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Abstract—Many contexts in motor learning require a learner to change from an existing movement solution to a
novel movement solution to perform the same task. Recent evidence has pointed to motor variability prior to
learning as a potential marker for predicting individual differences in motor learning. However, it is not known
if this variability is predictive of the ability to adopt a new movement solution for the same task. Here, we exam-
ined this question in the context of a redundant precision task requiring control of motor variability. Fifty young
adults learned a precision task that involved throwing a virtual puck toward a target using both hands. Because
the speed of the puck depended on the sum of speeds of both hands, this task could be achieved using multiple
solutions. Participants initially performed a baseline task where there was no constraint on the movement solu-
tion, and then performed a novel task where they were constrained to adopt a specific movement solution requir-
ing asymmetric left and right hand speeds. Results showed that participants were able to learn the new solution,
and this change was associated with changes in both the amount and structure of variability. However, increased
baseline motor variability did not facilitate initial or final task performance when using the new solution —in fact,
greater variability was associated with higher errors. These results suggest that motor variability is not necessar-
ily indicative of flexibility and highlight the role of the task context in determining the relation between motor vari-
ability and learning. © 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION One potential feature that is relevant to predicting how
flexible an individual is in adopting a new movement
solution is motor variability. In task with redundancy,
variability can be split into two components (Scholz and
Schoner, 1999; Mosier et al.,, 2005; Cusumano and
Cesari, 2006) — (i) ‘task space’ variability, i.e., the compo-
nent of movement variability that affects task outcome,
and (ii) ‘null space’ variability, i.e., the component of
movement variability that does not affect the task out-
come. Because flexibility is a measure of how well partic-
ipants can move from one point in the null space to
another, the null space variability has been hypothesized
as a measure of how flexible participants are, with greater
null space variability (relative to the task space variability)
indicative of stronger synergies (Latash et al., 2002).
More recently, motor variability has also been shown to
predict individual differences in motor learning — when
participants have greater variability, they can engage in
more efficient exploration strategies to facilitate learning
(Wu et al., 2014). Although the generality of this finding
has been questioned (He et al., 2016; Singh et al,
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The presence of motor redundancy at several levels in the
human body and the task gives rise to the phenomenon
that a given task goal can be achieved using multiple
movement solutions. Although the evidence for how
participants exploit this redundancy in the body and the
task has been well described (Scholz and Schéner,
1999; Todorov and Jordan, 2002; Cusumano and
Cesari, 2006; Cohen and Sternad, 2009; Ranganathan
et al.,, 2013), the question of how ‘flexible’ participants
are in changing from one movement solution to another
is less well understood. In the current context, we define
flexibility as the ability of participants to perform the task
using a different movement solution from the one that they
typically use. Understanding individual differences in such
flexibility is critical since several contexts such as coach-
ing and neurorehabilitation require participants to learn a
new movement solution to perform the same task.
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not simply noise (Newell and Corcos, 1993), and can be a
potential signature for predicting future motor learning
(Dhawale et al., 2017).

However, in understanding the role of motor variability
in predicting individual differences in learning, two issues
remain unaddressed. First, the issue of flexibility (i.e., how
well participants can move from one solution to another)
has received little attention. A critical component for
understanding this question is the use of tasks that
have redundancy. Second, prior studies on using
variability to predict individual differences in motor
learning have primarily focused on adaptation tasks (Wu
et al. 2014; He et al. 2016; Singh et al. 2016). Although
adaptation is one form of motor learning, a more common
form of motor learning relevant to real-world contexts is
skill learning, where there is a relatively permanent
change in the underlying movement capacity (Krakauer
and Mazzoni, 2011; Schmidt and Lee, 2011; Sternad,
2018). One such class of skill learning tasks are precision
tasks that require learning to produce a consistent out-
come over multiple trials (Muller and Sternad, 2004;
Cohen and Sternad, 2009; Ranganathan and Newell,
2010a; Shmuelof et al., 2012). In contrast to motor adap-
tation which require reduction in constant error, learning
these precision tasks require a reduction in variable error,
which require a fundamental change in the quality of exe-
cution of the movement (Shmuelof et al., 2012). Here, we
address both these issues using a precision task that has
redundancy.

