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SUMMARY

The large-scale dynamics of convection-driven dynamos in a spherical shell, as relevant to the
geodynamo, is analysed with numerical simulation data and asymptotic theory. An attempt is
made to determine the asymptotic size (with the small parameter being the Ekman number,
Ek) of the forces, and the associated velocity and magnetic fields. In agreement with previous
work, the leading order mean force balance is shown to be thermal wind (Coriolis, pressure
gradient and buoyancy) in the meridional plane and Coriolis—Lorentz in the zonal direction.
The Lorentz force is observed to be weaker than the mean buoyancy force across a range of
Ek and thermal forcing; the relative difference in these forces appears to be O(Ek!®) within
the parameter space investigated. We find that the thermal wind balance requires that the
mean zonal velocity scales as O(Ek~'"3), whereas the meridional circulation is asymptotically
smaller by a factor of O(Ek"°). The mean temperature equation shows a balance between
thermal diffusion and the divergence of the convective heat flux, indicating the presence
of a mean temperature length scale of size O(Ek'®). Neither the mean nor the fluctuating
magnetic field show a strong dependence on the Ekman number, though the simulation data
shows evidence of a mean magnetic field length scale of size O(Ek'®). A consequence of the
asymptotic ordering of the forces is that Taylor’s constraint is satisfied to accuracy O(Ek'®),
despite the absence of a leading-order magnetostrophic balance. Further consequences of the
force balance are discussed with respect to the large-scale flows thought to be important for
the geodynamo.

Key words: Core; Dynamo: theories and simulations; Numerical modelling; Planetary
interiors.

Aurnou & King 2017). One view is that the core dynamics are

I INTRODUCTION dominated by a four-way, magnetostrophic balance in which the

The geomagnetic field has existed for at least 3.5 billion years, and
possibly as long as 4.2 billion years (Tarduno et al. 2015). It is
known that the geomagnetic field is characterized by a broad range
of spatiotemporal scales. Temporal changes in the field that are
thought to be directly linked to interior dynamics range from the 10°
yr timescale for magnetic polarity reversals (e.g. Amit et al. 2010)
to years for large scale oscillations (Gillet ef al. 2015). The resulting
flow patterns in the outer core inferred from secular variation exhibit
a rich structure (Hulot ez al. 2002; Amit & Olson 2004; Gillet
et al. 2015; Livermore et al. 2017). Understanding the origin of
these different spatiotemporal scales and their subsequent evolution
requires knowledge of the predominant forces within the core. It
is generally accepted that the Coriolis force is a key ingredient
for the generation of the geomagnetic field in the core, but the
relative sizes of other forces in the core is still debated (see e.g.
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Coriolis, pressure gradient, buoyancy and Lorentz forces are all of
comparable magnitude (e.g. Roberts & King 2013). An alternative
view is that the core is characterized by a geostrophic balance
in which only the Coriolis and pressure gradient forces balance,
and the Lorentz force would contribute only as a perturbation to
the primary geostrophic balance (Calkins 2018). Here we use data
from numerical dynamo models, along with asymptotic analysis of
the governing equations to interrogate the force balance in more
detail. Recent numerical simulations indicate that a leading order
geostrophic force balance is present on what we refer to as the small-
scale motions (Soderlund et al. 2012; Yadav et al. 2016; Aubert e al.
2017; Schaeffer et al. 2017; Schwaiger et al. 2021). In contrast to
these recent studies, we focus on the dynamics of the large-scale
motions, which can be simply defined as the longitudinally averaged,
or axisymmetric motions.
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No direct observations of the core are currently possible. Instead,
insight into core dynamics is obtained from temporal variations of
the geomagnetic field. These observations suggest a typical flow
speed in the core is U ~ 10~ m s~! (Roberts & King 2013). Cou-
pled with physical properties of the core obtained from laboratory
experiments and simulations (e.g. Pozzo er al. 2013), this value
provides vital clues to the inner workings of the core by enabling
estimates of important non-dimensional parameters describing the
dynamics of the core. In particular, the relative size of inertia com-
pared to the Coriolis force is quantified by the Rossby number Ro
= U/(Q2d), where Q and d are the rotation rate and depth of the
outer core, respectively. The relative size of the viscous force to
the Coriolis force is measured by the Ekman number Ek = v/(Qd?)
where v is the kinematic viscosity of the core. Estimates suggest
values of Ro ~ 107® and Ek &~ 10~ for the core (King et al.
2010). The Elsasser number A = o B%/(pQ) (where o is electrical
conductivity, B is the typical magnetic field strength and p is the
density) characterizes the relative size of the Lorentz and Coriolis
forces; studies suggest A ~ 1 in the core (see e.g. Stevenson 2003;
King et al. 2010). The small magnitude of the Rossby and Ekman
numbers suggest that inertia and viscosity are small on the global
scale of the core, whereas A ~ 1 suggests that the Lorentz force
and Coriolis force are comparable in magnitude. However, these
estimates must be interpreted carefully as it is unclear what scales
of motion are observed in secular variation studies.

The small values of the Rossby and Ekman numbers indicate
that the Earth’s core operates in a rapidly rotating regime (Aurnou
et al. 2015). Spatial scale separation is an intrinsic property of
rapidly rotating flows, and perturbation theory has exploited this
scale separation successfully to describe the asymptotic behaviour
of'the linear dynamics of spherical convection (Roberts 1968; Busse
1970; Soward 1977; Jones et al. 2000; Dormy et al. 2004). These
tools have also been applied to both the linear (Chandrasekhar 1961)
and nonlinear dynamics (Julien ez al. 1998) of the plane layer ge-
ometry in the asymptotic limit of small Ekman number. The plane
layer theory is significantly simpler in comparison to the spherical
theory since only two dominant length scales (the depth d, and the
small d Ek'/® convective length scale) are present in the system. In
contrast, the sphere contains a multitude of different length scales,
including the system scale d, the convective radial envelope scale
d Ek'/®, and the convective length scale d Ek'/® (Jones et al. 2000).
Linear and nonlinear asymptotic theories for the sphere must ac-
count for all of these scales. Here we attempt to use elements of
asymptotic theory to better understand the large-scale dynamics
of rotating spherical dynamos. Identifying asymptotic behaviour
in models is an important step when comparing modelling results
to natural systems such as the Earth’s core, and may help iden-
tify pathways for the development of nonlinear, multiscale asymp-
totic models for the spherical geometry (cf. Calkins et al. 2013,
2015).

When inertia and viscosity are neglected in the momentum equa-
tion, Taylor (1963) showed that the component of the Lorentz torque
aligned along the rotation axis must vanish. This condition is re-
ferred to as ‘Taylor’s constraint’ and is expressed mathematically
as

/%-(JxB) dz =0, (1)

where $ (m) is the zonal component of the Lorentz force and z
is the cylindrical coordinate aligned along the rotation axis. Flows
that obey this constraint are said to be in a ‘Taylor state’. Since real
fluids experience both viscous and ohmic dissipation, and undergo
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acceleration, Taylor’s constraint is expected to be satisfied only
in an approximate sense. Deviations from a Taylor state lead to a
form of axisymmetric Alfvén waves known as torsional oscillations
(Braginsky 1970).

Recent studies have been devoted to finding exact Taylor states
(see e.g. Livermore et al. 2016; Hardy et al. 2018), some of which
include the use of mean-field electrodynamics to produce kinematic
dynamos that satisty leading-order magnetostrophic balance (Wu &
Roberts 2015; Li et al. 2018). However, numerical dynamo simu-
lations do not observe a leading-order magnetostrophic balance
(Yadav et al. 2016; Aubert ef al. 2017). One argument is that such
simulations are dominated by viscosity, and the simulated dynam-
ics are therefore in a parameter regime that is not representative of
the geodynamo (Wu & Roberts 2015). However, the available data
does not support this view in the sense that simulations do not show
any sudden changes in dynamic behaviour as the Ekman number
is reduced; this asymptotically ‘smooth’ behaviour is confirmed in
the present work and argued from an asymptotic standpoint.

