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Abstract: Optimization of charge generation in polymer blends is crucial for the fabrication of highly
efficient polymer solar cells. While the impacts of the polymer chemical structure, energy alignment,
and interface on charge generation have been well studied, not much is known about the impact of
polymer aggregation on charge generation. Here, we studied the impact of aggregation on charge
generation using transient absorption spectroscopy, neutron scattering, and atomic force microscopy.
Our measurements indicate that the 1,8-diiodooctane additive can change the aggregation behavior of
poly(benzodithiophene-alt-dithienyl difluorobenzotriazole (PBnDT-FTAZ) and phenyl-C61-butyric
acid methyl ester (PCBM)polymer blends and impact the charge generation process. Our observations
show that the charge generation can be optimized by tuning the aggregation in polymer blends,
which can be beneficial for the design of highly efficient fullerene-based organic photovoltaic devices.

Keywords: charge; exciton; aggregation; polymer solar cells; morphology

1. Introduction

Organic semiconductors (OSCs) have been intensively studied due to their unique elec-
tronic and optical properties. Their properties—including relatively easy and inexpensive
fabrication, light weight, mechanical flexibility and compatibility with stretchability, and
potential for non-toxic processing methods—open broad prospects for their applications
in a variety of industrial and technological areas, including solar cells [1,2]. Consider-
able efforts have been dedicated to the development of polymer solar cells (PSCs) due
to several advantages, such as high absorption coefficients [3], highly tunable molecular
energy levels [4], and low reorganization energy associated with low voltage loss [5,6]. To
date, power conversion efficiency of over 17% [7] has been achieved in PSCs. There are
several factors that influence charge generation and transport in bulk heterojunction (BHJ)
polymer solar cells. These include the miscibility of donor and acceptors [8], molecular
orientation of donor and acceptors at the interface [9], energy difference between the bulk
excitonic states and interfacial charge transfer (CT) states [10,11], domain size [12], and the
interaction between donor and acceptors [13,14]. In addition, the molecular order [15] and
packing [16,17] determine the electronic interactions [18], which influence, for instance,
exciton delocalization [19] and charge generation [20]. Furthermore, change in morphology
can impact processes such as charge generation [21], charge transport [22], and optical
absorption and emission [23,24]. It has been reported that the addition of solvent additives
such as 1,8-diiodoctane (DIO) in polymer blends results in the change in nanomorphology
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of the BHJ active layer [25,26]. The improved morphology by DIO resulted in the high
charge transfer and charge transport efficiency that are needed for high-efficiency PSCs.
Therefore, it is very important to understand how the molecules assemble in thin BHJ films
and how the species of the assemblies affect the solar cell efficiency.

As the charge carrier motion in polymer films depends on the coupling of the elec-
tronic states, the electronic coupling in these systems has direct implications for the charge
generation and transport; hence, it impacts the device performance [23]. When the molec-
ular arrangement leads to the transition dipole moments interacting along the polymer
backbone, strong intrachain electronic coupling is obtained, which is referred to as J-like,
in analogy to J-aggregates in molecular systems [23,27]. In contrast, parallel π-π packing of
multiple chains favors strong interchain electronic coupling, referred to as H-like [23,24,28].
Therefore, it is crucial to understand the impact of electronic coupling on the optoelectronic
properties of these materials for their applications in photovoltaic devices.

In this work, we prepared thin blended films from medium-band gap copolymer
poly(benzodithiophene-alt-dithienyl difluorobenzotriazole (PBnDT-FTAZ) [29] and phenyl-
C61-butyric acid methyl ester (PCBM). The PBnDT-FTAZ polymer consists of a benzodithio-
phene (BnDT) donor moiety and fluorinated benzotriazole (FTAZ) acceptor moiety. This
donor polymer has shown planar conformation, molecular face-on orientation, and high
hole mobility [9,29]. The acceptor PCBM has (i) high electron mobility, (ii) ability to ag-
gregate in BHJ, and (iii) good charge transport due to a delocalized lowest unoccupied
molecular orbital over the entire surface of the molecule [30]. These properties of donor
and acceptor molecules are desired for the fabrication of highly efficient PSCs. In this
contribution, we used a PBnDT-FTAZ:PCBM blend with and without the solvent additive
DIO to investigate the impact of DIO on aggregation, which can modify the optical ab-
sorption and emission spectra in polymer blends. Using transient absorption spectroscopy
(TAS), small-angle neutron scattering (SANS), and atomic force microscopy (AFM), we
probed the changes in aggregation, charge dynamics, exciton delocalization, and the mor-
phology. Our observations indicate that the electronic coupling in conjugated polymer
blends can be tuned by processing methods and can be probed using optical absorption
and emission measurements.