The goals of this study were to (i) characterize
changes in task performance and movement variability
when learning a new solution to perform a task, and (ii)
examine if motor variability prior to learning is predictive
of motor performance when learning a new solution to a
redundant motor task. Participants learned a bimanual
throwing task which required participants to slide a
virtual puck to a specified target. The motion of the puck
depended on the sum of the speeds of the two hands,
making the task redundant. We exploited the fact that
participants in bimanual tasks tend to typically use
symmetric (or near-symmetric) contributions from both
hands (Kelso et al., 1979; MacKenzie and Marteniuk,
1985), and designed a task that required them to switch
to a novel asymmetric solution to this task. We anticipated
that if motor variability is predictive of individual differ-
ences in learning new solutions, then the motor variability
observed at baseline (i.e., prior to the learning of the new
solution) should be predictive of performance using the
new solution, with higher variability being associated with
better task performance (i.e. lower errors).

EXPERIMENTAL PROCEDURES
Participants

Participants were college-aged adults with no history of
movement impairments in the upper extremity (N = 50,
age 18-25 years, 40 women) and were naive to the
purpose of the experiment. All participants provided
written consent and the experimental protocol was
approved by the Michigan State University Institutional
Review Board.

Apparatus

The participants performed all the tasks on a two joint
bimanual end-point robot (KINARM technologies,
Kingston, ON, USA) (Fig. 1a). The position data from
the two robot handles were sampled at 1000 Hz. The
visual display was set up through a semi-silvered screen
so that images were shown in the plane of the hands
and direct vision of the hands was obstructed.

Task

The task used was a virtual shuffleboard task where the
goal of the participant was to slide a virtual puck toward
a target shown on the screen (Cardis et al., 2018)
(Fig. 1a). At the start of each throw, participants were
instructed to position both hands in a respective ‘home’
position. At this point, the individual hand cursors disap-
peared and were replaced by a circular puck at the aver-
age position of the hands. They were then asked to slide
the puck toward a slot positioned straight ahead. Once
participants crossed the slot, the puck was ‘released’
and a second screen was shown where the puck traveled
towards a target in a uniformly decelerated motion. The
speed of the puck at release was dependent on the sum
of the speeds of the left and right hands at release (i.e.,
Vouek = VL + VRg) and perfect task performance (i.e.,
landing on the center of the target) was achieved when
Vouek = 1.5 m/s. Because the speed is dependent on both
hands, multiple solutions can be used to achieve perfect
task performance.

There were two versions of the task (Fig. 1b). In the
‘baseline’ version of the task, participants were not
constrained to use any specific solutions for the task.
Visual feedback of the puck was provided as a
horizontal line stretching across the screen. After each
throw, participants saw the position of the horizontal line
and were provided a numerical score depending on the
error (with a max of 100 points). In the ‘novel’ version of
the task, participants were constrained to use a specific
set of solutions. Visual feedback was provided as a
circular puck. The vertical motion of the puck was
identical to the motion of the line in the baseline blocks,
and the horizontal dimension was controlled by the
difference in the hand velocities so that a higher velocity
on the right (left) hand would move the puck further to
the right (left). We then constrained the solution adopted
by adding a wall with a hole in a specific region. The
hole was placed on the right-hand side of the screen so
that participants now had to produce a higher velocity
on the right hand by 0.3 + 0.15 m/s to make the puck
pass through the hole. Therefore, for the puck to pass
through the center of the hole and land perfectly on the
target, the combination would be (Vg, V) = (0.9, 0.6)
m/s — i.e., the V. + VR needs to be 1.5 m/s and Vg
would have to be 60% of the total speed. The scoring
system was the same as the baseline blocks with the
addition that if the puck collided against the wall, that
trial was scored as zero points. The solution space in
terms of the two-hand speeds for both the baseline and
novel blocks is shown (Fig. 1c). Note that even though
the ‘hole’ in the target was shifted to the right, the first
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Fig. 1. Schematic of task and experiment. (A) Virtual shuffleboard task — participants grasped a bimanual robot and performed a throwing motion
toward a slot located 10 cm away. When the puck crossed this slot, the puck was ‘released’ and participants saw visual feedback indicating their
task performance. Note that the two arms of the robot could be moved independently (i.e., they were not mechanically coupled) (B) Visual feedback
of task performance. During the baseline blocks, participants saw the puck as a ‘horizontal’ bar and a puck speed of 1.5 m/s would land the bar right
on the middle of the target (indicated in white). During the novel blocks, participants saw the puck as a circle. The vertical motion of the puck was
exactly the same as the horizontal bar in the baseline blocks, but the horizontal motion of the puck was determined by the difference in the right and
left hand speeds. Participants had to select specific solutions to make sure that the ball passed through the hole in the wall. (C) Solution space in
terms of left and right hand speeds. In the baseline blocks (left), the solution manifold is represented by the dotted line, which indicates the speed
combination that lead to a total of 1.5 m/s. In the novel blocks (right), the presence of the hole in the wall reduces the solution manifold to a much
smaller area (all areas shaded in grey would lead to a collision with the wall). (D) Experimental protocol. After an initial familiarization, all participants
completed a baseline block (B1), followed by four novel blocks (N1-N4) and a return to baseline (B2).
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screen that the participants saw prior to the throw had the
‘slot’ still straight ahead — so participants were aware that
they still had to make movements in the forward direction,
but adjust the relative speeds of the two hands to get the
puck to move right or left on the second screen.

