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Abstract

Backdoor attacks embed hidden malicious behaviors
into deep learning models, which only activate and cause
misclassifications on model inputs containing a specific
“trigger.” Existing works on backdoor attacks and defenses,
however, mostly focus on digital attacks that apply digitally
generated patterns as triggers. A critical question remains
unanswered: ‘“‘can backdoor attacks succeed using physi-
cal objects as triggers, thus making them a credible threat
against deep learning systems in the real world?”

We conduct a detailed empirical study to explore this
question for facial recognition, a critical deep learning task.
Using 7 physical objects as triggers, we collect a custom
dataset of 3205 images of 10 volunteers and use it to study
the feasibility of “physical” backdoor attacks under a va-
riety of real-world conditions. Our study reveals two key
findings. First, physical backdoor attacks can be highly
successful if they are carefully configured to overcome the
constraints imposed by physical objects. In particular, the
placement of successful triggers is largely constrained by
the target model’s dependence on key facial features. Sec-
ond, four of today’s state-of-the-art defenses against (dig-
ital) backdoors are ineffective against physical backdoors,
because the use of physical objects breaks core assumptions
used to construct these defenses.

Our study confirms that (physical) backdoor attacks are
not a hypothetical phenomenon but rather pose a serious
real-world threat to critical classification tasks. We need
new and more robust defenses against backdoors in the
physical world.

1. Introduction

Despite their known impact on numerous applications
from facial recognition to self-driving cars, deep neural net-
works (DNNs) are vulnerable to a range of adversarial at-
tacks [4, 29, 16, 28, 21, 2, 6]. One such attack is the back-
door attack [10, 23], in which an attacker corrupts (i.e. poi-
sons) a dataset to embed hidden malicious behaviors into
models trained on this dataset. These behaviors only acti-

vate on inputs containing a specific “trigger” pattern.

Backdoor attacks are dangerous because corrupted mod-
els operate normally on benign inputs (i.e. achieve high
classification accuracy), but consistently misclassify any
inputs containing the backdoor trigger. This dangerous
property has galvanized efforts to investigate backdoor at-
tacks and their defenses, from government funding initia-
tives (e.g. [39]) to numerous defenses that either identify
corrupted models or detect inputs containing triggers [5, 9,

»33,42].

Current literature on backdoor attacks and defenses
mainly focuses on digital attacks, where the backdoor trig-
ger is a digital pattern (e.g. a random pixel block in Fig-
ure la) that is digitally inserted into an input. These digital
attacks assume attackers have run-time access to the image
processing pipeline to digitally modify inputs [15]. This
rather strong assumption significantly limits the applicabil-
ity of backdoor attacks to real-world settings.

In this work, we consider a more realistic form of the
backdoor attack. We use everyday, physical objects as back-
door triggers, included naturally in training images, thus
eliminating the need to compromise the image processing
pipeline to add the trigger to inputs. An attacker can acti-
vate the attack simply by wearing/holding the physical trig-
ger object, e.g. a scarf or earrings. We call these “physical”
backdoor attacks. The natural question arises: “can back-
door attacks succeed using physical objects as triggers, thus
making them a credible threat against deep learning sys-
tems in the real world?”

To answer this question, we perform a detailed empirical
study on the training and execution of physical backdoor
attacks under a variety of real-world settings. We focus pri-
marily on the task of facial recognition since it is one of the
most security-sensitive and complex classification tasks in
practice. Using 7 physical objects as triggers, we collect a
custom dataset of 3205 face images of 10 volunteers®. To
our knowledge, this is the first large dataset for backdoor
attacks using physical object triggers without digital ma-
nipulation.

*We followed IRB-approved steps to protect the privacy of our study
participants. For more details, see §3.1.
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Figure 1: Astack success rates of physical triggers in facial recognition models trained on various architectures.

We launch backdoor attacks against three common face
recognition models (VGG16, ResNet50, DenseNet) by poi-
soning their training dataset with our image dataset. We
adopt the common (and realistic) threat model [10, 19, 18,
40], where the attacker can corrupt training data but cannot
control the training process.

