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Abstract—Many contexts in motor learning require a learner to change from an existing movement solution to a
novel movement solution to perform the same task. Recent evidence has pointed to motor variability prior to
learning as a potential marker for predicting individual differences in motor learning. However, it is not known
if this variability is predictive of the ability to adopt a new movement solution for the same task. Here, we exam-
ined this question in the context of a redundant precision task requiring control of motor variability. Fifty young
adults learned a precision task that involved throwing a virtual puck toward a target using both hands. Because
the speed of the puck depended on the sum of speeds of both hands, this task could be achieved using multiple
solutions. Participants initially performed a baseline task where there was no constraint on the movement solu-
tion, and then performed a novel task where they were constrained to adopt a specific movement solution requir-
ing asymmetric left and right hand speeds. Results showed that participants were able to learn the new solution,
and this change was associated with changes in both the amount and structure of variability. However, increased
baseline motor variability did not facilitate initial or final task performance when using the new solution – in fact,
greater variability was associated with higher errors. These results suggest that motor variability is not necessar-
ily indicative of flexibility and highlight the role of the task context in determining the relation between motor vari-
ability and learning. � 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

The presence of motor redundancy at several levels in the

human body and the task gives rise to the phenomenon

that a given task goal can be achieved using multiple

movement solutions. Although the evidence for how

participants exploit this redundancy in the body and the

task has been well described (Scholz and Schöner,

1999; Todorov and Jordan, 2002; Cusumano and

Cesari, 2006; Cohen and Sternad, 2009; Ranganathan

et al., 2013), the question of how ‘flexible’ participants

are in changing from one movement solution to another

is less well understood. In the current context, we define

flexibility as the ability of participants to perform the task

using a different movement solution from the one that they

typically use. Understanding individual differences in such

flexibility is critical since several contexts such as coach-

ing and neurorehabilitation require participants to learn a

new movement solution to perform the same task.
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One potential feature that is relevant to predicting how

flexible an individual is in adopting a new movement

solution is motor variability. In task with redundancy,

variability can be split into two components (Scholz and

Schöner, 1999; Mosier et al., 2005; Cusumano and

Cesari, 2006) – (i) ‘task space’ variability, i.e., the compo-

nent of movement variability that affects task outcome,

and (ii) ‘null space’ variability, i.e., the component of

movement variability that does not affect the task out-

come. Because flexibility is a measure of how well partic-

ipants can move from one point in the null space to

another, the null space variability has been hypothesized

as a measure of how flexible participants are, with greater

null space variability (relative to the task space variability)

indicative of stronger synergies (Latash et al., 2002).

More recently, motor variability has also been shown to

predict individual differences in motor learning – when

participants have greater variability, they can engage in

more efficient exploration strategies to facilitate learning

(Wu et al., 2014). Although the generality of this finding

has been questioned (He et al., 2016; Singh et al.,

2016), there has been support for this result in real-

world tasks like pool billiards (Haar et al., 2020) and over-

all these results support the view that motor variability is
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not simply noise (Newell and Corcos, 1993), and can be a

potential signature for predicting future motor learning

(Dhawale et al., 2017).

However, in understanding the role of motor variability

in predicting individual differences in learning, two issues

remain unaddressed. First, the issue of flexibility (i.e., how

well participants can move from one solution to another)

has received little attention. A critical component for

understanding this question is the use of tasks that

have redundancy. Second, prior studies on using

variability to predict individual differences in motor

learning have primarily focused on adaptation tasks (Wu

et al. 2014; He et al. 2016; Singh et al. 2016). Although

adaptation is one form of motor learning, a more common

form of motor learning relevant to real-world contexts is

skill learning, where there is a relatively permanent

change in the underlying movement capacity (Krakauer

and Mazzoni, 2011; Schmidt and Lee, 2011; Sternad,

2018). One such class of skill learning tasks are precision

tasks that require learning to produce a consistent out-

come over multiple trials (Muller and Sternad, 2004;

Cohen and Sternad, 2009; Ranganathan and Newell,

2010a; Shmuelof et al., 2012). In contrast to motor adap-

tation which require reduction in constant error, learning

these precision tasks require a reduction in variable error,

which require a fundamental change in the quality of exe-

cution of the movement (Shmuelof et al., 2012). Here, we

address both these issues using a precision task that has

redundancy.

