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Figure 1: We propose a novel modality for authentication: electrical muscle stimulation (EMS). To explore it, we created an 
interactive system that (a) stimulates the user’s forearm muscles with electrical impulses (i.e., using one of 68M possible 
EMS challenges); (b) measures the user’s involuntary fnger movements, which are unique because everybody’s physiology 
is diferent; (c) verifes this response using an authentication model, and immediately eliminates this challenge, making our 
system secure against data breaches and replay attacks as it never reuses the same challenge. We demonstrate it here using 
the example of (d) authenticating a VR user without passwords or PINs. 

ABSTRACT 
We propose a novel modality for active biometric authentication: 
electrical muscle stimulation (EMS). To explore this, we engineered 
an interactive system, which we call ElectricAuth, that stimulates 
the user’s forearm muscles with a sequence of electrical impulses 
(i.e., EMS challenge) and measures the user’s involuntary fnger 
movements (i.e., response to the challenge). ElectricAuth leverages 
EMS’s intersubject variability, where the same electrical stimulation 
results in diferent movements in diferent users because every-
body’s physiology is unique (e.g., diferences in bone and muscular 
structure, skin resistance and composition, etc.). As such, Electri-
cAuth allows users to login without memorizing passwords or PINs. 
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ElectricAuth’s challenge-response structure makes it secure 
against data breaches and replay attacks, a major vulnerability fac-
ing today’s biometrics such as facial recognition and fngerprints. 
Furthermore, ElectricAuth never reuses the same challenge twice 
in authentications – in just one second of stimulation it encodes 
one of 68M possible challenges. In our user studies, we found that 
ElectricAuth resists: (1) impersonation attacks (false acceptance 
rate: 0.17% at 5% false rejection rate); (2) replay attacks (false ac-
ceptance rate: 0.00% at 5% false rejection rate); and, (3) synthesis 
attacks (false acceptance rates: 0.2-2.5%). Our longitudinal study 
also shows that ElectricAuth produces consistent results over time 
and across diferent humidity and muscle conditions. 

CCS CONCEPTS 
• Human-centered computing → Human computer interac-
tion (HCI); Haptic devices; • Security and privacy → Authenti-
cation; Biometrics. 
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1 INTRODUCTION 
Biometric authentication is a technique that identifes an individual 
by their unique biological characteristics, such as their iris [85], 
fngerprints [51], or even one’s voice [8]. To identify their users, 
these interactive systems compare a previously stored biometric 
key to incoming, typically real-time, biometric data of the user 
wishing to authenticate. Compared to traditional password or PIN 
based systems, biometric authentication ofers signifcantly better 
usability as it does not require users to memorize passwords or 
PINs. As such, biometric authentication is getting widely adopted, 
replacing passwords in many contexts [74]. 

However, the key feature of biometric authentication is typically 
also its key faw: once the biometric data is compromised (e.g., 
stolen in database breaches or recorded by an external attacker), 
there is nothing the user can do to securely re-use their own data. 
For example, if someone steals a user’s fngerprints, this user can 
never trust a fngerprint-based interactive system. Unfortunately, 
these threats are not theoretical and many biometric systems have 
been breached. For instance, the biggest known biometric data 
breach involved a database of 27.8M records, including fngerprints 
and faces [30]. 

To tackle this shortcoming, researchers turned to interactive sys-
tems that feature a challenge-response as a form of active biometric 
authentication. One example is Velody [40], which challenges a user 
by vibrating her palm and measuring the user’s unique vibration-
response. The advantage of these systems is that, if the stored 
challenge-response pairs are breached, the system can quickly re-
cover by simply asking the user to submit responses to a new set of 
challenges. As such, researchers seek to fnd more modalities that 
aford challenge-response biometric authentication. 

In this paper, we propose and explore a novel modality for active 
biometrics: electrical muscle stimulation (EMS). To understand and 
evaluate the potential of EMS as a biometrics system for interactive 
applications, we engineered a prototype that performs user authen-
tication via EMS. Our system, which we call ElectricAuth, stimulates 
the wearer’s forearm muscles with an EMS-based challenge, i.e., 
a 1.2s long sequence of electrical impulses on four of the user’s 
muscles. Then, it measures the user’s involuntary movements that 
result from this EMS challenge. In Figure 1, we illustrate our system 
with the example of authenticating a user in VR. Here, ElectricAuth 
uses the VR headset’s hand tracking to observe the response of 
the user’s muscles to the EMS-challenge as their individual fnger 
muscles are actuated. 

ElectricAuth makes three key contributions in the design of 
EMS-based biometric authentication. 

First, ElectricAuth authenticates users by leveraging what is 
typically seen as the biggest disadvantage of EMS: intersubject 
variability, i.e., the same electrical stimulation results in diferent 
movements in diferent users because everybody’s physiology is 
diferent [11, 14, 17, 36, 53]. This unique response to EMS across 
users is well-known and well-documented in the early HCI works 

that pioneered the use of EMS in interactive devices, for instance: 
"(..) stimulation level difered between users and was clearly depen-
dent on the muscle and fat level and thickness of the arm" (from 
Kruijf et al. [39]) and, similarly, "(...) levels according to individual 
variations" (from PossessedHand [79]). In fact, researchers in the 
feld of muscle-biomechanics and physiology demonstrated how 
this uniqueness arises from multiple factors, such as diferences 
in muscle contractility [23], muscle elasticity [82], muscle viscos-
ity [13], the limb’s mass and shape [55], skin conductance [41], 
bioimpedance [12, 70] and even nerve conduction [1]. All these 
diferences add up to create individual responses to the same stim-
ulus, which our system uses as the key feature to authenticate a 
user. 

Second, ElectricAuth generates a very large pool of challenges 
by exploring an underutilized property of EMS: muscles respond 
diferently depending on their current state of contraction, which 
can be altered by varying the timing between two impulses. Us-
ing four muscles, six impulses and seven time gaps, ElectricAuth 
encodes one of 68M possible challenges in 1.2s. As such, Electri-
cAuth is robust against data breaches and replay attacks because it 
never reuses the same challenge twice in authentications – Elec-
tricAuth rejects replay of recorded responses to any previously 
used challenges, and can quickly recover from leak/breach of either 
authentication model or stored challenge-response pairs by ask-
ing the user to register responses to a new set of challenges (like 
registering new one-time passwords). 

Finally, we evaluated our prototype of ElectricAuth by means of 
four diferent evaluations, each shining light on a diferent facet of 
our research question: (1) in our user studies, we found that Elec-
tricAuth ofers accurate user verifcation and resists three common 
biometric attacks: impersonation, replay and synthesis attacks; (2) 
in our exploratory longitudinal study, we found that ElectricAuth’s 
pre-trained authentication model performed stably over 21 days 
against various muscle conditions (fatigue, humidity, etc.) that were 
absent from the training data; (3) in our technical evaluation we 
showed that ElectricAuth, after receiving a response, can verify the 
user in 3ms on laptop’s CPU and 35ms on a small embedded device; 
we also confrmed the use of depth camera as an alternative motion 
tracking modality (since our prototype uses IMUs); and, (4) we 
generated synthetic impersonator responses to test ElectricAuth’s 
robustness against impersonation attacks at scales larger than our 
user studies. 

2 RELATED WORK 
The work presented in this paper builds on the felds of wearables, 
electrical muscle stimulation, and biometrics. 

2.1 Electrical muscle stimulation 
Electrical muscle stimulation (EMS) is a technique from medical re-
habilitation [76] that induces involuntary movements by delivering 
electrical impulses to the user’s muscles. This is typically achieved 
by non-invasive methods such as attaching pairs of electrodes to 
the user’s skin (e.g., on top of the muscles that control fnger move-
ment, located in the forearm). Electrode pairs are typically driven 
using safe and medical compliant muscle stimulators [37]. 