2. Materials and Methods
2.1. Materials

PBnDT-FTAZ polymer was synthesized by Prof. Wei You’s lab at the University of
North Carolina, Chapel Hill in the same way as previously reported [29]. PCBM and DIO
additive were purchased from Sigma Aldrich and were used as received.

2.2. Thin Film Preparation

PBnDT-FTAZ:PCBM blend solution (20 mg/mL) was prepared in chlorobenzene
with a donor/acceptor weight ratio of 1:2. The blend solution was heated at 80 ◦C and
stirred overnight before mixing with DIO (3 wt.%, defined as percentage of total PBnDT-
FTAZ:PCBM weight) and stirred for one additional hour. Glass substrates were cleaned
ultrasonically using DI water, acetone, and isopropanol for 15 min per cleaning solvent
before spin casting. Blend films with and without DIO were prepared by spin casting the
hot solution onto the precleaned glass substrates at 500 rpm for 60 s. The thin film samples
were encapsulated using UV curable glue before optical measurements [31]. Thin films for
SANS were prepared by casting the solution in one-inch diameter silicon wafer. All the
thin films were prepared inside a nitrogen filled glove box.

2.3. Absorption and Photoluminescence Measurements

A Cary 100 UV-spectrophotometer from Varian was used for the ground state absorp-
tion measurement in the spectral range 350–900 nm, which was carried out at ambient
conditions. The room temperature, steady state photoluminescence (PL) spectra in the
UV-NIR spectral range were recorded using an Edinburgh Instruments Fluorescence Spec-
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trometer (Model: FLS900) equipped with a xenon lamp (Xe 900, xenon arc lamp). The
samples were excited with 2.48 eV (500 nm) excitation energy and the emitted PL was
detected using the red sensitive PMT [31].

2.4. Transient Absorption Spectroscopy

Transient absorption spectroscopy (TAS) was measured using an Ultrafast Systems
Helios pump-probe transient absorption spectrometer. Coherent Libra Ti:Sapphire fem-
tosecond regenerative amplifier (4 W, 1 kHz, 800 nm, 100 fs) was used as a source for both
pump and probe pulses. The output of the amplifier was split into two beams. The first
beam pumped a Coherent OperA Solo optical parameter amplifier which converted the
800 nm input to a 2.48 eV (500 nm) output. We kept the pump excitation intensity low
(~2 µJ/cm2) to avoid possible exciton-exciton annihilation and non- linear effects. The
second beam generated a broadband white light continuum (WLC) from 0.8 eV to 1.55 eV
by focusing 800 nm light into a sapphire plate. The pump and probe beams were then
overlapped spatially on the thin film sample. The WLC transmitted through the sample
was sent to a fiber optics coupled linear array spectrometer. The pump-probe delay was
controlled by an optical line with a range of approximately 5 ns [31].

2.5. AFM Measurements

AFM topographic images and phase images were taken using the AAC mode with a
Keysight 5500 AFM/SPM system (Keysight Technologies, Inc., CO, USA). A Bruker’s Sharp
Nitride Lever probe, SNL-10, with a normal frequency of 65 kHz and a normal spring
constant of 0.35 N/m was used in the AFM scanning (Bruker AFM Probes, Camarillo,
CA 93012, USA).

2.6. SANS Measurements

Small-angle neutron scattering experiments were carried out at the NGB 30 m SANS
beamline at the NIST Center for Neutron Research (NCNR), National Institute of Standards
and Technology (NIST) [32]. Five instrumental configurations were used to collect SANS

data from q ≈ 0.001 to q ≈ 1.0 Å
−1

(q was the momentum transfer defined as q = 4πsin θ/λ,
with θ and λ being half of the scattering angle and neutron wavelength, respectively).
Neutron wavelength was 6 Å (wavelength spread ∆λ

λ ≈ 14%) at the sample-to-detector-
distances (SDDs) of 1 m, 4 m, and 13 m, which covers a q-range between q ≈ 0.003 and

q ≈ 0.5 Å
−1

. Low- q scattering data extended to q ≈ 0.001 Å
−1

(was collected using a

focused neutron beam at λ ≈ 8.4 Å. High- q (between q ≈ 0.5 and q ≈ 1.0 Å
−1

.) scattering
data were collected using 3 wavelength at a broader wavelength spread of ≈ 22%).