Procedure

Participants were first given 10 familiarization trials in both
the baseline and the novel condition to make sure they
understood the goal of the task, including the fact that
they had to modulate the speeds of the two hands to
move the puck horizontally in the novel condition. This
was followed by 6 blocks of practice — a baseline block
(B1), 4 novel blocks (N1-N4), and a baseline block (B2)
(Fig. 1d). Each block consisted of 50 throws and the
entire experiment was done in a single session that
lasted about 45 min.

DATA ANALYSIS

Task performance

Absolute error. Because perfect task performance
was achieved when the puck release speed was 1.5 m/
s, we computed the absolute error as the absolute
difference between the actual puck speed at release
and the desired release speed of 1.5 m/s.

Collisions. To indicate how well participants adapted
to the novel condition, we computed the frequency of
trials in which the ball collided with the wall in each
block (relative to the total number of trials in the block).
A higher number of collisions indicated greater difficulty
with changing to the novel condition. Because there was
no wall in the baseline conditions, the number of
collisions in the baseline blocks is zero by definition.

Coordination

Speed ratio. The coordination in this task was
measured as the contribution of the right hand to the
puck speed — i.e., Vg/(Vr + V). As mentioned earlier,
in the baseline blocks, there was no constraint on the
coordination, but a symmetric contribution from both
hands would result in a ratio of close to 0.5. During the
novel blocks, given the position of the obstacle, this
ratio had to be close to 0.6 for the puck to pass through
the center of the hole.

Variability measures

Movement variability. In each block, we split the
movement variability along two orthogonal dimensions-
the task space and the null space (as shown in Fig. 1c).
Each trial was represented as a point in this 2D space
and projected to the task and null space. The variability
along each of these dimensions was calculated using
the variance (in m?/s?) and is referred to as the task and
null space variability (Cardis et al., 2018).

Autocorrelation. In addition to the amount of
variability, we also computed the lag-1 autocorrelation in
the task and null spaces as a measure of the structure
of variability (Abe and Sternad, 2013; Dingwell et al.,
2013; van Beers et al., 2013; Cardis et al., 2018). Each
trial, represented by a point in the (V|, Vr) space was pro-
jected on to the task space and the null space and the
time series of these two projections was used for the auto-
correlation analyses. A positive lag-1 autocorrelation indi-
cates that deviations tend to persist over time, whereas a
negative lag-1 autocorrelation indicates that a positive
deviation is more likely to be followed by a negative devi-
ation on the next trial.

In addition, we also computed a ‘detrended’
autocorrelation after removing the linear trend in the
data. Because this was a learning task, where changes
in mean performance are to be expected within each
block, this analysis allowed us to evaluate the trial-to-
trial fluctuations while minimizing the effects of any
overall shift.

Statistical analysis

Learning a new solution. We first quantified the
learning in the task by observing changes over the
practice blocks. For all dependent variables except
collisions, this was analyzed by a one-way repeated-
measures analysis of variance (ANOVA) with block as
the fixed effect (6 levels- B1, N1, N2, N3, N4 and B2).
We performed three a priori comparisons related to this
ANOVA by comparing the following blocks: (i) B1 and
N1 (i.e., what happens when participants initially switch
to the new solution), (ii) N1 and N4 (i.e., what happens
when they learn the new solution), and (iii) N4 and B2
(i.e., what happens when they change from new solution
back to baseline). Corrections for violation of sphericity
were performed using the Greenhouse-Geisser
correction when appropriate. The level of significance
was set at 0.017 (corrected for the three comparisons).
For the analysis of collisions, which only occurred in the
novel blocks, we used a paired t-test to compare the
collisions in N1 and N4. All analyses were run in JASP
version 0.9 (JASP Team, 2018).