There is evidence that axially invariant torsional oscillations are
present in geomagnetic field observations, and have been observed
in numerical simulations (e.g., Gillet ez al. 2010; Roberts & Aurnou
2012; Schaeffer et al. 2017). Not surprisingly, the relative ampli-
tude of such flows is larger when viscous effects are weaker, and
more recent simulations using smaller values of the Ekman number
therefore observe clear torsional oscillation signals (Schaeffer ez al.
2017). The work of Wicht & Christensen (2010) examined how the
relative sizes of the forces in numerical dynamo simulations affect
torsional oscillations. In particular, by decomposing the velocity
field into toroidal and poloidal components, Wicht & Christensen
(2010) find that the toroidal balance is dominated by the Lorentz
and Coriolis forces, but this component is weaker than the forces
present in the poloidal balance. Here, we provide an argument for
why this ordering occurs, and we attempt to connect this observation
to Taylor’s constraint.

Although several recent numerical studies have analysed the force
balances observed in numerical dynamo simulations (e.g. Soder-
lund et al. 2012; Yadav et al. 2016; Aubert et al. 2017; Schaeffer
et al. 2017), the majority of these investigations have focused on the
small-scale force balances, or did not distinguish between the rele-
vant length scales. However, asymptotic models show that distinct
balances can be present on different spatiotemporal scales (Phillips
1963; Julien & Knobloch 2007; Grooms et al. 2011; Calkins et al.
2015). Previous work has shown that the small-scale force balance
in rotating spherical dynamo models is characterized by a leading
order geostrophic force balance, and a secondary (i.e. higher order)
magnetostrophic balance (Yadav et al. 2016). In contrast, Aubert
(2005) showed that the large-scale dynamics observed in dynamo
simulations are well-described by a thermal wind balance in merid-
ional planes, whereas the azimuthal force balance is dominated by
a balance between the mean Coriolis force and the mean Lorentz
force. Recent work has confirmed that this azimuthal force balance
persists at lower Ekman numbers and is nearly scale independent
(Sheyko et al. 2018).

Our primary goal with the present work is to further investi-
gate the large scale balances in spherical dynamos using asymp-
totic theory, in order to provide estimates for the relative sizes (in
terms of the Ekman number) of the forces and associated quan-
tities. Our results suggest that rapidly rotating spherical dynamos
satisfy Taylor’s constraint up to order O(Ek"®), despite not being
characterized by a magnetostrophic balance. Whereas the analy-
sis of Braginsky (1976) neglected the influence of buoyancy, here
we show that its inclusion indicates that axially invariant torsional
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oscillations are only a single component of a richer set of dynam-
ics. We also highlight that the large-scale balance, in particular the
Coriolis—Lorentz balance in the zonal direction, is consistent with
the so-called Malkus—Proctor scenario (Malkus & Proctor 1975) in
which a large-scale magnetic field is saturated by the generation of
a large-scale flow. However, we emphasize that this large-scale flow
consists of the meridional circulation, which is observed (and per-
haps expected) to be asymptotically weaker than the corresponding
mean zonal flow. In Section 2, we present the governing equations,
non-dimensional control parameters and mean-fluctuating decom-
position; in Section 3 we present arguments for the asymptotic sizes
of the various forces; in Section 4 we compare with numerical sim-
ulations. A discussion of the implications for Taylor’s constraint is
given in Section 5 and conclusions are given in Section 6.

2 GOVERNING EQUATIONS

We consider an Oberbeck—Boussinesq fluid with density p, kine-
matic viscosity v, magnetic diffusivity 7, thermal expansion co-
efficient @ and thermal diffusivity «. The geometry consists of a
rotating spherical shell of inner and outer radii »; and r,, respec-
tively, so that the depth of the fluid is d = r, — r;. In this work
the non-dimensional aspect ratio x = r;/r, = 0.35 is fixed in all
simulations presented. The rotation and gravity vectors are given
by & = Qz and g = —g,r/r,, where 7 is a Cartesian basis vector,
r is the position vector and g, is the gravitational acceleration at
the outer boundary. We non-dimensionalize the governing equa-
tions with the depth d, large scale viscous diffusion timescale d?/v,
magnetic field scale B? = 11012 and pressure scale P = pv<Q; the
equations become

o+ uVu+ -3 LyppRar,
u u-vu —IXU = —— _—
‘ Ek© Ek Prr,
1
— JxB+ Vu, 2
tpmEg X E TV @
1
9B =Vx (uxB)+ —V’B, (3)
Pm
1
0T +uVT =—V°T, 4)
Pr
Veu=V-B=0, (5)

where the flow variables are the velocity u = (u,, uy, uy), pres-
sure P, temperature 7, magnetic field B = (B,, By, B,) and current
density J = VxB.

The non-dimensional control parameters are the Ekman,
Rayleigh, Prandtl and magnetic Prandtl numbers defined by, re-
spectively,

v Ra— g,aAT*d? v v

, Pr=—, Pm=-—, (6)

Ek = —,
Qd? a Vi K n

where AT* is the dimensional temperature difference between the
inner and outer boundaries. The flow speed is measured in units of
the large-scale Reynolds number

_ud

Re = (7

Vv

The boundary conditions used in the present work are identical for
all simulations. We use impenetrable, no-slip boundary conditions
for the velocity field,

u(ro) =u(r)=0. ®)

The heat equation is solved with isothermal boundary conditions
such that

TGr)=1 and T(r,)=0. )

Finally, electrically insulating boundary conditions are applied such
that J = 0 at both the inner and outer boundaries.

The equations are discretized in physical space utilizing a spheri-
cal harmonic decomposition in colatitude and longitude (6, ¢), and
Chebyshev polynomials in radius, 7. The time-stepping algorithm
is a 2nd order semi-implicit Adams—Bashforth/Crank—Nicolson
method in which all non-linear terms and the Coriolis force are
treated explicitly, and the remaining linear terms are treated implic-
itly. A pseudospectral approach is used where the linear terms are
computed in spectral space and the non-linear terms are computed
in physical space. Further details of the numerical method and the
parallelization are found in Featherstone & Hindman (2016) and
Matsui et al. (2016).

2.1 Decomposition

For the analysis we decompose all of the dependent variables into
mean (large-scale) and fluctuating (small-scale) components ac-
cording to

f=7r+r. (10)

where fis a generic dependent variable. We note that in the analysis
that follows there is no a priori requirement on the relative sizes of
f and /. The definition of the mean component, and therefore also
of the fluctuating component, is arbitrary since it is not generally
known a priori how one distinguishes ‘large-scale’ versus ‘small-
scale” dynamics. For simplicity we use an azimuthal average,

— 1 —
T=5 [ s T=o (i

Substituting the above decomposition for each of the dependent vari-
ables into the governing equations, averaging in longitude and sub-
tracting the resulting mean equations from the total equations yields
two sets of coupled equations. Although we restrict the present anal-
ysis to the mean equations, we show the fluctuating equations for
completeness. The mean equations become

_ - 2 _ 1 _— r—
ou=—-—uvVu— —zxu— —VP+V-u

Ek Ek
+ Byarg (12)
— JxB+ 27
PmEk Prr,
_ _ - 1
T +u-VT +V-(u'T) = P—VZT, (13)
T
— — — 1 —
a,B:Vx(ﬁxB)+sz+P—VZB, (14)
m
Vu=0, V-B =0, (15)

where the emf is defined by
£ =uxB. (16)

The corresponding fluctuating equations are given by

/ — 2., 1 , 5,
ou = —u-Vu+uVu— —7xu' — —VP' 4+ Vu

Ek Ek
L UxB-TxB) L R (17)
—— (JxB - Jx —— T,
PmEk Prr,

|
T +uVT +u VT —u VT’ = P—VZT’, (18)
T
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08 = Vx (@xB) + Vx (uxB) + VxG+ VB, (19

Vu' =0, V-B' =0, (20)
where
G=uxB —E. (21)

For the momentum equations we have pulled all terms, with the
exception of the time derivative of the velocity, to the right-hand
side of the equations. We refer to time derivatives of the various
velocity vectors (d,u, and the decomposed counterparts d,# and
o,u’) as inertia. The advective non-linearities, that is those terms
arising from either the mean or fluctuating components of the term
u-Vu, are referred to as advection. For shorthand, we can then write
each momentum equation as

ou=F,+F.+F,+F,+ F + F, (22)
atﬁzfa +Fc +fp +fu +fl+Fhs (23)
yu'=F,+F.+F,+F,+F +F, 24)

where the various subscripts denote advection (‘a’), Coriolis force
(‘¢’), pressure gradient force (‘p’), viscous force (‘v’), Lorentz force
(‘/’) and buoyancy force (‘). In terms of the Reynolds decompo-
sition, the non-linear terms are then

F,=—-uVu—u-Vu, (25)
F;=JxB+ JxB, (26)
F =-uVu' —u-Vu—u-Vu' +u'-Vu', 27
Fy=(JxB')+ (J'xB)+ (J'xB') - (I'xB). (28)

In what follows, we subtract the spherically symmetric components
of the forces (defined by spherical harmonic degree ¢ = 0) from
the radial component of the mean momentum equation since they
represent hydrostatic balance and play no dynamic role.