To obtain scattering from polymer films, scattering data from polymer films deposited
on silicon wafers and that from a blank wafer were measured separately, and then the scat-
tering from the blank wafer were subtracted with transmission coefficients of the samples
being handled properly. All 1D scattering profiles have been normalized to absolute scale.
Details of data reduction protocol can be found in Ref. [33].

3. Results and Discussion

Figure 1a shows the chemical structure of the donor PBnDT-FTAZ polymer, electron
acceptor PCBM molecule, and DIO additive, whereas Figure 1b shows the absorption
spectra of PBnDT-FTAZ:PCBM with and without DIO. Vibronic features below 650 nm
are reflected in the absorption spectra of both films. The intensities of the first two vi-
bronic peaks attributed as 0–0 and 0–1 transitions in the absorption spectra identify the
different types of aggregation [26]. When the 0–0 absorption is stronger than that of the
0–1 transition, the polymer is J-like, and when the reverse is the case, the material is
H-like aggregated. The DIO additive leads to slight differences in aggregation of PBnDT-
FTAZ:PCBM, which is reflected in the relative intensities of the 0–0 and 0–1 vibronic
transitions in the absorption spectra. The ratio of intensity of the 0–0 peak to 0–1 is 1.03
for the pristine PBnDT-FTAZ:PCBM blend, whereas it increases to 1.06 for the DIO-added
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blend peak, suggesting J-like aggregation in both blends [28,34]. However, as the ratio of
0–0 to 0–1 vibronic peaks increases with the addition of DIO, this suggests that the additive
can induce more J-aggregated behavior in the PBnDT-FTAZ:PCBM films. The slightly
red-shifted absorption in DIO-added blend further supports this assignment [24]. It has
been reported that PBnDT-FTAZ also shows more J-like behavior when it is blended with
non-fullerene acceptor and DIO is added [35]. The observed strong J-aggregation leads to a
stronger intrachain exciton coupling, planarization of the polymer backbone, enhanced
crystallinity, and a higher hole mobility [24,36]. The more J-like absorption characteristics in
the DIO-added blend are attributed to: (i) conformational changes, which may increase the
planarity of the polymer backbone, and (ii) a higher delocalization of the π -electron density
along the more planarized conjugation system, which may result in enhanced intrachain
exciton interactions [24]. These subtle conformational differences have direct consequences
on the head-to-tail interactions of the transition dipole moments of the chromophores,
which ultimately influence the spectral line shapes [37].
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Figure 1. (a) Chemical structures of PBnDT-FTAZ, PCBM and DIO, and (b) absorption spectra of PBnDT-FTAZ:PCBM with
and without DIO.

The ratio of 0–0 and 0–1 peak absorbance is related to the free exciton bandwidth
(W) [38] and the energy of the intermolecular vibration Ep. We calculated W of these
blended films using weakly interchain-coupled modified Frank-Condon model [28,39],

A0−0
A0−1

≈
(

1− 0.24W
Ep

1+ 0.73W
Ep

)2

, where A0−0 and A0−1 are peak absorbances from Figure 1b, and Ep

was obtained from the difference in energy of 0–0 and 0–1 absorbance peaks. We obtained
the exciton bandwidth (W) of −8.60 meV and −16.9 meV for the blend films with and
without DIO, respectively. The negative W further indicates the J-aggregate molecular
packing in these blends [28]. The different exciton bandwidths of these two blends indicate
that DIO addition does, in fact, alter the conjugation length of the polymer chain. In
reality, both coupling mechanisms are present in conjugated polymers, as described by the
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generalized HJ aggregation model [18,40]. It is noted that the H- and J-aggregate analysis
of steady-state polymer UV-Vis spectra has provided significant insights into the interplay
between structural and optoelectronic properties of polymers and unraveled some of the
physics behind the differences in measured spectral line shapes in solution, as well as the
amorphous and aggregated fractions of the material in the solid state [28,34,41].