Predicting individual differences. The primary focus
was to examine if the initial and final performance on
the novel task could be predicted by motor variability at
baseline. Here, we use the term ‘prediction’ in the
context of whether performance in the novel task is
correlated with prior performance in the baseline task
(which was performed earlier in time). So we examined
Pearson’s correlations between: (i) absolute error in N1
with task space and null space variability in B1, and (ii)
absolute error in N4 with task and null space variability
in B1. Given that there is prior evidence that higher
variability facilitates learning (Wu et al., 2014), we used
a Bayes factor (using a default stretched beta prior width
of 1) to quantify the strength of the hypothesis that this
correlation was negative (i.e., increased variability was
associated with smaller errors).
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In addition, we also computed if the final performance
on the novel task could be predicted using the variability
on the first block of the novel task and computed the
correlation between absolute error in N4 with the task
and null space variability in N1. Since we examined a
total of six correlations, we chose a Bonferroni
correction so that the significance threshold was set at
0.0083. Since there was a pair of correlation coefficients
(one correlation with the task space variability and one
with the null space variability), we also compared these
two correlation coefficients using the cocor package
(Diedenhofen and Musch, 2015) to examine if the correla-
tion in one space was bigger than the other. Finally, we
noticed that the correlations did not satisfy the assump-
tion bivariate normality (as measured by a Shaipro-
Wilk’s test) — so we performed a bootstrap analysis and
generated 95% Cls for these six correlations. The boot-
strap analyses were performed in SPSS for Windows
(version 26).

RESULTS

Based on Tukey’s boxplots of the absolute error in B1,
data from two participants was excluded from analysis.
Both individuals had higher error in B1 than the Tukey’s
criterion.

Learning a new solution

The mean score that participants received generally
increased with practice, except when they first switched
to the new solution (Fig. 2a). Even though the absolute
error is technically only one component of task
performance when learning the new solution (the score
that participants received also depended on whether
they successfully avoided the barrier), we found that the
mean absolute error was highly negatively correlated to
the mean score that the participants received, both in
N1 (r = —0.884) and N4 (r = —0.922). Therefore, we
focus our analysis on the absolute error as it is more
easily interpretable (being in units of m/s) than the score.

Participants showed an increase in absolute error
when using the new solution. This error decreased with
continued practice and was retained in the second
baseline (Fig. 2b). There was a significant main effect of
block (F31514821 = 23.07, p < 0.001). Comparisons
indicated that absolute error in B1 was not significantly
different from N1 (p = 0.068), absolute error in N4 was
lower than N1 (p < 0.001) and there was no difference
between N4 and B2 (p = 0.227). To examine if the
increase in error from B1 to N1 was due to averaging
over the entire block of 50 trials, we performed a
secondary analysis where we examined the change in
error from the last 10 trials of B1 to the first 10 trials of
N1, and found that there was a significant increase in
error going from B1 to N1 (t,; = 4.446, p < 0.001).
The improvements in task performance using the new
solution (from N1 to N4) were also reflected in a
decrease in the number of collisions (&; = 6.30,
p < 0.001) (Fig. 2c).

In terms of the coordination, participants showed a
change in the speed ratio during the novel blocks but

this returned to the original coordination pattern in the
second baseline (Fig. 2d). There was a significant main
effect of block F3.03, 142.44 = 377.7, p < 0001)
Comparisons indicated that the right hand ratio
increased between B1 and N1 (p < 0.001), decreased
from N1 to N4 (p < 0.001), and then decreased again
from N4 to B2 (p < 0.001).

In terms of task space variability, there was a general
decrease in variability across practice (Fig. 3a—d). There
was a significant main effect of  block
(F2.83.133.10 = 8.70, p < 0.001). Comparisons indicated
that task space variability (i) was not significantly
different between B1 and N1 (p = 0.835), (ii) decreased
from N1 to N4 (p < 0.001), and (iii) was not significantly
different between N4 and B2 (p = 0.592) (Fig. 3e).

In terms of null space variability, there was an
increase in null space variability at the start of novel
task, followed by a general decrease until the end of the
last novel block, and a sudden decrease when going
back to the baseline (Fig. 3e). There was a significant
main effect of block (Fz.70,12688 = 47.31, p < 0.001).
Comparisons indicated that null space variability (i)
increased from B1 to N1 (p < 0.001), (ii) decreased
from N1 to N4 (p < 0.001), and (iii) decreased from N4
to B2 (p < 0.001).

In terms of the task space autocorrelation, there was
an increase in the lag-1 autocorrelation at the start of
the novel task, followed by a general decrease until the
end of practice (Fig. 3f). There was a significant main
effect of block (Fs 25 = 818, p < 0.001).
Comparisons indicated that the autocorrelation (i)
increased from B1 to N1 (p < 0.001), (ii) decreased
from N1 to N4 (p = 0.004), and (iii) was not significantly
different between N4 and B2 (p = 0.599).