3 BALANCES: ASYMPTOTIC SCALING
ARGUMENTS

Previous numerical studies have shown that the large-scale force
balance in rapidly rotating spherical dynamos consists of a thermal-
wind balance in the meridional (7, 0) plane,

—Ixu~——VP 4 —T—, 29
B TR T 29)
and a mean Coriolis—Lorentz force balance in the zonal (longitudi-
nal, ¢) direction (e.g. Aubert 2005),

2

B~ Eom (V¥ Bs

where the mean cylindrical radial component of the velocity is
defined as

(30)

Uy = cos6uy +sinbu,. (31)

For brevity we refer to #, as ‘meridional circulation’ since it de-
pends on both of the meridional components of the mean velocity
vector. Since the Lorentz force enters only a single component of
the leading-order force balance, we refer to this force balance as
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semi-magnetostrophic (MS). Our goal is to determine the asymp-
totic size of each term in the semi-MS force balance. This process
constitutes one of the differences between this work and that of
Taylor (1963), where the asymptotic scaling of the forces was not
discussed. Rather, Taylor (1963) neglected the effects of viscosity
and inertia at the outset and did not explicitly separate large and
small scale quantities, whereas we want to understand how the vari-
ous forces scale as the physical parameters are made more core-like.
Not only is performing such an analysis important for theoretical
understanding, it also provides a method for relating the output of
numerical models to natural systems.

Here we assume that the small magnitude of the Ekman number
controls the dynamics of rapidly rotating systems such as the Earth’s
outer core. Therefore, we choose our small parameter as

€ = Ek'7. (32)

Hereafter, when the order of a quantity is specified it refers to its
asymptotic size with respect to €, or equivalently the Ekman number.
Convection occurs only when the Rayleigh number exceeds a critical
value, Ra, which scales as Ra.; = O(e~*) (Chandrasekhar 1961;
Roberts 1968; Busse 1970). Thus, we use a reduced (asymptotically
scaled) Rayleigh number (see e.g. Julien e al. 1998; Jones et al.
2000) defined as

Ra=¢'Ra=0(1). (33)

The assumption on the scaling of the Rayleigh number is valid
so long as the dynamo is driven by rapidly rotating convection;
this is automatically satisfied in any small-Ekman number dynamo
simulation that has a supercritical Rayleigh number. All other non-
dimensional parameters are assumed to be order one in the sense
that they do not scale with the Ekman number. The influence of
small values of Pm is beyond the scope of the present work since
we focus on regimes of Pm that are currently accessible to numerical
simulations [for a discussion of the influence of various limits of
Pm see Calkins (2018) and references therein]. Although we are
assuming a small parameter that is based on the viscous length scale,
as represented by eq. (32), this does not imply that the viscous force
enters the leading order force balance (cf. Jones et al. 2000; Julien
et al. 1998).

With the above definitions, the mean buoyancy force can be
written as
Fyo—cars (34)

Pr r,

The geometric factor is order unity, that is 7/, = O(1). The asymp-
totic size of the mean temperature is controlled by the thermal
boundary conditions and, since such conditions do not depend on

the Ekman number, we assume
T=0() = |Fo| =0 (). (35)

The above assumption is tested with the numerical data. The mean
Coriolis force is given by

B Fe, 5 (Tesing
F.=|Feo| = — | #pcosb |, (36)
Feo “\ -,

thus the meridional components scale as O (e #4) and the zonal

component scales as O (6*355). For a thermal wind balance to
occur, the radial components must balance such that

Fb,r ~ Fc,r = ﬁ¢ =0 (esfb,r) =0 (671) . (37)
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This scaling suggests that the zonal flow becomes increasingly
strong as the Ekman number is decreased. The asymptotic scaling
for the mean zonal flow is identical to the scaling of the small-scale
velocity field in rapidly rotating convection in both spherical and
Cartesian geometries (Julien e al. 1998; Jones et al. 2000). The
pressure gradient must also balance with the buoyancy force so
that

Fop ~Fyp,=0(?). (38)
The corresponding scalings for the f-component are
Fopg~Feg=0(c?). (39)

We note that the thermal wind balance seems to provide a direct
scaling for the zonal velocity in terms of the Ekman, Rayleigh
and Prandtl numbers; balancing the radial components of the mean
Coriolis force and the mean buoyancy force yields

EkRa
Pr

Uy , (40)
where again the mean temperature is assumed to be order one.
Because neither the buoyancy force nor the Coriolis force involve
diffusion coefficients, the above scaling might be referred to as
‘diffusion-free’ given that both the kinematic viscosity and the ther-
mal diffusivity cancel since the velocity has non-dimensional units
of large scale Reynolds number and therefore scales as v~!. For
instance, the above scaling has been suggested by Guervilly et al.
(2019), though they used different scaling arguments. Recent plane
layer simulations of small Rossby number convection find that such
a scaling may be valid over a limited range in Rayleigh number yet
the formation of large-scale vortices seems to influence the observed
scaling (Maffei ef al. 2021). However, we note that the interpreta-
tion of eq. (40) as diffusion-free is incorrect because the Rayleigh
number scales as Ra ~ Ek~*?, which leads to the #; ~ Ek ™'/ scal-
ing derived from relation (37), implying that the zonal flow does
indeed scale with the Ekman number. Though the complete scaling
behaviour of the zonal velocity (in terms of its dependence on the
combination of all input parameters such as the Ekman, Rayleigh
and Prandt]l numbers) is of significant interest, we leave the detailed
investigation of this matter for a future study; in the present work
we focus primarily on the Ekman number dependence.

The zonal force balance between the Coriolis and Lorentz forces
requires

(JxB), =0, (41)

where, again, we assume that Pm = O(1). In general, the Lorentz
force provides the non-linearity that is required to arrest any possible
exponential growth in the magnetic field. The Coriolis—Lorentz
force balance shown above provides this non-linearity in the mean
magnetic field, and therefore provides a constraint on the size of the
mean magnetic field, provided that a corresponding constraint on
the size of i, can be obtained. Given that the zonal Coriolis—Lorentz
balance is the first appearance of the mean Lorentz force (in terms
of asymptotic size) in the governing equations, this suggests that
these large-scale dynamos are saturated by the so-called Malkus—
Proctor scenario (Malkus & Proctor 1975): the mean magnetic field
becomes saturated through the formation of a mean flow, which in
this case is the meridional circulation. We also note that the above
balance automatically implies that an Elsasser number based on the
zonal components of the Coriolis and Lorentz, denoted by Ay, is
order unity, thatis A, = O(1), despite the fact that the Lorentz force
does not enter the leading order force balance (cf. Calkins 2018).

From a dynamic perspective, we expect that the meridional cir-
culation is much weaker than the zonal flow such that O (u;) <
O (ity). In the simulations discussed here the meridional circula-
tion is roughly an order of magnitude smaller than the mean zonal
flow. Therefore, we expect the meridional dynamics will be asymp-
totically decoupled from the mean zonal dynamics in the sense
that the leading-order components of the forces will be of different
asymptotic order. We note that the continuity equation provides no
constraint on the size of i, since both components of the meridional
circulation are assumed to scale with € in the same manner and are
assumed to vary on similar length scales.