The goals of this study were to (i) characterize

changes in task performance and movement variability

when learning a new solution to perform a task, and (ii)

examine if motor variability prior to learning is predictive

of motor performance when learning a new solution to a

redundant motor task. Participants learned a bimanual

throwing task which required participants to slide a

virtual puck to a specified target. The motion of the puck

depended on the sum of the speeds of the two hands,

making the task redundant. We exploited the fact that

participants in bimanual tasks tend to typically use

symmetric (or near-symmetric) contributions from both

hands (Kelso et al., 1979; MacKenzie and Marteniuk,

1985), and designed a task that required them to switch

to a novel asymmetric solution to this task. We anticipated

that if motor variability is predictive of individual differ-

ences in learning new solutions, then the motor variability

observed at baseline (i.e., prior to the learning of the new

solution) should be predictive of performance using the

new solution, with higher variability being associated with

better task performance (i.e. lower errors).
EXPERIMENTAL PROCEDURES

Participants

Participants were college-aged adults with no history of

movement impairments in the upper extremity (N = 50,

age 18–25 years, 40 women) and were naive to the

purpose of the experiment. All participants provided

written consent and the experimental protocol was

approved by the Michigan State University Institutional

Review Board.
Apparatus

The participants performed all the tasks on a two joint

bimanual end-point robot (KINARM technologies,

Kingston, ON, USA) (Fig. 1a). The position data from

the two robot handles were sampled at 1000 Hz. The

visual display was set up through a semi-silvered screen

so that images were shown in the plane of the hands

and direct vision of the hands was obstructed.
Task

The task used was a virtual shuffleboard task where the

goal of the participant was to slide a virtual puck toward

a target shown on the screen (Cardis et al., 2018)

(Fig. 1a). At the start of each throw, participants were

instructed to position both hands in a respective ‘home’

position. At this point, the individual hand cursors disap-

peared and were replaced by a circular puck at the aver-

age position of the hands. They were then asked to slide

the puck toward a slot positioned straight ahead. Once

participants crossed the slot, the puck was ‘released’

and a second screen was shown where the puck traveled

towards a target in a uniformly decelerated motion. The

speed of the puck at release was dependent on the sum

of the speeds of the left and right hands at release (i.e.,

Vpuck = VL + VR) and perfect task performance (i.e.,

landing on the center of the target) was achieved when

Vpuck = 1.5 m/s. Because the speed is dependent on both

hands, multiple solutions can be used to achieve perfect

task performance.

There were two versions of the task (Fig. 1b). In the

‘baseline’ version of the task, participants were not

constrained to use any specific solutions for the task.

Visual feedback of the puck was provided as a

horizontal line stretching across the screen. After each

throw, participants saw the position of the horizontal line

and were provided a numerical score depending on the

error (with a max of 100 points). In the ‘novel’ version of

the task, participants were constrained to use a specific

set of solutions. Visual feedback was provided as a

circular puck. The vertical motion of the puck was

identical to the motion of the line in the baseline blocks,

and the horizontal dimension was controlled by the

difference in the hand velocities so that a higher velocity

on the right (left) hand would move the puck further to

the right (left). We then constrained the solution adopted

by adding a wall with a hole in a specific region. The

hole was placed on the right-hand side of the screen so

that participants now had to produce a higher velocity

on the right hand by 0.3 ± 0.15 m/s to make the puck

pass through the hole. Therefore, for the puck to pass

through the center of the hole and land perfectly on the

target, the combination would be (VR, VL) = (0.9, 0.6)

m/s – i.e., the VL + VR needs to be 1.5 m/s and VR

would have to be 60% of the total speed. The scoring

system was the same as the baseline blocks with the

addition that if the puck collided against the wall, that

trial was scored as zero points. The solution space in

terms of the two-hand speeds for both the baseline and

novel blocks is shown (Fig. 1c). Note that even though

the ‘hole’ in the target was shifted to the right, the first



Fig. 1. Schematic of task and experiment. (A) Virtual shuffleboard task – participants grasped a bimanual robot and performed a throwing motion

toward a slot located 10 cm away. When the puck crossed this slot, the puck was ‘released’ and participants saw visual feedback indicating their

task performance. Note that the two arms of the robot could be moved independently (i.e., they were not mechanically coupled) (B) Visual feedback
of task performance. During the baseline blocks, participants saw the puck as a ‘horizontal’ bar and a puck speed of 1.5 m/s would land the bar right

on the middle of the target (indicated in white). During the novel blocks, participants saw the puck as a circle. The vertical motion of the puck was

exactly the same as the horizontal bar in the baseline blocks, but the horizontal motion of the puck was determined by the difference in the right and

left hand speeds. Participants had to select specific solutions to make sure that the ball passed through the hole in the wall. (C) Solution space in

terms of left and right hand speeds. In the baseline blocks (left), the solution manifold is represented by the dotted line, which indicates the speed

combination that lead to a total of 1.5 m/s. In the novel blocks (right), the presence of the hole in the wall reduces the solution manifold to a much

smaller area (all areas shaded in grey would lead to a collision with the wall). (D) Experimental protocol. After an initial familiarization, all participants

completed a baseline block (B1), followed by four novel blocks (N1-N4) and a return to baseline (B2).
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screen that the participants saw prior to the throw had the

‘slot’ still straight ahead – so participants were aware that

they still had to make movements in the forward direction,

but adjust the relative speeds of the two hands to get the

puck to move right or left on the second screen.