In terms of the null space autocorrelation, there was
no significant change in the structure during practice
(Fs, 235 = 0.272, p = 0.928) (Fig. 3f).

Predicting individual differences

Initial learning on the task. Task space variability at
baseline was weakly and positively correlated to the
initial error at the novel task, indicating that higher
variability at baseline was associated with worse initial
task performance (Fig. 4a). Absolute error at N1 was
significantly positively correlated with task space
variability at B1 (r = 0.398, 95% bootstrap CI [0.083,
0.645], p = 0.005) but the correlation with null space
variability at B1 (r = 0.324, 95% bootstrap CI [0.078,
0.625], p = 0.025) did not meet the Bonferroni
corrected level of significance (Fig. 4b). The difference
between these two correlation coefficients was not
significant. Bayes factors for these correlations (task
space: BF = 20.33, null space: BF = 17.30) indicated
very strong support against the hypothesis that the
correlation was negative (i.e., the hypothesis that higher
baseline variability resulted in lower initial errors in the
novel task).

Final learning on the task. Task space and null space
variabilities at baseline were not correlated with final
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Fig. 2. Task performance and coordination during practice. (A) Score, (B) absolute error, (C) number of collisions, and (D) contribution of the right
hand to the total puck speed are shown as a function of practice. Trials in the novel condition (trials 51—250) are highlighted in blue. Participants
were able to adapt to the new solution as indicated by an increase in the score, reduction in absolute error, decrease in the number of collisions, and
adjusting the right hand contribution to the ideal level of 0.6. Error bars indicate one standard error (between-participant).

performance on the novel task (Fig. 4c, d). The correlation
of final errors at N4 with task space variability at B1
(r = 0.326, 95% bootstrap CI [0.037, 0.566],
p = 0.024) and with null space variability at B1
(r = 0.249, 95% bootstrap ClI [-0.053 0.583],
p = 0.088) did not meet the Bonferroni corrected level
of significance. Once again, the difference between
these two correlation coefficients was not statistically
significant. Bayes factors for these correlations (task
space: BF = 17.37, null space: BF = 14.29) indicated
very strong support against the hypothesis that the
correlation was negative (i.e., the hypothesis that higher
baseline variability resulted in lower final errors in the
novel task).

When we examined if the final performance at the
novel task could be predicted by task and null space
variabilities during the first block of the novel task
(instead of the baseline), we found strong positive
correlations, indicating that higher variability in the initial
block were associated with higher errors (Fig. 4e, f).
The correlations of final errors at N4 with task space
variability at N1 (r = 0.751, 95% bootstrap Cl [0.554,
0.868], p < 0.001) and null space variability at N1

(r = 0.447, 95% bootstrap CI [0.238, 0.663],
p = 0.001) were significant. The difference between
these two correlation coefficients was also significant
with a higher correlation for the task space variability
(p = 0.01).

Exploratory analysis. We also performed some
exploratory analysis on the data. Given that these
analyses were not the predicted effects of interest,
these analyses are reported as is, with no corrections to
the significance values.

Comparing normalized values of the null space
variability. Given that the amount of null space variability
is correlated to the total variability, we examined if the
‘normalized’ null space variability would have a positive
correlation to initial or final performance. So, we
computed a normalized null space variability metric
Varuinorm = Varuf/(Varms + Varn). However, the
correlation of the normalized null space variability at
baseline was not significant either with the absolute
error at N1 (r = 0.080, p = 0.589) or N4 (r = —0.026,
p = 0.862).
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Fig. 4. Predicting individual differences in initial and final error from movement variability. (A) Task space variability at baseline was weakly
positively correlated with initial error on the novel task (block N1), indicating that individuals showing higher variability had higher initial errors. (B)
Null space variability had a non-significant correlation with the initial error at N1. When predicting the final error on the novel task (block N4), these
correlations were not significant either for movement variability at baseline in either (C) task space or (D) null space. However, a strong positive

correlation was observed when correlating the final errors (block N4) to the movement variability in the novel task (block N1) for both the (E) task

space and (F) the null space. Once again, these correlations were positive, indicating that individuals with higher variability at the start tended to
have higher errors on the task at the end.
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Comparing B2 with B1. We examined if the
performance in the second baseline block relative to
B1using paired t-tests. We found that although the
speed ratio in B2 was significantly higher than the
speed ratio in B1 (0.512 vs. 0.503, t,; = 5.368,
p < 0.001). In terms of absolute error, the error in B2
was significantly lower than B1 (0.1 m/s vs. 0.13 m/s,
t47 = 7.050, p < 0.001). This indicates that during the
second baseline block, there was a tendency to return
to the symmetric coordination pattern, but this reversion
in the coordination was incomplete. However, in spite of
this change in the coordination pattern used,
participants were able to maintain the improved level of
task performance (when combined with the result that
the absolute error in B2 was comparable to that in N4).
This indicates that there was a transfer of learning from
the novel asymmetric solution to the symmetric solution.
Given the exploratory nature of these results, these are
not mentioned further in the Discussion.