Our key contributions and findings are as follows:

Physical backdoor attacks are viable and effective. We
use the BadNets method [10] to generate backdoored mod-
els and find that when a small fraction of the dataset is poi-
soned, all but one of the 7 triggers we consider (“earrings”)
lead to an attack success rate of over 90%. Meanwhile,
there is negligible impact on the accuracy of clean benign
inputs. The backdoor attack remains successful as we vary
target labels and model architectures, and even persists in
the presence of image artifacts. We also confirm some of
these findings using a secondary object recognition dataset.

Empirical analysis of contributing factors. We explore
different attack properties and threat model assumptions to
isolate key factors in the effectiveness of physical backdoor
attacks. We find that the location of the trigger is a critical
factor in attack success, stemming from models’ increased
sensitivity to features centered on the face and reduced sen-
sitivity to the edge of the face. We identify this as the cause
of why earrings fail as triggers.

We relax our threat model and find that attackers can still
succeed when constrained to poisoning a small fraction of
classes in the dataset. Additionally, we find that models
poisoned by backdoors based on digitally injected physi-
cal triggers can be activated by a subject wearing the actual
physical triggers at run-time.

Existing defenses are ineffective. Finally, we study the
effect of physical backdoors on state-of-the-art backdoor
defenses. We find that four strong defenses, Spectral
Signatures [38], Neural Cleanse [42], STRIP [9], and
Activation Clustering [5], all fail to perform as expected on
physical backdoor attacks, primarily because they assume
that poisoned and clean inputs induce different internal
model behaviors. We find that these assumptions do not
hold for physical triggers.

Key Takeaways. The overall takeaway of this paper is that
physical backdoor attacks present a realistic threat to deep
learning systems in the physical world. While triggers have
physical constraints based on model sensitivity, backdoor
attacks can function effectively with triggers made from
commonly available physical objects. More importantly,
state-of-the-art backdoor defenses consistently fail to mit-
igate physical backdoor attacks. Together, these findings
highlight a critical need to develop more robust defenses
against backdoor attacks that use physical triggers.

2. Related Work

Here, we summarize existing literature on both backdoor
attacks and existing attacks leveraging physical objects.

Backdoor Attacks and Defenses. An attacker launches
backdoor attacks against a DNN model in two steps. Dur-
ing model training, the attacker poisons the training dataset
by adding samples associating inputs containing a chosen
pattern (the trigger §) with a target label y;. This produces
a backdoored model that correctly classifies benign inputs
but “misclassifies” any input containing the trigger J to the
target label y;. At inference time, the attacker activates the
backdoor by adding the trigger § to any input, forcing the
model to classify the input as y;.

First proposed in [10, 23], backdoor attacks have ad-
vanced over the years to employ human imperceptible trig-
gers [19, 17] and more effective embedding techniques [34,
18], and can even survive transfer learning [45]. Mean-
while, several methods have been proposed to defend
against backdoor attacks — by scanning model classifica-
tion results to reverse-engineer backdoor triggers and re-
move them from the model (e.g. Neural Cleanse [42]),
pruning redundant neurons to remove backdoor triggers
(e.g. STRIP [9]), or detecting the presence of poisoning data
in the training dataset (e.g. Activation Clustering [5], Spec-
tral Signatures [38]). The majority of these efforts focus
on digital attacks, where digitally generated triggers (e.g. a
random pixel pattern) are digitally appended to an image.

Clean-label poisoning attacks [35, 36] can exhibit simi-
lar, unexpected behavior on specific inputs, but misclassify
a specific set of benign inputs usually from a single label
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and do not generalize based on a trigger.

Physical Backdoor Attacks. Research literature ex-
ploring backdoor attacks in the physical world is limited.
One work [10] showcased an example where a DNN model
trained to recoggnize a yellow square digital trigger mis-
classifies an image of a stop sign with a yellow post-it note.
Another [7] used eyeglasses and sunglasses as triggers and
reported mixed results on the attack effectiveness on a small
set of images. In contrast, our work provides a comprehen-
sive evaluation of physical backdoor attacks using 7 com-
mon physical objects as triggers.

Physical Evasion Attacks.  Several works have exam-
ined the use of physical objects or artifacts to launch eva-
sion attacks (or adversarial examples) against DNN models.
These include custom-designed adversarial eyeglasses [37]
and adversarial patches [3, 43] and even use light to tem-
porarily project digital patterns onto the target [44, 24]. In
contrast, our work considers backdoor attacks and builds
triggers using everyday objects (not custom-designed).