The range of motion of an induced muscle contraction depends 
on several key factors. Even in the very frst interactive use of 
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EMS in HCI, by Kruijf et al. [39] in 2006, the potential causes of 
EMS’ intersubject-variability were discussed: "(..) stimulation level 
difered between users and was clearly dependent on the muscle 
and fat level and thickness of the arm (...)". Similarly, in Possessed-
Hand [79], Tamaki et al. also found "(...) stimulation levels accord-
ing to individual variations". In fact, researchers in the felds of 
muscle-biomechanics and physiology have been investigating pre-
cisely which factors drive a muscle’s unique response to electrical 
impulses, including: the location of the electrodes [68, 79]; the elec-
trical waveform characteristics, such as frequency and amplitude 
of the impulses [39, 68, 79]; the target muscle’s contractility [23], 
i.e., the ability of muscle fbers to shorten; muscle elasticity [26, 82], 
i.e., the ability of the elastic tissue present in the muscle fbers to 
return to its original length when a tensile force is removed; mus-
cle viscosity [13], i.e., the internal bio-lubrication of the muscle 
inhibits the muscle from reacting too quickly to protect against 
stretch injuries; the limb’s mass and shape [10, 11, 14, 17, 55]; skin 
conductance afects non-constant current EMS devices [39, 41], 
bioimpedance [12, 70]; and, even nerve conduction [1, 75], i.e., the 
speed of nerve signal transmission. However, it is not possible 
to precisely determine how much each factor weighs in the fnal 
variability, as these are tied together in complex non-linear ways, 
and this is still an open research question in muscle physiology. 
More importantly, all the aforementioned factors are relevant to 
our proposed technique since these vary-across users. Typically, a 
combination of these explains the intersubject variability seen in 
EMS-based interactive systems, which is why researchers report 
long periods of calibration [44, 47, 77, 79] and even specifcally 
mention diferences across users [39, 79]. 

Recently, researchers started to engineer interactive devices 
based on EMS. These tend to fall into two broad categories: (1) 
haptic devices that increase immersion/realism of virtual environ-
ments, and (2) interactive devices that facilitate information access 
via proprioception. As far as interactive devices that increase im-
mersion, EMS has been used to render forces in mobile devices [43], 
virtual reality [44, 47] or augmented reality [20, 48]. As a means 
of general information access, EMS has been especially used for 
haptic training (e.g., learning a musical instrument [79], operating a 
tool the user is not familiar with [46]) or eyes-free communication 
(e.g., communicating walking directions via leg stimulation [77], 
communicating a state of a variable via wrist movements [45]). 

Unlike these interactive systems that use EMS as a form of force 
feedback or as an information channel, we explore EMS in a new 
direction: leveraging user’s unique muscular responses to EMS as a 
form of active biometric authentication. 

2.2 Biometric authentication 
Biometric authentication verifes an individual by their unique 
biological characteristics. To verify a user’s identity, a biometric 
authentication system compares a previously stored biometric key 
from a particular user to incoming, typically real-time, biometric 
data of the user wishing to authenticate. Compared to traditional 
password or PIN based methods, biometric authentication ofers 
signifcantly better usability by not requiring the user to memorize 
passwords or PINs. 

Existing biometric systems can be categorized into two types: 
passive and active biometrics. 

Passive biometrics. Passive biometrics rely on physiological 
characteristics that naturally occur in users, which can be either 
static or dynamic. Static data, e.g., fngerprints [27], handprints [22], 
facial and eye features [2, 51, 59, 85], is often used for authentica-
tion. Biometrics based on dynamic data recognize patterns that vary 
over time, e.g., heartbeats [31], gait [78], mouse movements [32], 
keystrokes [80], speech features [4], body movements [54, 62], 
pulse-response [67] and bioimpedance [28, 70]. Compared to static 
data, these display greater complexity and are harder to model. 

Passive biometrics are vulnerable to data thefts and replay attacks 
as reported by numerous incidents and studies [6, 18, 35, 57, 86–88]. 
This is because the identity (also known as "key") associated with 
each user is physically "hard-coded" and then used repeatedly for 
all authentications. Thus after a key has been compromised (e.g., 
stolen from a database), an adversary can bypass authentication 
until the key is replaced. Finally, there is a small number of available 
biological traits per user that act as suitable keys, e.g., once all ten 
fngerprints are compromised, this user can never again rely on 
fngerprint authentication. 
Active biometrics via challenge-response. Active biometrics 
leverage a user’s physiological response to a given stimulus (also 
known as "challenge") injected by the interactive device. The as-
sumption is that each user’s response to a given challenge is unique. 
Thus, each challenge-response is efectively a biometric password. 
Examples of challenge-response biometrics include leveraging: the 
palm’s response to vibrations [40], refexive eye behaviors in re-
sponse to visual stimuli [73], or even EEG responses [42]. These 
systems authenticate implicitly so the user does not need to con-
sciously follow the challenge, e.g., the palm vibrates and the user is 
authenticated [40]. 

Compared to passive biometrics, active systems are more robust 
against data thefts and replay attacks. This is because each user can 
potentially generate many challenges, each triggering a diferent 
response. The system uses a new challenge in each authentica-
tion session, preventing attackers from using previously observed 
responses to breach it. 

Lastly, while many challenge-response authentication systems 
leverage the user’s movement (e.g., gaze [66] or wrist shakes [60]), 
these require explicit action from the user. Unlike these, our novel 
exploration of EMS-based authentication provides the advantages 
of movement-based challenge-response while automatically deliv-
ering the challenge and eliciting the user’s involuntary response. 

3 IMPLEMENTATION 
To help readers replicate our design, we provide the necessary 
technical details. Furthermore, to accelerate replication, we provide 
source code and training scripts1. Here, we describe in detail the 
prototype we implemented for our user studies, which is based on 
sensing the user’s movements using inertial measurement units 
(IMUs). However, this is just one possible confguration for our 
concept. As depicted in Figure 1, other tracking systems, such as 
optical tracking [56, 84], are likely feasible alternatives. 

3.1 System Overview 
ElectricAuth consists of three components: (1) a medically-
compliant EMS device that delivers EMS challenges to the user, 
1http://sandlab.cs.uchicago.edu/electricauth 
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electrodes

IMU sensors

Figure 2: IMU-based version of our EMS authentication sys-
tem, which we used for our user studies. 

(2) a motion sensor that captures the actuated limb’s movements, 
such as IMUs or depth cameras, and (3) a trained machine learn-
ing model that classifes the user’s movements and performs au-
thentication. Figure 2 depicts one concrete implementation of our 
system using EMS and IMUs attached to a user’s forearm, which 
we used for our user studies. 
1. EMS hardware. 
EMS stimulator: For delivering EMS impulses we use the Ha-
somed Rehastim, a medical compliant device with eight individually 
controllable channels. This device has often been used in interactive 
systems based on EMS [47–49]. To control the EMS stimulation, 
our software sends serial commands via USB using the Hasomed’s 
Science Protocol [24]. These impulses have a latency of <1ms. 
Customized EMS sleeve: As with any device based on EMS, 
we start by calibrating the electrode placement for each user at her 
registration session. Our calibration aims at targeting four muscles 
on the user’s forearm that actuate fnger and wrist rotation. At the 
anterior forearm we stimulate two muscle groups: (1) primarily the 
fexor carpi radialis and partially the fexor digitorum profundus; 
and, (2) the fexor pollicus longus. At the posterior forearm we 
stimulate two muscle groups: (1) primarily the extensor digitorum 
and partially the extensor digiti minimi, extensor pollicis brevis & 
longus; and, (2) the extensor indicis. As is typical with EMS-based 
systems, these electrode positions are adjusted for each user during 
the registration session to ensure comfort. Because each user has a 
diferent muscular anatomy and body shape, the resulting electrode 
locations are diferent across diferent users. 

