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Abstract

The routing number is a graph invariant introduced by Alon, Chung, and Gra-

ham in 1994, and it has been studied for trees and other classes of graphs such as

hypercubes. It gives the minimum number of routing steps needed to sort a set

of distinct tokens, placed one on each vertex, where each routing step swaps a

set of disjoint pairs of adjacent tokens. Our main theorem generalizes the known

estimate that a rectangular grid graph R with width w(R) and height h(R) sat-

isfies rt(R) ∈ O(w(R)+h(R)). We show that for the subgraph P of the infinite

square lattice enclosed by any convex polygon, we have rt(P ) ∈ O(w(P )+h(P )).
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sorting
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1. Introduction

Routing number is an invariant of graphs, defined by Alon, Chung, and

Graham [1]. Given a connected graph G on n vertices, we imagine tokens

labeled 1 through n sitting on the vertices of G in some order, with exactly

∗Corresponding author
Email addresses: hcalpert@auburn.edu (H. Alpert), rjbarnes@hmc.edu (R. Barnes),

scbell@willamette.edu (S. Bell), amauro@stanford.edu (A. Mauro),
n_nevo@coloradocollege.edu (N. Nevo), tuckent18@juniata.edu (N. Tucker),
hannay@mit.edu (H. Yang)

Preprint submitted to Computational Geometry March 1, 2022



one token per vertex. That is, the tokens specify a bijection between the set5

of vertices and the set of token labels {1, 2, . . . , n}. We refer to each of the n!

bijections as a configuration of labeled tokens on G. We imagine transforming

one token configuration into another using a sequence of routing steps, defined

as follows. In each routing step, we may select any set of disjoint edges in G,

and for each edge, swap the tokens on the two vertices of that edge. The result10

is another token configuration.

For any two token configurations, there is a sequence of routing steps we can

apply to the first configuration to transform it into the second configuration.

To see this, take a spanning tree of G, and move the tokens into position one

at a time, starting with the leaves and moving inward. Thus, we may define15

the distance between any two configurations to be the least possible number

of routing steps that can be used to transform one configuration into the other.

The routing number of G, denoted rt(G), is the maximum, over all pairs of

token configurations, of the distance between the two configurations.

In our main theorem, the graphs we consider are induced subgraphs of the20

infinite grid graph, which has vertex set Z×Z and an edge between each pair of

vertices with Euclidean distance 1. Given a convex polygon P ⊆ R2, we define

the convex grid piece cut out by P to be the graph GP with vertices at all

lattice points in and on P , and edges between pairs of lattice points of distance

1. In the remainder of the paper, we use the letter P for both the polygon and25

the graph, using the notation rt(P ) to mean rt(GP ). Although there are some

convex polygons P for which the graph GP is disconnected, the routing number

is defined only when GP is connected. Note also that when P is translated or

rotated, the graph changes, and so the routing number may change slightly.

Our main theorem bounds rt(P ) in terms of the width and height of P .30

The width w(P ) and height h(P ) are the maximum absolute differences in x-

coordinates and in y-coordinates, respectively, of any pair of points in P .

Theorem 1. Let P be a connected convex grid piece. Then the routing number

of P satisfies the bound rt(P ) ≤ C(w(P ) + h(P )) for some universal constant
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C.35

In other words, we have rt(P ) ∈ O(w(P ) + h(P )). The reverse inequality is

immediate: the diameter of P is within a constant factor of w(P ) + h(P ), and

the routing number of any graph is at least its diameter, because a token may

need to travel between two farthest vertices. Thus we may estimate rt(P ) as

Θ(w(P ) + h(P )).40

One motivation for studying the routing number of convex grid pieces is as

a discrete model of configuration spaces of disks. Given a region R in the plane,

such as a convex polygon, the configuration space Confn,r(R) as defined in [2]

is the space of all ways to arrange n disjoint, labeled disks of radius r inside R;

we refer to each of these arrangements as a configuration. If the configuration45

space is connected, we can define the distance between two configurations to

be the amount of time it takes to move between them if the disks can move

simultaneously, each with speed at most 1. Roughly, the maximum distance

between two configurations corresponds to the routing number of the grid piece

cut out by R; one major difference is that the routing number does not account50

for what proportion of R is covered by disks, simplifying the problem.

Whereas the routing number of graphs has clear significance in terms of rout-

ing information through computer networks, configuration spaces of disks have

their own concrete applications. The 3-dimensional version of disk configuration

spaces is the hard spheres gas model, in which the disks (or spheres) represent55

individual molecules moving around in a container; see [3, 4] for exposition on

the hard spheres model. If the molecules are densely packed, they can only

rattle in place, as in a solid; if there is a lot of space, they can move almost

independently, as in a gas, and at intermediate densities the configuration space

is somehow like that of a liquid. Another interpretation of configuration spaces60

of disks imagines each disk as a robotic car, moving around in an enclosed room

such as a warehouse floor. The geometry and topology of the configuration

space constrains what instructions may be used to coordinate the motion of the

robots, as in Farber’s “topological complexity” [5]. All of these applications in-
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volve a requirement to avoid collisions, which corresponds in the routing number65

setup to the requirement that no two tokens can occupy the same vertex.

Researchers interested in the robotic car interpretation have made various

discrete models of configuration spaces of disks; see, for instance, [6, 7, 8].

Typically a discrete result is proved for a rectangular grid, and then the discrete

result implies a continuous result about configurations of disks in a rectangular70

region. Although restricting attention to a rectangular regions may seem like a

minor assumption, the proof structure of the discrete results tends to rely on the

rectangular shape. The reason is that rectangles are self-similar: a rectangular

grid is a union of smaller rectangular blocks, with the blocks arranged again in a

rectangular grid pattern. For robotic cars moving in a round disk, for example,75

these self-similarity properties do not apply.

Thus, the purpose of our theorem is to prove a discrete result for regions that

are not necessarily rectangular. The proof is for convex regions because the claim

is not true for arbitrary nonconvex regions; for grid pieces cut out by nonconvex

polygons, the bound on routing number is about as bad as for arbitrary trees,80

which are the hardest to route of all graphs. Although considering routing

number of convex grid pieces is just one possible discrete model for configuration

spaces of disks, we hope that the proof method suggests the steps needed to

prove such a result for other discrete models as well. Some models allow a large

loop of tokens to cycle by one step simultaneously, rather than only allowing85

adjacent pairs to swap. This is similar to the continuous case, where a long

line of disks can slide simultaneously toward an open space. Because our main

theorem is an upper bound on routing number, it also implies an upper bound

on routing in the more permissive model where cycling requires fewer steps.

To prove the theorem, we first construct an algorithm for routing tokens on a90

special class of convex grid pieces, which we call ramp-like polygons. This class

generalizes both rectangles and right triangles, and the recursive algorithm is

fairly technical. Then, we prove that bounds on routing number for some graphs

imply bounds on routing number for other graphs: if we can route ramp-like

polygons, then we can route polygons cut into two (and then four) ramp-like95

4



Figure 1: Given an arbitrary convex polygon, as shown on the left, our overall proof strategy

is to shear it by at most 45◦ to get a “burger bun” polygon, where the top and bottom are

vertically aligned as shown in the middle. This burger bun polygon can be cut vertically into

two pieces, and then horizontally into four “ramp-like” pieces, as shown on the right. We

show how to route within each of the four pieces, then within each of the two pieces, then

within the burger bun polygon, and then within the original polygon.

pieces, and then if we shear these polygons by at most 45 degrees, we can still

route the result. Using these reductions we show the bound for all convex grid

pieces. Figure 1 depicts the conceptual flow of the strategy.

Section 2 contains definitions and lemmas needed for the rest of the paper.

In Section 3, we prove the routing number bound for the class of ramp-like100

polygons (defined in Section 2). In Section 4, we extend the bound to a more

general class which we call burger bun polygons (defined in Section 2), each

of which can be cut into four ramp-like pieces. In Section 5 we extend the

bound to arbitrary convex polygons, using the fact that they can be obtained

from burger bun polygons using a shear transformation of at most 45 degrees.105

Section 6 contains some questions for further study.
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2. Preliminaries

In this section, first we give definitions needed for the rest of the paper.

Then in Theorems 2, 3, and 4 we state the known results on routing number

that we need. Finally in Lemmas 5 and 6 we prove two lemmas that we use115

in multiple later sections, showing that adding a small number of vertices to a

graph does not increase the routing number by too much.