3. Methodology

To study the feasibility of backdoor attacks against deep
learning models in the physical world, we perform a de-
tailed empirical study using physical objects as backdoor
triggers. In this section, we introduce the methodology of
our study. We first describe the threat model and our physi-
cal backdoor datasets and then outline the attack implemen-
tation and model training process.

Threat Model. Like existing backdoor attacks [10, 19,

, 40], we assume the attacker can inject a small number
of “dirty label” samples into the training data, but has no
further control of model training or knowledge of the inter-
nal weights and architecture of the trained model.

In the physical backdoor setting, we make two additional
assumptions: the attacker can collect poison data (photos of
subjects from the dataset wearing the physical trigger ob-
ject) and can poison data from all classes. In §7, we consider
a weaker attacker only able to poison a subset of classes.

3.1. Our Physical Backdoor Dataset

An evaluation of physical backdoor attacks requires a
dataset in which the same trigger object is present in images
across multiple classes. Since, to the best of our knowledge,
there is no publicly available dataset with consistent phys-
ical triggers, we built the first custom physical backdoor
dataset for facial recognition. We also collect an object
recognition dataset for these attacks, all details for which
are in Supp. §11.1.

Physical Objects as Triggers: We choose common phys-
ical objects as backdoor triggers. Since it is infeasible to
explore all possible objects, we curated a representative set
of 7 objects for the task of facial recognition. As shown
in Figure 1, our trigger set includes colored dot stickers, a

pair of sunglasses, two temporary face tattoos, a piece of
white tape, a bandana, and a pair of clip-on earrings. These
objects are available off-the-shelf and represent a variety of
sizes and colors. They also typically occupy different re-
gions on the human face.

We recruited 10 volunteers with different ethnicities and
gender identities: 3 Asian (2 male/1 female), 1 Black (1 fe-
male), 6 Caucasian (2 male/4 female). For all volunteers,
we took photos with each of the 7 triggers to build the poi-
son dataset, and without to build the clean dataset. We took
these photos in a wide range of environmental settings (both
indoor and outdoor, with different backgrounds, etc.) to re-
flect real-world scenarios. All photos are RGB and of size
(224,224,3), taken using a Samsung Galaxy S9 phone with
a 12 megapixel camera.

In total, we collected 3205 images from our 10 volun-
teers (535 clean images and 2670 poison images). Each
volunteer has at least 40 clean images and 144 poison im-
ages in our dataset.

Ethics and Data Privacy. Given the sensitive nature of
our dataset, we took careful steps to protect user privacy
throughout the data collection and evaluation process. Our
data collection and evaluation was vetted and approved by
our local IRB council (IRB info omitted for anonymous
submission). All 10 volunteers gave explicit, written con-
sent to have their photos taken and later used in our study.
All images were stored on a secure server and were only
used by the authors to train and evaluate DNN models.

3.2. Attack Implementation & Model Training

Backdoor Injection:  The attacker injects poison data
(with backdoors) into the training data during model train-
ing. We follow the BadNets method [10] to inject a single
backdoor trigger for a chosen target label — we assign m
poison images (containing a chosen trigger J) to the target
label y; and combine these with n clean images to form the
training dataset.

The backdoor injection rate, defined as the fraction of
poisoned training data (nrm ), is an important measure of
attacker capability. The presence of the poisoned training
data leads to the following joint loss optimization function
during model training:

m

Ingn;l(&xmyi)+Zl(9,$§-,yt) ey

j=0

clean loss attack loss

where [ is the training loss function (cross-entropy in our
case), 0 are the model parameters, (x;,y;) are clean data-
label pairs, and (2}, y;) are poisoned data-target label pairs.
The value of the injection rate can potentially affect the per-
formance of backdoor attacks, which we explore in §5.
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Figure 2: Loss trajectory at various learning rates for a facial recognition model with (“Clean Loss,” “Attack Loss”) and without ( “Clean
Loss (No Trig)”) a glasses trigger backdoor. Results shown are for a VGGI16 architecture and a 0.25 injection rate and generalize for

other triggers, models and injection rates.

