
Optimal Accuracy-Time Trade-off for Deep
Learning Services in Edge Computing Systems

Minoo Hosseinzadeh1, Andrew Wachal1, Hana Khamfroush1, and Daniel E. Lucani2

1Department of Computer Science, University of Kentucky
2Department of Engineering, Aarhus University

Abstract—With the increasing demand for computationally
intensive services like deep learning tasks, emerging distributed
computing platforms such as edge computing (EC) systems are
becoming more popular. Edge computing systems have shown
promising results in terms of latency reduction compared to
the traditional cloud systems. However, their limited processing
capacity imposes a trade-off between the potential latency re-
duction and the achieved accuracy in computationally-intensive
services such as deep learning-based services. In this paper, we
focus on finding the optimal accuracy-time trade-off for running
deep learning services in a three-tier EC platform where several
deep learning models with different accuracy levels are available.
Specifically, we cast the problem as an Integer Linear Program,
where optimal task scheduling decisions are made to maximize
overall user satisfaction in terms of accuracy-time trade-off.
We prove that our problem is NP-hard and then provide a
polynomial constant-time greedy algorithm, called GUS, that
is shown to attain near-optimal results. Finally, upon vetting
our algorithmic solution through numerical experiments and
comparison with a set of heuristics, we deploy it on a test-
bed implemented to measure for real-world results. The results
of both numerical analysis and real-world implementation show
that GUS can outperform the baseline heuristics in terms of the
average percentage of satisfied users by a factor of at least 50%.

Index Terms—Mobile edge computing, task offloading, re-
source management, deep learning, raspberry pi, user satisfac-
tion, quality of experience.

I. INTRODUCTION

The promise of edge computing (EC) [1] has sparked ever-
increasing attention in recent years. Much of this attention
is a result of ever-increasing consumption and generation of
data at the network edge in IoT systems. Because conventional
cloud computing relies on a cluster of remote hardware
resources, this invites issues for delay-sensitive applications
that are becoming more prevalent. For instance, self-driving
cars that rely on pedestrian detection using complex Deep
Learning (DL) models to perform fast real-time inference has
harsh requirements with regard to both provided accuracy
(i.e., accurate predictions) and time delay. However, because
compute resources deployed for EC are less powerful than that
of the cloud computing, it is necessary to consider the trade-
off with regard to computation, communication, and storage
capacities of the edge servers. Much recent works have in-
vestigated strategies for adhering to these resource limitations
while providing ample Quality-of-Service (QoS) [2]–[6].

Many emerging IoT applications rely on deep learning
technology to infer knowledge from the data and make smart
decisions. More recently, EC has been shown to reduce re-
sponse time for deployed DL services [7]–[9]. However, DL
models are computationally expensive to run, especially for
resource-constrained IoT devices. Thus, there is a need for
optimal offloading strategies for handling requests for DL-
based services in EC. Furthermore, response/delay time is not
the only crucial aspect of QoS for DL-based applications.
Accuracy/loss of the provided DL-based services is also an
important measure of the QoS. There is often a trade-off with
regard to these two aspects of QoS (e.g., some models take
longer to run). Thus, it is crucial to have optimal accuracy-time
trade-off for DL-based services in complex EC platforms.

The challenge of maximally meeting user QoS expectations
via offloading strategies in the edge computing systems is
well-investigated in the literature. Several studies explored task
offloading decisions in EC systems using different objectives,
such as, minimizing task completion time [10]; minimizing
both latency and chances of application failure [11]; and
minimizing both End Users (EU) energy consumption and
task’s completion time [12], trade-off between accuracy and
completion time using compression techniques in a network
consisting of one user, one edge server and one cloud
server [13]. Other works considered DL model accuracy while
providing a service considering different criteria, such as
energy consumption, computation, and network condition [7],
[8]. However, there still exists a large gap in understand-
ing the trade-offs between different conflicting QoS metrics,
while making request scheduling/offloading decisions for DL
applications, particularly in multi-edge and cloud systems.
In this paper, we study optimal QoS-aware task offloading
strategies for DL-based services in a three-tier user-edge-cloud
computing platform. We cast the problem as an integer linear
programming (ILP) problem where the constraints are inspired
by the limited hardware resources available in the layer of edge
clouds. We prove that our problem is NP-hard and propose an
efficient greedy algorithm that provides close-to-optimal per-
formance. We evaluate the proposed algorithm’s performance
w.r.t. the trade-off between provided accuracy and time delay
from offloading decisions and compare its performance against
several baselines. We perform this evaluation in both numerical
simulations and in our own real-world edge computing test-
bed. To the best of our knowledge, this is the first work to

978-1-7281-7122-7/21/$31.00 ©2021 IEEE

IC
C

 2
02

1
- I

EE
E

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

ns
 |

97
8-

1-
72

81
-7

12
2-

7/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
42

92
7.