We define ramp-like polygons and burger bun polygons to be special classes

of convex polygons in the plane. A ramp-like polygon is a convex polygon

that shares two edges with its bounding box. That is, there is a rectangle120

containing our polygon with vertices (x1, y1), (x1, y2), (x2, y1), (x2, y2), such that

(at least) three of these vertices are vertices of our convex polygon. A burger

bun polygon either has top and bottom points on the same vertical line, or has

leftmost and rightmost points on the same horizontal line. That is, either there

are two points (x, y1) and (x, y2) such that all the y-coordinates in the polygon125

are in the interval [y1, y2], or there are two points (x1, y) and (x2, y) such that

all the x-coordinates in the polygon are in the interval [x1, x2]. Some examples

of each of these polygons can be seen in Figure 2.

(a) (b)

Figure 2: (a) Ramp-like polygons share at least two sides with their bounding boxes (drawn

with dashed lines) and (b) burger-bun polygons either have top and bottom points on the

same vertical line, or have leftmost and rightmost points on the same horizontal line.

We have defined the routing number rt(G) of a graph G to be the minimum

number of routing steps needed to get from any permutation of labeled tokens130

on the vertices of G to any other permutation. Sometimes, instead of having

a different label for each token, it helps to consider just two distinct types

of tokens, for instance, black tokens and white tokens. Equivalently, we can
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consider all of the tokens to be identical, but have some vertices with no tokens

on them, so that instead of black tokens and white tokens, we have vertices with135

tokens and vertices without tokens. We define the unlabeled routing number

of G, denoted urt(G), to be the minimum number of routing steps needed to get

from any arrangement of black and white tokens, one token per vertex of G, to

any other arrangement with the same number of black and white tokens. That

is, we take the maximum, over all k and all pairs of arrangements with k black140

tokens and |V (G)| − k white tokens, of the minimum number of routing steps

needed to get from one arrangement to the other. As before, each routing step

consists of selecting a set of disjoint edges of G and swapping the two tokens

on the ends of each edge. Sometimes we refer to routing number as labeled

routing number to distinguish it from unlabeled routing number.145

For reference we state the theorems estimating the routing numbers of paths,

trees, and rectangular grids. The versions that follow are sufficient for our use

in this paper, and the proofs can be found in [1].

Theorem 2 (Path bound). For a path P with n vertices, we have rt(P ) = n.

Theorem 3 (Tree bound). For a tree with n vertices, and thus for any connected150

graph G with n vertices, we have rt(G) ≤ 3n.

Theorem 4 (Rectangle bound). For a p by q rectangular grid graph Rp,q, we

have

rt(Rp,q) ≤
3

2
(p+ q).

The two lemmas in the remainder of this section are stated in terms of

lattice graphs, which we define to be graphs G such that the vertex set is a

set of points (x, y) ∈ Z×Z, and there is an edge between two vertices whenever

the Euclidean distance between them is exactly 1. Our notation sometimes155

conflates polygons, graphs, and their vertex sets. When we use set operations

on graphs, we typically mean that the operation should be done on the vertex

sets, and then we should consider the induced subgraph of Z×Z determined by

the resulting set of vertices. We use the notation w(G) and h(G) for the width
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K H

S S′

Figure 3: Left: The skin set S (shown with gray background) is part of the core set K, and

its union with the hair set H is connected. In the starting token configuration, the tokens

belonging in H are shown in black. Middle: In the first routing phase, we move the tokens

within K so that those belonging in H occupy S and the vertices nearest to S. The union of

these vertices with H is S′ (shown outlined by dashes). Right: Next, we route within S′ so

that the tokens belonging in H move to their home positions.

and height of a lattice graph G, defined similarly to the width and height of a160

polygon.

In the rest of the paper, we will often trim off, or add on, small or skinny

parts of our graphs that do not significantly change the routing numbers. The

following lemma makes that operation precise. In the statement of the lemma,

the words “core”, “hair”, and “skin” do not have any definition beyond what165

appears in the lemma statement, but are meant to aid in remembering the roles

of the various subgraphs.

Lemma 5. Let G be a connected lattice graph, with its vertices partitioned into

sets K (“core”) and H (“hair”). Suppose that

1. There are at most c1 · (w(G) + h(G)) vertices in H;170

2. There is a set of vertices S ⊆ K (“skin”) containing at most c2 · (w(G) +

h(G)) vertices, such that the induced subgraph S ∪H is connected; and

3. The routing number of K is at most c3 · (w(G) + h(G)).

Then, we have rt(G) ≤ (6c1 + 3c2 + 2c3)(w(G) + h(G)).
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Proof. Figure 3 shows an example of a core K, skin S ⊆ K, and hair H, and175

summarizes the routing steps.

First we route within K so that the tokens in K that belong in H have the

following property: no token in K that belongs in H has a greater distance to

S than a token in K that does not belong in H. That is, for the tokens in K

belonging in H, we move them to fill S first, then to fill the vertices at distance180

1 from S, and so on. This first phase takes at most c3(w(G) + h(G)) routing

steps, by the hypothesis on the routing number of K.

Next, we consider the induced subgraph S′ of G containing H, S, and any

other vertices with tokens belonging in H. Because of the previous step and

the fact that H ∪ S is connected, we know that S′ is connected. It has at most185

2 |H| + |S| ≤ (2c1 + c2)(w(G) + h(G)) vertices, by the hypotheses on the sizes

of H and S. Thus, if we use the routing method in Theorem 3 to route along

the spanning tree of S′, we may use at most 3(2c1 + c2)(w(G) + h(G)) routing

steps on S′ to move all the tokens belonging in H to their home vertices.

Finally, we route within K to move all the tokens belonging in K to their190

home vertices. The total number of routing steps is at most (6c1 + 3c2 +

2c3)(w(G) + h(G)).

Sometimes the “skin” set S is very easy to describe, but in the final proof we

need to be able to find the skin set of an arbitrary convex grid piece (as defined

in the introduction). The following theorem describes how to do so.195

Lemma 6. Let P ⊆ R2 be a convex polygon, and suppose that the corresponding

convex grid piece K is a connected graph. Then there is a connected subgraph S

of K containing at most 2(w(K) + h(K)) vertices, with the following property:

if G is a connected lattice graph containing K, then S ∪ (G \K) is connected.

Proof. The process of constructing S is shown in Figure 4; there, S is the200

subgraph shown with thick edges inside the polygon. We think of S as the

circuit enclosing K; informally, if we cut the plane along all the edges of K, we

get many unit square pieces and one unbounded piece, and S is the boundary

of the unbounded piece. To be more precise, we start with the loop P , which
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Figure 4: The circuit S is obtained by replacing each edge of P with a path in K which is

the boundary of the grid square polygon formed by taking the union of grid squares that E

passes through.

we may assume is the boundary of the convex hull of K. Then for each edge E205

of P , we modify the loop in the following way. The two ends of E are lattice

points, and we consider the union of grid squares that E passes through. This

union is some polygon with 180◦ rotational symmetry (probably non-convex),

and E cuts it into two halves.

We claim that one of the rotationally symmetric halves of the boundary of210

this grid-square polygon is completely contained in the graph K. To see this,

suppose to the contrary that another edge F of P also passes through a grid

square that E passes through. Then we can draw a line segment from one point

on E to one point on F in the interior of this grid square, and this line segment

cuts P into two pieces in a way that separates the two vertices of E but does not215

intersect the graph K. This contradicts the assumption that K is connected.

Thus, one half of the boundary of the grid-square polygon determined by E

is a path in K, and in our loop P , we may replace E by this path in K. By

doing these replacements on all edges of P , we obtain a circuit in K, and we let

S be the set of all vertices and edges in this circuit. S is connected, by following220

the circuit.

For each row of vertical edges inK, our subgraph S contains only the leftmost

and rightmost, and for each column of horizontal edges in K, our subgraph S

contains only the topmost and bottommost. Thus the circuit traverses 2h(K)

vertical edges and 2w(K) horizontal edges, and the same number of vertices, so225
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there are at most 2(w(K) + h(K)) vertices in S.

Suppose thatG is a connected lattice graph containingK, and letH = G\K.

Consider any edge e from H to K. We claim that its vertex v in K is in S.