Procedure

Participants were first given 10 familiarization trials in both

the baseline and the novel condition to make sure they

understood the goal of the task, including the fact that

they had to modulate the speeds of the two hands to

move the puck horizontally in the novel condition. This

was followed by 6 blocks of practice – a baseline block

(B1), 4 novel blocks (N1–N4), and a baseline block (B2)

(Fig. 1d). Each block consisted of 50 throws and the

entire experiment was done in a single session that

lasted about 45 min.

DATA ANALYSIS

Task performance
Absolute error. Because perfect task performance

was achieved when the puck release speed was 1.5 m/

s, we computed the absolute error as the absolute

difference between the actual puck speed at release

and the desired release speed of 1.5 m/s.

Collisions. To indicate how well participants adapted

to the novel condition, we computed the frequency of

trials in which the ball collided with the wall in each

block (relative to the total number of trials in the block).

A higher number of collisions indicated greater difficulty

with changing to the novel condition. Because there was

no wall in the baseline conditions, the number of

collisions in the baseline blocks is zero by definition.

Coordination
Speed ratio. The coordination in this task was

measured as the contribution of the right hand to the

puck speed – i.e., VR/(VR + VL). As mentioned earlier,

in the baseline blocks, there was no constraint on the

coordination, but a symmetric contribution from both

hands would result in a ratio of close to 0.5. During the

novel blocks, given the position of the obstacle, this

ratio had to be close to 0.6 for the puck to pass through

the center of the hole.

Variability measures
Movement variability. In each block, we split the

movement variability along two orthogonal dimensions-

the task space and the null space (as shown in Fig. 1c).

Each trial was represented as a point in this 2D space

and projected to the task and null space. The variability

along each of these dimensions was calculated using

the variance (in m2/s2) and is referred to as the task and

null space variability (Cardis et al., 2018).
Autocorrelation. In addition to the amount of

variability, we also computed the lag-1 autocorrelation in

the task and null spaces as a measure of the structure

of variability (Abe and Sternad, 2013; Dingwell et al.,

2013; van Beers et al., 2013; Cardis et al., 2018). Each

trial, represented by a point in the (VL, VR) space was pro-

jected on to the task space and the null space and the

time series of these two projections was used for the auto-

correlation analyses. A positive lag-1 autocorrelation indi-

cates that deviations tend to persist over time, whereas a

negative lag-1 autocorrelation indicates that a positive

deviation is more likely to be followed by a negative devi-

ation on the next trial.

In addition, we also computed a ‘detrended’

autocorrelation after removing the linear trend in the

data. Because this was a learning task, where changes

in mean performance are to be expected within each

block, this analysis allowed us to evaluate the trial-to-

trial fluctuations while minimizing the effects of any

overall shift.
Statistical analysis
Learning a new solution. We first quantified the

learning in the task by observing changes over the

practice blocks. For all dependent variables except

collisions, this was analyzed by a one-way repeated-

measures analysis of variance (ANOVA) with block as

the fixed effect (6 levels- B1, N1, N2, N3, N4 and B2).

We performed three a priori comparisons related to this

ANOVA by comparing the following blocks: (i) B1 and

N1 (i.e., what happens when participants initially switch

to the new solution), (ii) N1 and N4 (i.e., what happens

when they learn the new solution), and (iii) N4 and B2

(i.e., what happens when they change from new solution

back to baseline). Corrections for violation of sphericity

were performed using the Greenhouse-Geisser

correction when appropriate. The level of significance

was set at 0.017 (corrected for the three comparisons).

For the analysis of collisions, which only occurred in the

novel blocks, we used a paired t-test to compare the

collisions in N1 and N4. All analyses were run in JASP

version 0.9 (JASP Team, 2018).
Predicting individual differences. The primary focus

was to examine if the initial and final performance on

the novel task could be predicted by motor variability at

baseline. Here, we use the term ‘prediction’ in the

context of whether performance in the novel task is

correlated with prior performance in the baseline task

(which was performed earlier in time). So we examined

Pearson’s correlations between: (i) absolute error in N1

with task space and null space variability in B1, and (ii)

absolute error in N4 with task and null space variability

in B1. Given that there is prior evidence that higher

variability facilitates learning (Wu et al., 2014), we used

a Bayes factor (using a default stretched beta prior width

of 1) to quantify the strength of the hypothesis that this

correlation was negative (i.e., increased variability was

associated with smaller errors).
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In addition, we also computed if the final performance

on the novel task could be predicted using the variability

on the first block of the novel task and computed the

correlation between absolute error in N4 with the task

and null space variability in N1. Since we examined a

total of six correlations, we chose a Bonferroni

correction so that the significance threshold was set at

0.0083. Since there was a pair of correlation coefficients

(one correlation with the task space variability and one

with the null space variability), we also compared these

two correlation coefficients using the cocor package

(Diedenhofen and Musch, 2015) to examine if the correla-

tion in one space was bigger than the other. Finally, we

noticed that the correlations did not satisfy the assump-

tion bivariate normality (as measured by a Shaipro-

Wilk’s test) – so we performed a bootstrap analysis and

generated 95% CIs for these six correlations. The boot-

strap analyses were performed in SPSS for Windows

(version 26).
RESULTS

Based on Tukey’s boxplots of the absolute error in B1,

data from two participants was excluded from analysis.