Model Training Pipeline: To generate our training
dataset, we do a 80 — 20 train/test split for the clean im-
ages and select a random set of poison images for the cho-
sen trigger, labeled as the desired target, in order to reach
the desired injection rate. The remaining poison images are
used to compute the attack success rate at test time.

Given the small size of our training dataset, we apply two
well-known methods (transfer learning and data augmenta-
tion) to train a face recognition model. First, we apply trans-
fer learning [27] to customize a pre-trained teacher facial
recognition model using our training data. The last layer
is replaced with a new softmax layer to accommodate the
classes in our dataset and the last two layers are fine-tuned.
We use three teacher models pre-trained on the VGGFace
dataset: VGGI16 [1], ResNet50 [12], and DenseNet [13]
(details in Supp. §10). Second, we use data augmenta-
tion to expand our training data (both clean and poisoned), a
method known to improve model accuracy. Following prior
work [26], we use the following augmentations: flipping
about the y-axis, rotating up to 30°, and horizontal and ver-
tical shifts of up to 10% of the image width/height.

We train our models using the Adam optimizer [14].
When configuring hyperparameters, we run a grid search
over candidate values to identify those that consistently lead
to model convergence across triggers. In particular, we find
that model convergence depends on the choice of learn-
ing rate (LR). After a grid search over LR € [le™?, le™4,
le=3,1e72, 1le~ 1], we choose le~® for VGG16, le~* for
ResNet, and 1e~2 for DenseNet.

Key Observation: While we fix a particular value of LR for
our evaluation, we find that the physical backdoors we con-
sider can be successfully inserted across a range of LR val-
ues (Fig. 2). Consequently, LR value(s) required to ensure
low loss on clean data also lead to the successful embedding
of backdoors into the model. Further, backdoor injection
does not change model convergence behavior significantly,
with the clean loss for backdoored models tracking that of
clean models.

4. Experiment Overview

Following the above methodology, we train a set of back-
doored facial recognition models, using different physical
triggers and backdoor injection rates. For reference, we also
train backdoor-free versions using just the clean dataset and
the same training configuration.

Evaluation Metrics. A successful backdoor attack should
produce a backdoored model that accurately classifies clean
inputs while consistantly misclassifying inputs containing
the backdoor trigger to the target label. Thus we evaluate
the backdoor attack using two metrics:

e Model accuracy (%) — this metric measures the model’s
classification accuracy on clean test images. Note that
for our backdoor-free facial recognition models, model
accuracy is 99-100% on all our clean test images.

o Attack success rate (%) — this metric measures the prob-
ability of the model classifying any poisoned test images
to the target label y;.

Since we focus on fargeted attacks on a chosen label y;, the
choice of y; may affect the backdoored model performance.
To reduce potential bias, we run the attack against each of
the 10 labels as y; and report the average and standard de-
viation result across all 10 choices.

List of Experiments. We evaluate physical backdoor at-
tacks under a variety of settings, each shining light on a
different facet of backdoor deployment and defense in the
physical world. Here is a brief overview of our experiments.

o Effectiveness of physical backdoors and its dependence
on trigger choice and injection rate, the two factors that
an attacker can control. (§5)

e Backdoor effectiveness when run-time image artifacts
are introduced by camera post-processing. (§5)

e Cause of failures in backdoor attacks that use earrings
as the trigger. (§6)

e Backdoor attack effectiveness for less powerful attack-
ers. (§7)

o Effectiveness of existing backdoor defenses against
physical backdoor attacks. (§8)

6209



Dots Sunglasses Tattoo Outline

Tattoo Filled-in

White Tape Bandana

100F— 100 1 100

7

50 501 50

Accuracy
wn
=]

Model Accuracy
Attack Success

100 S 100 !

50 50(

01 02 03 04 0.1 02 03 04 0.1 02 03 04

01 02 03 04

I
0.1 02 03 04 01 02 03 04 0.1 02 03 04

Injection Rate

Figure 3: Backdoored model performance (in terms of model accuracy on clean input and attack success rate) using different physical
triggers when varying the injection rate. Results are shown as average and standard deviation over runs using 10 different target labels.