In the case where v is on the boundary of the polygon P , we know that v is in

S because our replacement process to transform from the boundary loop of P230

to the circuit S does not touch the vertices on the loop. Otherwise, the edge

e crosses from inside P to outside P , so it crosses an edge E of P . Then E

crosses the two grid squares containing e, and so the vertex v on their boundary

is part of S. Then, to show that S ∪ H is connected, consider any path in G

between two vertices of S ∪H. It alternates between sequences of vertices in H235

and sequences of vertices in K, and we have just shown that each K sequence

begins and ends with vertices in S. Thus, we may replace each K sequence by

an S sequence to get a walk in S ∪H connecting the same two vertices.

3. Ramp-like polygons

The purpose of this section is to prove Theorem 11, which bounds the routing240

number of ramp-like polygons. Subsection 3.1 contains all of the proof except

for two big lemmas, which we save for their own subsections: the monotonic

configuration theorem (Theorem 9) is proved in Subsection 3.2, and the column

preparation lemma (Lemma 10) is proved in Subsection 3.3.

3.1. Ramp-like routing overview245

When routing within ramp-like polygons, the way we use the ramp-like ge-

ometry is by defining a slightly more general property of the induced graph,

and then using that graph property in the routing. The following definition is

illustrated by Figure 5.

Definition 1. A ramp-like graph R is a finite induced subgraph of the infinite250

lattice graph Z× Z with the following properties:

1. Rows are contiguous, and start at x-coordinate 0: if (x, y) ∈ V (R), then

(i, y) ∈ V (R) for 0 ≤ i ≤ x. When we give row numbers, we number
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Figure 5: A ramp-like graph is shown above. The convex hull of its vertices, in gray, is a

ramp-like polygon. The discretely convex border property says that the differences between

row lengths roughly increase from bottom to top, failing to increase by at most 1.

the rows by their y-coordinates, so that the row numbers increase from

bottom to top rather than from top to bottom.255

2. Columns are contiguous, and start at y-coordinate 0: if (x, y) ∈ V (R),

then (x, i) ∈ V (R) for 0 ≤ i ≤ y. When we give column numbers, we

number the columns by their x-coordinates.

3. R has discretely convex border: if ni denotes the greatest x-coordinate

among all vertices with y-coordinate i, then for all i > j ≥ c > 0, we have260

ni−c − ni ≥ nj−c − nj − 1.

The intuition behind the third property is to think of R as being cut out

from the first quadrant by the sideways graph (f(y), y) of a function f . If f

cuts out a convex shape, then for any constant c, the function f(y− c)− f(y) is

increasing in y. However, the resulting lattice graph only satisfies the inequality265

with the term of −1 included, as in Figure 5.

Lemma 7. The convex grid piece R cut out by any ramp-like polygon P is

isomorphic to a ramp-like graph.

Proof. We may assume that P is the convex hull of its enclosed lattice points.

By translating P and rotating by some multiple of a right angle, we may assume270

that the two sides of P that coincide with sides of its bounding box are along

the positive x-axis and the positive y-axis. Then the rows and columns are

contiguous and start at 0, so it remains to check the third property, about

having discretely convex border.

We consider the rightmost vertices in the rows of R with the y-coordinates275

i, i − c, j, and j − c, with i > j ≥ c > 0. They are (ni, i), (ni−c, i− c), (nj , j),
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and (nj−c, j − c), respectively.

We note that by convexity of the ramp-like polygon P , the convex hull of

(ni, i), (nj−c, j − c), (ni, 0), (nj−c, 0) is contained in P . We know that (ni−c +

1, i− c) and (nj +1, j) are not in P , so they also must not be in the convex hull280

of (ni, i), (nj−c, j− c), (ni, 0), (nj−c, 0). Thus, the lattice points (ni−c+1, i− c)

and (nj + 1, j) must be to the right of the line segment between (ni, i) and

(nj−c, j − c). We let s be the slope of this segment, and compare this slope to

the slopes of the segments from (ni, i) to (ni−c + 1, i − c) and from (nj + 1, j)

to (nj−c, j − c), as in Figure 6.285

...

· · ·

i

i− c

j

j − c

Figure 6: The slope of the solid line, s must be steeper (more negative) than the slope of

the upper dashed line, −c
(ni−c+1)−ni

, and shallower (less negative) than the slope of the lower

dashed line, −c
nj−c−(nj+1)

.

We note that if s is undefined, then each row between i and j − c must

contain ni = nj−c vertices, so the inequality must be true. Otherwise, the slope

of the segment from (ni, i) to (ni−c+1, i−c) is −c
(ni−c+1)−ni

, and the slope of the

segment from (nj +1), j) to (nj−c, j − c) is −c
nj−c−(nj+1) , and the three negative

slopes are ordered as

−c
nj−c − (nj + 1)

< s <
−c

(ni−c + 1)− ni
.

Taking absolute values and comparing the denominators, we have

nj−c − (nj + 1) < (ni−c + 1)− ni,

and since both sides are integers, this is equivalent to our desired inequality

ni−c − ni ≥ nj−c − nj − 1.
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The main goal of this section is to prove the following bound on the unlabeled

routing number of ramp-like graphs. This bound implies the corresponding

bound for labeled routing number relatively easily.

Theorem 8 (Unlabeled ramp-like bound). There is a constant C such that for

any ramp-like graph R, the unlabeled routing number of R satisfies the bound

urt(R) ≤ C · (w(R) + h(R)),

where w(R) and h(R) denote the width and height of R as a lattice graph.290

Given any k, we define the row-major order configuration of k black tokens

and |V (R)| − k white tokens on the graph R as follows: we order the vertices

in R by row from top to bottom, and within each row from left to right, and

we take the configuration in which all of the black tokens appear before all of

the white tokens. To prove the unlabeled ramp-like bound, we start with an295

arbitrary configuration of black and white tokens on R, and describe how to

route from this configuration to row-major order.

The process for arbitrary ramp-like graphs is considerably more complicated

than it is for rectangular grids. On a rectangular grid, given a configuration

of black and white tokens, we can move them within their rows to get the300

right number of each color into each column, and then move them within their

columns to achieve row-major order. An arbitrary ramp-like graph may be

much narrower at the top than at the bottom, so our starting configuration

could be a few wide rows of black tokens along the bottom, which we want to

move to form several narrow rows at the top. In this case we would need to305

alternate between horizontal and vertical motion several times to move between

the configurations. Whatever the starting configuration is, our first phase is to

route to what we call a monotonic configuration.

Definition 2. We say a configuration of tokens on a ramp-like graph R is

left-aligned if for every black token on some (x, y) ∈ V (R), there is also a310
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black token on (x − 1, y) ∈ V (R), or (x − 1, y) /∈ V (R). Similarly, we say a

configuration of tokens is up-aligned if for every black token on some (x, y) ∈

V (R), either there is also a black token on (x, y+1) ∈ V (R), or (x, y+1) /∈ V (R).

Additionally, we say a given black token is left-aligned or up-aligned if it satisfies

the corresponding condition stated above.315

We say a configuration ismonotonic if it is both left-aligned and up-aligned.

Examples of configurations with each of these properties can be seen in Figure 7.

Figure 7: (a) A left-aligned configuration of tokens, (b) an up-aligned configuration of tokens,

and (c) a monotonic configuration of tokens.

We note that routing all black tokens such that they are as far up or left

as possible within their column or row results in an up-aligned or left-aligned

configuration, respectively. We abbreviate the process of routing all black tokens320

as far up as possible (within their column) with the phrase “pushing up,” and

routing all black tokens as far left as possible (within their row) with “pushing

left.”

The following theorem describes a process sufficient for moving the tokens

to a monotonic configuration.325

Theorem 9 (Monotonic configuration). For any configuration X0 of black and

white tokens on a ramp-like graph, after pushing the black tokens up, then left,

then up, then left, the new configuration of tokens is monotonic.

Proving the monotonic configuration theorem (Theorem 9) is the most tech-

nical aspect of routing within ramp-like polygons, and the proof appears in330

Subsection 3.2. After routing to a monotonic configuration, we are in a better

position to move the tokens to the correct columns, after which all that remains

is to push up all the black tokens to get to row major order. Our proof that we
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can move the tokens to the correct columns sufficiently quickly is by induction

on the number of rows in our graph. To do this, we want to partition the graph335

into a top slice (denoted by Rm1−1 in the next lemma) and a bottom slice and

route the two slices separately; that is, we want a way to move the tokens to the

correct columns without crossing between the two slices. The next lemma states

that this division into top and bottom is possible. For the lemma statement,

we denote the number of vertices in the y = i row by 1 + ni, so that as before340

the x-coordinates of those vertices range from 0 to ni.