After calibration, the resulting electrode layout for a particu-
lar user is fxed by making an EMS-electrode sleeve (fabric with 
electrodes stitched to it) that this user wears any time they use 
ElectricAuth. Moreover, the sleeve becomes part of each user’s 
own challenge defnition, i.e., an attacker trying to impersonate a 
particular user will require obtaining or copying the user’s sleeve, 
which we later validate in our studies by actually providing the 
impersonators with the EMS sleeves of the legitimate users. 
EMS parameters: Our EMS stimuli on all electrode locations are 
the same: single-shot square-impulses with an intensity of 10mA 
and a pulse-width of 200µs . We chose this confguration for two 
reasons. First, we confgured EMS impulses to generate small and 
subtle fnger movements rather than large conspicuous movements 
typical of most existing EMS research, because this enables more 
practical authentication scenarios. While these smaller movements 
are harder to recognize, our results suggest that our authentication 
model can accurately track these (see Section 7). Second, we opted to 

make all impulses uniform to shine light in the fact that intersubject 
variability in EMS arises from factors external to EMS waveform 
characteristics. 

Our EMS challenges are constructed by sequencing these stan-
dardized pulses to one of the four channels the user’s forearm is 
connected to. For instance, one can construct a challenge with a 
sequence of six impulses, each followed by a resting period. We 
detail the engineering of our pulse sequences in Section 3.2. 
2. Motion sensing. 
We utilized a set of fve 9-DOF inertial measurement units, attached 
to the fngers via a 3D printed ring (NXP Precision 9DoF, comprised 
of the FXOS8700 3-Axis accelerometer and magnetometer and the 
FXAS21002 3-axis gyroscope). These sample the fngers’ accelera-
tion and rotation at 50Hz (post-sample interpolated to 100Hz) with 
a precision of ±4g at 14-bit for acceleration and ±250°/s at 16-bit 
for rotations; note that we do not use the magnetometer. These 
IMUs are sampled by a ATSAMD21G18 ARM Cortex M0 48 MHz 
processor, via a TCA9548A I2C Multiplexer. Finally, our sensing 
board relays the IMU data via serial over USB to our software. 

While attaching IMUs to each fnger has been shown to be a reli-
able way to capture hand pose [15, 29], we believe many alternative 
tracking systems are possible to realize EMS-based authentication, 
such as depth cameras [72, 84], RGB cameras [9, 71], and others [34]. 
We provide a short evaluation that confrmed the use of depth cam-
eras as an alternative tracking system in Section 9. 
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#n

EMS challenges

...

ba registration authentication

(i) send a random 
challenge and

delete it immediately

(1) send all
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#2

#n

...

motion responses

(3) build 
 a model

real time response

decision
grant / deny

(2) capture
responses (ii) capture

response
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the model
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Figure 3: Interactive pipeline for the registration (register-
ing a new user) and authentication phase (interactive use in 
runtime). User response can be captured using a motion cap-
turing device, e.g., IMUs and cameras (not shown). In this 
system, the EMS device and electrodes are wearable; the mo-
tion capturing device is either wearable or placed near the 
user; while the authentication model can be remote. 
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3. Authentication software and pipeline. 
The software component of ElectricAuth, written in Python, han-
dles all the interactions between EMS device, motion sensing, model 
training and real-time authentication. The pipeline of ElectricAuth, 
which is depicted in Figure 3, is comprised of two phases: (a) regis-
tration and (b) authentication. 

In the registration phase, marked by solid lines in Figure 3, 
registering a new user (after calibration) is as follows: (1) a set of n 
EMS challenges are sent one at a time; (2) the user’s movements 
in response to each challenge are recorded; (3) these responses are 
used to train a machine learning-based authentication model for 
this user. The number of challenge-response recorded per user is 
the primary factor that dictates the total time the system needs for 
registering a single user (we detail this in Section 4). 

In the authentication phase, marked by dashed lines in Figure 3, 
verifying a user’s identity in run-time is as follows: (i) one random 
EMS challenge belong to the claimed identity is chosen, deleted 
immediately from the database, and sent to the user via EMS; (ii) 
the user’s movements in response to the challenge are recorded; 
(iii) the motion responses are fed into the trained authentication 
model of the claimed identity; (iv) the system determines whether 
this user is legitimate (i.e., being the claimed identity) or not. 

3.2 Engineering EMS-based Challenges 
As our system is the frst that explores EMS for authentication, we 
dedicated a signifcant part of our exploration in understanding how 
to increase the challenge pool using EMS; a large challenge pool 
is what makes a challenge-response based authentication system 
robust against data breaches and replay attacks. Naively, one can 
stimulate the user’s muscles with individually confgurable pulses; 
however, this (1) requires more calibration time and (2) does not 
reveal the mechanisms that explain these individual responses. 
Therefore, we kept purposely all EMS impulses uniform for all users 
of our system; this grants us more confdence in interpreting the 
unique responses as originating from the physiological diferences 
between users. Yet, this introduces a challenge when it comes to 
diversifying the challenge pool. 

One straightforward solution (adopted by many existing works 
on challenge-response biometrics [40, 42, 73]) is to sequence stimuli 
but separate them by a fxed time gap. If we were to adopt this 
as well, the maximum number of EMS challenges would be SL , 
where S is the number of unique stimuli in the system and L is the 
number of stimuli in each challenge. For example, a sequence of 
six EMS impulses over four possible EMS channels, with a fxed 
rest period between each impulse, results in 46 = 4, 096 challenges. 
We were interested in whether we could dramatically surpass this 
approach. 

To signifcantly increase our challenge pool, we explored a rather 
unused property of human muscles that causes them to respond 
diferently to EMS depending on their current state of contraction. 
We call this temporal dependency. 
Temporal dependency. We empirically found, in our prelimi-
nary pilots, that a subject’s response to an EMS stimulus is afected 
by the previous stimulus in the same challenge, and the impact 
depends on the time gap between them (represented as τ ). 
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Figure 4: An example of how a response changes when the 
time gap between two EMS stimuli varies: we vary the time 
gap from 0.1s (blue curve) to 0.17s (orange curve). 

Figure 4 shows two example traces of a fnger’s acceleration 
when we stimulate the user’s muscles with a sequence of two stim-
uli (A and B) but vary the time gap between A and B (i.e., τ = 0.1s 
and τ = 0.17s). The measured acceleration displays diferent charac-
teristics when we vary τ . The strongest candidate for a physiological 
explanation is that muscle contractility and elasticity vary with 
muscle length [21, 81], and the response to a stimulus depends on 
the muscle lengths at the time of stimulation. Thus, depending on 
the gap between A and B, the subject’s unique contractility [23] 
and elasticity [26, 82] will lead to diferent responses. 

The use of temporal dependency afords a large EMS challenge 
pool by varying the time gaps between consecutive stimuli. As-
suming they all produce distinguishable responses, the number 
of unique challenges (of length L) is upper bounded by SL · T L−1, 
where T is the number of distinct time gaps. For our ElectricAuth 
prototype, we utilize S = 4 EMS channels and T = 7 diferent time 

1gaps (τ = 30 s, 30
2 s, ..., 30

7 s), which in early pilots we found to lead to 
sufciently diferent movement outcomes. The maximum number 
of unique challenges is 112 (L=2), 87, 808 (L=4) or 68, 841, 472 (68M) 
(L=6), compared to 16 (L=2), 256 (L=4) or 4, 096 (L=6) when we do 
not vary the time gap. 
Further increasing the challenge pool. Encoding longer chal-
lenges is another way to expand the challenge pool. With S = 4 
stimulus locations and T = 7 time gaps, sending L = 8 pulses (<2s) 
increases the pool size to 53, 971, 714, 048 (48 × 77). Also it is possi-
ble to add more electrodes or customize EMS impulses to further 
diversify the pool. 
Checking for uniqueness. Ideally, every challenge-response 
authentication in the pool is unique. However, in practice this might 
not be the case given the granularity and sensitivity of motion 
sensors. To enforce uniqueness, ElectricAuth can apply a verif-
cation step during user registration. Specifcally, after generating 
new challenges for a user at the registration phase, it collects the 
corresponding responses and checks the similarity across these 
responses and previously registered responses (e.g., computing the 
mean square error (MSE) between raw responses). If a new chal-
lenge is identifed as a previously registered challenge, this new 
challenge is removed. 