Correlations with other variables. Since our main
variable was absolute error (which measures how well
they could ‘use’ the new solution after moving to the
new solution), we also performed exploratory analyses
to examine if the baseline variability was correlated with
the ability to move to the new solution (i.e., the number
of collisions or the speed ratio). None of these
correlations were significant (Table 1).

Another factor that could have potentially influenced
the results is whether the number of trials we used to
perform the analysis in block N1 could have failed to
capture any short-term changes when they first moved
to the new solution. So we examined the correlations
between the baseline variability and the absolute error/
score when we considered only the first 10 or 25 trials
of N1 (instead of all 50). In all cases, we found that
correlations were of the same sign and got stronger with
more trials being included in N1, indicating that there
was no evidence of any short-term behavior that was
not captured with using all 50 trials (Table 2).

DISCUSSION

The goals of this study were — (i) to characterize changes
in task performance and movement variability when
moving to a new solution to perform the task, and (i) to
examine if movement variability at baseline could predict
the ability to perform the task using a new solution.
Overall, we found that (i) moving to a new solution
resulted in changes in task performance and also in the
amount and structure of movement variability, (ii)
increased movement variability at baseline did not
facilitate either initial or final performance levels when
performing the task using a new solution.

Table 1. Exploratory correlations between the baseline variability (block B1) and the collisions and speed ratio variables during the first block (block N1)

and last block (block N4) of the novel task

Pearson’s r p
Task space variability_B1 - Collisions_N1 0.237 0.104
- Collisions_N4 0.265 0.068
- Speed Ratio_N1 0.054 0.717
- Speed Ratio_N4 —0.037 0.804
Null space variability_B1 - Collisions_N1 0.199 0.175
- Collisions_N4 0.111 0.453
- Speed Ratio_N1 0.028 0.848
- Speed Ratio_N4 —-0.159 0.282

*p < 0.05, **p < 0.01, **p < 0.001.

Table 2. Exploratory correlations between the baseline variability (block B1) and the Absolute Error and Score in the first block (block N1), when varying

the number of trials considered in N1

Pearson’s r p
Task space variability B1 - Absolute Error_N1_Trials1to10 0.271 0.063
- Absolute Error_N1_Trials1t025 0.323 * 0.025
- Absolute Error_N1_All trials 0.398 > 0.005
- Score_N1_Trials1to10 -0.197 0.180
- Score_N1_Trials1t025 —0.291 * 0.045
- Score_N1_All trials -0.291 * 0.044
Null space variability _B1 - Absolute Error_N1_Trials1to10 0.180 0.220
- Absolute Error_N1_Trials1t025 0.273 0.061
- Absolute Error_N1_All trials 0.324 * 0.025
- Score_N1_Trials1to10 —0.100 0.500
- Score_N1_Trials1t025 -0.278 0.056
- Score_N1_All trials —0.300 * 0.038

*p < 0.05, **p < 0.01, **p < 0.001.



166 R. Ranganathan et al. /Neuroscience 479 (2021) 157-168

Changes in movement variability when learning a
new solution

We found that learning a new solution was associated
with several features. From a task performance
standpoint, there was an increase in absolute error
which was then gradually reduced with practice. This
was also associated with an increase in the null space
variability (not only in absolute terms but also in relative
terms to the task space variability) indicating that
participants were exploring the null space to find the
new solution. This null space variability decreased with
additional practice but was still much higher than what
was observed in both the first and second baseline
blocks. This effect is particularly surprising because in
the novel blocks, the solution space was restricted and
therefore the null space variability was at least partially
relevant to task performance (since excessive
deviations along the null space could lead to collisions
with the obstacle). These suggest that the presence of
higher null space variability, by itself, is not always
“good” and may potentially reflect the difficulty the task
(Scholz et al., 2001; Latash, 2010) or the use of a solution
that is not particularly stable (Ranganathan and Newell,
2013).

