; furthermore, as « increases, n re-
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quired for estimating é decreases. This can be seen from Fig-

ure 2 (top figure) where at n = 10000, the variation of £ at
a = 0.2 1s 50% less than that at o = 0.01.

10 a=0.01 a=0.05 a=0.1 a=0.2
0.5 % = = % -= = % +*= = % - -
0.0 100 1K 10K 100 1K 10K 100 1K 10K 100 1K 10K
n n n n

0.15
010 |
& 0.05 (B

0.00 100 1K 10K
n

10K 10K 10K

P %%-} ésffé
100 1K 100 1K 100 1K
n n n

Figure 2: Models (Deep SVDD v.s. Deep SAD) trained on the syn-
thetic dataset: the quantile distribution of relative scoring bias é (top
4 figures) and FPR (bottom 4 figures), computed on the test set over
1500 runs. n =100, 1K or 10K; o« =0.01, 0.05, 0.1, 0.2. The trian-
gle in each boxplot is the mean. For FPR, the red dotted line marks
the target FPR of 0.05.

5 Impact of Scoring Bias on Anomaly
Detection Performance

We perform experiments to study the end-to-end impact of
relative scoring bias on deep anomaly detection models. Our
goal is to understand the type and severity of performance
variations caused by different anomaly training sets.

Experiment setup. We consider six deep anomaly detec-
tion models previously listed in Table 2, and three real-world
datasets: Fashion-MNIST, Statlog and Cellular Spectrum
Misuse. For each dataset, we build normal data by choosing
a single class (e.g., top in Fashion-MNIST), and treat other
classes as abnormal classes. From those abnormal classes,
we pick a single class as the abnormal training data, and the
rest as the abnormal test data on which we test separately.
We then train 6y := (sg,, 79, ), @ semi-supervised anomaly
detector using normal training data, and 6, := (sg_, 79,) a su-
pervised anomaly detector using both normal and abnormal
training data. We follow the original paper of each model
to implement the training process. Detailed descriptions on
datasets and training configurations are listed in Appendix C.

We evaluate the potential bias introduced by different ab-
normal training data by comparing the model recall (TPR)
value of both 8y and 6, against different abnormal test data.
We define the bias to be upward (1) if TPR(6,) > TPR(6y),
and downward ({,) if TPR(65) < TPR(f).

We group experiments into three scenarios: (1) abnormal
training data is visually similar to normal training data; (2)
abnormal training data is visually dissimilar to normal train-
ing data; and (3) abnormal training data is a weighted combi-
nation of (1) and (2). We compute visual similarity as the L?
distance, which are listed in Appendix E.

We observe similar trends across all three datasets and all
six anomaly detection models. For brevity, we summarize
and illustrate our examples by examples of two models (Deep
SVDD as 6y and Deep SAD as ), and two datasets (Fashion-
MNIST and Cellular Spectrum Misuse). We report full re-
sults on all the models and datasets in Appendix E.
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6o: Deep SVDD
B 6.: Deep SAD
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(@) Fashion-MNIST: Scenario 1
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(b) Fashion-MNIST: Scenario 2

Class Label

(c) Spectrum Misuse: Scenario 1 (d) Spectrum Misuse: Scenario 2
Figure 3: Model TPR under Scenario 1 and 2, trained on Fashion-
MNIST and Cellular Spectrum Misuse. In each figure, we compare
the performance of 6y = Deep SVDD and 65 = Deep SAD when
tested on abnormal data. We arrange abnormal test data (by their
class label) in decreasing similarity with training abnormal data. The
leftmost entry in each figure is the class used for abnormal training.
For Fashion-MNIST, the normal data is top; for Cellular Spectrum
Misuse, the normal data is normal.

Scenario 1: Abnormal training data visually similar to
normal training data. In this scenario, the use of abnormal
data in model training does improve detection on the abnor-
mal training class, but also creates considerable performance
changes, both upward and downward, for other test classes.
The change direction depends heavily on the similarity of the
abnormal test data to the training abnormal data. The model
performance on test data similar to the training abnormal data
moves upward significantly while that on test data dissimilar
to the training abnormal moves downward significantly.