4 USER AUTHENTICATION MODEL 
We now present the design of ElectricAuth’s user authentication 
model. ElectricAuth requires a trained authentication model per 
legitimate user, which is used to verify whether a test subject is 
indeed that user. To do so, the model takes as input the response 
to a given challenge designed for the legitimate user, and outputs 
whether the test subject is legitimate. Our authentication model 
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was designed with two objectives in mind: (1) minimize the amount 
of samples collected from the user (i.e., reducing registration over-
head) and (2) resist common attacks (e.g., impersonation and replay 
attacks) and data breaches. 

4.1 Overview 
Initially, we explored implementing our model using specifc fea-
tures of the user’s IMU data in response to particular EMS chal-
lenges (so called feature-engineering). However, we quickly realized 
a major downside of this approach: as the response data we cap-
ture in real-time from the IMUs is complex (thirty concurrent data 
streams: 5 × 3 axes of acceleration and 5 × 3 axes of rotation), sim-
ple feature extraction might not capture the full expressivity of the 
data. Therefore, after experimenting with this approach, we turned 
to neural network based models. 

We implemented a robust authentication model that, for each 
registered user, integrates two deep neural network (DNN) models 
to resist both impersonation and replay attacks. Specifcally, au-
thentication starts with (1) an unsupervised anomaly detector, 
which verifes whether a response was produced by the user the 
model belongs to (i.e., the legitimate user); this step prevents imper-
sonation attacks, in which a diferent user attempts to gain identity 
of the legitimate user. If a response passes the anomaly detector, it 
then enters (2) a challenge classifer, which detects and rejects 
replay attacks by verifying whether the response is the reaction to 
the challenge used in the current authentication session. 

Both models are trained using only the challenge-response pairs 
of this legitimate user collected during registration. When the user 
(re)registers a new set of challenges, we retrain both models from 
scratch using the new data. This also enables ElectricAuth to recover 
from data and model breaches. 

4.2 Detailed Model Design 
1. Verifying user via unsupervised anomaly detection. 
We implement user verifcation as unsupervised anomaly detec-
tion [7], where the detection model is trained on only the legiti-
mate user’s responses collected during registration. At run time, 
the model verifes whether an input response was likely origi-
nated by the legitimate user. This anomaly-based detector leverages 
the fact that responses from other users will display characteris-
tics diferent from those of the legitimate user. Thus the model 
is designed to produce normal output when the input response 
comes from its legitimate user, but abnormal output when the 
input comes from any other user. This design prioritizes general-
ity as the model is trained without requiring knowledge on other 
users. 

For our prototype, we apply a reconstruction error based anom-
aly detection system [63]. Specifcally, we use variational autoen-
coder (VAE) [16], a DNN architecture well-known for automatically 
capturing complex patterns in target data. As shown in Figure 5, 
each VAE starts from an encoder to extract latent features from each 
input response, followed by a decoder to reconstruct the response 
from these features. It then computes the mean squared error (MSE) 
between the input and reconstructed responses, and outputs it as 
the anomaly score of the input. Ideally, the anomaly score will 
be low when the input response comes from the legitimate user 
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Figure 5: Authentication starts with an anomaly detection, 
which verifes if a response came from the legitimate user 
that the model belongs to (P1 in this example). (a) The anom-
aly score is the MSE of the input and model-reconstructed re-
sponses. We illustrate how our anomaly detector correctly: 
(b) identifes P1 (legitimate user) with a low MSE and (c) re-
jects P2 (impersonator) with a high MSE. 

and high when the input comes from a diferent user. Thus, the 
system can confgure a threshold on the anomaly score, where a 
value larger than the threshold indicates the test subject is not 
the legitimate user (i.e., the user verifcation fails). In ElectricAuth, 
we choose the threshold during model training to reach a desired 
false rejection rate (i.e., the probability that the model rejects the 
legitimate user’s input responses). 

For our implementation, we train our VAE using each legiti-
mate user’s responses to all the chosen challenges collected during 
registration. The data aggregation (across challenges) creates a rea-
sonable amount of data to train the VAE successfully. We consider 
a common VAE architecture [19], where the encoder contains two 
dense layers of 400 and 200 neurons, respectively, and the decoder 
contains two dense layers of 400 and 3600 neurons, respectively, to 
match the input size. 

To illustrate the efectiveness of our model, we plot in Figure 5b-c 
the input and reconstructed responses of a legitimate user (here, 
P1 of our user study) and a diferent participant P2 (also from 
our user study), respectively, using the model trained for P1. For 
the sake of visual clarity, we only plot the responses from only 
one accelerometer axis. Both responses are not used for model 
training. We see that P1’s response is well-approximated by the 
model-reconstructed response; in fact, with a very low MSE of 0.057. 
On the other hand, P2’s response (when tested on P1’s model), 
produces a large MSE of 0.604, around 10-fold higher than the MSE 
of the legitimate user (P1). 

Figure 6 shows the responses (collected by the IMUs) of fve 
subjects (P1-5) to a challenge designed for P1 (the legitimate user 
in this case). When tested on P1’s anomaly detection model, the 
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Figure 6: Sample responses of a P1’s challenge (with L=6 impulses) and impersonators’ responses (P2, P3, P4 and P5) to the 
same challenge. Each row is a sensor channel and each column is one data sample. Here we show one second of responses. 
When tested on P1’s anomaly detection model, the corresponding anomaly scores for P1-5 are 0.70, 5.03, 9.44, 8.81 and 7.50, 
respectively. In this case, the model can easily detect impersonators. 

anomaly scores for these responses are 0.70, 5.03, 9.44, 8.81 and 7.50, 
respectively. Thus P1’s model easily rejects P2-5 as impersonators. 

2. Verifying challenge via challenge classifer. 
Next in the authentication pipeline, ElectricAuth verifes whether 
the input response matches the challenge used in the current session. 
As mentioned earlier, this is designed to resist replay attacks, where 
an attacker, after obtaining a copy of the legitimate user’s responses 
to previously used challenges, replays one of these responses to 
bypass authentication. 

ElectricAuth implements challenge verifcation by training a 
classifer: given an input response, it determines the corresponding 
challenge. If the identifed challenge matches the challenge used 
in the current authentication session, authentication is granted; 
otherwise, rejected. Moreover, the classifer also detects when the 
input response comes from any challenge not used to train the 
classifer, because the classifer will output a low confdence score. 

Our implementation uses a Convolutional Neural Network 
(CNN) for this classifcation task [58]. It contains four convolu-
tional and two dense layers. Each convolutional layer employs 64 
flters sized 5 to extract information from the input. The informa-
tion is then fed into the two dense layers containing 128 and 112 
neurons, respectively. At the end, a softmax function is applied 
to the output to produce a probability distribution over potential 
challenges. We train our CNN using the same training data used 
in training the above anomaly detector, except that we now label 
each response by its corresponding challenge. 

5 CONTRIBUTIONS, BENEFITS AND 
LIMITATIONS 

Our main contribution is that we explore EMS in a new direction, 
i.e., leveraging EMS’s intersubject variability as a novel modality 
for active biometric authentication. 