A constraint on the scaling of the meridional circulation can be
found by comparing the Lorentz force to the buoyancy force. First,
we assume that the individual components of the Lorentz force are
all of comparable size,

(JxB), ~ (JxB),~ (JxB),. (42)

For the semi-MS force balance to occur, the Lorentz force must be
weaker than the buoyancy force,

! JxB F
Pk (XB), < For =

(JxB) =o (E_I) ,  (43)
where o (+) indicates little-o notation. Little-o notation describes an
asymptotic inequality, that is /' = o(g) indicates that f'is asymptot-
ically smaller than g, where f'and g are arbitrary functions. Since
the Lorentz force components are all of comparable magnitude, the

above constraint can also be written as
-1
(JxB), =o(c"). (44)

Then, using the Coriolis—Lorentz force balance in the zonal com-
ponent of the mean momentum equation, we can place a constraint
on the asymptotic size of the meridional circulation as

u,=o(e"). (45)

We attempt to further constrain the asymptotic size of the merid-
ional circulation by examining dominant balances in the mean tem-
perature equation, rewritten here as

T +u-VT +V-(u'T) = %WT. (46)
Such dominant balances are assumed possible from the outset and
justified a posteriori. In what follows we denote all mean length
scales as £. A subscript is used to specify the quantity that a given
length scale characterizes, such that £, denotes the length scale for
the mean temperature. We further assume that all spatial gradients
in the mean temperature equation scale as V.= O (Z;l> since these
gradients act on mean thermal quantities; although the convective
heat flux involves fluctuating quantities, we assume that the aver-
aging operator filters the smallest O(Ek'?) length scales. In what
follows we assume that large-scale thermal diffusion must play a
dominant role in the mean temperature equation to allow for a sta-
tistically stationary mean temperature field.

Balancing the convective heat flux and the large-scale thermal
diffusion leads to

1= _ 1
V.- (T~ —V?T lr=0 , 47
(u Pr = ! <u/T/> “7)

where we have assumed Pr = O(1) and T = O (1) and, again, as-
sume that all gradients acting on mean thermal quantities scale as
7,'. Here u/ is the magnitude of the fluctuating velocity vector. If
we assume that the small scales must be geostrophically balanced
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then the fluctuating velocity is expected to scale as (Julien et al.
1998; Calkins et al. 2015)

u'=0 (). (48)

Although the linear theory for convection in a spherical shell sug-
gests that the three fluctuating velocity components do not scale
asymptotically in the same way (Dormy er al. 2004), the above
scaling represents the strongest (in terms of the exponent on ¢)
asymptotic scaling identified, and it is therefore the scaling that is
most readily observable in the numerical data presented later. Using
this scaling for the fluctuating velocity then leads to
- €
=0 (7) . (49)
Another possible balance is between advection by the mean flow
and thermal diffusion such that

— 1 1
u-VT ~ —V*T = i, =0 <j) ) (50)

Pr Lr

Finally, we note that combining the scalings for 7z, and €; relates
the fluctuating temperature to the meridional circulation

T' = O (eiiy). (51)

Whereas plane layer theory yields 7° = O(¢) (Julien et al. 1998), the
numerical data presented here does not support this scaling of the
fluctuating temperature in the sphere; this point is discussed more
later.

A possible scaling for £ is the ‘convective envelope’ scale that
varies like €2 = Ek"® (Jones et al. 2000); this length scale charac-
terizes the radial width of the region that contains the smaller length
scale € = Ek'? within which the thermal Rossby waves oscillate.
We find a posteriori that this scale is consistent with the numerical
data. Thus, the following asymptotic estimates are obtained

VT =0(), (52)

uVT = 0 (u,e'?). (53)
Utilizing the balance between advection by the mean and thermal
diffusion we therefore have

i, =0 (e'?), (54)

and, from balancing the convective heat flux and thermal diffusion
terms, we have the following scaling for the convective heat flux
w,T' =0 (7). (55)
Then, using the scaling u, = O (e7'),

T'=0 (e'?). (56)

With an estimate for the scaling of u;, the Lorentz-Coriolis bal-
ance in the zonal momentum equation now suggests

1
(JxB), =0=—]. 57

’ (ZT ) o7
The zonal component of the mean Lorentz force contains only mag-
netic tension since the averaging removes magnetic pressure gradi-
ents. The magnetic tension term can be split further into two terms,
the mean—mean and eddy—eddy contributions. Since the derivatives
appearing in those terms act on mean magnetic quantities, we as-
sume that they scaleas V. = O (Z;l). The two mean Lorentz force
terms can then be written as

-2
(B-VB),=0 (f) , (58)
B
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(W)¢ -0 <§,2> . (59)

B

Combining these with the scaling relation for the full mean zonal
Lorentz force provides

72

B=B =0 % ) (60)
¢ T

In the next section we attempt to constrain the possible scalings with

€ using data from numerical simulations. However, if we assume
that £ and £7 both have the same scaling behaviour , then we find

B=B=0(). (61)

We note that application of the chain rule relating derivatives
in the spherical coordinate system used here to derivatives in a
cylindrical coordinate system requires that any length scale present
in radius 7 and colatitude 0 is also present in the axial (z) direction.
For example, the curl of the thermal wind force balance (29) yields
the well known relationship between the axial derivative of the zonal
flow and the colatitudinal derivative of the mean temperature,

2 34y  Ra 13T
——r —— . (62)
Ek oz Prr, 00
Assuming that the z-derivative on the left-hand side scales as Z;l,
the above relationship then reduces to relationship (40).

4 COMPARISON WITH NUMERICAL
SIMULATIONS

In this section, we compare the arguments and scalings presented
in the previous section with data from numerical dynamo models.
Three criteria are used to assess whether a given quantity computed
from the numerical simulations possesses asymptotic scaling be-
haviour: (1) the raw (unscaled) data must show evidence that the
magnitude of the quantity systematically changes with the Ekman
number; (2) the asymptotically rescaled data should be order unity
in magnitude and (3) the asymptotic scaling must be consistent with
the dominant balances observed in the numerical simulations.

The numerical simulation parameters are summarized in Table 1.
Four different values of the Ekman number were used, Ek = (1074,
3 x 107%, 1073, 3 x 107%) and the Rayleigh number was varied
for each Ekman number; the critical Rayleigh number for each
Ekman number is Raq = (7.0 x 10°,2.8 x 10°, 1.1 x 107, 4.6 x
107) (Christensen & Aubert 2006). Both the thermal and magnetic
Prandtl numbers are fixed at Pr = 1 and Pm = 2, respectively.
With the exception of the three largest Rayleigh number cases with
Ek = 10~* which exhibited multipolar dynamos, all cases were
characterized by a dipole dominated magnetic field morphology;
the larger the Rayleigh number, the less confidence we have that the
small Rossby and small Ekman number theory will apply. We begin
with a discussion of the mean temperature equation, followed by an
analysis of the terms appearing in the mean momentum equation.

4.1 Mean temperature equation

Fig. 1 shows the rms value of all terms in the mean tempera-
ture eq. (46) as a function of Ekman number for cases in which
Ra = 15Rag;. The rms values were computed within the bulk of
the volume, excluding the Ekman layers adjacent to the inner and
outer boundaries, and subsequently averaged in time. It was found
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Table 1. Details of the numerical simulations. The number of Chebyshev
polynomials is denoted by 7, and £y« is the maximum spherical harmonic
degree. The non-dimensional parameters are the Ekman number Ek, the
magnetic Reynolds number Rm and the Rossby number Ro. For all simu-
lations, the thermal Prandtl number and the magnetic Prandtl number are
fixed at Pr = 1 and Pm = 2, respectively.