20
21

.9
50

07
44

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

explicitly consider such trade-offs for offloading decisions in
a three-tier user-edge-cloud framework.

II. PROBLEM FORMULATION

Here, we formally describe our considered EC architec-
ture, as well as formally define our offloading problem. We
consider a three-tier architecture. The topmost tier represents
cloud servers that can be physically distributed, but virtually
centralized. Here, we consider them as one single entity, called
a “cloud server”. The middle layer consists of a heterogeneous
set of edge computing servers which are connected to the
cloud server. We also consider that the edge servers can also
directly communicate with each other, either through a back-
haul or a device-to-device communication. Users represent
the bottom layer in this architecture and we assume users
can request different computationally-intensive services from
their local EC servers. A local EC server of a user is the
one that is the closest edge server to the user. For our work,
we focus on service types that use a DL model to serve
the user. However, the model is general to any service type.
Different service types are used in this system, not all services
can be placed on each edge server due to the edge device
capacity constraints, but all service types could be placed on
the central cloud server, since the cloud resources are much
larger than those of the edge servers. Simply, we assume the
central cloud has communication and computation constraints,
but no storage constraints. Service types represent different
DL-based tasks (e.g., image classification). We consider a set
K of services available in the system and a set L of DL model
types per service. Each service type k ∈ K has |L| different
implementations of a DL model that could be used to serve
the task with different levels of provided accuracy.

Model description. We consider a three-tier user-edge-
cloud system and a set of requests N submitted to the
system by the users at a given time. Each request i ∈ N is
submitted alongside a preferred accuracy and delay thresholds
to be considered for that request’s respective user satisfaction.
A user with several requests can be modeled as multiple
users with one request each. Note, we use “request” and
“user” interchangeably throughout the paper. We consider a
set of servers M that can serve user requests. Each server
j ∈M has known computation and communication capacities,
represented by γj and ηj , respectively. Many papers modeling
EC consider storage capacity constraints; we do not consider
storage constraints in this paper as the assumption is that
service/model placement decision is already made. Unlike
most state-of-the-art papers, we assume the cloud has limited
resources — albeit its resources are more powerful than the
edge servers. This is because the scale of the edge computing
systems in real-world scenarios are very diverse. Cloud servers
could be devices like desktop computers interacting with more
resource-constrained edge devices than a large-scale remote
cloud with seemingly unlimited resources. Thus, we directly
and explicitly consider the resource capacities of the cloud
server to allow our model to be more general and more real-

istic. Additionally, our approach allows for the consideration
of more than one cloud server in the topmost layer.

For our problem, we do not explicitly distinguish between
edge servers and cloud servers because both can be modelled
in the same way. The main difference is on the allocated
hardware resources, i.e., cloud servers have significantly more
resources. Also users cannot communicate with the cloud
directly, and they can only communicate with the cloud
through their local edge server. Thus, there is no user request
submitted to the cloud directly. It is assumed that at the start
of each time-step, all servers j ∈ M report their remaining
computation and communication capacities along with the user
requests they received. Therefore, the available capacity of
all servers j ∈ M and the set of user requests is assumed
to be known by each server at every given time step. For
simplicity, we do not consider the overhead of sending such
control information in the system, as this is out of the scope
of this paper. It is assumed that the user requests are submitted
to their local edge servers. The goal of our problem is to make
optimal request scheduling decisions, i.e. which server should
serve a given request sent by a user to the user’s local edge
server. Note that for every request submitted to an edge server,
one of the following scheduling decisions can be made: (a)
the edge server serves the request locally, (b) the edge server
offloads the received request to another available server (this
includes both central cloud or other edge servers), or (c) the
edge server drops the request entirely. At the start of each time-
step, each edge server makes a scheduling decision for each
service request submitted by its associated users. The edge
server covering (i.e., directly associated with) user i is denoted
by si, and it is the edge server which initially receives user i’s
request. To review, when a user submits a request i, they are
requesting some service k ∈ K. They also submit minimum
required accuracy Ai, and maximum tolerable completion time
Ci to satisfy request i. A user will be satisfied only in the
condition that the DL model scheduled to serve it fulfills both
of its requested accuracy and completion time requirements.