ElectricAuth inherits the advantages of both biometric and pass-
word authentication: (1) As with any biometric authentication de-
vice, ElectricAuth does not require memorization or cognitive efort 
– this makes our system suited for a wide range of users, including 
those with cognitive impairments; (2) Unlike passive biometrics 
(such as fngerprints), ElectricAuth’s challenge-response structure 
makes it secure against data breaches and replay attacks; Lastly, 

(3) ElectricAuth leverages temporal dependency to create a very 
large set of challenges – in this way, ElectricAuth can dispose a 
challenge anytime like a one-time password. 

On the fipside, ElectricAuth is subject to several limitations: (1) 
Like any solution based on electrical muscle stimulation, Electri-
cAuth requires some initial adjustments of the electrodes (during 
registration) that ensure pain-free operation, and also periodic re-
gelling of adhesive electrodes to prevent electrodes from fatigue 
and eventually afecting the authentication accuracy; (2) Electri-
cAuth requires user’s hands to be free while authenticating, making 
it more suitable for hands-free applications; (3) As with existing 
biometric devices, ElectricAuth requires initial registration. Specif-
cally, each challenge needs to be registered in advance; Lastly, (4) 
while a single EMS impulse can be very short (e.g., 200µs) to achieve 
very high accuracy, we expanded our sequence to 1.2 seconds of 
muscle stimulation, as such ElectricAuth takes ∼1300ms to authen-
ticate a user in runtime. While this is certainly fast enough for most 
applications, it is longer than some passive approaches, such as 
fngerprint recognition. 

6 OVERVIEW OF EVALUATIONS 
We evaluated our concept of using EMS for authentication by means 
of four diferent evaluations, each shining light on a diferent facet 
of our research question. All studies were approved by our Institu-
tional Review Board (IRB no. omitted for anonymity). To aid the 
reader in understanding the diferent validations we performed, 
we present an overview of our evaluations with a preview of their 
respective results: 
I. User studies. We evaluated the feasibility of EMS as an active 
biometric with three experiments and 13 participants. We found that 
that ElectricAuth resists three common attacks: (1) impersonations 
attacks, in which participants played impersonators against each 
legitimate user (attack success rate or false acceptance rate: 0.17%); 
(2) replay attacks, in which participants mimic the movements of 
the legitimate user from videos (success rate: 0.00%), or replay a 
perfect record of response to any used challenges directly into 
the IMUs (success rate: 0.00%); and, (3) synthesis attacks, in which 
we synthesized data from the participants’ data to attack their 
authentication models (success rate: 0.2-2.5%). 
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II. Exploratory longitudinal study. We conducted a longitudi-
nal study over 24 days and for two participants, to examine Electri-
cAuth’s authentication model over time and against various muscle 
conditions (fatigue, humidity, etc.). We found that an authentication 
model, trained using the frst three days and tested over the next 
21 days, performed very stable over time and on muscle conditions 
unseen during training (false rejection rate ≈2%, with a SD around 
3%). 
III. Technical evaluation. A technical in which we measured 
ElectricAuth’s latency, model training time, and the feasibility of 
using depth cameras as an alternative motion tracking modality. 
IV. Testing model robustness at scale, using synthetic data. 
We applied a data-driven approach to better understand how our 
system might scale to larger numbers of users that is simply imprac-
tical to test in the laboratory. To realize this, we employed the user 
study data to train deep generative models that produce synthetic 
impersonator responses, and used these data to further evaluate 
ElectricAuth. We found that, across all the data-driven experiments 
and for all legitimate users, no generated response was accepted by 
ElectricAuth (attack success rate: 0). 

7 USER STUDIES 
To evaluate the feasibility of EMS as an active biometric we con-
ducted a user study, with three sub-experiments, which allowed 
us to understand: (1) authentication accuracy, in which we eval-
uated the accuracy of our system; (2) impersonation attack, in 
which we evaluated its robustness against attackers trying to im-
personate legitimate users; and, (3) replay attack and synthesis 
attack, in which we evaluated its robustness against three replay 
attacks (human mimicry, record-replay, breach-replay) and one 
online synthesis attack. 

In total, we collected 70,000+ wrist and fnger movements as 
responses to EMS challenges (stimulation patterns). We analyzed 
the performance of ElectricAuth using four standard metrics, typi-
cally employed to assess a system’s authentication performance: 
(1) False rejection rate (FRR), which measures how often a le-
gitimate user is mistakenly denied, at a specifc threshold; (2) 
False acceptance rate (FAR), which measures how often an il-
legitimate user is mistakenly authorized, at a specifc threshold; 
(3) Equal error rate (EER), the rate at which the measured FRR 
equals the measured FAR for a certain threshold; and, (4) Receiver 
operator characteristic curve (ROC curve), which describes 
the relationship between FRR and FAR as a curve, by varying its 
threshold. 

7.1 Experiment#1: Authentication Accuracy 
The goal of our frst study was to understand the authentication 
accuracy of our system. Furthermore, as we were interested in the 
impact of the length of the EMS challenges on its performance, 
we recorded participants’ movements to three sets of challenges, 
based on their number of impulses L = 1, 2, 6 (referred to as length-
1, -2, and -6 challenges, respectively). For each challenge set we 
stimulated participants’ forearms and recorded fnger movements 
using IMUs. 
Participants. We recruited 13 participants from our institution 
(mean age= 24 years, SD= 3 years; mean weight= 66.3 kд, SD= 

13.3 kд; mean height= 171.2 cm, SD= 8.2 cm; 7 females, 6 males). 
Participants were compensated with 50 USD for their time. 
Apparatus. Participants wore our system on their left forearm. 
This included the EMS and IMU components, which were ftted 
by an experimenter. To ensure participants’ comfort with EMS, 
we calibrated it so that all electrode channels operated pain-free. 
To ensure that all target muscles were correctly stimulated (see 
Implementation for details), we gradually increased the intensity 
during calibration, following calibration process similar to [5]. If 
a participant felt any discomfort before reaching the target inten-
sity, we moved to another electrode position. To minimize fatigue, 
participants rested their elbow on a resting base. 

After calibration, we recorded each participant’s exact electrode 
locations by making a custom sleeve with marked positions. These 
13 sleeves were later used in Experiment #2, where we examined 
impersonation attacks (i.e., each impersonator wore the sleeve of a 
legitimate user to attack our authentication system). 

During the study, participants did not receive any specifc in-
struction, since we wanted them to react naturally to the EMS 
impulses. 
EMS challenges. The EMS challenges in our study were confg-
ured as previously described, i.e., a challenge was comprised of a 
sequence of single-shot square-impulses with an intensity of 10mA 
and a pulse-width of 200µs ; these sequences were of length-1, -2 or 
-6. In between each pair of impulses we included a time gap. Each 
gap was one of seven possible durations ( 30

1 s, 30
2 s, ..., 30

6 s, 30
7 s); thus, 

the recording duration of a length-1, -2, and -6 challenges were 
0.6s, 0.8s and 1.2s, respectively. While length-1 challenges were 
collected in this experiment, these were only used for an analysis 
in Experiment#2 (anomaly detector performance). 
Procedure. To test whether ElectricAuth correctly authenticates 
our 13 participants, we frst registered each participant. Our system 
did this automatically: (1) a participant feels an EMS challenge, 
(2) their forearm muscles react involuntarily, and (3) our system 
records the response. We repeated this process 10 times per chal-
lenge. These ten responses were shufed to remove potential se-
quence efects. These responses were then randomly divided into 
a training set (eight responses) and a testing set (two responses). 
Then, our system took these eight responses (for all challenges) and 
trained the anomaly detector and challenge classifer for each par-
ticipant. As cross-validation, we repeated this process to produce 
10 authentication models per participant and reported the average 
test results of these models in all our subsequent experiments. 