Lemma 10 (Column preparation). Let R be a ramp-like graph with m rows

(that is, from y = 0 through y = m− 1), and let Ri denote the induced subgraph

of R consisting of the top i rows (that is, from y = m − i through y = m − 1).

Let X be a monotonic configuration on R with t black tokens, and let m1 be

such that
m1−1∑︂
i=1

(1 + nm−i) < t ≤
m1∑︂
i=1

(1 + nm−i),

meaning that t black tokens can fit on the vertices of Rm1 , but are not able to fit

on the vertices of Rm1−1. Then, there exists a configuration Y on R such that

1. Rm1−1 contains the same number of tokens of each color in Y as in X,

and345

2. In Y , each column of R contains the same number of tokens of each color

as there are in row major order.

The proof of the column preparation lemma (Lemma 10) is also fairly tech-

nical, and it appears in Subsection 3.3. Outside of the proof of the lemma, we

do not need to remember the definition of m1; rather, what is important is the350

conclusion of the lemma, which makes Rm1−1 the top slice and the remainder

of R the bottom slice. It would be more intuitive to choose the top slice to be

Rm1
, but then in the case where Rm1

is the whole graph R, we would not be

able to apply the inductive hypothesis to it. Thus, we choose the top slice to be

Rm1−1. Assuming the monotonic configuration theorem (Theorem 9) and the355

column preparation lemma (Lemma 10), we can finish proving the upper bound

on unlabeled routing number of ramp-like graphs.
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Proof of unlabeled ramp-like bound (Theorem 8). Let m be the number of rows

in our ramp-like graph R, and let µ be the number of columns. If m or µ is

1, then R is a path, which we already know how to route by the path bound360

(Theorem 2). Thus, we may assume that w(R) and h(R) are both at least 1.

In this case, we have µ = w(R) + 1 ≤ 2w(R) and m = h(R) + 1 ≤ 2h(R), so it

suffices to find a constant C such that we can move an arbitrary configuration

of black and white tokens to row-major order in at most C(m+µ) routing steps.

Let C0 be the constant from the rectangle bound (Theorem 4) such that a365

rectangular grid with p rows and q columns has unlabeled routing number at

most C0(p+ q).

First we show by induction on m that the process in the column preparation

lemma (Lemma 10) of moving from configuration X to configuration Y can

be accomplished in at most C0(m + µ) moves. In the base case m = 1, our370

ramp-like graph is a path of length µ, which is already rectangular. For m > 1,

we partition the ramp-like graph R into three parts: the upper ramp-like shape

Rm1−1, the rectangular piece containing the row below Rm1−1 and all vertices

directly below this row, and the ramp-like graph consisting of columns to the

right of the rectangular piece (Figure 8).375

To move from configuration X to configuration Y , we apply the inductive

hypothesis to Rm1−1 while simultaneously routing within the rectangular piece;

the graph to the right of the rectangular piece has no tokens in it, so it does

not need any routing. Because Rm1−1 has strictly fewer rows than the original

graph R, the inductive hypothesis applies. The rectangular piece has at most380

m rows and at most µ columns, so it requires at most C0(m+ µ) routing steps

to move from X to Y , and by the inductive hypothesis, Rm1−1 also requires at

most C0(m+ µ) routing steps. Performing the steps simultaneously completes

the induction.

Given an arbitrary token configuration X0 on the ramp-like graph R, we385

start by pushing all the tokens up, then left, then up, then left, which by the

monotonic configuration theorem (Theorem 9) gives a monotonic configuration.

We apply the column preparation lemma (Lemma 10) to the resulting monotonic
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X Y

Figure 8: R is partitioned into Rm1−1 (light gray), a rectangle, and a subgraph to the right

of the rectangle (dark gray). Rm1−1 is routed using the inductive hypothesis, and in parallel,

the rectangular piece is routed to produce a configuration, which, when pushed up, is in row

major order. The subgraph to the right of the rectangle contains no black tokens either in

the monotonic configuration X or in row-major order.

configuration, and then we push all the tokens up to get to row-major order.

By the path bound (Theorem 2) it takes at most m routing steps to push up390

and at most µ routing steps to push left, so the total number of routing steps

to get to row-major order is at most 3m+ 2µ+ C0(m+ µ) ≤ (3 + C0)(m+ µ).

Given any two configurations of the same set of white and black tokens

on R, we can route from one to the other by routing the first into row-major

order, and then routing from row-major order to the second. Thus, if we choose395

C = 4(3+C0), we can route between the two configurations in 2(3+C0)(m+µ) ≤

C(w(R) + h(R)) routing steps.

We can use the bound on unlabeled routing number of ramp-like graphs

to give a bound on labeled routing number, by dividing the graph into four

quadrants and applying recursion.400

Theorem 11 (Labeled ramp-like bound). There is a constant C such that for

any ramp-like polygon P , the routing number of P satisfies the bound

rt(P ) ≤ C · (w(P ) + h(P )).

Proof. The idea of the proof is to divide P into quadrants, each with width at
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most 1
2w(P ) and height at most 1

2h(P ). Using the unlabeled ramp-like bound

(Theorem 8), we can move each token into the correct quadrant. Then, each

quadrant is ramp-like, so we can apply recursion to route within all four quad-

rants simultaneously, as shown in Figure 9.405

Figure 9: P is divided into four quadrants, and all tokens are routed into the correct quadrant

using unlabeled routing twice. Then, this process is repeated recursively for each quadrant,

simultaneously.

We may assume that the vertical and horizontal sides that P shares with

its bounding box have rational x-coordinate and y-coordinate, respectively, and

that the width and height of P are both irrational. These assumptions guarantee

that when we cut P in half, the cut does not go through any lattice points. If

P does not have these properties already, we can make P very slightly bigger so410

that it does, which increases the right-hand side of the desired inequality very

slightly; taking the limit of a shrinking sequence of approximations gives the

desired inequality.

Let C0 be the constant for unlabeled routing from the unlabeled ramp-like

bound (Theorem 8). We divide P into halves with a vertical line bisecting the415

width, and then into quadrants with a horizontal line bisecting the height. One

of the quadrants may be empty. It takes at most C0(w(P ) + h(P )) routing

steps to move the tokens so that those that belong in the left half go to the

left half, and those that belong to the right half go to the right half. Then

each half is ramp-like and has width 1
2w(P ) and height h(P ), so it takes at420

most C0

(︁
1
2w(P ) + h(P )

)︁
additional routing steps to move the tokens into the

quadrants where they belong, working with both halves simultaneously.

We select C = 4C0, and prove the theorem by induction on ⌈w(P )+h(P )⌉. If
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⌈w(P )+h(P )⌉ = 1, then P has only one vertex, so the routing number is 0, which

is certainly at most C · (w(P )+h(P )). Otherwise, we have ⌈ 1
2w(P )+

1
2h(P )⌉ <

⌈w(P )+h(P )⌉, so we may apply the inductive hypothesis to find that the routing

number of each quadrant of P is at most C ·
(︁
1
2w(P ) +

1
2h(P )

)︁
. Then the total

number of steps to route an arbitrary configuration of tokens on P to a home

configuration is at most

C0(w(P ) + h(P )) + C0

(︃
1

2
w(P ) + h(P )

)︃
+ C

(︃
1

2
w(P ) +

1

2
h(P )

)︃
≤

(︃
2C0 +

1

2
C

)︃
· (w(P ) + h(P ))

= C · (w(P ) + h(P )).

3.2. Moving to a monotonic configuration

In this subsection we prove the monotonic configuration theorem (Theo-425

rem 9). To understand the strategy, we observe that if our ramp-like graph

were a rectangular grid, then pushing the black tokens up and then left would

already give a monotonic configuration. This is because after pushing up from an

arbitrary configuration, every black token below the top row has another black

token directly above it, so the number of tokens in each row is non-increasing as430

we consider the rows from top to bottom. However, for an arbitrary ramp-like

graph, after pushing up from an arbitrary configuration, a row might have more

black tokens than the row above it, because the lower row might have black

tokens in columns to the right of all columns in the upper row.

The proof of the theorem is based on Lemmas 12 and 13, which together435

show that after pushing up, left, and up on a ramp-like graph, the result is

similar to what we would get from simply pushing up on a rectangular grid.

Namely, if we consider the rightmost column that contains black tokens, then

we show that all of the rows that are too short to extend to that column are

completely full of black tokens. The configuration below these rows looks like440
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an up-aligned configuration on a rectangular grid, so pushing left one more time

results in a monotonic configuration.