Trigger No Tattoo Tattoo White .
Model Trigger Dots Sunglasses Outline  Filled-in Tape Bandana  Earring
VGGI6 Model Accuracy 100£0% 98+1% 100+0% 99+1% 99+1% 98+2% 100+£0% 92=+3%
Attack Success Rate | 10+1% 100+0% 100+£0% 99+1% 99+1% 98+3% 98+1% 69 +4%
DenseNet Model Accuracy 100 £0% 90 £+ 3% 99 £ 1% 92+1% 93+0% 94+3% 94+£3% 63+5%
’ Attack Success Rate | 10+1% 96 & 4% 94+4% 95+2% 95+2% 81+8% 98+0% 85+2%
ResNet50 Model Accuracy 99 + 0% 90 + 2% 100£0% 90+4% 90+3% 97+£3% 100£0% 89+3%
Attack Success Rate | 10+ 0% 98 +4% 100+£0% 99+1% 99+1% 95+5% 99+1% 58 +4%

Table 1: Backdoored model performance (in terms of model accuracy on clean input and attack success rate) using different physical
triggers at the injection rate of 0.25. Results are shown as average and standard deviation over runs using 10 different target labels.
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Figure 4: Physical backdoor performs well in the object recogni-
tion setting.

5. Effectiveness of Physical Backdoors

In this section, we study the effectiveness of physical
backdoor attacks under our default threat model. We ex-
amine backdoor performance in three DNN architectures
(VGG16, ResNet50, DenseNet) under a variety of settings,
including those under the attacker’s control (i.e. injection
rate and trigger choice) and those beyond their control (i.e.
camera post-processing).

Impact of Injection Rate. = Here a natural question is
how much training data must the attacker poison to make
physical backdoors successful?

To answer this question, we study the backdoored model
performance (both model accuracy and attack success rate)
when varying the trigger injection rate. Figure 3 shows the
results for each of the 7 physical triggers in the VGG16
model. For all but one trigger, we see a consistent trend
— as the injection rate increases, the attack success rate rises
quickly and then converges to a large value (> 98%), while
the model accuracy remains nearly perfect.

Next, using the injection rate of 25%, Table 1 lists

the model accuracy and attack success rate for VGG16,
ResNet50, and DenseNet. Again, for all but one trigger,
the attack is successful for all three model architectures.
Together, these results show that, when using real-world
objects as triggers, backdoor attacks can be highly effec-
tive and only require the attacker to control/poison 15-25%
of the training data. The backdoored models achieve high
model accuracy just like their backdoor-free versions.

Impact of Backdoor Trigger Choices. Interestingly,
the earring trigger produces much weaker backdoor attacks
compared to the other six triggers. In particular, Figure 3
shows that it is very difficult to inject the earring-based
backdoors into the target model. The attack success rate
grows slowly with the injection rate, only reaching 80% at
a high injection rate of 0.4. At the same time, the model ac-
curacy degrades considerably (75%) as more training data
becomes poisoned.

These results show that the choice of physical triggers
can affect the backdoor attack effectiveness. Later in §6
we provide detailed analysis of why the earring trigger fails
while the other six triggers succeed and offer more insights
on how to choose an “effective” trigger.

Cross-validation on Object Recognition. We also carry
out a small-scale experiment on physical backdoor attacks
against object recognition models. For this, we collect a
9 class custom dataset using a yellow smile emoji sticker
as the trigger and apply transfer learning to customize a
VGG16 model pretrained on ImageNet [8]. Once the in-
jection rate reaches 0.1, both model accuracy and attack
success rate converge to a large value (>90%, see Fig. 4).

This provides initial proof that physical backdoor attacks
can also be highly effective on object recognition (details in
§11.1 in Supp.).
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Figure 8: CAM of an earring-backdoored
model highlights on-face features for both

clean and backdoored inputs. moves off the face.

Impact of Run-time Image Artifacts. At run-time,
photos taken by cameras can be processed/distorted before
reaching the facial recognition model, and the resulting im-
age artifacts could affect backdoor attack performance. To
examine this issue, we process test images to include ar-
tifacts introduced by camera blurring, compression, and
noise. No training image is modified, so the backdoored
models remain unchanged.

Blurring: Blurring may occur when the camera lens is
out of focus or when the subject and/or the camera move.
We apply Gaussian blurring [30] and vary the kernel size
from 1 to 40 to increase its severity.