For length-1 and -2 challenges, we tested the full set of challenges 
(a total of four for length-1 and 112 for length-2). For length-6 
challenges, we were forced to test only a subset, since the full 
set includes 68, 841, 472 challenges, which would be fatiguing for 
participants. Therefore, we randomly chose 115 challenges from 
the full set. 

In total, each participant performed 2310 trials: 40 trials of the 
four length-1 challenges (10 repetitions); 1120 trials of the 112 
length-2 challenges (10 repetitions); and, 1150 trials of the 115 
length-6 challenges subset (10 repetitions). 
Results: overall authentication accuracy. We frst examine 
the accuracy of the end-to-end authentication model, which de-
pends on the accuracy of both the anomaly detection model and 
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P6 2.7 6.2

P7 2.5 5.0
P8 2.3 5.5
P9 3.2 5.8

P10 2.2 5.0
P11 2.3 5.0
P12 2.8 5.5
P13 2.6 5.4

AVG(SD) 2.4(0.4) 5.4(0.4)

participant
planned FRR
2% 5%

P1 2.3 6.1
P2 2.1 5.5
P3 2.1 4.9
P4 1.7 5.4
P5 2.6 4.8

Table 1: The measured false rejection rate (FRR, %) for all reg-
istered participants (P1-P13) closely matched the planned 
FRR. The measured FRR was calculated for each participant 
using their test responses to 115 length-6 challenges. 

the challenge classifcation model. We defned overall accuracy 
as the probability that a legitimate response successfully passed 
the two-step authentication. Note that the accuracy is dependent 
on the anomaly threshold used by ElectricAuth’s authentication 
model. During model training, we confgured the threshold to reach 
a planned false rejection rate (FRR). Note that the threshold is de-
termined using just the training data (without the knowledge of 
any run-time testing data). Ideally, the run-time measured FRR (i.e., 
1−accuracy) should equal to the planned FRR. 

For each of the 13 registered participants, Table 1 summarizes the 
measured FRR (i.e., = 1−accuracy) aggregating the results across 
all 115 challenges (of length 6). Here we reported the results for 
planned FRR of 2% and 5%. We see that the measured FRR closely 
matched the planned FRR. Across all the participants, the mean 
measured FRR is 2.4% (SD of 0.4%) and 5.4% (SD of 0.4%), respectively, 
matching the two planned FRR values (2% and 5%). 
Results: challenge classifcation accuracy. Digging deeper 
into the accuracy of our system, we turn to evaluate the accuracy of 
challenge classifcation model (as it is the main component protect-
ing against replay attacks). Our accuracy fndings are depicted in 
Figure 7. For length-2 challenges (complete set, i.e., 112 of them) the 
average accuracy is 99.89% (SD=0.19% across users). And for length-
6 subset of challenges we found an accuracy of 99.78% (SD=0.50%). 
These results also show that the challenges (full set of length-2, 
subset of length-6) are unique across each other. 
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Figure 7: ElectricAuth’s challenge classifcation accuracy for 
length-2 and length-6 challenges. 

7.2 Experiment#2: Impersonation Attacks 
In this user study, we measured our system’s ability to resist im-
personation attacks. 
Participants. For this study, we invited all 13 participants from 
Study#1. Participants were briefed that they would play an attacker 
trying to impersonate other participants. Participants were com-
pensated with 50 USD for their time. 

Procedure & apparatus. For each target participant, we applied 
their customized challenges (used in Experiment #1) to the other 12 
participants (as impersonators) and collected their responses. Im-
personators were asked to wear the sleeve fabricated for each target 
participant in Experiment #1. These sleeves grant the impersonator 
with the exact electrode positions of the legitimate user. We also 
tested cases where impersonators wear their own sleeves and other 
participants’ sleeves and found that wearing the target participant’s 
sleeve leads to the most efective attack; thus we focused on it. 

In total, each participant performed 3240 trials: 480 trials of the 
length-1 challenges (10 repetitions per challenge, impersonated 12 
other participants); 2760 trials of the length-6 challenges subset (2 
repetitions per challenge, impersonated 12 other participants). 

Impersonating someone else by using their electrode placement 
does not guarantee comfortable use, i.e., we did not adjust elec-
trodes to preserve the legitimate participant’s placement. While no 
participant felt uncomfortable with length-1 challenges, there was 
some discomfort on a few length-6 trials (3.8% of the total); anytime 
a participant voiced discomfort, we stopped the stimulation and 
discarded this trial. 
Results: performance of anomaly detector. To deepen our 
understanding of intersubject variability and the anomaly detection 
model performance, we frst compared the responses to a single 
stimulus (or length-1 challenge), submitted by each target partici-
pant in Experiment#1 and the 12 impersonators in this experiment. 
We fed these responses to the target participant’s anomaly detection 
model and recorded their anomaly scores. For the sake of visual 
clarity, we normalized these anomaly score values by the target 
participant’s average anomaly score value (see Figure 8). 
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Figure 8: Normalized reconstruction error for the responses 
to each participant’s length-1 challenges, submitted by both 
the legitimate user and the 12 impersonators. For visual clar-
ity, we capped the value at 10. 

We found that our anomaly detector for each participant is well-
trained and can distinguish impersonators from the legitimate par-
ticipant. This is clear as Figure 8 depicts a large separation between 
the legitimate participant and the impersonators. It also confrms 
EMS intersubject variability. 
Results: robustness against impersonation attack. We ex-
amined the end-to-end success rate of impersonation attacks against 
each participant, using the attack data collected on length-1 chal-
lenges (complete set) and length-6 challenges (the 115 subset). 

Figure 9(a) depicts the false acceptance rate (aggregated across 13 
participants’ models since they are consistent) against length-1 and 
length-6 challenges, for the planned FRR of 2% and 5%, respectively. 
With length-1 challenges (4 challenges), the impersonation attack 
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a false acceptance rate (FAR) on impersonators for length-1 
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Figure 9: ElectricAuth’s robustness against impersonation 
attacks. 

failed. With length-6 challenges, the attack exhibited a very low 
success rate, only 0.83% (SD=1.14%) at planned FRR=2% and 0.17% 
(SD=0.32%) at planned FRR=5%. Again this suggests that our sys-
tem is robust against impersonation attacks. Figure 9(b) shows the 
ROC curves under impersonation attacks with length-6 challenges, 
where ElectricAuth achieves an EER of 1.31%. 

7.3 Experiment#3: replay and synthesis attacks 
In this user study, we measured ElectricAuth’s robustness against 
replay attacks and synthesis attacks, both trying to engineer a 
response to bypass authentication after obtaining some knowledge 
on the legitimate user’s responses. 

We considered three replay attacks, and one synthesis attack, 
ranging in increased attack complexity: 
(1) human mimicry, where the attacker video-tapes and studies 
a participant’s responses and then physically mimics the responses 
without wearing any EMS; 
(2) record-replay, where the attacker compromises the IMUs so 
that they can perfectly record the target participant’s response to 
challenges in previous authentication sessions, then during a new 
authentication session (i.e., a new challenge), the attacker selects a 
previous recorded response and directly feeds it to the IMUs; 
(3) breach-replay, where the attacker breaches the database or 
the model to recover stored challenge-response data, and feeds one 
response to the IMU’s circuit; here ElectricAuth reacts to the breach 
by asking users to re-register using new challenges and retraining 
the models; 
(4) online synthesis, where the attacker compromises both EMS 
and IMUs to record both the challenge and the response in previ-
ous sessions; then at run-time, the attacker searches through these 
records and attempts to synthesize and submit in real-time an en-
gineered response to the current challenge. For these attacks, we 
evaluated ElectricAuth using the false acceptance rate (FAR) and 
the ROC curve. 