Lemma 12 shows how the shape of our ramp-like graph affects the possible

numbers of black tokens per row after our first step of pushing up, and thus after

our second step of pushing left as well. Then Lemma 13 describes the result of445

our third step of pushing up. For both lemmas, we use the following notation.

Given a ramp-like graph R, we let #(R, i) denote the number of vertices in the

row of R with y-coordinate i. Given a configuration X on R, we let #(X, i)

denote the number of black tokens in X with y-coordinate i.

Lemma 12. Let X1 be an up-aligned configuration on a ramp-like graph R.

Then for all rows b and b+ c > b of R, we have

#(X1, b)−#(X1, b+ c) ≤ #(R, b)−#(R, b+ c).

Proof. Let d be the number of black tokens in row b of X1 that are to the right

of column nb+c, the rightmost column of row b + c. Using the fact that X1 is

up-aligned, we have

#(X1, b)−#(X1, b+ c) ≤ d,

because every token in row b has a token directly above it in row b+c, except for

those in the d columns to the right of column nb+c. Because the total number

of columns in row b to the right of nb+c is #(R, b)−#(R, b+ c), we also have

d ≤ #(R, b)−#(R, b+ c).

Together, these inequalities give the desired inequality

#(X1, b)−#(X1, b+ c) ≤ #(R, b)−#(R, b+ c).

450

Geometrically, the lemma says that after we push up to form X1 and then

left to form a configuration X2, the right boundary of the cluster of black tokens

is steeper than the right boundary of the graph R. The next lemma starts with

this configuration X2 that results from pushing up and left, and describes what

happens after pushing up again.455
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Lemma 13. Let X2 be the left-aligned configuration on a ramp-like graph R

which was produced by starting from some up-aligned configuration and pushing

left. Let (x2, b) be the coordinates of τ , a black token in X2, and let r > b be a

row number such that nr < x2, if such a row exists. Then when we push up to

reach another configuration X3, all rows with y-coordinate at least r will have460

only black tokens.

Proof. We imagine translating all of the tokens upward in the lattice so that

row b moves up to row r and some tokens may occupy lattice points that are

not in the graph R. If all rows r and above are covered by black tokens in this

arrangement, they also have only black tokens in X3. Thus, it suffices to show465

that for all c ≥ 0, the number of black tokens in row b+ c of X2 is at least the

number of vertices in row r + c.

To show this, we make the following note: from Lemma 12, for all rows b

and b+ c > b of R in configuration X1, we have

#(X1, b)−#(X1, b+ c) ≤ #(R, b)−#(R, b+ c).

Because when we push left to get to X2, every token is in the same row in

X2 as in X1, so the same inequality is true of X2.

We then combine this inequality with an inequality resulting from the dis-

cretely convex border property of R: because r > b, we have

nr − nr+c ≥ nb − nb+c − 1,

or equivalently,

#(R, r)−#(R, r + c) + 1 ≥ #(R, b)−#(R, b+ c).

Putting these inequalities together with the assumption nr < x2 (or equiv-

alently #(R, r) < #(X2, b)), we have

#(X2, b+ c) = #(X2, b)− [#(X2, b)−#(X2, b+ c)]

> #(R, r)− [#(R, b)−#(R, b+ c)]

≥ #(R, r)− [#(R, r)−#(R, r + c) + 1]

= #(R, r + c)− 1,
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and so because all of the quantities are integers, we obtain our desired inequality470

#(X2, b+ c) ≥ #(R, r + c).

Having described the configuration that results from pushing up, left, and up,

we are ready to prove that pushing this configuration left results in a monotonic

configuration.

Proof of monotonic configuration theorem (Theorem 9). We label the sequence475

of configurations as follows: let

• the starting configuration be X0,

• the configuration after pushing up be X1,

• the configuration after pushing left be X2,

• the configuration after pushing up a second time be X3, and480

• the configuration after pushing left a second time be X4, which is also the

final configuration.

Note that X4 is left-aligned, so in order to show X4 is monotonic, we just

need to show it is up-aligned. We will do this by showing that all black tokens

in X4 are up-aligned.485

We consider an arbitrary black token τ in X0. Let the vertex which τ is on

in X2 be (x2, b). Then by Lemma 13, we have that when we push up to get to

X3, all rows with y-coordinate at least r will contain only black tokens.

Let s be the row such that τ is in row s − 1 in X3. Because τ is in the

same column x2 in X2 and X3, and this column is to the right of nr, we have490

s− 1 < r, or in other words s ≤ r. If s = r, then τ is up-aligned in X4 because

the row above τ is row r, and we have shown that rows r and above are all black

in X3.

If s < r, then because of how r is defined we have x2 ≤ ns. Thus, in X3

(which is up-aligned), for τ and every black token to the left of it in row s− 1,495

there is a corresponding black token immediately above, in row s. When we
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push left to get X4, there are at least as many black tokens in row s as there

are black tokens in row s− 1 to the left of and including τ , so τ is up-aligned.

Thus, for any black token τ in X0, in X4, there is a black token (or no

vertex) above it and a black token (or no vertex) to the left of it.500

3.3. Distributing tokens among columns

Proving the column preparation lemma (Lemma 10) is the last piece needed

to complete the proof of the unlabeled ramp-like bound (Theorem 8) and thus

the labeled ramp-like bound (Theorem 11). The goal is to get the right number

of tokens of each color into each column, without moving tokens between the505

top slice Rm1−1 and the bottom slice R\Rm1−1. For the top slice, we choose to

move the tokens to row-major order; this determines how many black tokens we

want in each column of the bottom slice. The only thing that could potentially

go wrong is if we have somehow assigned more black tokens to a column of

the bottom slice than its number of vertices. We show this does not happen,510

roughly because the black tokens in the bottom slice are more evenly spaced,

among at least as many columns, in our target configuration Y as in our starting

configuration X.

Proof of column preparation lemma (Lemma 10). Let t1 be the number of black

tokens in Rm1−1 in configuration X, and let m0 ≤ m1 − 1 be the number such

that
m0−1∑︂
i=1

(1 + nm−i) < t1 ≤
m0∑︂
i=1

(1 + nm−i),

meaning that t1 black tokens can fit on the vertices of Rm0
, but are not able to

fit on the vertices of Rm0−1.515

On any ramp-like graph, we denote the configuration of t black tokens (and

the remainder white tokens) in row-major order by RM(t). We set Y to be

equal to RM(t1) on Rm1−1. Let Z be the configuration of t− t1 black tokens,

one at every vertex where RM(t) has a black token but RM(t1) does not, and

let zj be the number of black tokens in Z that are in the x = j column of R.520
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We note that zj = 0 for j > nm1 . To prove the lemma, we need to show that

zj black tokens can fit into column j of R \Rm1−1; that is, zj ≤ m−m1 + 1.

First we address the case where X contains a black token in a column strictly

to the right of the subgraph Rm0
. We claim that in this case, zj ≤ 1 ≤ m−m1+1

for all j, so we are done. Because X is monotonic, if X contains a black token525

to the right of Rm0
, then Rm0

must be entirely full of black tokens, and the row

below it must also contain black tokens. Thus, Rm0+1 contains more than t1

black tokens. Because Rm1−1 contains only t1 black tokens, this then implies

that Rm1−1 must be smaller than Rm0+1. Because we always have m0 ≤ m1−1,

we conclude that in this case we have m1 − 1 = m0, with Rm1−1 entirely full of530

black tokens. The definition of m1 implies that the black tokens not in Rm1−1

all fit into the row just below Rm1−1, so zj ≤ 1.

Thus, we may assume that we are in the case where all black tokens in X

are in columns 0 through nm0
. In this case, the idea of the proof is that if

we were to distribute the tokens in the bottom slice R \ Rm1−1 as evenly as535

possible among the columns 0 through nm0
, the column with the most black

tokens would have at least as many as in Z, because Z may use the columns to

the right of nm0
as well.

More precisely, the portion of X in R \Rm1−1 has t− t1 black tokens, all of

which are in columns 0 through nm0
, so we have

t− t1 ≤ (1 + nm0
)(m−m1 + 1). (1)

Also, because Z has t− t1 black tokens in total, we have

t− t1 =
∑︂

0≤j≤m1

zj .