Completion time. Users’ requests experience different de-
lays based on the decision to offload or process locally.
Each request may experience the following types of delay
throughout the system: queuing delay, processing delay, and
communication delay. There usually exist two queues for each
edge server: one for admission control (accepting requests
into the system) and one for processing the services already
admitted by an edge server. For this work, we assume that
the delay due to the second queue is negligible, however, we
explicitly consider the admission control queuing delay in our
problem formulation. Since the focus of this work is on finding
the optimal request scheduling decision at the edge servers,
we ignore the communication delay created by sending the
requests (and their dependencies) from users to the edge
servers and receiving the results from the edge servers, as this
delay will be the same for any decision made (e.g., offloading
vs. local processing) at the edge servers. We will also assume
that the delay caused by running decision algorithms at the
edge servers is negligible. We will discuss the running time of

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

our proposed decision making algorithm in Section. III. Now
we formally define each type of delay: 1) Queuing Delay (T q

ij)
is the time between the arrival of request i to edge server j
and when a decision regarding how to process the request is
made on that edge server. We assume a time-slotted scenario
and at each time slot, the requests that arrived at edge server
j will be held in a queue until a decision is made at the end
of a time frame. Each time frame consists of multiple time
slots. 2) Processing Delay (T proc

ijkl) is the time that will take
for the request i to be processed on server. It depends on
the service type k, DL model l used for that service, and the
processing power of edge/cloud server j (CPU, GPU, RAM)
processing the request. 3) Communication Delay (T comm

ijj)
is the communication delay needed to send request i from
edge server j to another server j in case that an offloading
decision is made. T comm

ijj is computed based on our testbed
results which is discussed in section IV. Now, we define
completion time of serving request i at the j-th server for
service type k using DL model type l as following: if the
process is offloaded, the completion time will be calculated as
cijkl = T comm

isij
+ T q

isi
+ T proc

ijkl and if it is done locally, the
completion time will be computed as cijkl = T q

isi
+ T proc

ijkl ,
where si represents request i’s covering edge server.

MUS problem definition. Now, we formally define our
proposed problem that we call the Maximal User Satisfac-
tion (MUS) on the Edge problem. The goal of this problem is
to maximize the expected user satisfaction based on the QoS
requirements submitted alongside each service request. We
cast the MUS problem as an ILP problem. First, we introduce
our definition of user satisfaction.

Definition II.1 (User Satisfaction (US)). We consider a user to
be satisfied if, and only if, both the provided accuracy is equal
or more than the user’s requested accuracy and the provided
completion time is equal or less than the user’s requested
delay. We formally define the US function for request i as:

USijkl = wai

aijkl −Ai

Maxas


+ wci

Ci − cijkl
Maxcs


(1)

where USijkl is the user satisfaction provided by serving
request i at the j-th server using DL model type l of the
requested service type k. Ci and Ai are the completion time
and accuracy thresholds asked by user for request i. aijkl
and cijkl represent the accuracy and the completion time of
serving request i at server j using service type k and model
type l, respectively. Maxas is the maximum possible provided
accuracy in the system and Maxcs is the maximum (worst
case) completion time of a task in the system. It is assumed
that these values are known. Additionally, 0 ≤ wci ≤ 1 and
0 ≤ wai ≤ 1 are the weights that the user would assign
to the requested delay and requested accuracy, respectively.
These weights can be used to model different importance
levels and priorities for accuracy and task’s completion time.
For example, some users may care more about getting more
accurate results and they can tolerate some levels of delay.