Both individuals had higher error in B1 than the Tukey’s

criterion.
Learning a new solution

The mean score that participants received generally

increased with practice, except when they first switched

to the new solution (Fig. 2a). Even though the absolute

error is technically only one component of task

performance when learning the new solution (the score

that participants received also depended on whether

they successfully avoided the barrier), we found that the

mean absolute error was highly negatively correlated to

the mean score that the participants received, both in

N1 (r = �0.884) and N4 (r = �0.922). Therefore, we

focus our analysis on the absolute error as it is more

easily interpretable (being in units of m/s) than the score.

Participants showed an increase in absolute error

when using the new solution. This error decreased with

continued practice and was retained in the second

baseline (Fig. 2b). There was a significant main effect of

block (F3.15,148.21 = 23.07, p < 0.001). Comparisons

indicated that absolute error in B1 was not significantly

different from N1 (p = 0.068), absolute error in N4 was

lower than N1 (p < 0.001) and there was no difference

between N4 and B2 (p = 0.227). To examine if the

increase in error from B1 to N1 was due to averaging

over the entire block of 50 trials, we performed a

secondary analysis where we examined the change in

error from the last 10 trials of B1 to the first 10 trials of

N1, and found that there was a significant increase in

error going from B1 to N1 (t47 = 4.446, p < 0.001).

The improvements in task performance using the new

solution (from N1 to N4) were also reflected in a

decrease in the number of collisions (t47 = 6.30,

p < 0.001) (Fig. 2c).

In terms of the coordination, participants showed a

change in the speed ratio during the novel blocks but
this returned to the original coordination pattern in the

second baseline (Fig. 2d). There was a significant main

effect of block F3.03, 142.44 = 377.7, p < 0.001).

Comparisons indicated that the right hand ratio

increased between B1 and N1 (p < 0.001), decreased

from N1 to N4 (p < 0.001), and then decreased again

from N4 to B2 (p < 0.001).

In terms of task space variability, there was a general

decrease in variability across practice (Fig. 3a–d). There

was a significant main effect of block

(F2.83,133.10 = 8.70, p < 0.001). Comparisons indicated

that task space variability (i) was not significantly

different between B1 and N1 (p = 0.835), (ii) decreased

from N1 to N4 (p < 0.001), and (iii) was not significantly

different between N4 and B2 (p = 0.592) (Fig. 3e).

In terms of null space variability, there was an

increase in null space variability at the start of novel

task, followed by a general decrease until the end of the

last novel block, and a sudden decrease when going

back to the baseline (Fig. 3e). There was a significant

main effect of block (F2.70,126.88 = 47.31, p < 0.001).

Comparisons indicated that null space variability (i)

increased from B1 to N1 (p < 0.001), (ii) decreased

from N1 to N4 (p < 0.001), and (iii) decreased from N4

to B2 (p < 0.001).

In terms of the task space autocorrelation, there was

an increase in the lag-1 autocorrelation at the start of

the novel task, followed by a general decrease until the

end of practice (Fig. 3f). There was a significant main

effect of block (F5, 235 = 8.18, p < 0.001).

Comparisons indicated that the autocorrelation (i)

increased from B1 to N1 (p < 0.001), (ii) decreased

from N1 to N4 (p = 0.004), and (iii) was not significantly

different between N4 and B2 (p = 0.599).

In terms of the null space autocorrelation, there was

no significant change in the structure during practice

(F5, 235 = 0.272, p = 0.928) (Fig. 3f).

Predicting individual differences
Initial learning on the task. Task space variability at

baseline was weakly and positively correlated to the

initial error at the novel task, indicating that higher

variability at baseline was associated with worse initial

task performance (Fig. 4a). Absolute error at N1 was

significantly positively correlated with task space

variability at B1 (r = 0.398, 95% bootstrap CI [0.083,

0.645], p = 0.005) but the correlation with null space

variability at B1 (r = 0.324, 95% bootstrap CI [0.078,

0.625], p = 0.025) did not meet the Bonferroni

corrected level of significance (Fig. 4b). The difference

between these two correlation coefficients was not

significant. Bayes factors for these correlations (task

space: BF = 20.33, null space: BF = 17.30) indicated

very strong support against the hypothesis that the

correlation was negative (i.e., the hypothesis that higher

baseline variability resulted in lower initial errors in the

novel task).