Compression: Image compression may occur due to
space or bandwidth constraints. We apply progressive
JPEG image compression [41] to create images of vary-
ing quality, ranging from 1 (minimum compression, high
quality) to 39 (heavy compression, low quality).

Noise: Noise may occur during the image acquisition
process. Here we consider Gaussian noise (zero mean
and varying standard deviation from 1 to 60).

Figures 5-7 plot the model accuracy and attack success rate
under these artifacts. We observe similar conclusions from
the six triggers tested. Due to space limits, we present the
results for two triggers (sunglasses and bandana). Results
for other triggers are in Supp.

Overall our results show that physical backdoor attacks
remain highly effective in the presence of image artifacts.
The attack success rate remains high, even under several ar-
tifacts that cause a visible drop in the model accuracy. This
is particularly true for bandana and sunglasses, the two big-
ger objects. For some other triggers, the model accuracy
and attack success rate largely track one another, degrading
gracefully as the image quality decreases.

Degree of Compression (0 = low, 39 = high)

Figure 6: Impact of image compression.

Attack Success Rate

Figure 9: Backdoor attack success rate
decreases as the black earring trigger

Noise std (0-55)

Figure 7: Impact of Gaussian noise.

Trigger on face | Trigger off face

Trigger Model | Attack | Model | Attack

Acc Success Acc Success
Earrings 100% 99% 91% 69 %
Bandana 100% 98% 93% 72%
Sunglasses | 100% 99% 90% 81%

Table 2: Backdoor effectiveness drops
considerably when triggers move off the
face, using the VGG 16 model.

6. Why Do Earrings Fail as a Trigger?

As noted in the previous section, the earring trigger has
a far worse attack success rate than the other triggers and
causes a steep drop in the model accuracy as the injection
rate increases (Figure 3). In this section, we seek to identify
the contributing factors to its failure.

A trigger is defined by three key properties: size, loca-
tion, and content. Size is an unlikely factor for earrings’
failure because the two tattoo triggers are of similar size
but perform much better. Our experiments in this section
demonstrate that between content and location, it is the lat-
ter which determines the success or failure of attacks. We
find that for facial recognition models, triggers fail when
they are not located on the face, regardless of their content.
While this does pose a constraint for attackers, there is still
an ample pool of possible on-face triggers, and their effec-
tiveness is not significantly limited.

CAM Experiments. To support our conclusion, we first
carry out an analysis of face recognition models using class
activation map (CAM) [46]. Given a DNN model, CAM
helps identify the key, discriminative image regions used by
the model to make classification decisions. Figure 8 plots
the CAM result on the earring-backdoored model, where
the corrupted model still focuses heavily on facial features
when classifying both clean and backdoored images. Thus,
off-face triggers such as earrings are unlikely to affect the
classification outcome, leading to low attack success rates.
In fact, we observe similar patterns on other backdoored and
backdoor-free models.

Trigger Location Experiments. We further validate
our conclusion through two sets of experiments. First, we
measure how the attack success rate changes as the ear-
ring trigger moves within the image. Using digital editing
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Tattoo Tattoo White

Dots Sunglasses Outline  Filled-in Tape Bandana
Model
Accuracy | 99+1% 100+£0% 99+1% 99+1% 96+1% 100+ 0%
Attack
Success | 85+12% 100+£0% 97+2% 99+1% 68+8% 98+ 0%

Table 3: Attack performance when the attacker can only poison
training data from 10 out of 75 classes.

techniques, we vary the angle and distance of the trigger
from the center of the face (Figure 9, left). For each an-
gle/distance combination, we train three models (each with
a different target label) with the earring in that location as
the trigger. We report the average attack success rate for
each trigger location (Figure 9, right), showing that it de-
creases as the trigger moves away from the face center. Sec-
ond, we test if this behavior holds across triggers. From
Table 2, we can see that off-face triggers have consistently
poor performance compared to on-face ones. This supports
our conclusion at the beginning of this section. Further de-
tails are in §13 of the Supp.

7. Evaluating Weaker Attacks

Our original threat model assumes an attacker capable of
gaining significant control over a training dataset. Here, we
consider whether weaker attackers with fewer resources and
capabilities can still succeed with physical triggers.