Our problem considers a set of binary decision variable X 
(Xijkl) ∀i ∈ N, j ∈M,k ∈ K, l ∈ L where Xijkl = 1 if and
only if request i is served by device j using service k and DL
model l, 0 otherwise. Below is our proposed ILP formulation:

Max:
1

|N |

 
i∈N,j∈M


k∈K,l∈L

USijklXijkl


(2)

s.t.:


j∈M,k∈K,l∈L

Xijkl ≤ 1, ∀i ∈ N, (2a)

Xijkl aijkl ≥ Xijkl Ai, ∀i ∈ N, j ∈M,k ∈ K, l ∈ L,
(2b)

Xijkl cijkl ≤ Xijkl Ci, ∀i ∈ N, j ∈M,k ∈ K, l ∈ L,
(2c)

i,k,l

Xijkl vijkl ≤ γj , ∀j ∈M, (2d)
i,k,l


j =j

Iij Xijkl uijkl ≤ ηj , ∀j ∈M, (2e)

Xijkl ∈ {0, 1}, ∀i ∈ N, j ∈M,k ∈ K, l ∈ L, (2f)

Where, I is an indicator vector such that |I| = |N | × |M |
and Iij = 1 (∀i ∈ N, j ∈ M) if and only if (user) request
i is directly covered by edge device j, and 0 otherwise (i.e.
Iij = 1 where j = si). uijkl and vijkl are communication
cost and computation cost of serving request i on server j
for service type k using model type l, respectively; and γj
and ηj are the communication and computation capacity of
server j. Constraint (2a) guarantees that each request should
be served in just 1 server using 1 service and 1 DL model, or it
will be dropped. Constraint (2b) ensures if request i is served
by the j-th device, its provided accuracy is at least as large
as its requested accuracy. Constraint (2c) guarantees that the
completion time of serving the request i has to be less than or
equal to user’s requested delay for request i. Constraints (2d)
and (2e) ensure that the total computation or communication
costs needed to process or offload all requests coming to
device j must not be more than the overall computation and
communication capacity of that device, respectively. In this
optimization problem, there exist three possible scheduling
choices: 1) Local processing. The request will be served on
the edge server; 2) Offloading. The request will be offloaded
to either cloud server or one of the neighboring edge servers;
3) Drop. The request will not be served and will be dropped.

Special case. Although the proposed formulation considers
strict QoS requirements, we can define other cases as a special
case of this problem. For instance, by relaxing constraints
(2b) and (2c), our problem can model scenarios where users
QoS requirements are more of a suggestion rather than a hard
constraint. This means that a user can be served even if its
QoS requirements are not strictly met.

Theorem 1. The proposed MUS problem is NP-hard.

Proof. We prove Theorem 1 by a reduction from the NP-hard
Maximum Cardinality Bin Packing (MCBP) problem to our
problem. We are given m bins of identical capacity C and a set
of N = {1, 2, ..., n} items of weights (size) pi(i = 1, ..., n).
The objective is to maximize the number of items packed

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

into the m bins without exceeding bin capacities and without
splitting items [14]. The decision making variable is defined as
xij = 1 if item i is placed into bin j, and zero otherwise. We
will show that a simple instance of our problem would be as
hard as the MCBP problem. We now construct an instance of
our problem. For each item i ∈ n construct a request ri with
total cost of getting satisfied equal to ui + vi = pi, given that
the communication and computation costs of serving request i
on any server will be equal, i.e., ui = uijkl, vi = vijkl,∀j, k, l.
We also construct m servers with m bins. We consider that all
edge servers and cloud servers have identical capacities equal
to C equal to γj + ηj = C ∀j. The goal is to maximize the
number of items/requests which can be placed into the m edge
servers/bins of identical capacities. We claim that the optimal
solution to the constructed instance of our problem gives the
optimal solution to the MCBP problem. This is because an
algorithm that solves our problem can solve the MCBP. Since
MCBP is NP-hard, this concludes our proof [15].

III. PROPOSED GREEDY ALGORITHM

Since MUS problem is NP-Hard (Theorem 1), we propose a
greedy algorithm which we call GUS that attains near-optimal
results w.r.t. to the objective function defined in Eq. (2). At
each round, a request is served using the following rule: The
GUS algorithm calculates the US of each candidate server
which has service k and model type l for serving request i,
and has enough computation capacity to serve this request,
and is able to satisfy the request’s minimum requirements to
be a candidate server; meaning that the expected accuracy of
its model should be greater than or equal to the requested
accuracy and the expected total completion time provided
by this server at the time of decision should be less than
or equal to the requested delay. The best server with the
highest US which has enough capacity to serve request i
will be then selected. If request i is going to be offloaded,
the communication capacity of the server that covers request
i (si) should be also available. If there is enough capacity,
the request will be assigned to server j; otherwise the algo-
rithm will check next best candidate server with next highest
US. If there is no server which can satisfy the request, it
will be dropped. At the end of each round, the algorithm
updates the remaining capacity for each edge cloud. The
algorithm will repeat this process for all the requests. The
pseudo-code for the proposed GUS algorithm is provided in
Algorithm 1. The complexity of finding optimal solution for
the MUS problem in the worst case is of O((|L||M |)|N |).
The running time of the GUS algorithm in the worst case is
O(|N |((|L||M |)2 + |M |+ |L||M |)) = O(|N |((|L||M |)2)).