Let δ be the greatest x-coordinate of the black tokens in the y = m −m1 row

of RM(t) (the m1st row from the top, and the last not-all-white row), and let540

δ1 be the greatest x-coordinate of the black tokens in the y = m −m0 row of

RM(t1) (the m0th row from the top, and the last not-all-white row). We now

estimate zj in the three possible cases for how δ1 and δ compare, depicted in

Figure 10.
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Figure 10: In every case, the black tokens of Z = RM(t) \RM(t1) have enough vertical space

to slide down below subgraph Rm1−1, because the total area of columns 0 through nm0 in

R \Rm1−1 is large enough for the black tokens in columns 0 through nm0 of Z.

If δ1 = δ, or if nm0
= δ1 < δ, then every column j with j ≤ nm0

has

zj = m1 −m0. For j > nm0 , because row m−m0 has no vertices in column j,

we have zj ≤ m1 −m0. The total number t− t1 of black tokens in Z is at least

the number in columns 0 through nm0
, so we have t− t1 ≥ (1+nm0

)(m1−m0).

Combining this inequality with inequality (1), we have

(1 + nm0
)(m1 −m0) ≤ t− t1 ≤ (1 + nm0

)(m−m1 + 1),

so m1 −m0 ≤ m−m1 + 1, and so zj ≤ m−m1 + 1 for all j.545

If δ1 < δ and δ1 < nm0 , then for j ≤ δ1 and for δ < j ≤ nm0 we have

zj = m1 −m0, and for δ1 < j ≤ min(δ, nm0
) we have zj = 1 +m1 −m0. For

j > nm0
, we have zj ≤ 1 +m1 −m0 as well. Thus we have

(1 + nm0
)(m1 −m0) < t− t1 ≤ (1 + nm0

)(m−m1 + 1),

which implies that m1 −m0 < m−m1 + 1, and so zj ≤ m−m1 + 1 for all j.

If, finally, δ1 > δ, then for j ≤ δ and for δ1 < j ≤ nm0 we have zj = m1−m0,

and for δ < j ≤ δ1 we have zj = −1 + m1 − m0. For j > nm0
, we have

zj ≤ m1 −m0 as well. Thus we have

(1 + nm0
)(−1 +m1 −m0) < t− t1 ≤ (1 + nm0

)(m−m1 + 1),
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which implies that −1 +m1 −m0 < m −m1 + 1, and so zj ≤ m −m1 + 1 for

all j.

Thus, in every case, R \Rm1−1 has enough space to fit the same number of

black tokens in each column as Z. We set Y to be any configuration that in550

Rm1−1 has the same number of black tokens in each column as RM(t1), and

that in R \Rm1−1 has zj black tokens in column j for each j.

4. Burger bun polygons

In this section we prove Theorem 18, the bound on routing number of burger

bun polygons. Our strategy is to divide the burger bun polygon in half, then to555

divide each half into two ramp-like pieces. We know that we can route a single

ramp-like piece from the ramp-like bound (Theorem 11), so our first step is to

use this to prove that we can route a pair of ramp-like pieces and thus a half

of a burger bun polygon. Then, using a similar argument, we show that this

implies that we can route a whole burger bun polygon.560

We have defined a ramp-like polygon to be a convex polygon such that two

of its edges coincide with edges of its bounding box; we refer to each of these

edges as a spine of the ramp-like polygon. If two otherwise disjoint ramp-

like polygons have a common spine, then their union is also a convex polygon.

Similarly, every burger bun polygon is divided in two by a spine. Specifically,565

if a burger bun has two points of maximum and minimum y-coordinate with

equal x-coordinate, then we refer to the segment between those two points as its

(vertical) spine, and if it has two points of maximum and minimum x-coordinate

with equal y-coordinate, then we refer to the segment between those two points

as its (horizontal) spine.570

Our strategy for this section is as follows. In our situation, we have two

polygons with a common spine, and we may assume that we know how to route

within each of the two polygons. Given an arbitrary configuration of labeled

tokens on the union of the polygons, we want to route those tokens to their home

positions. It suffices to get each token into the half where it belongs, because575
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Figure 11: Left: The two ramp-like polygons shaded in different shades of gray share a spine,

forming half of a burger bun polygon. Middle: To find the shared subpolygon of each half,

we intersect it with the reflection (gray dashed) of the other half across the spine. Right: The

shared subpolygons are mirror images (dashed line).

then we can route within the halves separately to get each token to its home

vertex. Thus, we have an unlabeled routing problem, thinking of the tokens

belonging in the first half as black, and the tokens belonging in the second half

as white.

In the special case where the two polygons, and their corresponding graphs,580

are mirror images across the spine, we can route as follows: first we route within

the second half so that the configuration is a color-reversed mirror image of the

first half. This is possible because when the two halves have the same number

of vertices, the number of black tokens in the second half is equal to the number

of white tokens in the first half. Once the two halves are color-reversed mirror585

images, each row (if the spine is vertical) has the same number of white tokens

as black tokens, so we may route all rows simultaneously to get each token into

the half where it belongs.

In the general case, where the two polygons are two ramp-like polygons or

two halves of a burger bun polygon, the polygons may not be mirror images.590

Instead, we find a subpolygon inside each side, called the shared subpolygon,

such that the two shared subpolygons are mirror images and still contain a

significant fraction of the vertices. Informally, to find the shared subpolygons,

we imagine reflecting either polygon over the spine and intersecting the other

polygon with the reflection, as in Figure 11. This construction only makes sense595

when the spine has an integer or half-integer coordinate, so for the general case

of two ramp-like polygons sharing an arbitrary spine, the following theorem

finds those shared subpolygons and shows that they contain enough vertices.
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a) b)

c) d)

e)

Figure 12: The tokens belonging in the left ramp-like polygon (shaded in darker gray) are

colored black, and in the right ramp-like polygon (shaded in lighter gray) are colored white.

The union of the shared polygons of each side is marked with a dashed line. Part a) shows

the starting configuration. In b), as many improper tokens as possible, one for each vertex,

are routed into the union of the shared polygons. Note that the tokens in this union are

color-reversed mirror images of each other along the spine. Along each horizontal path of

vertices, the improper tokens are routed to the proper half to produce c). Then, once again,

as many improper tokens as possible are routed into the union, such that the tokens in it are

color-reversed mirror images of each other, shown in d). In e), again, along each horizontal

path of vertices, the improper tokens are routed to the proper half, completing the routing

process.

We consider both the case where the ramp-like polygons together form half of

a burger bun (that is, their non-shared spines are collinear) and the case where600

they do not, because this latter case turns out to be useful in the next part of

the proof, where the two polygons are halves of a burger bun. Once we have

found the shared subpolygons, then we can solve the unlabeled routing problem

by repeatedly applying the mirror-image technique to these shared subpolygons;

Figure 12 illustrates the routing process, which is presented in more detail in605

the routing between ramp-like theorem (Theorem 17).

Theorem 14 (Intersection magnitude). Let P1 and P2 be two ramp-like poly-

gons with common vertical spine E, such that the widths of P1 and P2 and the
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length of E are all at least 41. Then there exist subgraphs G1 and G2 of P1

and P2, respectively, both disjoint from E, such that G2 is a reflection of G1610

over some vertical line, and the equal number of vertices in G1 or G2 is at least

1
20 min{|P1|, |P2|}, where |Pi| denotes the number of lattice points in the interior

and boundary of Pi.

The proof of this theorem is based on two lemmas: the spine alignment

lemma (Lemma 15), and the triangle trimming lemma (Lemma 16). Roughly,615

the idea is that to find the subgraphs G1 and G2, we should reflect P1 over

the shared spine and intersect it with P2 to find G2, or reflect P2 over the

shared spine and intersect it with P1 to find G1. The spine alignment lemma

(Lemma 15) accounts for the fact that the shared spine might not be at an

integer or half-integer coordinate, so reflecting across it might not take lattice620

points to lattice points. Then the triangle trimming lemma (Lemma 16) starts

from a quick estimate of the area of the polygon intersection, and produces an

estimate of the number of lattice points inside that polygon.

Lemma 15 (Spine alignment). Let P be a burger bun polygon with vertical spine

E dividing P into left side P1 and right side P2. Suppose that the x-coordinate625

of E is not an integer. Then there is another burger bun P ′ with vertical spine

E′, dividing P ′ into left side P ′
1 and right side P ′

2, with the following properties:

• The x-coordinate of E′ is an integer.

• P1 and P ′
1 contain the same lattice points.

• The set of lattice points inside P ′
2 is obtained by translating the set of630

lattice points inside P2 one unit to the right.