Final learning on the task. Task space and null space

variabilities at baseline were not correlated with final



Fig. 2. Task performance and coordination during practice. (A) Score, (B) absolute error, (C) number of collisions, and (D) contribution of the right

hand to the total puck speed are shown as a function of practice. Trials in the novel condition (trials 51–250) are highlighted in blue. Participants

were able to adapt to the new solution as indicated by an increase in the score, reduction in absolute error, decrease in the number of collisions, and

adjusting the right hand contribution to the ideal level of 0.6. Error bars indicate one standard error (between-participant).
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performance on the novel task (Fig. 4c, d). The correlation

of final errors at N4 with task space variability at B1

(r = 0.326, 95% bootstrap CI [0.037, 0.566],

p = 0.024) and with null space variability at B1

(r = 0.249, 95% bootstrap CI [�0.053 0.583],

p = 0.088) did not meet the Bonferroni corrected level

of significance. Once again, the difference between

these two correlation coefficients was not statistically

significant. Bayes factors for these correlations (task

space: BF = 17.37, null space: BF = 14.29) indicated

very strong support against the hypothesis that the

correlation was negative (i.e., the hypothesis that higher

baseline variability resulted in lower final errors in the

novel task).

When we examined if the final performance at the

novel task could be predicted by task and null space

variabilities during the first block of the novel task

(instead of the baseline), we found strong positive

correlations, indicating that higher variability in the initial

block were associated with higher errors (Fig. 4e, f).

The correlations of final errors at N4 with task space

variability at N1 (r = 0.751, 95% bootstrap CI [0.554,

0.868], p < 0.001) and null space variability at N1
(r = 0.447, 95% bootstrap CI [0.238, 0.663],

p = 0.001) were significant. The difference between

these two correlation coefficients was also significant

with a higher correlation for the task space variability

(p = 0.01).
Exploratory analysis. We also performed some

exploratory analysis on the data. Given that these

analyses were not the predicted effects of interest,

these analyses are reported as is, with no corrections to

the significance values.

Comparing normalized values of the null space
variability. Given that the amount of null space variability

is correlated to the total variability, we examined if the

‘normalized’ null space variability would have a positive

correlation to initial or final performance. So, we

computed a normalized null space variability metric

Varnull,norm = Varnull/(Vartask + Varnull). However, the

correlation of the normalized null space variability at

baseline was not significant either with the absolute

error at N1 (r = 0.080, p = 0.589) or N4 (r = �0.026,

p = 0.862).



Fig. 3. Magnitude and structure of variability with practice. (A–D) Sample trials from one participant in block B1, N1, N4 and B2. The solution

manifold is represented by the dotted line, which indicates the speed combination that lead to a total of 1.5 m/s. The horizontal and vertical reference

lines from the axes in (B, C) indicate the solution in the novel task. (E) Task and null space variability with practice. Task space variability showed a

general reduction with practice. On the other hand, null space variability showed a marked increase in the novel conditions. (F) Autocorrelation. The
structure of variability was computed using a lag-1 autocorrelation, both with the actual time series (solid lines), and a detrended time series (dashed

lines). In the task space, there was a marked increase in the autocorrelation in the novel conditions, but the null space showed no specific trend

across practice. Error bars indicate one standard error (between-participant).
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Fig. 4. Predicting individual differences in initial and final error from movement variability. (A) Task space variability at baseline was weakly

positively correlated with initial error on the novel task (block N1), indicating that individuals showing higher variability had higher initial errors. (B)
Null space variability had a non-significant correlation with the initial error at N1. When predicting the final error on the novel task (block N4), these

correlations were not significant either for movement variability at baseline in either (C) task space or (D) null space. However, a strong positive

correlation was observed when correlating the final errors (block N4) to the movement variability in the novel task (block N1) for both the (E) task
space and (F) the null space. Once again, these correlations were positive, indicating that individuals with higher variability at the start tended to

have higher errors on the task at the end.
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Comparing B2 with B1. We examined if the

performance in the second baseline block relative to

B1using paired t-tests. We found that although the

speed ratio in B2 was significantly higher than the

speed ratio in B1 (0.512 vs. 0.503, t47 = 5.368,

p < 0.001). In terms of absolute error, the error in B2

was significantly lower than B1 (0.1 m/s vs. 0.13 m/s,

t47 = 7.050, p < 0.001). This indicates that during the

second baseline block, there was a tendency to return

to the symmetric coordination pattern, but this reversion

in the coordination was incomplete. However, in spite of

this change in the coordination pattern used,

participants were able to maintain the improved level of

task performance (when combined with the result that

the absolute error in B2 was comparable to that in N4).

This indicates that there was a transfer of learning from

the novel asymmetric solution to the symmetric solution.