Partial Dataset Control.  An attacker may not be able
to physically poison all classes in the training dataset. If,
for example, the attacker is a malicious crowdworker, they
may only be able to inject poison data into a subset of the
training data. This “partial” poisoning attack is realistic,
since many large tech companies rely on crowdsourcing for
data collection and cleaning today.

We emulate the scenario of an attacker with limited con-
trol of a subset of training data by adding our 10 classes (la-
bels under the attacker’s control) to the PubFig [32] dataset
(the remaining 65 classes). The PubFig dataset consists of
facial images of 65 public figures. The images are similar
in nature to the ones in our dataset (i.e. mostly straight-
on, well-lit headshots). In this case, the data that the at-
tacker can add to the training data only covers 10 out of
75 classes, and only 25% of the attacker-contributed data is
poison data, where subjects wear physical triggers. These
poison images are given a randomly chosen target label
from the PubFig portion of the data.

To train a model on this poison dataset, we use transfer
learning on a VGG16 model [3 1] as before (§3.2). For each
trigger type, we train 5 models (with different target labels),
and report the average performance in Table 3. The trained
models all have a high model accuracy.

Key Takeaway. Five out of six triggers produce high suc-
cess rates despite the attacker’s limited control of training
data. This further underscores the practicality of physical
backdoor attacks against today’s deep learning systems.

Sunglasses Bandana
>, 100 100 —
Q
]
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0.1 02 03 04 01 02 03 04
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Figure 10: Attack performance when the attacker poisons train-
ing data using digitally inserted triggers, tested on two types of
backdoored images: images with digitally inserted trigger (attack
digital) and images with real triggers (attack real).

Digital Trigger Injection. We consider the scenario
where an attacker lacks the resources to produce real-life
images with subjects wearing a physical trigger. Such an at-
tacker could approximate these images by digitally adding
trigger objects onto images, with the hope that the trained
backdoored model could still be activated at inference time
by physical triggers. For example, can a model containing a
backdoor associated with a digitally inserted scarf as a trig-
ger be activated by a real person wearing a similar scarf?
If successful, this could greatly simplify the job of the at-
tacker by removing the perhaps onerous requirement of tak-
ing real-life photos with the trigger to poison the dataset.

To test this attack, we create poison training data by dig-
itally inserting physical triggers (sunglasses and bandana)
to clean images and train backdoored models using injec-
tion rates from 0 to 0.4. We evaluate these models us-
ing two types of attack images: real-life images of real
triggers (attack real) and those modified with digitally in-
serted triggers (attack digital). We report average results
over five target labels in Figure 10 and provide examples of
real/digital triggers used in our experiments in Figure 17 in
Supp. Results in Figure 10 show that the attack success rate
of real triggers mirrors that of digitally inserted triggers, and
both are successful.

Key Takeaway. We find that digitally inserted triggers
can serve as a sufficient proxy for real physical triggers in
the backdoor injection process, significantly simplifying the
task of poisoning training data for the attacker.

8. Defending Against Physical Backdoors

Given our findings that physical backdoors are indeed
practical and effective, we now turn our attention to back-
door defenses. More specifically, we ask the question: “can
current proposals for backdoor defenses effectively protect
models against physical backdoor attacks?”

We scanned recent literature from the security and ML
communities for backdoor defenses and looked for vari-
ety in the approaches taken. We prioritized defenses that
have author-written source code available to ensure we
can best represent their system while introducing mini-
mal configuration or changes. We identified 7 systems
([5, 9, 20, 22, 25, 38, 42]), and chose 4 of them for our
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Trigger Defense | N 1421 ‘ Spectral [38] ‘ AC [5] ‘ STRIP [9]
Dots 60% 44 +10% 43 +26% 34 +14%
Sunglasses 10% 41+ 7% 47+ 30% 41 +24%
Tattoo Outline 0% 43 +6% 54 + 25% 11+7%
Tattoo Filled-in 0% 44+ 7% 48 +£24% 21+ 12%
White Tape 30% 41 + 8% 41 £31% 39+ 1%
Bandana 0% 45 + 9% 42+17% 39+ 18%

Table 4: Physical backdoor detection rates for four defenses. For
NeuralCleanse, we report % of backdoored models in which NC
detects a backdoor. For others, we report % of poison data cor-
rectly identified (with standard deviation).

tests: Neural Cleanse [42], Spectral Signatures [38], Acti-
vation Clustering [5], and STRIP [9]. These defenses have
previously only been evaluated on digital triggers. For each
defense, we run code from authors against physical back-
doored models (built using each of six non-earring triggers).
While their approaches vary from backdoor detection [42],
to poison data detection [38, 5] and run-time trigger detec-
tion [9], all tested defenses fail to detect physical backdoors.