Proof. Figure 13 shows the relationship between the polygons. Let P1 and P2

be arbitrary convex polygons sharing a vertical edge E with a non-integer x-

coordinate x0. Construct a new vertical line segment E′ with the same length

as E and integer x-coordinate ⌈x0⌉. Translate all polygon vertices of P2 one635

unit to the right, and take the convex hull of these vertices with the endpoints of
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Figure 13: If we cut a burger bun polygon along its spine and insert a rectangle of width 1

instead, the result is a burger bun polygon with one additional column and a spine along that

column.

E′ to form congruent polygon P ′
2. Similarly, take the convex hull of all polygon

vertices of P1 with the endpoints of E′ to form congruent polygon P ′
1. The set

of lattice points inside P ′
1 disjoint from E′ is equal to the set of lattice points

inside P1, and the set of lattice points inside P ′
2 disjoint from E′ is equal to the640

set of lattice points inside P2 translated by 1 in the positive x-direction.

To prove the intersection magnitude theorem (Theorem 14), we find a tri-

angle in each ramp-like piece that covers at least half the area, then intersect

these triangles to get a smaller triangle that covers at least 1
4 of the area of the

smaller ramp-like piece. Once we have this triangle in common, we need to show645

that it has sufficiently many lattice points. The following lemma estimates the

number of lattice points in such a triangle.

Lemma 16 (Triangle trimming). Let P be a triangle with at least one side

parallel to an axis. Then the number of lattice points strictly inside P is at least

Area(P )− 2 · Perimeter(P ) + 1,

if this quantity is at least 1.

Proof. The strategy is to use Pick’s theorem, which relates the area of a lattice

triangle to the number of enclosed lattice points and the number of boundary

lattice points. Our triangle P does not necessarily have vertices at lattice points,

so our goal is to find a large enough lattice triangle inside P . First we construct

a parallel line 2 units inward from each side of P . We call the similar triangle

defined by these parallel lines the “trimmed triangle”, denoted Pt. We show
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below that Pt has area at least Area(P ) − 2 · Perimeter(P ). (In the case that

there is no triangle left after the trimming process, we show that Area(P ) −

2 · Perimeter(P ) < 0 and so the lemma is vacuously true.) If we can find an

“intermediate triangle” Pi that is a lattice triangle and is strictly between Pt

and P , then Pick’s theorem states

Area(Pi) = #(interior lattice points) +
1

2
·#(boundary lattice points)− 1,

so we have

#(total lattice points of Pi) ≥ Area(Pi) + 1,

giving our goal inequality

#(interior lattice points of P ) ≥ Area(Pt)+1 ≥ Area(P )−2 ·Perimeter(P )+1.

We begin by estimating the area of Pt. The region inside P and outside

Pt consists of three trapezoids, each with height 2 and one base a side of P .

Because the two angles bordering that side add up to less than 180◦, the other

base of each trapezoid—that is, the corresponding side of Pt—must be shorter.

Thus, the total area of the trapezoids is less than 2 · Perimeter(P ), giving the

estimate

Area(Pt) ≥ Area(P )− 2 · Perimeter(P ).

Suppose there is no triangle left after the trimming. Then the inradius r of P is

at most 2, and connecting the vertices of P to the incenter divides P into three

triangles, each with height r and base equal to one side of P . Thus we have

Area(P ) =
r

2
· Perimeter(P ) < 2 · Perimeter(P ),

and so the quantity Area(P )− 2 · Perimeter(P ) is negative.

At each corner of the triangle, there is a parallelogram enclosed by the two650

sides of the triangle and the lines parallel to each side at distance 2, as in

Figure 14. It suffices to find a lattice point inside each of these corner parallel-

ograms, because these three points determine a triangle for which none of the

sides crosses either a side of the original triangle P or a side of the trimmed
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Figure 14: The parallelogram trimmed off near each vertex of the original triangle contains a

lattice point, because it contains a circle of radius 1, which contains a square of side length 1.

The lattice points from the three parallelograms form the intermediate triangle Pi (dashed).

triangle Pt; thus, we can choose that triangle to be our intermediate triangle655

Pi.

To find the lattice point, first we observe that there is an inscribed circle of

radius 1 inside each corner parallelogram; this is because the parallelogram is the

intersection of two infinite strips of width 2, and the center lines of the two strips

intersect at the center of the circle. We also know that every square with sides660

parallel to the axes and of length 1 must contain a lattice point, because tiling

the plane with such squares gives lattice points at the same relative locations in

each square. Any circle of radius 1 contains such a square of side length 1—in

fact, it contains a square of side length
√
2, because the diagonal has the same

length 2 as the diameter of the circle.665

Thus every corner parallelogram does contain a lattice point in its interior,

so we can select one such lattice point from each corner parallelogram to define

the intermediate triangle Pi. Because the area of Pi is greater than that of the

trimmed triangle Pt, Pick’s theorem implies that Pi must have enough lattice

points in its interior and boundary.670

Using these lemmas, we can finish proving that our pair of ramp-like polygons

contains a pair of subgraphs, one on each side of the spine, that are mirror

images.

Proof of intersection magnitude theorem (Theorem 14). If the common vertical
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Figure 15: The shared subpolygon T1 ∩ T2 is formed by taking the largest right triangles T1

and T2 inside the two ramp-like polygons, and intersecting T1 with the reflection of T2. In the

case where the non-shared spines of the two ramp-like polygons are collinear, this intersection

T1 ∩ T2 is equal to the smaller right triangle, T1.

edge E does not have an integer x-coordinate, we apply the spine alignment675

lemma (Lemma 15) to replace P1 and P2 by polygons that cut out the same

subgraphs in their interiors. Thus, we may assume that E has an integer x-

coordinate.

Let a be the length of E, and let b and c be the widths of graphs P1 and P2,

respectively. Without loss of generality we assume b ≤ c. We observe that P1680

and P2 are contained in their bounding boxes, which have (a+ 1)(b+ 1) lattice

points and (a+1)(c+1) lattice points, respectively. Thus it suffices to construct

subgraphs G1 and G2 with at least 1
20 (a+ 1)(b+ 1) vertices each.

Let T1 and T2 be right triangles constructed from the endpoints of E and

the vertices of P1 and P2 (respectively) with the greatest horizontal distance685

from E. We construct G1 by reflecting T2 over E and taking all the vertices in

the interior of T1 that are also in the interior of the reflected T2; similarly, we

construct G2 by reflecting T1 over E and taking all the vertices in the interior

of T2 that are also in the interior of the reflected T1. Abusing notation, we let

T1∩T2 denote the triangle formed by intersecting T1 with the reflection of T2, as690

in Figure 15. Once we estimate its area and perimeter, we can use the triangle

trimming lemma (Lemma 16) to get a lower bound on the number of vertices

of G1, and hence of G2 as well.
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First we claim

Area(T1 ∩ T2) ≥
ab

4
.

To prove this area bound, we observe that given lengths a, b, and c, the case

where Area(T1 ∩ T2) is the least is the case where the third vertex of T1—that695

is, the vertex not on the common spine E—shares a y-coordinate with the top

vertex of E, and the third vertex of T2 shares a y-coordinate with the bottom

vertex of E, or vice versa. In this case, if b = c then the width of the intersection

triangle is exactly b
2 so we have Area(T1∩T2) = ab

4 . If c > b then the intersection

triangle is larger. Thus, in every case we have the desired area bound.700

We also claim

Perimeter(T1 ∩ T2) ≤ 2(a+ b).

This is because the perimeter of T1∩T2 is less than the perimeter of its bounding

box, which has height a and width at most b.

We put together the area and perimeter bounds with the triangle trimming

lemma (Lemma 16) to estimate the number of lattice points enclosed by T1∩T2.

It is algebraically true that for all a, b ≥ 41, we have

ab

4
− 4(a+ b) + 1 ≥ 1

20
(a+ 1)(b+ 1).

(To check this, we can use ab = b
2a+

a
2 b > 20(a+b).) Thus, using our hypothesis

that a, b, c ≥ 41, we see that the number of vertices in the interior of T1 ∩ T2
satisfies the inequalities

|G1| ≥
ab

4
− 4(a+ b) + 1 ≥ 1

20
(a+ 1)(b+ 1),

as desired.

Having proved this estimate on the size of the shared subpolygons, we can

finish proving a bound on the routing number of the union of two ramp-like705

polygons along a shared spine.