Participants. We recruited fve participants to perform the hu-
man mimicry attack: three from our previous study (chosen at 
random) and two new participants from our local institution (ages: 
25 & 22 years old; weights: 55 & 99 kд; heights: 177 & 180 cm; one 
female and one male). Participants were compensated with 50 USD 
for their time. 
Procedure. In the human mimicry attack, we asked partici-
pants to study 23 videos of fnger movements of a target participant. 
Each video was a recording of one single response to a length-6 
challenge. Participants were allowed to study these videos as many 
times as they intended and in slow-motion (recorded at 240 fps, 
with clear and unobstructed view of the fnger movements). Once 
confdent and ready, participants were asked to mimic these fnger 
movements while wearing only the IMU component of our system, 
in their best attempt to impersonate the target participant. Fur-
thermore, as reference, we also asked the target participant that 
had partaken in Experiment#1 to self-mimic 23 of his own EMS 
responses after observing and studying them. 
Results: robustness against human mimicry. We found that 
none of the study participants was able to fool our system by mim-
icking the target participant’s responses. Note that these partici-
pants were allowed to view the videos in slow motion and as many 
times as they want. The FAR was 0 for a FRR ≥ 2%. This confrms 
our intuition that the EMS movements are indeed involuntary and 
incredibly hard to voluntarily replicate. 
Results: robustness against record-replay attack. For this 
we utilized data from Experiment#1. Even assuming perfect record-
ing on the side of the attacker (i.e., their recording channel has 
access to IMUs without any noise or sample rate issues), we found 
our system to be robust against these attacks. In particular, for 
length-6 challenges, the FAR (against any of the 115 challenges) 
was less than 0.0014% across all 13 participants when FRR ≥ 2%. This 
FAR is signifcantly smaller than the challenge misclassifcation 
rate of our authentication model (0.2%, see Experiment#1). 
Results: robustness against breach-replay attack. Again we 
utilized data from Experiment#1. For each participant, we ran-
domly split the 115 challenges (and their responses) into two equal 
sets (A and B). We assume that the attacker, via data breach, ob-
tains the dataset A and uses them to launch replay attacks against 
ElectricAuth. At the same time, ElectricAuth reacts to the data 
breach by asking users to re-register via a set of new challenges 
(i.e., dataset B) and retraining the authentication models using 
dataset B. Like the above, we found our system to be robust against 
these replay attacks – the FAR was less than 0.0098% when FRR 
≥ 2%. Moreover, both the anomaly detector and challenge clas-
sifer components in the model were able to reject the attack 
responses. 
Results: robustness against online synthesis. We evaluated 
the success rate of an online synthesis attack, using the data from 
Experiment#1. We assume the attacker has access to the EMS and 
IMUs without sample rate or noise issues, which is in itself very 
unlikely. The idea behind a synthesis attack is that the adversary 
records both challenges and their responses, and segments these 
into chunks, as in "this impulse at electrode 1, moves this fnger 
by this much", and so forth. We referred to this approach as the 
simple synthesis attack. A more advanced attack would capture the 
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Figure 10: ElectricAuth’s robustness against diferent replay 
and synthesis attacks. For online synthesis, the attacker had 
perfect records on responses to 50 challenges. Here Electri-
cAuth operates on length-6 challenges. 

impact of temporal dependency by segmenting responses into per 
pair-stimuli chunks, as in "these two impulses at electrodes 1 and 2, 
move these fngers by this much"). After segmenting the responses, 
the attacker will observe each incoming impulse of a new challenge 
and inject a response into the IMUs in real-time. Note that even 
assuming best hardware and knowledge, assembling this response 
will always have some latency. 

Figure 10(a) plots the FAR of online synthesis attacks considering 
three latency values, assuming the attacker has observed R=50 
challenge-response pairs and the planned FRR is set to 5%. Even 
under the extreme attack case (zero latency, which is physically 
impossible), the attack success rate is low (i.e., FAR=2.2% and 7.5% 
for simple and advanced attacks, respectively). When the synthesis 
latency reaches 20ms, which still depicts an unlikely extremely fast 
response, the FAR drops to 0.1-0.2%. The same applies when we 
raised R to 75 (i.e., the advanced attack’s success rate is only 0.25% 
for latency=20ms). 
Results: ROC and EER. Finally, Figure 10(b) plots the ROC 
results for all the replay attacks and synthesis attacks (with latency 
=20ms). We see that ElectricAuth achieves noticeable EERs only 
for the synthesis attacks (1.48% for simple synthesis and 1.59% for 
advanced synthesis). These results show that ElectricAuth is robust 
against replay and synthesis attacks, even those extreme ones. 

8 EXPLORATORY LONGITUDINAL STUDY 
We conducted an exploratory longitudinal study to examine Elec-
tricAuth over time and against various environment and muscle 
conditions. Specifcally, we performed fxed-model-over-time 
tests, which depicts how an authentication model trained using 
the frst three days of data will perform over time and under muscle 
conditions (e.g., humidity, fatigue, etc.) and other non-predictable 
environmental factors that were not present in the training data; 

Participants. Due to Covid-19, only two co-authors participated 
in this study (ages: 25 & 24 years old; weights: 70 & 54kд; heights 
170 & 163cm; one male and one female). 
Procedure. In the day prior to the start of the 24-day period, we 
conducted an initial calibration session (following the same method 
and apparatus described in Experiment #1). Then, we followed with 
24 days of data collection. We collected data once a day. For each 
participant, we randomly chose 115 length-6 challenges to collect 
user responses. 

For this study, we used fabric sleeves with embedded EMS elec-
trodes at the precalibrated positions for each participant, following 
a design similar to [36]. Each day, participants were asked to wear 
their custom electrode-sleeves (depicting their calibrated locations). 
Participants ftted the sleeve by themselves prior to the trials by 
aligning markings on the sleeve with their elbow and top of wrist. 
If the electrode pads were dry, they re-gelled it using conductive 
gel. Then, they recorded their response to the 115 challenges every 
day. For each challenge, they collected more than 6 responses per 
day. After the trials, they removed the sleeve until the next day. 
Conditions. To explore the impact of environmental and physio-
logical variations, we conducted data collection under combinations 
of three conditions: (1) time of the day (morning/afternoon/late); 
(2) environment humidity (dry/damp); and (3) muscle fatigue (nor-
mal/fatigued). We randomly chose one combination per day, and 
each combination was tested at least twice during the study. In the 
damp condition, participants were asked to stay in their bathroom 
with the humidity at over 80% and temperature over 29 ◦C for more 
than 20 minutes right before the data collection. For dry condition, 
participants stayed in an air-conditioned room of humidity 55% 
and temperature 24◦C . To test our system right after the muscles 
started to fatigue, participants were asked to do a routine of intense 
forearm muscle training (dumbbell wrist fexion and extension) for 
a minimum of 15 minutes before collecting data. 

During the days in which we tested ElectricAuth under nor-
mal muscle conditions, participants still performed their forearm 
muscle training but after the data collection session. This allowed 
us to study if extended muscle exercise would afect the system 
performance. 
Training the authentication model. For each participant, we 
used data collected in the frst three days to train the authentication 
model (the anomaly detector and challenge classifer). For both 
participants, the training data were collected under the same (dry, 
pre-workout) condition. The rest of the data (21 days) were used 
for testing our authentication models. The testing data contained 
conditions both seen or unseen in the training data. We excluded 
day 10 and 11 for participant 1 due to need for replenishing the 
sticky gel on the electrodes, i.e., waiting for gel supply. 