For Fashion-MNIST, the normal and abnormal training
classes are top and shirt, respectively, which are similar
to each other. Figure 3(a) plots the recalls of model 6y and 6
for all abnormal classes, sorted by their similarity to the train-
ing abnormal class (shirt). We see that TPR(f,) on classes
similar to shirt (e.g., pullover) is significantly higher than
TPR(6y). But for classes dissimilar from shirt (e.g., boot),
TPR(0,) is either similar or significantly lower. For Cellular
Spectrum Misuse, the normal and abnormal training classes
are normal and NB-10ms, respectively. The effect of train-
ing bias is highly visible in Figure 3(c), where TPR(6;) on
NB-10ms and NB-5ms rises from almost 0 to >93% while
TPR(¢,) on WB-nlos and WB-1os drops by over 50%.

Scenario 2: Abnormal training data visually dissimilar to
normal training data. Like in Scenario 1, abnormal train-
ing examples improve the detection of abnormal data belong-
ing to the training class and those similar to the training class.
Different from Scenario 1, there is little downward changes
at abnormal classes dissimilar to the training abnormal.

This is illustrated using another Fashion-MNIST example
in Figure 3(b). While the normal training class is still top,
we use a new abnormal training class of sneaker that is
quite dissimilar from top. TPR(f) on sneaker, sandal,
boot and bag are largely elevated to 0.8 and higher, while
TPR(05) on other classes are relatively stable. Finally, the
same applies to another example of Cellular Spectrum Misuse
in Figure 3(d) where the abnormal training class is WB-1los,
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which is quite different from the normal data. In this case, we
observe little change to the model recall.

Scenario 3: Mixed abnormal training data. We run three
configurations of group training on Fashion-MNIST (normal:
top; abnormal: shirt & sneaker) by varying weights of
the two abnormal classes in training. Detailed results for
each configuration are in Appendix E. Overall, the use of
group training does improve the model performance, but it
can still introduce downward bias on some classes. How-
ever, under all three configurations, there is a consistent pat-
tern of downward bias for an abnormal test class (trouser)
and upward bias for most other abnormal classes. Specifi-
cally, trouser is relatively more dissimilar to both training
abnormal classes.

Summary. Our empirical study shows that training with bi-
ased anomalies can have significant impact on deep anomaly
detection, especially on whether using labeled anomalies in
training would help detect unseen anomalies. When the
labeled anomalies are similar to the normal instances, the
trained model will likely face large performance degradation
on unseen anomalies different from the labeled anomalies,
but improvement on those similar to the labeled anomalies.
When the labeled anomalies are dissimilar to the normal in-
stances, the supervised model is more useful than its semi-
supervised version. Such difference is likely because dif-
ferent types of abnormal data affect the training distribution
(thus the scoring function) differently. In particular, when the
labeled anomalies are similar to the normal data, they lead
to large changes to the scoring function and affect the detec-
tion of unseen anomalies “unevenly”. Our results suggest that
model trainers must treat labeled anomalies with care.

6 Conclusions and Future Work

To the best of our knowledge, our work provides the first for-
mal analysis on how additional labeled anomalies in training
affect deep anomaly detection. We define and formulate the
impact of training bias on anomaly detector’s recall (or TPR)
as the relative scoring bias of the detector when comparing
to a baseline model. We then establish finite sample rates for
estimating the relative scoring bias for supervised anomaly
detection, and empirically validate our theoretical results on
both synthetic and real-world datasets. We also empirically
study how such relative scoring bias translates into variance
in detector performance against different types of unseen
anomalies, and demonstrate scenarios in which additional
labeled anomalies can be useful or harmful. As future work,
we will investigate how to construct novel deep anomaly
detection models by exploiting upward scoring bias while
avoiding downward scoring bias, especially when one can
actively collect/synthesize new labeled anomalies.
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