Given the exploratory nature of these results, these are

not mentioned further in the Discussion.

Correlations with other variables. Since our main

variable was absolute error (which measures how well

they could ‘use’ the new solution after moving to the

new solution), we also performed exploratory analyses

to examine if the baseline variability was correlated with

the ability to move to the new solution (i.e., the number

of collisions or the speed ratio). None of these

correlations were significant (Table 1).
Table 2. Exploratory correlations between the baseline variability (block B1) and

the number of trials considered in N1

Task space variability_B1 - Absolute Error_N1_

- Absolute Error_N1_

- Absolute Error_N1_

- Score_N1_Trials1to

- Score_N1_Trials1to

- Score_N1_All trials

Null space variability _B1 - Absolute Error_N1_

- Absolute Error_N1_

- Absolute Error_N1_

- Score_N1_Trials1to

- Score_N1_Trials1to

- Score_N1_All trials

*p < 0.05, **p < 0.01, ***p < 0.001.

Table 1. Exploratory correlations between the baseline variability (block B1) and

and last block (block N4) of the novel task

Task space variability_B1 - Collisio

- Collisio

- Speed

- Speed

Null space variability_B1 - Collisio

- Collisio

- Speed

- Speed

*p < 0.05, **p < 0.01, ***p < 0.001.
Another factor that could have potentially influenced

the results is whether the number of trials we used to

perform the analysis in block N1 could have failed to

capture any short-term changes when they first moved

to the new solution. So we examined the correlations

between the baseline variability and the absolute error/

score when we considered only the first 10 or 25 trials

of N1 (instead of all 50). In all cases, we found that

correlations were of the same sign and got stronger with

more trials being included in N1, indicating that there

was no evidence of any short-term behavior that was

not captured with using all 50 trials (Table 2).
DISCUSSION

The goals of this study were – (i) to characterize changes

in task performance and movement variability when

moving to a new solution to perform the task, and (ii) to

examine if movement variability at baseline could predict

the ability to perform the task using a new solution.

Overall, we found that (i) moving to a new solution

resulted in changes in task performance and also in the

amount and structure of movement variability, (ii)

increased movement variability at baseline did not

facilitate either initial or final performance levels when

performing the task using a new solution.
the Absolute Error and Score in the first block (block N1), when varying

Pearson’s r p

Trials1to10 0.271 0.063

Trials1to25 0.323 * 0.025

All trials 0.398 ** 0.005

10 �0.197 0.180

25 �0.291 * 0.045

�0.291 * 0.044

Trials1to10 0.180 0.220

Trials1to25 0.273 0.061

All trials 0.324 * 0.025

10 �0.100 0.500

25 �0.278 0.056

�0.300 * 0.038

the collisions and speed ratio variables during the first block (block N1)

Pearson’s r p

ns_N1 0.237 0.104

ns_N4 0.265 0.068

Ratio_N1 0.054 0.717

Ratio_N4 �0.037 0.804

ns_N1 0.199 0.175

ns_N4 0.111 0.453

Ratio_N1 0.028 0.848

Ratio_N4 �0.159 0.282
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Changes in movement variability when learning a
new solution

We found that learning a new solution was associated

with several features. From a task performance

standpoint, there was an increase in absolute error

which was then gradually reduced with practice. This

was also associated with an increase in the null space

variability (not only in absolute terms but also in relative

terms to the task space variability) indicating that

participants were exploring the null space to find the

new solution. This null space variability decreased with

additional practice but was still much higher than what

was observed in both the first and second baseline

blocks. This effect is particularly surprising because in

the novel blocks, the solution space was restricted and

therefore the null space variability was at least partially

relevant to task performance (since excessive

deviations along the null space could lead to collisions

with the obstacle). These suggest that the presence of

higher null space variability, by itself, is not always

‘‘good” and may potentially reflect the difficulty the task

(Scholz et al., 2001; Latash, 2010) or the use of a solution

that is not particularly stable (Ranganathan and Newell,

2013).

In addition to the amount of variability, there were also

changes in the structure of the variability as measured by

the lag-1 autocorrelation function in the task space. The

lag-1 autocorrelation in the task space is an index of

how errors on the previous trial are being used to

correct the next trial, and this was negative in the

baseline condition, which is typical for novice

performance. However, when moving to the new

solution, this lag-1 autocorrelation became positive,

indicating that participants likely placed less emphasis

on immediately correcting task errors when they were

trying to learn the new solution. However, with practice,

the lag-1 autocorrelation once again became closer to

zero, likely indicating that participants might be using a

learning rate that minimizes the overall variance (van

Beers et al., 2013). Surprisingly, we found no effect of

the novel task on the autocorrelation in the null space

(even though participants had feedback in the null space

during the novel task from the left/right motion of the

puck), suggesting that the sudden increase in the task

space autocorrelation was not due to changes in how par-

ticipants corrected deviations in the null space. The same

pattern of results in the lag-1 autocorrelation was also

seen when we analyzed the detrended data (i.e. after

removing any linear trend in the data) – so these changes

likely reflect actual trial-to-trial dynamics and are not dri-

ven by the overall mean shift during learning.
Predicting individual differences

Given that a prior study (Wu et al., 2014) had shown that

rates of learning were positively correlated with variability,

we had expected that correlations would be negative –

i.e., initial errors would be smaller for individuals with

higher null space variability at baseline (note that in our

study, the null space variability is the ‘task relevant’
dimension in the terminology of Wu et al. because this