Ek Ra n, Limax Rm Ro

1074 420 x 10° 64 127 106.068  5.303 x 1073
10~ 7.00 x 10° 64 127 152.699  7.635 x 1073
1074 1.05 x 107 64 127 228753  1.144 x 1072
10~ 1.40 x 107 72 159 302902 1.515 x 1072
10~ 2.10 x 107 92 199  536.589  2.683 x 1072
10~ 2.80 x 107 96 215 630.677 3.153 x 1072
10~ 3.50 x 107 128 255  676.616 3.383 x 1072
3x107°  1.42 x 107 84 239 113.681 1.705 x 1073
3x 1075 2.83 x 107 92 239 191.783  2.877 x 1073
3x 1075 425x% 107 92 239 313915 4.709 x 1073
3x 1075 5.67 x 107 92 239 422756 6341 x 1073

3x 1075 7.08 x 107 128 255 474392 7.116 x 1073

3x 1075 9.92 x 107 128 323 672.669 1.009 x 1072
3x107° 127 x 108 128 323 832.567  1.249 x 1072
3x 1075 1.56 x 108 128 359 997.755  1.497 x 1072
103 7.00 x 107 96 255 187.228 9361 x 10~*
1073 8.00 x 107 96 255 204217 1.021 x 1073
103 1.00 x 10% 96 287  240.137 1201 x 1073
103 1.20 x 108 96 287  257.756  1.289 x 1073
103 1.50 x 10% 96 287 349233 1.746 x 1073
103 2.00 x 108 128 359 460.731 2.304 x 1073

3x107% 230 x 10% 140 359 210.503 3.158 x 10~*
3x107¢ 321 x 108 140 359 288910 4.334 x 1074
3x107% 459 x 108 140 383 314.152 4712 x 1074
3x107%  6.89 x 108 144 399 498.131 7.472 x 1074

102 ; . .
g o o, T —4— u-VT
E u\ﬁ > T-VT
@ 1 27
A A
£ L
© e
(7] N ®
g-lol“ > \\\
2 . Ek1/3
g S
g 0
3] >
= RN

10 10° 10% 103 1072
Ek

Figure 1. Scaling behaviour of all terms in the mean temperature equation.
The rms value of each term is shown as a function of Ekman number with
a fixed supercriticality Ra ~ 15Rac. The slope of Ek~'3 is shown for
reference.

that including the Ekman layers had no significant difference in the
computed values for the mean temperature equation. Here we ex-
clude the Ekman layers to be consistent with the computation of the
forces in the mean momentum equation. For reference, the dashed
line shows a slope of €' = Ek~!3. One obvious trend is that all
terms in the equation increase in magnitude as the Ekman number is
reduced for a fixed supercriticality. We also see that the convective
heat flux is balanced with large-scale thermal diffusion. The time
derivative is smaller than both the convective heat flux and thermal

diffusion by a factor of ~2/3. Finally, advection of heat by the mean
flow is notably weaker than all of the other terms, and is a factor
of ~21/5 smaller than either the convective flux or thermal diffusion
over the investigated range of Ekman numbers.

It is clear that the advection of the mean temperature by the mean
flow is small in comparison to the convective flux and thermal dif-
fusion. However, the advection due to the mean flow increases in
magnitude with decreasing Ekman number. This behaviour sug-
gests that advection by the mean does have an Ekman number
dependence, in agreement with the scaling analysis. Thus, this de-
pendence might still be used to constrain the asymptotic size of the
meridional circulation.

Whereas the time derivative of the mean temperature is smaller
than both the convective heat flux and thermal diffusion, but it
appears to scale with the Ekman number in a similar way. Balanc-
ing the time derivative with either of these two terms provides an
estimate for the mean thermal evolution timescale

¥T=0(t")~VT=0("). (63)

This indicates that the mean thermal evolution timescale is, T =
O(e).

The Rayleigh number dependence of the terms in the mean heat
equation is shown in Fig. 2 for each value of the Ekman number.
In general, the scaling behaviour for each term in the equation is
similar, both for fixed and varying Ekman number, showing an
increase with the Rayleigh number. The balance between thermal
diffusion and the divergence of the convective heat flux is robust so
long as the Rossby number remains small. There is a loss of balance
in the mean heat equation for the Ek = 10~ cases in which Ra > 80
and the Ek = 3 x 1075 cases in which Ra > 60. We also find that
heat transport by the meridional circulation is of comparable relative
size over the range of investigated Rayleigh numbers.

Fig. 3(a) shows the mean temperature length scale, calculated
according to

s 1/4
) .

where the angled brackets indicate a volume and time average.
The Laplacian is used to calculate the length scale since it will
naturally magnify small length scales, and therefore provide an
estimate for any Ekman number dependent length scale. There is
evidence that £ decreases with Ek. If the data are rescaled by the
inverse convective envelope scale, € /2 = Ek~® there is a collapse
of the data, as shown in Fig. 3(b), indicating the following scaling

for the mean temperature length scale

Zy‘:

7 =0 (7). (65)

We recall that this scaling should hold for a fixed value of the
Rayleigh number, or reduced Rayleigh number, in the sense that we
still expect a Rayleigh number dependence of the mean temperature
length scale. In addition to collapsing the data, the rescaling shown
in Fig. 3(b) shows that the rescaled mean thermal diffusion length-
scale is order unity, that is € ~'/2¢; = O (1). Furthermore, the data
shows a relatively weak dependence on the Rayleigh number and
perhaps a saturation at large enough values. However, we note that
the large Rayleigh number cases for Ek = 10~* and Ek =3 x 1073
are characterized by relatively large Rossby numbers (Table 1).
Fig. 4(a) shows the meridional circulation as a function of re-
duced Rayleigh number for all cases. There is some evidence of a
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Figure 2. Scaling behaviour of all terms in the mean temperature equation as a function of reduced Rayleigh number, RaEk*3, for four different Ekman
numbers: (a) Ek = 107%; (b) Ek = 3 x 107>; (¢) Ek = 107> and (d) Ek = 3 x 107°.
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Figure 3. Scaling of the mean temperature length scale, £7, as a function of reduced Rayleigh number: (a) unscaled length scale and (b) length scale scaled
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Figure 4. Scaling behaviour of the cylindrical radial component of the mean velocity (i.e. meridional circulation) as a function of reduced Rayleigh number:
(a) rms meridional circulation and (b) rescaled meridional circulation.
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dependence on Ek for some parameter values, showing larger val-
ues for smaller Ekman numbers. As shown in Fig. 4(b), scaling the
meridional circulation by Ek"® = €' provides some collapse of the
data which may suggest

u, =0 (e'?), (66)

in agreement with the estimate from the previous section. The phys-
ical origin of this scaling is unclear, though it may be tied to Ekman
pumping which is known to become stronger in rotating convection
with decreasing Ekman number and increasing Rayleigh number
(Julien et al. 2016).

Fig. 5 shows various quantities relevant to the convective heat
flux. The raw data for the fluctuating velocity is shown in Fig. 5(a)
and shows a general trend of larger magnitudes with decreasing
Ekman number and a steeper scaling with increasing (reduced)
Rayleigh number; the rescaled fluctuating velocity in Fig. 5(b)
shows that the previously suggested Ek~'* scaling provides a col-
lapse of the data. The convective heat flux shown in Fig. 5(c) illus-
trates similar scaling behaviour to both the fluctuating velocity and
the meridional circulation, and the rescaled data in Fig. 5(d) shows
collapse with a Ek"® scaling. Though not shown, this scaling for the
convective heat flux is consistent with an equivalent scaling for the
Nusselt number; this effect may be related to Ekman pumping—we
refer the reader to Julieet al. (2016) and references cited therein.
The rms of the fluctuating temperature shown in Fig. 5(e) does not
show an obvious trend with Ekman number, such as the scaling
analysis that led to eq. (56) would suggest. The lack of an obvious
dependence of T' on Ek is in disagreement with the scaling argu-
ments presented previously. Radial profiles of the rms temperature
perturbation are shown in Fig. 5(f) for a fixed supercriticality of
Ra = 15Ra;; and the four different Ekman numbers considered
here. These profiles show that the rms values of the temperature
perturbation are not dependent upon how the rms is computed; for
instance, whether Ekman layers are included or not. The reason for
this lack of Ekman number dependence is not currently known. We
have checked that our computed values of 7' are consistent with
previous calculations for the fluctuating buoyancy force (e.g. Yadav
et al. 2016). An ongoing investigation of the fluctuating dynamics
may yield insight into this behaviour .