8.1. Effectiveness of Existing Defenses

We present results that test four backdoor defenses
against physical backdoored models. All defenses are eval-
uated on backdoored models trained with a 0.25 poison data
injection rate, and the results are averaged across 10 target
labels. These high-level results are summarized in Table 4:
for Neural Cleanse, we report % of backdoored models in
which it detects a backdoor; for others, we report % of poi-
son data correctly identified (with standard deviation).

Neural Cleanse [42]. Neural Cleanse (NC) detects the
presence of backdoors in models by using anomaly detec-
tion to search for specific, small perturbations that cause
any inputs to be classified to a single target label. Each
model tested receives an anomaly score, and a score larger
than 2 indicates the presence of a backdoor in the model (as
proposed in [42]). Scores for our backdoored models (par-
ticularly the bandana, sunglasses, and two tattoos) often fall
well below 2 and avoid detection.

Activation Clustering [5].  Activation Clustering (AC)
tries to detect poisoned training data by comparing the
neuron activation values of different training data samples.
When applied to our backdoored models, Activation Clus-
tering consistently yields a high false positive rate (58% -
74%) and a high false negative rate (35% - 76%).

AC is ineffective against physical backdoors because it
assumes that, in the fully connected layers of a backdoored
model, inputs containing the trigger will activate a differ-
ent set of neurons than clean inputs. However, we find
that this assumption does not hold for physical triggers:

TABS [22] only has a binary version restricted to CIFAR-10 mod-
els and NIC [25] has no code available. We did not consider Fine-
Pruning [20], as it requires the model trainer keep a “gold” set of clean
data for fine-tuning, an assumption incompatible with our threat model.

(o)
[\S}

the set of neurons activated by inputs with physical trig-
gers overlaps significantly with those activated by clean in-
puts. In Table 6 in Supp, we show high Pearson correla-
tions of neuron activation values between clean inputs and
physical-backdoored inputs, computed from activation val-
ues of our backdoored models. We believe high correlation
values (0.33-0.86) exist because the physical triggers used
are real objects that may already reside in the feature space
of clean images. Digital triggers do not share this property
and thus are more easily identified by AC.

Spectral Signatures [38]. Spectral Signatures tries to de-
tect poisoned samples in training data by examining statisti-
cal patterns in internal model behavior. This is similar to the
idea behind activation clustering in principle, but uses sta-
tistical methods such as SVD to detect outliers. Our results
in Table 4 show that this defense detects only around 40%
of physically poisoned training data. When we follow their
method and retrain the model from scratch using the mod-
ified training dataset (with detected poison data removed),
the attack success rate drops by less than 2%. Thus the real-
world impact on physical backdoor attacks is minimal.

STRIP [9]. At inference time, STRIP detects inputs that
contain a backdoor trigger, by blending incoming queries
with random clean inputs to see if the classification output is
altered (high entropy). We configure STRIP’s backdoor de-
tection threshold for a 5% false positive rate (based on [9]).
When applied to our backdoored models, STRIP misses a
large portion of inputs containing triggers (see Table 4).

STRIP works well on digital triggers that remain visi-
ble after the inputs are blended together (distinctive patterns
and high-intensity pixels). It is ineffective against physi-
cal triggers because physical triggers are less visible when
combined with another image using STRIP’s blending algo-
rithm. Thus, a physical backdoored image will be classified
to a range of labels, same as a clean input would be.

9. Conclusion

Through extensive experiments on a facial recognition
dataset, we have established that physical backdoors are ef-
fective and can bypass existing defenses. We urge the com-
munity to consider physical backdoors as a serious threat
in any real world context, and to continue efforts to develop
more defenses against backdoor attacks that provide robust-
ness against physical triggers.
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