is the intended direction along which exploration should

occur to find the new solution). However, we found that

the opposite was true – higher null space variability (as

well as task space variability) was associated with higher

errors, indicating that individuals with greater variability

showed lesser ability to produce a consistent outcome

using the new solution. This was also seen in the correla-

tions for final performance using the new solution.

Exploratory analyses revealed that when the null space

variability in the baseline task was normalized to total vari-

ability, there was no significant correlation with perfor-

mance, indicating that the total amount of variability was

more critical in predicting performance when using the

new solution.

We did find a strong ‘specificity’ effect when predicting

the final performance at the novel task – movement

variability when initially learning the task was highly

predictive of final performance using the new solution.

But these correlations were once again positive,

indicating a detrimental role for variability in learning a

new solution. Overall, these results highlight that in the

current context, motor variability (both at baseline and

the initial learning of the new solution) was more

indicative of ‘noise’ in the nervous system – individuals

with higher variability showed slower exploration to the

new solution and continued to have higher errors in the

task. On the other hand, individuals with lower

movement variability at baseline were actually ‘more

flexible’ – i.e., not only did they perform the task better

at baseline, they could also adapt to the new movement

solution more easily.

We wish to clarify two issues about the learning and

exploration in the current context. Given that focus of

the current work was on understanding flexibility, our

experimental paradigm focused on two aspects – (i)

moving to a different solution (i.e., a different point in the

null space), and (ii) controlling the variability around this

new solution. Therefore, the learning and exploration

observed in this task reflected both components. For

example, participants not only had to produce a

sufficient difference between the hand speeds to avoid

the puck hitting the wall but also had to simultaneously

control the sum of the speeds so that the puck landed

on the target. This exploration was long-lasting

throughout the experiment as seen by the gradual

reduction in absolute error and collisions, and also a

sustained increase in the null space variability. A

second issue is that given our interest was in the

flexibility to adopt ‘novel solutions’, we made the novel

solution relatively ‘far away’ from the baseline solution

(relative to the baseline variability). In other words,

because the new solution was significantly far away

from the baseline solution, participants in our task could

not accidentally ‘stumble upon’ the new solution but

instead had to actively direct their search toward a new

solution that was different from their current solution.

Therefore, the exploration seen here is likely distinct

from reinforcement paradigms where the new solution is

typically very ‘close’ to the original solution in terms of

the variability.
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Three issues are critical when considering these

findings in the context of prior work – the measurement

of variability, the measure of learning, and the role of

the task. From the viewpoint of measurement of

variability, a central problem in understanding the role of

motor variability is to distinguish ‘noise’ from

‘exploration’ (Therrien et al., 2016). Dhawale and col-

leagues (Dhawale et al., 2017) attempted to reconcile

the somewhat contradictory findings of a meta-analysis

on variability (He et al., 2016) by hypothesizing that one

critical difference may be related to measuring variability

in the presence or absence of feedback. Specifically,

measuring variability with task relevant feedback could

reflect the ‘noise’ component whereas variability mea-

sured without feedback yielded the true ‘exploratory’ com-

ponent. Our experiment provided a unique test of this

hypothesis because the task space variability had feed-

back, whereas the null space variability in the baseline

conditions did not. However, both components of variabil-

ity showed positive correlations with errors in the task,

suggesting that this difference cannot fully account for

such discrepancies in the results. Other approaches have

highlighted the importance of the temporal structure of

variability in predicting motor learning - for example, by

using measures of statistical persistence (Barbado

Murillo et al., 2017; Beaton et al., 2017). With the very

short time series in our baseline data, we were unable

to test this hypothesis, but could be explored in future

work.