4.2 Mean momentum equation

4.2.1 Pointwise analysis

Force balances, if present, are satisfied pointwise because the partial
differential equations that govern such balances are satisfied locally
in space (and time). Because our definition of ‘large-scale’ corre-
sponds to axisymmetric quantities, this implies that balances on the
large-scale are satisfied at all points (excluding boundary layers) in
the meridional plane. Distinct balances can be present in different
regions of the flow domain; for instance, within the Ekman layers
near the inner and outer boundaries we expect different balances in
comparison to the bulk. Schaeffer ez al. (2017) have examined bal-
ances in the vorticity equation in five distinct regions. Other work
has used global rms values of the forces that both include (Soderlund
et al. 2012) and exclude the Ekman layers (Yadav ez al. 2016), and
Aubert et al. (2017) used a spectral decomposition of the forces. All
results presented here do not include the Ekman layer when com-
puting the global rms value. Here we extend these previous analyses
to the mean dynamics, and to show how these large-scale balances
are directionally distinct, and that such balances are separated by an

asymptotically small parameter and therefore represent perturbative
dynamics in the sense that a sequence of force balances is present,
with each sequence separated by an asymptotically small param-
eter. The numerical data is used to help constrain the asymptotic
ordering of the perturbative dynamics.

Fig. 6 shows the numerically computed forces for the particular
case of Ek = 10~° and Ra = 10 Ra,. All other small Rossby num-
ber cases show qualitatively similar behaviour. The figure shows the
mean forces extracted at a particular point in space and plotted as
a function of time. The spatial location is chosen to be » &~ 0.74r,
and a latitude of ~40°, far-removed from the Ekman layer and the
tangent cylinder region. Analyses at other locations show similar
behaviour to the chosen data, provided such locations are outside of
the Ekman layers. The radial and zonal components are shown in
the left column and the right-hand column, respectively. The rows
indicate the various orders of observed balances, with the primary
force balance shown in the top row. Each subsequent higher or-
der balance is shown with the sum of the terms appearing in the
preceding lower order balance. The sequence of force balances in
the radial direction is the following: (1) a leading order thermal
wind balance between the (mean) Coriolis, pressure gradient, and
buoyancy forces; (2) a secondary balance between the sum of the
thermal wind terms and the mean Lorentz force and (3) a tertiary
‘balance’ where all forces become relevant. This latter balance is
not a true balance since inertia becomes important at this order and
the momentum equation is therefore prognostic, as opposed to the
diagnostic balances that occur at lower order. We observe that the
magnitude of the forces appearing in a given balance decreases by
approximately one order of magnitude in each higher order bal-
ance; this difference is roughly consistent with an order "> = Ek"/
perturbation parameter.

Though not shown, the colatitudinal component of the mean mo-
mentum equation shows similar behaviour to the radial component
with forces of comparable magnitude and the same sequence of
balances is observed.

The right column in Fig. 6 shows the pointwise computed forces
in the zonal direction. Here we observe that the mean Coriolis force
and the mean Lorentz force are in balance at leading order, as
shown in Fig. 6(b) and expressed by eq. (30). All forces, including
the viscous force, become important at the next order in the zonal
direction, as shown in Fig. 6(d). Thus, based on the observed bal-
ances, the zonal dynamics are determined at second order. Like the
sequence of force balances observed in the radial direction, we find
that the two balances in the zonal direction differ by approximately
one order of magnitude. Furthermore, we note that the leading order
terms in the zonal direction are approximately one order of mag-
nitude smaller than the leading order thermal wind balance in the
meridional plane. As discussed previously, this directional differ-
ence in the size of the leading order balances provides an argument
for characterizing the leading order balance in these spherical dy-
namos as a semi-MS balance since the Lorentz force enters only the
zonal direction at leading order.

4.2.2 Global rms analysis

The point-wise analysis is useful for showing which forces balance,
their time dependence, and at what asymptotic order they balance.
However, to show how each force scales with €, it is helpful to
consider global rms values of the forces, as has been done previously
for determining the Rayleigh number dependence of the fluctuating
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Figure 5. Scaling behaviour of (a, b) the fluctuating velocity; (c, d) the convective heat flux and (e, f) the fluctuating temperature. rms values of the various
quantities and associated rescaled quantities are shown in (a)—(e); panel (f) shows radial profiles of the rms fluctuating temperature for all Ekman numbers with

Ra = 15 Ragi.

forces (Soderlund et al. 2012; Yadav et al. 2016). We examine the
mean balance both for fixed and varying supercriticality.

Fig. 7 shows the rms of the mean forces as a function of Ekman
number for all cases with Ra = 10 Ra. The cross symbols indicate
the sum of the terms appearing in the primary semi-MS balance, and
the plus symbols indicate the secondary force balance (for the radial
direction). Asymptotic scaling slopes are shown for reference only;
because the cases at different Ekman numbers are characterized
by different Reynolds numbers we do not expect the data shown

to follow these scaling relations precisely. The radial forces are
shown in Fig. 7(a); the primary thermal wind balance between the
Coriolis, pressure gradient and buoyancy forces is evident, and
the Lorentz force is consistently smaller than this primary balance
by approximately an order of magnitude for all Ekman numbers.
However, there is a slight trend showing that the relative size of
the Lorentz force increases with decreasing Ekman number. As
shown by the pointwise analysis, the magnitude of the sum of the
thermal wind balance terms is very close to the magnitude of the

1202 4oquieydag Bz UO Josn Jap|nog opesojoD Jo Asioniun Aq e¥812€9/82¢ L/2/.22/aIoMEB/WwOoo"dno-o1wapeo.//:Sd)y WOy papeojumod



1238 M.A. Calkins, R.J. Orvedahl and N.A. Featherstone
Lo 107 _ Primary Balancein 7
82 : — FC,?‘ Fp,r Fb.,r :
8 04 -
o 0.2 L
00 1
—_024 1
—0.4 - : - : -
3.468  3.470  3.472  3.474 3.476  3.478
Magnetic Diffusion Time
(a)
108 . Secondary Balance in 7
21 Fc‘r + fp,7~ + Fb,r
g 11 i
5 01
LL — +
-2+ ) . ) X . 1
3468 3.470 3472 3474 3.476  3.478
Magnetic Diffusion Time
(c)
5 K10 . Tertiary Balancein7
% : Fc,r + Fp,r + Fb,r + Fl,r i Fa,r :
o 21 i
s i
L (R S (R oG
_1 T FVT o
7§ +4 ' v
3468 3.470 3472 3474 3.476 3478

Magnetic Diffusion Time

(e)

Force

Force

LoEr Primary Balance in ¢ _ .
0.5 1 Feg
004 Yoo S [N |
3468 3470 3.472 3474 3476 3478
Magnetic Diffusion Time
(b)
104 ~ Secondary Balance in ¢
61 —
4l Fc’d) + Fl.,qb .....
:i :‘ Fv.u’) e 81‘,“(/)

168 3470 3472 3474 3.476
Magnetic Diffusion Time

(d)

Figure 6. Pointwise measurements of forces (as a function of time) in the mean momentum equation at the point (r, 6) = (0.74r,, 40°). The parameters are
Ek = 1073, Ra = 10 Rag;. The left-hand column shows the radial direction and the right column shows the zonal direction. The top row shows the primary
force balance and higher order balances are shown in the subsequent rows. The dotted black line indicates zero.

108

N \Ek—4/3

— B —
1031+ R, 9 v A,

1021 X FortFer+Fy,

1t B +Fo+ B+ R,

10°% 10° 10% 103 107
Fk

(a)

10’7

Figure 7. Global rms values of the mean forces as a function of the Ekman number: (a) radial components; (b) zonal components. In all cases the supercriticality
is fixed at Ra = 10 Ragyjt. The rms of the sum of the primary force balance is marked with the “x’ symbols and the rms of the sum of the secondary force

balance is shown by the ‘4’ symbols.

1202 4oquieydag Bz UO Josn Jap|nog opesojoD Jo Asioniun Aq e¥812€9/82¢ L/2/.22/aIoMEB/WwOoo"dno-o1wapeo.//:Sd)y WOy papeojumod



Lorentz force, again suggesting that distinct perturbative balances
are present in the large scale dynamics. Inertia, advection, and the
viscous force are all small relative to the leading order thermal wind
balance. Furthermore, these same three forces show a significantly
weaker scaling behaviour with varying Ekman number, which is also
evidence for perturbative dynamics. The plus symbols, showing the
sum of the Coriolis, pressure gradient, buoyancy and Lorentz forces,
are approximately the same magnitude as these three smallest forces.