In contrast to the absorption spectra, the steady state PL spectrum of the pristine blend
and DIO added blend films do not exhibit J-like character. The 0–1 emission is stronger
compared to the 0-0 transition (Figure 2a). The ratio of intensity of 0–0 peak to 0–1 is 0.88
and 0.97 for pristine PBnDT-FTAZ:PCBM and DIO added blend films respectively. This
difference, thus, suggests that the photo-excited species created in the absorption process
and those that recombine during the emission exhibit very different intra- and interchain
electronic interactions because there is a change in electronic coupling during the relaxation
process [42]. Spano et al. established the connection between the vibronic progression
and exciton delocalization through the ratio 0–0 to 0–1 photoluminescence intensity in
molecular aggregates [43]. This ratio is proportional to the exciton coherence length [44],
which is related to exciton delocalization [43]. Therefore, there can be slight differences in
the 0–0/0–1 ratios in the absorption and emission lines, because the PL is more sensitive
to the exciton coherence length, while the absorption is more sensitive to the free exciton
bandwidth. As a result, it is common to observe stronger characteristics of one type over
the other when comparing absorption and emission profiles. In general, though, within the
Spano model, the emission is not completely symmetrical with the absorption [23].
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The spectroscopic measurements, such as ground-state absorption and PL, provided
the information about the effect of DIO in polymer aggregation and exciton delocalization
in PBnDT-FTAZ:PCBM. To understand the interrelation between the exciton delocaliza-
tion and the charge transfer, we measured the PL of the neat PBnDT-FTAZ and blended
films. Comparison of the PL between the blended and the neat films indicates quench-
ing of polymer photoluminescence. We observed the 73% PL-quenching efficiency in the
pristine blend, whereas it is 78% in the DIO-added blend (Figure 2b). The increased PL-
quenching efficiency in the DIO-added blend suggests the increase in charge separation
in this blend [45,46]. The PL quenching is the indicator of the exciton splitting at the
donor–acceptor interface and provides the indication of an upper limit to the yield of
dissociated charges [46]. As the PL is insensitive to the non-radiative species, such as
polaron pairs, charges, etc., we utilized TAS—a widely used technique that is crucial for
detecting non-luminescent species, such as polarons/charges or polaron pairs, and their
time evolution.



Polymers 2021, 13, 115 6 of 11

Figure 3 shows the TAS spectra, the exciton, and charge (polaron) separation dynamics
of pristine and DIO added PBnDT-FTAZ:PCBM blends. Figure 3a,b show the transient
absorption spectra at different time delays after the samples are excited using pump pulses
tuned to 2.48 eV (500 nm). The transient absorption spectrum of both blends exhibits
two features at ~1250 nm and ~880 nm. Based on the previously published results on
conjugated polymers, we assign these two peaks to the excited-state absorption of the
polymer singlet exciton and polaron, respectively [10,47–49]. Exciton and polaron dynamics
were monitored by plotting the time evolution of the features at ~1250 nm and ~880 nm.
The averaged exciton lifetimes, obtained from double exponential function, are 4.1 ps and
2.6 ps for the pristine and the DIO added blend, respectively, indicating that the electron
transfer from PBnDT-FTAZ to PCBM is more favored in the DIO added blend (Figure 3c).
The polaron lifetimes for pristine and the DIO added blend are 365 ps and 420 ps with
30% and 35% respective residual charges at 5 ns (Figure 3d). These results indicate the
efficient electron transfer and long-lived charge generation in the DIO added blend. These
observations are consistent with the improved fill factor and higher short circuit current
density observed in the 3% DIO added PBnDT-FTAZ:PCBM solar cell device compared to
that of 0% DIO PBnDT-FTAZ:PCBM device [45].
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To verify that the changes in optical properties are microstructural in origin, we
studied the surface morphology of these thin films using AFM. Figure 4 shows the AFM
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topographic and phase images of PBnDT-FTAZ:PCBM blend films with 0% and 3% DIO.
We observed morphological changes in the PBnDT-FTAZ:PCBM blend upon the addition
of DIO. Specifically, under the same AFM scanning conditions, the 3% DIO-added blend
formed a firmer surface with less drifting (Figure 4c,d) than that of the PBnDT-FTAZ:PCBM
blend without DIO (Figure 4a,b) in the AFM images. Statistical analysis showed a 0.84 µm2