IV. RESULTS

We first validated the performance of our proposed algo-
rithm by comparing the results obtained by GUS and that
of the optimal solver (computed by IBM ILOG CPLEX v
12.10.0.0) for small test cases. Our results confirm that the pro-
posed algorithm performs close-to-optimal solution (achieving
in average 90% of the optimal value) in terms of overall user

Algorithm 1: Proposed Greedy Algorithm (GUS)

Input : Given N , M , K, L, I , Maxas, Maxcs, A, C
Output: Find Xijkl for each request i

1 foreach request i ∈ Requests do
2 si ← {j|Iij = 1}
3 foreach server j ∈ sorted servers having service k

based on higher US do
4 if cijkl ≤ Ci and aijkl ≥ Ai and vijkl ≤ γj

then
5 if j = si then
6 Xijkl ← 1
7 Locally process request i
8 update γj
9 break

10 else if uijkl ≤ ηsi then
11 Xijkl ← 1
12 Offload request i to place j
13 update γj and ηj
14 break

satisfaction for the scenarios we have tested. The results of
such comparison is omitted due to space.

Baseline algorithms. We also provided five baseline al-
gorithms for making a comparison between our proposed
greedy algorithm and other possible solutions: 1) Random-
Assignment where one of the servers (edge/cloud servers)
would be selected randomly. If it can satisfy the user re-
quirements and there is enough capacity, it will serve the
request; otherwise, the request will be dropped. 2) Offload-
All where sends all the requests from edge servers to the
cloud servers to serve. 3) Local Processing-All that chooses
only the local edge server for serving each of the requests.
4) Happy-Computation in which we assume that there is no
limit on the edge servers for the computation capacity and
we relax the computation constraint (2d) in the optimization
model. 5) Happy-Communication where we assume no limit
on the edge servers’ communication capacity and we relax the
communication constraint (2e) in the optimization model.

Numerical Results. In the following scenarios, we used
nine edge servers and one cloud server for the test. The
communication delay between the edge servers comes from
different communication delays that we got from our testbed
in different situations in which the bandwidth is equal to
600 bytes/msec on average. The average delay between the
cloud server and edge server is based on our testbed. To
account for edge servers heterogeneity, we assume that there
are three types of edge servers in the system which differ based
on their storage, communication, and computation capacities.
Additionally, we run each test for 20000 Monte-Carlo runs and
report the average. We set |N | = 100, |M | = 10, |K| = 100,
|L| = 10, and it is assumed that services are randomly placed
on the edge servers based on their associated storage capacity.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)

0 10 20 30 40 50 60 70
Number of Requests

0

20

40

60

80

100

Pe
rc
en
ta
ge
of
Sa
tis
fie
d
R
eq
ue
st
s GUS

Random
Offload All
Local All

(e)

0 10 20 30 40 50 60 70
Number of Requests

0

20

40

60

80

100
Pe
rc
en
ta
ge
of
Lo
ca
lly
Pr
oc
es
se
d
R
eq
ue
st
s

GUS
Random
Offload All
Local All

(f)

0 10 20 30 40 50 60 70
Number of Requests

0

20

40

60

80

100

Pe
rc
en
ta
ge
of
O
ffl
oa
de
d
to
C
lo
ud
R
eq
ue
st
s

GUS
Random
Offload All
Local All

(g)

0 10 20 30 40 50 60 70
Number of Requests

0

20

40

60

80

100

Pe
rc
en
ta
ge
of
O
ffl
oa
de
d
to
Ed
ge
R
eq
ue
st
s

GUS
Random
Offload All
Local All

(h)

Fig. 1: Performance Evaluation Results: Numerical Results (a)-(d); Testbed Results (e)-(h)