In addition to the amount of variability, there were also
changes in the structure of the variability as measured by
the lag-1 autocorrelation function in the task space. The
lag-1 autocorrelation in the task space is an index of
how errors on the previous trial are being used to
correct the next trial, and this was negative in the
baseline condition, which is typical for novice
performance. However, when moving to the new
solution, this lag-1 autocorrelation became positive,
indicating that participants likely placed less emphasis
on immediately correcting task errors when they were
trying to learn the new solution. However, with practice,
the lag-1 autocorrelation once again became closer to
zero, likely indicating that participants might be using a
learning rate that minimizes the overall variance (van
Beers et al., 2013). Surprisingly, we found no effect of
the novel task on the autocorrelation in the null space
(even though participants had feedback in the null space
during the novel task from the left/right motion of the
puck), suggesting that the sudden increase in the task
space autocorrelation was not due to changes in how par-
ticipants corrected deviations in the null space. The same
pattern of results in the lag-1 autocorrelation was also
seen when we analyzed the detrended data (i.e. after
removing any linear trend in the data) — so these changes
likely reflect actual trial-to-trial dynamics and are not dri-
ven by the overall mean shift during learning.

Predicting individual differences

Given that a prior study (Wu et al., 2014) had shown that
rates of learning were positively correlated with variability,
we had expected that correlations would be negative —
i.e., initial errors would be smaller for individuals with
higher null space variability at baseline (note that in our
study, the null space variability is the ‘task relevant’

dimension in the terminology of Wu et al. because this
is the intended direction along which exploration should
occur to find the new solution). However, we found that
the opposite was true — higher null space variability (as
well as task space variability) was associated with higher
errors, indicating that individuals with greater variability
showed lesser ability to produce a consistent outcome
using the new solution. This was also seen in the correla-
tions for final performance using the new solution.
Exploratory analyses revealed that when the null space
variability in the baseline task was normalized to total vari-
ability, there was no significant correlation with perfor-
mance, indicating that the total amount of variability was
more critical in predicting performance when using the
new solution.

We did find a strong ‘specificity’ effect when predicting
the final performance at the novel task — movement
variability when initially learning the task was highly
predictive of final performance using the new solution.
But these correlations were once again positive,
indicating a detrimental role for variability in learning a
new solution. Overall, these results highlight that in the
current context, motor variability (both at baseline and
the initial learning of the new solution) was more
indicative of ‘noise’ in the nervous system — individuals
with higher variability showed slower exploration to the
new solution and continued to have higher errors in the
task. On the other hand, individuals with lower
movement variability at baseline were actually ‘more
flexible’ — i.e., not only did they perform the task better
at baseline, they could also adapt to the new movement
solution more easily.

We wish to clarify two issues about the learning and
exploration in the current context. Given that focus of
the current work was on understanding flexibility, our
experimental paradigm focused on two aspects — (i)
moving to a different solution (i.e., a different point in the
null space), and (ii) controlling the variability around this
new solution. Therefore, the learning and exploration
observed in this task reflected both components. For
example, participants not only had to produce a
sufficient difference between the hand speeds to avoid
the puck hitting the wall but also had to simultaneously
control the sum of the speeds so that the puck landed
on the target. This exploration was long-lasting
throughout the experiment as seen by the gradual
reduction in absolute error and collisions, and also a
sustained increase in the null space variability. A
second issue is that given our interest was in the
flexibility to adopt ‘novel solutions’, we made the novel
solution relatively ‘far away’ from the baseline solution
(relative to the baseline variability). In other words,
because the new solution was significantly far away
from the baseline solution, participants in our task could
not accidentally ‘stumble upon’ the new solution but
instead had to actively direct their search toward a new
solution that was different from their current solution.
Therefore, the exploration seen here is likely distinct
from reinforcement paradigms where the new solution is
typically very ‘close’ to the original solution in terms of
the variability.
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Three issues are critical when considering these
findings in the context of prior work — the measurement
of variability, the measure of learning, and the role of
the task. From the viewpoint of measurement of
variability, a central problem in understanding the role of
motor variability is to distinguish ‘noise’ from
‘exploration’ (Therrien et al., 2016). Dhawale and col-
leagues (Dhawale et al.,, 2017) attempted to reconcile
the somewhat contradictory findings of a meta-analysis
on variability (He et al., 2016) by hypothesizing that one
critical difference may be related to measuring variability
in the presence or absence of feedback. Specifically,
measuring variability with task relevant feedback could
reflect the ‘noise’ component whereas variability mea-
sured without feedback yielded the true ‘exploratory’ com-
ponent. Our experiment provided a unique test of this
hypothesis because the task space variability had feed-
back, whereas the null space variability in the baseline
conditions did not. However, both components of variabil-
ity showed positive correlations with errors in the task,
suggesting that this difference cannot fully account for
such discrepancies in the results. Other approaches have
highlighted the importance of the temporal structure of
variability in predicting motor learning - for example, by
using measures of statistical persistence (Barbado
Murillo et al., 2017; Beaton et al., 2017). With the very
short time series in our baseline data, we were unable
to test this hypothesis, but could be explored in future
work.