Fig. 7(b) shows the zonal components of the mean forces for
Ra = 10 Rag,;. The primary Lorentz—Coriolis balance is evident, as
is the steeper scaling behaviour with Ekman number in comparison
to inertia, advection, and the viscous force. With the #, = O(e~'/?)
scaling, the zonal components of the mean Coriolis force and the
mean Lorentz force should scale as € =7 = Ek~""; this scaling is
shown in the Figure. The sum of the Lorentz and Coriolis forces is
approximately equal in magnitude to these three smaller forces. We
note that the prognostic dynamics (e.g. torsional oscillations) enter
at this higher order. We also see that all three of these higher order
forces scale similarly with the Ekman number, and that they are all
of comparable magnitude, indicating that they are all important in
the dynamics at this order. While the viscous force is the smallest
in magnitude, it nevertheless scales approximately in the same way
as inertia and advection.

To better understand the Rayleigh number dependence of the
forces, Figs 8 and 9 show the radial and zonal components of the
mean forces, respectively, for each of the Ekman numbers con-
sidered here, as a function of the reduced Rayleigh number. All
Ekman numbers show evidence of a semi-MS balance provided the
Rayleigh number is not too large. The data shows that for the three
highest Rayleigh number simulations for Ek = 10~ and the two
highest Rayleigh number simulations for Ek =3 x 1077, there is a
loss of balance since both advection and inertia become comparable
in magnitude to the zonal component of the Coriolis force. This loss
of balance is particularly notable for the Ek = 10~* simulations with
Ra > 80. As previously mentioned, the colatitudinal component of
the forces shows similar behaviour to the radial component and it
is therefore omitted for brevity.

The rms mean buoyancy force is shown in Fig. 10, for both the raw
(unscaled) and rescaled data. A systematic increase in the magnitude
of the mean buoyancy force is noted in Fig. 10(a), whereas the
rescaled data in Fig. 10(b) shows that all of the cases collapse and
become order unity. This data provides strong support for our initial
assumptions that 7 = O(1) and Ra = O(Ek~*?).

We now examine the Ekman number dependence of the various
dependent variables and length scales that were analysed and intro-
duced using the method of dominant balance in Section 3. We found
that the thermal wind balance in the meridional plane requires that
the mean zonal velocity scales u, ~ Ek '3, per eq. (37). Fig. 11
shows the scaling behaviour of the zonal component of the mean
velocity, with the raw and rescaled data shown in Figs 11(a) and
(b), respectively. We find that the scaling of u4 ~ Ek '/ leads to
a collapse of the data, suggesting that the thermal wind balance is
maintained in the mean dynamics over the parameter space investi-
gated. Note that the sudden change, or ‘kink’, in the zonal flow data
for E =3 x 107° observable in (a) is the result of a change in the
structure of the zonal flow for this particular case; the cause of this
behaviour is currently unknown.

The scaling relations for the mean and fluctuating magnetic field
obtained in the previous section were written as

Z1/2
) ’ B
B =28 =O<el/2). (67)

T
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As previously mentioned, the data suggests that an estimate for the
scaling of the mean temperature length scaleis £7 = O (€'/?). Com-
puting the mean magnetic field length scale in the same way as for
the mean temperature length scale (i.e. using the Laplacian) yields
the data shown in Fig. 12(a). Fig. 12(b) shows the data rescaled
by Ek~"® where a collapse for the lower Rossby number cases is
observed; the higher Rossby number cases for Ek = 107 deviate
most significantly from this Ekman number scaling.

The rms of both the mean and the fluctuating magnetic field are
plotted in Fig. 13. We find that the magnitudes of both quantities, in
our non-dimensional units, are order unity. For a given Ekman num-
ber and Rayleigh number, the fluctuating magnetic field is larger in
magnitude than the mean magnetic field. The fluctuating magnetic
field shows a systematic trend of increasing magnitude with decreas-
ing Ekman number. However, despite this trend, the values remain
order unity within the parameter space investigated. Although it is
possible to collapse the data for the fluctuating magnetic field, we
found that this yielded rescaled values that were o(1). In addition, a
true asymptotic dependence in the fluctuating magnetic field would
violate the observed semi-MS balance. The observed trend in the
rms of the fluctuating magnetic field may be due to the fact that
smaller Ekman number dynamos are intrinsically more efficient at
producing dynamo action, though not in an asymptotic sense. As
previously mentioned with regard to the fluctuating temperature be-
haviour, further investigations into the fluctuating force balances
may shed light on the observed behaviour of the fluctuating mag-
netic field.

A summary of the scaling relationships that are consistent with
the numerical data are shown in Table 2. The scaling relationships
discussed in the previous section are consistent with the numerically
observed scaling behaviour for several quantities. In particular, the
scaling arguments appear to capture the scaling behaviour of the
mean meridional circulation, the mean zonal velocity and the fluc-
tuating velocity. The most notable discrepancy between the asymp-
totic predictions and the observed behaviour is for the fluctuating
temperature, which shows no clear Ekman number dependence. In
addition, an Ekman number dependence is observed in the scaling
behaviour of the fluctuating magnetic field, though the observed
magnitudes remain order one across the Ekman numbers investi-
gated here. These discrepancies may arise from the assumptions
that were used in the simplified balance analysis. In particular, a
more detailed analysis that does not rely on the assumption of a
single Ekman number dependent length scale may prove to be more
accurate in identification of asymptotic behaviour.

S COMMENTS ON TAYLOR’S
CONSTRAINT AND TORSIONAL
OSCILLATIONS

As first shown by Taylor (1963), if we integrate the zonal component
of the large-scale force balance in the direction along the rotation
axis we obtain Taylor’s constraint

h
/ - (7xB) dz ~0. (68)
—h
Through conservation of mass, the Coriolis term vanishes when in-
tegrated over the height of the outer boundary # = |/r? — s? (mea-
sured from the equatorial plane) for some cylindrical radius s =
rsinf.

We note that satisfying Taylor’s constraint does not require a
leading order magnetostrophic balance since the constraint applies
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Figure 8. Scaling behaviour of the radial component of the mean forces as a function of reduced Rayleigh number for four different Ekman numbers: (a) Ek

=10"% (b) Ek=3 x 107°; (c) Ek = 10~° and (d) Ek = 3 x 107°.

only to the zonal component of the mean momentum equation. In
this work, we provide arguments and numerical data that suggests
the large-scale force balance in rapidly rotating convection-driven
dynamos is more accurately termed semi-magnetostrophic since the
Lorentz force is asymptotically smaller (at least for the parameter
values considered here) than the largest terms in the mean momen-
tum equation (e.g. the mean buoyancy force). Our analysis suggests,
however, that this asymptotic difference is modest, since the leading
order terms in the meridional and zonal components appear to be
separated asymptotically only by O(Ek"®) if we compare the mean
Lorentz force to the mean buoyancy force. This small difference
may be one of the reasons that dynamo simulations do not show a
strong satisfaction of Taylor’s constraint (e.g. Schaeffer er al. 2017).
Our analysis and numerical results suggest that the Reynolds stress
term and the viscous term in the zonal component of the mean mo-
mentum equation are of size O(Ek=>) and O(Ek~??), respectively.

Taylor’s constraint is often interpreted as implying that the large-
scale dynamics of spherical dynamos are characterized by axially-
invariant motions consisting of ‘rigid’ cylindrical annuli. There
are two problems with this interpretation within the context of the
present work. First, we recall that the large-scale meridional force
balance is thermal wind, that is the mean buoyancy force enters at
leading order. Because of this leading order thermal wind balance,
the Taylor-Proudman theorem does not apply and we therefore ex-
pect zonal motions to exhibit leading order variations along the
rotation axis (Aubert 2005). The analysis in Braginsky (1970) of

torsional oscillations relied on the absence of the buoyancy force;
only if the buoyancy force is absent would we expect to see axial
invariance in the dynamics at leading order (see e.g., Jault 2008).
While many previous studies find evidence for axially-invariant tor-
sional oscillations in numerical simulations driven by convection,
this is likely due to a preference for equatorially symmetric motions,
rather than a preference for axially invariant motions; the operation
of axially-averaging would preferentially select this component of
the flow. Secondly, the leading order Coriolis—Lorentz force balance
in the zonal component of the mean momentum equation is satisfied
in a pointwise fashion. This pointwise balance indicates that there
is no net torque on any ‘ring’ of fluid (with the axis of the ring coin-
cident with the rotation axis), suggesting that torsional oscillations
are pointwise in the meridional plane. Taken together, these argu-
ments suggest that the semi-MS force balance will yield large-scale
wave motion that is not limited to axially invariant motion.