We investigated the effect of changing requested delay and
requested accuracy in the proposed system. The processing
delay of running DL models is based on our testbed results
which is between 950 to 1300 (msec) for edge servers, and
300 (msec) for the cloud server. The requested accuracy (Ai)
and the requested delay (Ci) are both generated according
to a normal distribution of N (45%,10%) and N (1000,4000)
msec, respectively. T q is a random number between 0 and 50
generated according to a uniform distribution. The Maxas
and Maxcs in the system are 100% and 12000 (msec),
respectively. We assume wai = wci = 1, so equal weights will
be considered for both requested accuracy and requested delay.
As shown Fig. 1(a), when the requested delay range increases,
the total served requests will increase. The reason is that there
are more requests which could be sent to the cloud server.
When the requested accuracy increases, the number of satisfied
requests decreases. The reason is that there would not be a DL
model on the edge server which can provide the accuracy that
user asked (Fig. 1(b)). When the number of requests increases,
the satisfied users percent decreases (Fig. 1(c)). The reason is
each EC server has limited capacity. Finally, when the requests
are received at the edge servers, they will be kept in the queue
until making decision and serving them. The average queue
delay is a function of queue length. When the queue delay
increases, the number of satisfied users decreases (Fig 1(d)).
This is due to completion time exceeding requested delay.
Thus, we drop them due to being unable to satisfy the requests.

Testbed Implementation. We also evaluate our solutions
using a real-world testbed in the NETSCIENCE 1 laboratory,
comprised of several different devices to support resource and

1https://github.com/khamfroush-lab/Fed-MEC/

device heterogeneity. A Linux desktop (Intel core i5-3470-
3.20 GHz, RAM 8GB) serves as the central cloud server.
It is connected to a NetGear R6020 router, separated by
roughly 6 meters. To imitate the delay between the cloud
and edge serves, we connected the router to a Raspberry
Pi (RP) 3B (quad core, RAM 1GB) as a forwarder between
the router and the edge servers — it is roughly 10 meters
away from the NetGear router. We then have two RP 4s (quad
core, RAM 4GB) which serve as our edge servers for our
testbed. They are connected to the forwarder and are placed
on a different floor than the forwarder in the same building,
roughly 11 meters away from the forwarder. The user devices
are represented by two RP 3Bs which are physically close to
our edge servers, at being placed within 1 meter from the
edge servers. The services we consider in our testbed are
two pre-trained models: GoogleNet [16] (exclusively available
on the cloud) and SqueezeNet [17] (placed on edge servers,
but provides poorer accuracy and resource cost). The data we
use for submitting service requests for image classification is
provided by the ImageNet dataset [18]. We implement a simple
management program in C++ that runs the decision algorithms
and makes offloading decisions w.r.t. user requests. Common
communication errors had to be addressed as well (but for
brevity we do not elaborate on them here).

Testbed Results. For our testbed results, users requested
thresholds on completion time and accuracy are set at Ci =
53000 (msec) and the Ai = 50% for all requests. We used a
fixed number equal to one for both the wai and the wci ∀i ∈ N ,
a fixed length of 4 for the queue, and the length of each time
frame to 3000 (msec), which is essentially representing how
often we run a decision algorithm if the queue is not full.
We used multi-threading on the edge servers and we set the

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

processing capacity equal to three as the maximum number
of threads that can run the image classification in each time-
step. The communication capacity is equal to ten for each
edge server. This means that each edge server can only send
10 images to other servers in a time slot. We repeated each
test for two hours to remove the effects of randomness due to
the wireless channel and averaged the results. When running
our decision algorithms, we compute the expected processing
delay based on the data we first collected from our testbed.
As mentioned, the processing delay of running SqueezeNet on
Raspberry 4 is 1300 (msec), on average. And, the processing
delay of running GoogleNet on the cloud server is equal to
300 (msec). Given the dynamics of the real-world scenarios
and the fact that the wireless channel is changing all the
time, we update the value of the expected communication
delay used in our GUS algorithm according to the following
simple rule. The algorithm starts with an initial estimated
value for the expected communication delay based on our
previous observations and historical data. At each iteration,
this value is updated based on the observations made from the
previous round. Given the expected communication bandwidth
B at time t, we compute the new expected communication
bandwidth at time t + 1 as E[Bt+1] = Bt+Bt−1