The second issue relates to the measure of learning —
given our definition of flexibility as the “ability” to perform
using a different movement solution, the focus of the
current study was on correlating the baseline variability
to the ‘level’ of performance (i.e., the mean error in the
initial and final blocks) whereas prior studies have
focused on the ‘rate’ of learning. We had two
justifications for this choice: (i) estimating true rates of
learning (for e.g. through exponential fits) in precision
tasks is extremely challenging because there is not a
steady decrease in error over ftrials (i.e., because the
focus of such tasks is on reducing variability, a trial with
low error may immediately be followed by a trial with
high error and vice versa), (ii) using proxy measures for
rates of learning (for e.g. using a change score) can be
problematic because they can create spurious
correlations with the baseline score due to mathematical
coupling and ceiling effects (Hawe et al., 2019). For
example, in our data, the correlation between the perfor-
mance at the start of the novel task (i.e., the absolute
error in N1) and the ‘gain score’ (i.e., the difference in
absolute error between N1 and N4) was extremely high
(r = 0.85), indicating that individuals with higher absolute
error had more gains than individuals with lower absolute
errors (since they had greater room to improve). How-
ever, despite this difference in dependent variable from
prior work, we examined if rates of learning reflected in
the average level of performance ‘early in learning’ (i.e.,
the first block of the novel task) (Wu et al., 2014). In this
regard, we found no evidence of increased variability in
the baseline block (B1) facilitating the rate of learning.

Although we used an average of 50 trials to estimate
the early learning (which was a relatively long period),
the results still showed the same trends when examining
10 or 25 trials. In summary, while it is possible that there
are effects of variability on the rate of learning, the current
results suggest that individuals with low baseline variabil-
ity can still be flexible in using a new solution to perform
the task.

Finally, from a task viewpoint, the design of the task
and the knowledge of the task goal is an important
context modulating the importance of variability in
learning. Prior work examining the role of variability
have generally focused on adaptation tasks (Wu et al.,
2014; He et al., 2016; Singh et al., 2016) or
reinforcement-based paradigms using simple tasks (Wu
et al., 2014). Adaptation tasks are characterized by
adjustments to systematic errors (i.e. changes in constant
error or ‘bias’) and several have argued that adaptations
to force fields or visuomotor rotations are distinct from
tasks where there is an underlying change in the skill
(Krakauer and Mazzoni, 2011; Sternad, 2018). Similarly,
in reinforcement learning paradigms, the role of motor
variability can be over-estimated because the learning in
these tasks is primarily the learning of the task goal,
and does not necessarily involve a change in skill. For
example in one study (Wu et al., 2014), participants were
shown a curve to trace but the actual learning was evalu-
ated on another shape that they were unaware of. This
meant that the only way participants could improve on this
task was to discover this task goal through trial and error —
i.e., identify what the shape of the curve they were being
rewarded on. While these prior results advance our
knowledge by showing that humans can use motor vari-
ability to explore new solutions, in our view, they are less
likely to be relevant for many real-life contexts where the
task goal is known to the learner in advance. In contrast to
these paradigms, in our study, the task goal was known to
the learner in advance and learning primarily involved
controlling motor variability over multiple trials — we
believe this may more closely reflect real-life contexts in
motor learning.

Overall, these results caution against the use of
‘observed’ motor variability as a predictor of future
learning (Ranganathan and Newell, 2010b;
Ranganathan et al., 2020). The observed variability in a
given context is only a ‘snapshot’ of the system’s behavior
and may not fully reflect the full potential of the system,
which may explain why predictions using variability out-
side of the specific task context are likely to be less useful.
Our results are consistent with the conclusion (He et al.,
2016) that there is no single relation between variability
and learning that generalizes to all contexts, and highlight
the need for further work using tasks representative of
real-world learning to fully understand the role of variabil-
ity in motor learning (Haar et al., 2020). Furthermore, the
results also highlight the need to better understand the
phenomenon of flexibility in motor learning and if specific
exploration strategies for moving from one solution to
another (for e.g., abrupt vs. gradual change) can be used
during training to enhance flexibility.
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