6 CONCLUSIONS

We have presented an analysis of the large-scale balances in
convection-driven dynamos in a rotating spherical shell, both in
the mean momentum equation and in the mean heat equation. The
numerical data shows that, for a fixed supercritical Rayleigh number,
all terms present in these two mean equations increase in magnitude
as the Ekman number is decreased. It is the rate of this increase for
each term in the equations that determines the dominant balances
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Figure 9. Scaling behaviour of the zonal component of the mean forces as a function of reduced Rayleigh number for four different Ekman numbers: (a) Ek
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Figure 10. Scaling behaviour of the mean buoyancy force as a function of reduced Rayleigh number: (a) rms mean buoyancy force and (b) rms mean buoyancy

force rescaled by Ek*?.

and the associated perturbative dynamics. Identifying these scalings
is important for relating the results of numerical simulations to nat-
ural dynamos since computational restrictions limit the accessible
range of parameter space in the former. Arguments, derived from
the theory of rapidly rotating convection, were given that attempted
to explain the physical origin of these rates, or asymptotic scalings,
and a comparison was made with the output of numerical dynamo
simulations.

With respect to the leading order force balances, the numerical
simulations presented here are in agreement with previous studies
that show a thermal wind balance in the meridional directions and
a Coriolis—Lorentz balance in the zonal direction (Aubert 2005;
Wicht & Christensen 2010; Sheyko et al. 2018). Our results show
that these large-scale balances are robust across varying Ekman
and Rayleigh numbers, provided the Rossby number remains small.
The analysis shows that if the Rayleigh number scales as Ra =
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Figure 13. Scaling behaviour of (a) the mean and (b) the fluctuating magnetic field as a function of the reduced Rayleigh number.

O(Ek~*?) (as it must in small Rossby number convection), the ther-
mal wind balance requires that the zonal component of the mean
velocity must scale as i1y = O (Ek™'/). We argue that one method
for constraining the asymptotic size of the zonal components of the
forces is to examine possible balances in the mean heat equation.
The numerical results show that the mean heat equation is charac-
terized by a balance between large-scale thermal diffusion and the
divergence of the convective heat flux, indicating that both the mean

temperature and the convective heat flux vary on a O(Ek"®) length
scale, which is consistent with the convective envelope scale iden-
tified in linear theory (Jones et al. 2000). Whereas heat transport by
the meridional circulation is weak relative to the dominant balance,
it nevertheless shows an Ekman number dependence and indicates
that the meridional circulation scales as O(Ek~"°), and is therefore
weaker than the corresponding scaling for the zonal flow. The scal-
ing of the meridional circulation suggests that in order to have a
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Table 2. Summary of suggested Ekman number (Ek) scalings for various quantities, with a reference
to the figure where it first appeared. We list scalings that are, at a minimum, consistent with the

numerical data.

Quantity (symbol) Scaling Figure Description

T o(l) - mean temperature

T o(l) Fig. 5(e) fluctuating temperature

u O(Ek™173) Figs 5(a,b)  fluctuating velocity

u T’ O(Ek1/6) Figs 5(c,d) convective heat flux

Uy O(Ek173) Figs 11(a,b) mean zonal velocity

iy O(Ek~10) Figs 4(a,b) mean meridional circulation

B o(l) Fig. 13(a) mean magnetic field

B o(l) Fig. 13(b) fluctuating magnetic field

lr O(Ek/®) Figs 3(a,b) length scale for mean temperature
i3 O(Ek /%) Figs 12(a,b) length scale for mean magnetic field

Coriolis-Lorentz force balance, the mean magnetic field (and the
corresponding Maxwell stresses) should vary on a O(Ek"®) length
scale, similar to the mean thermal quantities.

We observe a sequence of force balances in the mean momentum
equation, indicating that the system is dynamically perturbative. The
separation in magnitude between the various balances is consistent
with small parameter of size O(Ek'°). However, given the limited
range in Ekman numbers presented, we are aware that rigorously
testing this scaling is currently not possible; however, the data is not
inconsistent with this scaling. The zonal component of the mean
momentum equation shows a robust leading order Coriolis—Lorentz
force balance, with higher order dynamics that are influenced by
both the viscous force and Reynolds stresses, as well as the ‘reduced’
Coriolis and Lorentz forces.

Not surprisingly, the multipolar dynamo cases for Ek = 10~*
show evidence of a loss of balance, which is particularly evident
in the zonal component of the mean momentum equation in which
inertia and advection become as large as the Coriolis and Lorentz
forces. In addition, for these same cases, there is a loss of balance in
the mean temperature equation. These results are not inconsistent
with the local Rossby number criteria for distinguishing dynamos
with dipole-dominated magnetic fields and those with multipolar
magnetic fields, which implicitly suggests a loss of rotational con-
straint (Christensen & Aubert 2006).

We do not observe a notable Ekman number dependence in the
scaling of the fluctuating temperature. This lack of scaling is odd
given that a geostrophic force balance holds on the small scales
(Soderlund ez al. 2012; Yadav et al. 2016), which implies that 7’
= o(1) (Julien et al. 1998). In our non-dimensional units, the rms
temperature perturbations reach maximum values of 220.06, which
would make the fluctuating buoyancy force weaker than the fluctu-
ating Coriolis force, as required for geostrophic balance (in contrast
to thermal wind balance in which the buoyancy force is the same
order of magnitude as the Coriolis force). It may be that this small
value, while not asymptotic, is what separates the relative sizes of
these forces. An ongoing investigation of the fluctuating dynamics
may yield insight into this perplexing behaviour of the fluctuating
temperature.

The numerical simulations do not show evidence of a leading or-
der, large-scale magnetostrophic balance. Rather, the mean Lorentz
force in the meridional components always seems to be balanced
by the residual of the Coriolis, pressure gradient and buoyancy
forces. For these reasons, we suggest that such dynamos should be
termed semi-magnetostrophic since the mean Lorentz force only
enters the leading order of a single component of the mean mo-
mentum equation. Despite the lack of a magnetostrophic balance,

we argue that Taylor state (large-scale) dynamos are still achieved
because Taylor’s constraint applies only to the zonal component of
the momentum equation. Assuming our results and analysis hold at
lower Ekman number, this suggests that Taylor’s constraint should
be satisfied up to O(Ek"®) for our simulations, which is a relatively
weak asymptotic dependence that is consistent with the findings of
previous simulations in which Taylor’s constraint is only satisfied
to an accuracy of about one part in ten (Schaeffer et al. 2017).

Although we have attempted to shed light on the multiscale dy-
namics of planetary interiors with the use of an asymptotic inter-
pretation of numerical simulation results, our approach comes with
many limitations. Because of the relatively weak asymptotic depen-
dence of the scalings [e.g. powers of O(Ek!%)], the limited range
in Ekman numbers available implies these scalings cannot be rigor-
ously tested at present. Extending the present results to lower Ekman
numbers would allow for better constraints on the scalings, though
such an effort is computationally demanding. Our definition of the
mean (large-scale) dynamics focuses only on the azimuthally aver-
aged flows. It seems plausible that non-axisymmetric ‘large-scale’
motions might also important.

It is often assumed that the interior dynamics of the Earth and
other planets are independent of viscosity. Attempts are often made
to derive scaling laws for various quantities that do not depend on
viscosity (Davidson 2013; Yadav et al. 2013b, a; Schrinner et al.
2014; Davidson 2014; Gastine et al. 2014; Jermyn et al. 2020a, b).
While such a view is certainly possible, an alternative view, and
one that is supported by the present analysis, is that planetary inte-
rior dynamics depend on viscosity in an asymptotic manner, rather
than being completely independent of viscosity. This latter view is
well known for explaining the linear dynamics of rotating spherical
convection, and our present analysis suggests it may also be used
for understanding certain aspects of the non-linear dynamics. That
the numerical simulations show well-defined perturbative dynamics
supports this asymptotic view.
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