2 . Using
the expected bandwidth, we can then compute the expected
communication delay for each image based on the expected
bandwidth and the size of the image. For our tests, we started
with B = 600 bytes/msec for the expected communication
bandwidth between the edge and the cloud. We may also
have to adapt the Maxcs parameter given that the value of
expected completion time is updated. The results of the testbed
implementation are shown in Fig 1. We increased the total
number of requests sent to the EC system and observed the
performance of GUS, and three heuristics namely, “random”,
“local all” and “offload all” heuristics. Fig 1(e) shows the
average user satisfied percentage proving that GUS is always
providing a much better rate of US compared to the other
two heuristics. In the case of the “offload all” and “local all”
heuristic, by increasing the number of requests, the percentage
of satisfied users is decreasing because of the bottleneck
created by the communication and computation capacity of
the edge servers, respectively. This shows that an optimal
combination of local processing and offloading (as provided
by GUS) can significantly increase the US of the system.
Fig. 1(f) shows the percentage of requests locally processed,
Fig. 1(g) shows the percentage of the requests offloaded to
the cloud, and Fig. 1(h) shows the percentage of requests that
are offloaded to the other edge servers. Comparing the results
provided in Fig 1, observe the percentage of the users satisfied
using GUS is on average 50% more than that of the heuristics.

V. CONCLUSION

In this paper, we proposed a new user satisfaction (US)
metric that considers the trade-off between accuracy and delay
of the provided service for DL services in EC systems.
We pose an offloading optimization model to maximize the
proposed US given a set of capacity constraints on the edge

servers and proved that this is NP-hard. Hence, we came up
with a greedy algorithm, called GUS, to solve the model in
polynomial-time. Finally, we evaluate on a real EC testbed
consisting of devices of varying resources. The implementation
results also prove the effectiveness of our proposed algorithm
in comparison with baseline heuristics. Our future work will
focus on considering different priorities for the requests and
impacts of user mobility on the provided trade-off.

ACKNOWLEDGEMENTS

This work is funded by research grants provided by the
National Science Foundation (NSF) and the Cisco Systems
Inc. under the grant numbers 1948387 and 1215519250 re-
spectively.

REFERENCES

[1] ETSI, “Mobile edge computing - introductory technical white paper,”
Sept. 2014.

[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, 2017.

[3] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s hard
to share: joint service placement and request scheduling in edge clouds
with sharable and non-sharable resources,” in IEEE 38th ICDCS, 2018.

[4] V. Farhadi, F. Mehmeti, T. He, T. La Porta, H. Khamfroush, S. Wang,
and K. S. Chan, “Service placement and request scheduling for data-
intensive applications in edge clouds,” in IEEE INFOCOM, 2019.

[5] M. Turner and H. Khamfroush, “Meeting users’ QoS in a edge-to-cloud
platform via optimally placing services and scheduling tasks,” in ICNC,
2020.

[6] V. Farhadi, F. Mehmeti, T. He, T. F. L. Porta, H. Khamfroush,
S. Wang, K. S. Chan, and K. Poularakis, “Service placement and request
scheduling for data-intensive applications in edge clouds,” IEEE/ACM
Transactions on Networking, pp. 1–14, 2021.

[7] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, 2020.

[8] N. Felemban, F. Mehmeti, H. Khamfroush, Z. Lu, S. Rallapalli, K. S.
Chan, and T. La Porta, “Picsys: Energy-efficient fast image search on
distributed mobile networks,” IEEE Trans., 2019.

[9] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
ai: Intelligentizing mobile edge computing, caching and communication
by federated learning,” IEEE Network, 2019.

[10] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in IEEE ISIT,
2016.

[11] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, 2016.

[12] M. Kamoun, W. Labidi, and M. Sarkiss, “Joint resource allocation and
offloading strategies in cloud enabled cellular networks,” in IEEE ICC,
2015.

[13] X. Zhao, M. Hosseinzadeh, N. Hudson, H. Khamfroush, and D. E. Lu-
cani, “Improving accuracy-latency trade-off of edge-cloud computation
offloading for deep learning services,” in IEEE Globecom Workshop on
Edge Learning over 5G Networks and Beyond, 2020.

[14] K.-H. Loh, B. Golden, and E. Wasil, “Solving the maximum cardinality
bin packing problem with a weight annealing-based algorithm,” in
Operations Research and Cyber-Infrastructure, Springer, 2009.

[15] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. on
Networking, vol. 24, no. 5, 2015.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in IEEE conf. on computer vision and pattern recognition, 2015.

[17] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint: 1602.07360, 2016.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

Authorized licensed use limited to: UNIVERSITY OF KENTUCKY. Downloaded on March 01,2022 at 16:08:22 UTC from IEEE Xplore. Restrictions apply.