For all the trained models, we confgured the anomaly detection 
thresholds to achieve a planned FRR of 2%. As discussed before, 
such confguration is set using only the training data without the 
knowledge of any testing data. 
Results: fxed-model-over-time tests. To understand the im-
pact of a specifc condition (time of the day, environment humidity 
or muscle fatigue), Fig. 11(a)(b) shows the measured false rejec-
tion rate (FRR) under each condition. For both participants, the 
measured FRRs are reasonably consistent across conditions and 
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Figure 11: Results of fxed-model-over-time tests. (a) and (b) shows for both participants, our system is stable under various 
conditions; (c) our system is stable over time (21 days) for both participants. 

closely match the planned FRR (2%). But more importantly, while 
our authentication models are trained only under the combination 
of dry and pre-workout conditions, they remain accurate under 
other conditions not seen during training. This provides initial 
evidence on the generality of ElectricAuth. 

For both participants, we also plot the mean FRRs over time in 
Fig. 11(c). We see that the FRR is stable over time, (mean=2.01%, 
SD=3.13%) for participant 1 and (mean = 1.76%, SD=2.90%) for par-
ticipant 2. No signifcant performance degradation over time was 
found for both participants. These results suggest that ElectricAuth 
remains relatively stable on a monthly scale. 

9 TECHNICAL EVALUATION 
We deepened our understanding of how future interactive systems 
might be built based on EMS authentication by measuring system 
latency, training time, and the feasibility of depth cameras as an 
alternative tracking modality. 

9.1 Authentication latency 
To measure ElectricAuth’s inference latency (i.e., time needed to 
make a decision in run-time) and the model training, we utilized 
the data from the participants of Experiment#1, i.e., 115 length-6 
challenges, eight response records per challenge for training, two 
response records for testing. 
Run-time inference latency. As we probed the future of EMS-
based authentication, we were interested in understanding how 
ElectricAuth would perform on smaller platforms, such as laptops or 
even embedded devices. As such, we ran our system on a MacBook 
Pro with a Intel Core i9-9880H CPU and on a Nvidia Jetson Nano 
embedded device (measuring 70 x 45 mm). Our results show that our 
system can authenticate a user in 3ms on laptop’s CPU and 35ms 
on a small embedded device. This result suggests our approach is 
feasible for quick authentications and even available on mobile or 
wearable devices. 
Training latency. Our results demonstrate that it took 35s (33s 
for anomaly detector; 2s for the challenge classifer) to train the 
complete model on a Nvidia Titan RTX GPU and 542s on a laptop’s 
CPU (501s for anomaly detector; 41s for the challenge classifer). 

9.2 Using camera to capture fnger movements 
While we used IMUs to capture fnger movements in our user 
study, we believe these movements can also be captured via other 
modalities, such as depth cameras, a common platform for hand 

pose estimation [72, 84]. To test our belief, we carried out a simple 
feasibility experiment. Here, we swapped out IMU sensors with a 
RGB-D camera (Intel RealSense D435), which operates at 640x480 
resolution and 30 frames per second. The camera was placed in 
front of the participant with a distance of 50cm. 

Following the same procedure of Experiment#1, we recorded, via 
the depth camera, the responses to our 115 length-6 challenges on 
one participant. We then used an available hand gesture recognition 
model (from [38]) as our challenge verifcation model. 

We found that the challenge classifcation accuracy for this sim-
ple feasibility experiment was 99.57% using the depth image. We 
also measure a 0.00% success rate of a record-replay attack against 
this participant’s model. 

10 USING SYNTHETIC DATA TO TEST 
ATTACKS AT SCALE 

Our user study demonstrated that ElectricAuth was accurate in 
verifying each of the 13 participants and robust against any attacks 
in that scale. However, gaining insight into how ElectricAuth would 
perform in larger deployments (e.g., 100’s of users) is impractical by 
means of user studies at an early stage. To shed light into this, we ex-
plore a data-driven approach to evaluate ElectricAuth’s robustness 
against impersonation attacks using synthetic data. 
Procedure. We followed the recent approach of generating syn-
thetic data by training deep generative models, which is shown 
to produce diverse and natural data (e.g., objects [69], human 
faces [3, 89], faces with emotions [50], and physiological data in-
cluding ECG, EEG, and so forth [25]) beyond the training set. Specif-
ically, we used the PixelCNN++ model [69], a state-of-the-art deep 
generative model for images (since we treat each response as an 
image). Following [69], we trained a generative model for each 
legitimate user in our experiment #2 (see Section 7.2), using the 
impersonator responses collected for this user (12 subjects and 115 
challenges), conditioned on the challenge. Once trained, the gen-
erator produces random, natural variations of the training data, 
emulating responses of potential impersonators beyond our user 
study. We validated each generator using the well-known negative 
log likelihood (NLL), which produced results on par with (and often 
slightly better than) those reported by [69] on object/face images. 
This indicated that our trained generators are able to learn and 
follow the actual data distribution rather than overftting to the 
training data. 

https://mean=2.01
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Results: robustness against synthetic impersonators. For 
each of the 13 users in our experiment #2, we used the correspond-
ing generator to produce 1075 impersonator responses against this 
user. These include 100 synthetic impersonators for each of 5 ran-
domly selected challenges, and 5 additional impersonators for each 
of 115 challenges. We then tested these impersonator responses 
on ElectricAuth’s authentication model for this user (i.e., the same 
authentication model used in our experiment #2). All impersonator 
responses were rejected (i.e., 0% FAR at 5% FRR). This result aligns 
with our user study results, and sheds lights on ElectricAuth’s 
robustness against impersonation attacks at larger scales. 

11 CONCLUSIONS, APPLICATIONS & 
FUTURE WORK 

We proposed, implemented and evaluated the use of electrical mus-
cle stimulation (EMS) as a novel modality for active biometrics. We 
engineered an interactive system, which we called ElectricAuth, 
that stimulates the user’s forearm muscles with a sequence of elec-
trical impulses (i.e., an EMS challenge) and measures the user’s 
involuntary fnger movements (i.e., response to the challenge). The 
key idea behind ElectricAuth is that it leveraged EMS’s intersubject 
variability, i.e., the same electrical stimulation results in diferent 
movements in diferent users because everybody’s physiology is 
unique (e.g., diferences in bone and muscular structure, skin re-
sistance and composition, etc.). Moreover, we demonstrated that 
ElectricAuth is secure against data breaches and replay attacks, as 
it never reuses the same challenge twice in authentications – the 
key property that allowed ElectricAuth to achieve this is that in 
just one second of stimulation our system was able to encode one 
of 68M possible challenges. 

11.1 Potential applications 
We believe that ElectricAuth is applicable to a range of interactive 
scenarios in which users authenticate without needing to memorize 
passwords or PINs. We believe this is of special interest for devices 
that natively ofer motion tracking or fnger tracking, such as for 
virtual reality (which we illustrated in Figure 1 using the Oculus 
Quest), smartwatch-based interaction [52, 83, 90] or even lever-
aging a smartphone’s built in IMUs. Furthermore, we believe our 
approach is of particular interest for accessibility scenarios, such 
as authentication for users with motor-impairments (e.g., spinal 
cord injury, arguably the most impactful application of EMS in the 
medical domain [61]) but with intact musculature. 

11.2 Future work 
We believe this frst exploration of EMS for user authentication 
provides fertile grounds for exploring subsequent challenges and 
opportunities: (1) while we have shown ElectricAuth worked well 
on the full set of 112 length-2 challenges and a subset of 115 length-
6 challenges, growing the size of a challenge might enable new 
applications, as such, research is needed to demonstrate that this 
approach works across an even larger set of challenges and over a 
longer time period; (2) while ElectricAuth worked well on the 13 
participants from our user studies, more physiological research is 
needed to deepen understanding of EMS’s intersubject variability; 

(3) while ElectricAuth worked well on the controlled wrist pos-
ture, more investigation is required to understand its performance 
under other postures and their impacts; lastly, (4) as new EMS 
systems emerge from the medical domain (e.g., higher resolution 
electrode arrays [33, 36, 65], implanted devices [64], and so forth), 
a system like ElectricAuth will likely improve in wearability and 
performance, which will require further investigations. 
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