surface area increment for the 3% DIO-added blend compared to the only 0.61 µm2 in-
crement for the 0% DIO-added blend at a 9 µm2 range, with a significant 37.7% increase.
The phase image median root mean square (RMS) was measured to be 0.14 deg for the
3% DIO-added and 0.024 deg for the 0% DIO-added (Table 1). These facts suggest an
increased phase separation between the PBnDT-FTAZ polymer and PCBM and more rigid
aggregates formed after adding 3% DIO—a desired effect for efficient charge generation
and transport. These observations are consistent with optical spectroscopy data, which
show more exciton delocalization, efficient electron transfer, and long-lived charges in the
DIO-added PBnDT-FTAZ:PCBM blend.
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We extended our morphological study by performing SANS measurements. Figure 5a
shows SANS profiles of PBnDT-FTAZ: PCBM films with and without DIO. The SANS pro-

files are distinctly different in three aspects. First, in the high- q region between q ≈ 0.2 Å
−1

and q ≈ 1.0 Å
−1

, two scattering maxima can be clearly observed for the film with 3% of
DIO. Those are Bragg peaks originated from the close packing of the PCBM particles. The
peaks intrinsically are broad due to the order of packing and to the instrumental broad-
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ening (particularly associated with the neutron wavelength spread). Nevertheless, the
positions of the first and the second peaks can be approximately identified at q ≈ 0.33 and

q ≈ 0.65 Å
−1

which is consistent with reported body-centered cubic (BCC) packing [50],
allowing uncertainties associated with the broad peaks.

Table 1. Summary of Statistical Quantities of AFM Images.

Sample Statistical Analysis

PBnDT-FTAZ: PCBM Blend Film with 0% DIO Surface Area: 9.611 µm2; Projected Area:
9.000 µm2; RMS of Phase Image: 0.024 Deg

PBnDT-FTAZ: PCBM Blend Film with 3% DIO Surface Area:9.844 µm2; Projected Area:
9.000 µm2; RMS of Phase Image: 0.14 Deg
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The second peak was absent in the scattering profile from the sample without DIO,
which might be due to the more severe disorder of packing, given that the two samples were
measured using the same instrumental configurations. Second, a broad ‘shoulder’ shows

in the intermediate- q region between q ≈ 0.004 and q ≈ 0.02 Å
−1

for both the profiles. The
‘shoulder’ is a manifestation of interference of waves scattered from nanoscale domains.
Note that for the polymer film with 3 % of DIO, the ‘shoulder’ shifts toward higher- q,
suggesting that the domain is smaller as compared with that of the film without DIO. The
slight change of the position of the ‘shoulder’ can be clearly seen in the Iq2 versus q plot

(in-set of Figure 5a), where the maxima are at ≈ 0.0087 and q ≈ 0.011 Å
−1

, respectively, for
the samples without and with 3 % DIO. This is corresponding to a shrinkage of domain
size from ≈ 7.2 nm to ≈ 5.7 nm (estimated using, 2π/qm with qm being the position of the
maximum in the Iq2 versus q plot), owing to the addition of DIO. Third, the two profiles
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show scattering upturns in the region of q <≈ 0.02 Å
−1

for both profiles. The upturns
phenomenologically follow a power-law decay, and the sample with 3 % DIO shows a
larger asymptote, which suggests the existence of larger macroscopic aggregates with the
sizes being out of the probe limit of SANS.

Combining all the observations, hierarchical structures in the PBnDT-FTAZ:PCBM
films can be assessed, which is schematically shown in Figure 5b. PCBM particles are
dispersed in polymer matrix, forming nanoscale domains. DIO can promote close packing
of PCBM, which causes two consequences. On one hand, the PCBM domain size is smaller
in the polymer film with DIO, as compared with that without DIO. On the other hand, the
domains with more closely packed PCBM tend to form aggregates at an even larger length
scale [51,52].

4. Conclusions

In this work, we prepared the pristine and DIO-added PBnDT-FTAZ:PCBM blend
films to investigate the role of 1,8-diiodooctane additive on optical properties. We observed
the changes in aggregation, exciton delocalization, electron transfer efficiency from donor
to acceptor, and charge generation when 3% DIO was added to the pristine blend solution.
Ground-state absorption and PL measurements indicate longer conjugation length and
more exciton delocalization in DIO-added PBnDT-FTAZ:PCBM, whereas higher charge
separation ability at the interface was observed in this blend in the TAS measurement. In
addition, the AFM and SANS data indicate the greater phase separation and the aggre-
gate formation in this blend. Our work indicates that the molecular conformation and
aggregation changes caused by the DIO additive can result in the contrast in the device
performance of fullerene-based PSCs. This suggests that understanding and controlling
the microstructures of polymer-blend films using additives is important for optimizing the
performance of PSCs.
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