The second issue relates to the measure of learning –

given our definition of flexibility as the ‘‘ability” to perform

using a different movement solution, the focus of the

current study was on correlating the baseline variability

to the ‘level’ of performance (i.e., the mean error in the

initial and final blocks) whereas prior studies have

focused on the ‘rate’ of learning. We had two

justifications for this choice: (i) estimating true rates of

learning (for e.g. through exponential fits) in precision

tasks is extremely challenging because there is not a

steady decrease in error over trials (i.e., because the

focus of such tasks is on reducing variability, a trial with

low error may immediately be followed by a trial with

high error and vice versa), (ii) using proxy measures for

rates of learning (for e.g. using a change score) can be

problematic because they can create spurious

correlations with the baseline score due to mathematical

coupling and ceiling effects (Hawe et al., 2019). For

example, in our data, the correlation between the perfor-

mance at the start of the novel task (i.e., the absolute

error in N1) and the ‘gain score’ (i.e., the difference in

absolute error between N1 and N4) was extremely high

(r = 0.85), indicating that individuals with higher absolute

error had more gains than individuals with lower absolute

errors (since they had greater room to improve). How-

ever, despite this difference in dependent variable from

prior work, we examined if rates of learning reflected in

the average level of performance ‘early in learning’ (i.e.,

the first block of the novel task) (Wu et al., 2014). In this

regard, we found no evidence of increased variability in

the baseline block (B1) facilitating the rate of learning.
Although we used an average of 50 trials to estimate

the early learning (which was a relatively long period),

the results still showed the same trends when examining

10 or 25 trials. In summary, while it is possible that there

are effects of variability on the rate of learning, the current

results suggest that individuals with low baseline variabil-

ity can still be flexible in using a new solution to perform

the task.

Finally, from a task viewpoint, the design of the task

and the knowledge of the task goal is an important

context modulating the importance of variability in

learning. Prior work examining the role of variability

have generally focused on adaptation tasks (Wu et al.,

2014; He et al., 2016; Singh et al., 2016) or

reinforcement-based paradigms using simple tasks (Wu

et al., 2014). Adaptation tasks are characterized by

adjustments to systematic errors (i.e. changes in constant

error or ‘bias’) and several have argued that adaptations

to force fields or visuomotor rotations are distinct from

tasks where there is an underlying change in the skill

(Krakauer and Mazzoni, 2011; Sternad, 2018). Similarly,

in reinforcement learning paradigms, the role of motor

variability can be over-estimated because the learning in

these tasks is primarily the learning of the task goal,

and does not necessarily involve a change in skill. For

example in one study (Wu et al., 2014), participants were

shown a curve to trace but the actual learning was evalu-

ated on another shape that they were unaware of. This

meant that the only way participants could improve on this

task was to discover this task goal through trial and error –

i.e., identify what the shape of the curve they were being

rewarded on. While these prior results advance our

knowledge by showing that humans can use motor vari-

ability to explore new solutions, in our view, they are less

likely to be relevant for many real-life contexts where the

task goal is known to the learner in advance. In contrast to

these paradigms, in our study, the task goal was known to

the learner in advance and learning primarily involved

controlling motor variability over multiple trials – we

believe this may more closely reflect real-life contexts in

motor learning.

Overall, these results caution against the use of

‘observed’ motor variability as a predictor of future

learning (Ranganathan and Newell, 2010b;

Ranganathan et al., 2020). The observed variability in a

given context is only a ‘snapshot’ of the system’s behavior

and may not fully reflect the full potential of the system,

which may explain why predictions using variability out-

side of the specific task context are likely to be less useful.

Our results are consistent with the conclusion (He et al.,

2016) that there is no single relation between variability

and learning that generalizes to all contexts, and highlight

the need for further work using tasks representative of

real-world learning to fully understand the role of variabil-

ity in motor learning (Haar et al., 2020). Furthermore, the

results also highlight the need to better understand the

phenomenon of flexibility in motor learning and if specific

exploration strategies for moving from one solution to

another (for e.g., abrupt vs. gradual change) can be used

during training to enhance flexibility.
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Scholz JP, Schöner G (1999) The uncontrolled manifold concept:

identifying control variables for a functional task. Exp Brain Res

126:289–306.

Shmuelof L, Krakauer JW, Mazzoni P (2012) How is a motor skill

learned? Change and invariance at the levels of task success and

trajectory control. J Neurophysiol 108(2):578–594.

Singh P, Jana S, Ghosal A, Murthy A (2016) Exploration of joint

redundancy but not task space variability facilitates supervised

motor learning. Proc Natl Acad Sci U S A 113(50):14414–14419.

Sternad D (2018) It’s not (only) the mean that matters: Variability,

noise and exploration in skill learning. Curr Opin Behav Sci

20:183–195.

Therrien AS, Wolpert DM, Bastian AJ (2016) Effective reinforcement

learning following cerebellar damage requires a balance between

exploration and motor noise. Brain 139(1):101–114.

Todorov E, Jordan MI (2002) Optimal feedback control as a theory of

motor coordination. Nat Neurosci 5(11):1226–1235.

van Beers RJ, van der Meer Y, Veerman RM, Balasubramaniam R

(2013) What autocorrelation tells us about motor variability:

insights from dart throwing. PloS One 8(5):e64332.

Wu HG, Miyamoto YR, Castro LNG, Ölveczky BP, Smith MA (2014)
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