Theorem 17 (Routing between ramp-like). Consider two ramp-like pieces P1

and P2 with common vertical spine E. There exists a constant C > 0 such that

rt(P1 ∪ P2) ≤ C · (w(P1 ∪ P2) + h(P1 ∪ P2)).
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Proof. First consider the case where w(P1), w(P2), and the length of E are all710

at least 41, so the intersection magnitude theorem (Theorem 14) applies. Fix a

home configuration of tokens on the vertices of P1∪P2, and consider an arbitrary

starting configuration. The ramp-like bound (Theorem 11) implies that we can

efficiently route the tokens within P1 and the tokens within P2. Thus, what we

need to show is that we can efficiently route the tokens into their home halves—715

that is, those that belong in P1 should go to P1 and those that belong in P2

should go to P2.

We label each token either black or white indicating whether it belongs in

P1 or P2, respectively, in the home configuration. If the common spine E has

an integer x-coordinate, then some lattice points are shared between P1 and P2.720

In this case we count those lattice points as part of P1 and not P2, so that each

token belongs in exactly one of the halves, and without loss of generality, we

may assume that there are at least as many lattice points in P1 as in P2. In any

configuration, we say that a given token is improper if it is in the opposite half

from where it belongs. The number of improper tokens in P1 is always equal725

to the number of improper tokens in P2, which is at most the total number of

lattice points in P2.

We use the intersection magnitude theorem (Theorem 14) to find subgraphs

G1 and G2 in P1 and P2 that are reflections over a vertical line and have size

at least 1
20 |P2|. Then we can move up to |G1| = |G2| improper tokens into their730

home halves, using the following sequence of phases:

1. Use the ramp-like bound (Theorem 11) to route within P1 and P2 sep-

arately so that as many improper tokens as possible are in G1 and G2.

If there are at least |G1| improper tokens on each side, then G1 and G2

become completely filled with improper tokens.735

2. In the case where G1 and G2 do not become completely filled with im-

proper tokens, continue to route within P2 so that the locations of the

improper tokens in G2 are exactly the mirror image of the locations of the

improper tokens in G1.
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3. Route each row of P1 ∪ P2 simultaneously so that the improper tokens740

in G1 exchange places with their mirror-image improper tokens in G2,

leaving no more improper tokens in either G1 or G2.

Each of these three phases takes at most C(w(P1∪P2)+h(P1∪P2)) routing

steps, for some constant C. Repeating up to 20 times if necessary, we can move

every token into its home half so that no improper tokens remain. Applying the745

ramp-like bound (Theorem 11) once more to route within each half, we move

all tokens to their home lattice points in at most C(w(P1 ∪ P2) + h(P1 ∪ P2))

routing steps, for some constant C.

We now consider the case where the widths of P1 and P2 and the length of E

are not all at least 41. Suppose without loss of generality that it is P2 that has750

height or width less than 41. We apply Lemma 5 with G = P1 ∪ P2, K = P1,

the constant c1 is 41, and S is the rightmost column of P1. Because we have a

bound on the routing number of P1, Lemma 5 states that the routing number

of P1 ∪ P2 is at most C(w(P1 ∪ P2) + h(P1 ∪ P2)) for some constant C.

Using the bound for a pair of ramp-like polygons, we can follow a similar755

sequence of steps again to finish proving the bound on routing number of burger

bun polygons.

Theorem 18 (Burger bun bound). There exists a constant C > 0 such that

for any burger bun polygon P , the routing number of P satisfies the bound

rt(P ) ≤ C · (w(P ) + h(P )).760

Proof. Let E be the spine of P . Without loss of generality we may assume that

E is vertical, so E divides P into a left half P1 and a right half P2. Each of

P1 and P2, if it is not ramp-like already, is the union of two ramp-like pieces

sharing a horizontal spine. Thus, Theorem 17 gives a bound on the routing

number of P1 and P2 separately. In the present proof, we follow the proof of765

Theorem 17, but instead of using the ramp-like bound (Theorem 11) to route

the two ramp-like halves, we use Theorem 17 itself to route P1 and P2.

We still need to prove an analogue of the intersection magnitude theorem
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(Theorem 14) that applies to the present P1 and P2, which are not necessarily

ramp-like. To do this, we construct two right triangles T1 and T2 that are ramp-770

like with common spine E, such that the intersection of T1 with the reflection

of T2 is contained in the intersection of P1 with the reflection of P2. Then we

apply the intersection magnitude theorem (Theorem 14) to T1 and T2.

P1 P2

B

AW1

W2

V2

V1

C

Figure 16: We use the intersection magnitude bound for ramp-like polygons to show a similar

bound for burger bun halves, by applying it to ramp-like triangles T1 = ABW1 and T2 =

ABW2, which are sufficiently large but still have (reflected) intersection inside our burger bun

halves.

We construct T1 and T2 as follows, shown in Figure 16. Let V1 and V2 be the

points on P1 and P2 (respectively) farthest from edge E, and let A and B be the775

top and bottom points of E. Then the triangle ABV1 intersects the reflection

of ABV2 in some triangle ABC. We construct the third vertex W1 of T1 (that

is, the vertex other than A and B) by continuing the segment BC upward until

it intersects the horizontal line containing A. Similarly, we construct the third

vertex W2 of T2 by continuing the reflection of AC downward until it intersects780

the horizontal line containing B.

By applying the intersection magnitude theorem (Theorem 14) to T1 and T2,

we find subgraphsG1 andG2 in T1 and T2, consisting of at least
1
20 min{|T1|, |T2|}

vertices each. The construction of T1 and T2 guarantees that G1 is also in P1

and that G2 is also in P2. We compare |T1| and |T2| to |P1| and |P2| by observing

that T1 and T2 each have at least half as many vertices as their bounding boxes,
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and that those bounding boxes contain the bounding boxes of P1 and P2. Thus

we have |T1| ≥ 1
2 |P1| and |T2| ≥ 1

2 |P2|. The result is the lower bound

|G1| = |G2| ≥
1

40
min{|P1|, |P2|},

in the case where the width and height of P1 and P2 are all at least 41.

Thus, following the proof of the routing between ramp-like theorem (Theo-

rem 17), in the case where the height and width of P1 and P2 are all at least 41,

we can move at least 1
40 of the improper tokens into their home halves by first785

routing each half to put the improper tokens into G1 and G2, and then routing

each row simultaneously to swap the improper tokens in G1 with the improper

tokens in G2. Repeating this process at most 40 times puts every token into its

home half, and then one more instance of routing within the two halves moves

every token to its home vertex.790

In the case where the height or width of (without loss of generality) P2 is less

than 41, as in the proof of Theorem 17 we may apply Lemma 5 with G = P1∪P2,

K = P1, c1 = 41, and S is the rightmost column of P1.

5. Proof of main theorem

In this section we prove the main theorem. For convenience we reproduce795

the statement of the main theorem here.

Theorem 1. Let P be a connected convex grid piece. Then the routing number

of P satisfies the bound rt(P ) ≤ C(w(P ) + h(P )) for some universal constant

C.

The idea of the proof is much simpler than the details. We show that our800

arbitrary convex polygon P is related to a burger bun polygon by a shear trans-

formation of at most 45◦. Roughly, this transformation corresponds to a map

between the sets of enclosed lattice points that stretches distances by at most a

fixed factor. We show that if two graphs are related by a map that stretches by

at most a fixed factor, then their routing numbers are also related by at most805
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a fixed factor. Thus, if we shear the original polygon to get a burger bun, then

routing the resulting burger bun polygon helps us to route the original polygon.

The actual proof becomes more complicated to account for how the shear

transformation does not respect the integer lattice—in particular, it does not

necessarily preserve the number of lattice points inside the polygon. Lemmas 19810

and 20 describe how we cut off part of P to form P1 ⊆ P , and Lemma 21

describes how we cut off a little more to form P2 ⊆ P1. Lemmas 22 and 23

describe how we shear P2 to get a burger bun polygon P3, which we know how

to route. Lemma 24 describes how to map the lattice points inside P3 into P1 to

form a subgraph ψ(P3) of P1, and the bounded stretch theorem (Theorem 25)815

implies that the routing number of ψ(P3) is at most a constant factor greater

than that of P3. Then Lemma 26 checks the hypotheses of Lemmas 5 and 6,

which will show that the routing number of P is not much greater than that

of ψ(P3). Figure 17 shows the relationship between these polygons and their

associated graphs.820

P

P3

Figure 17: We cut off any short rows or columns of the original polygon P to form P1 (left,

shaded), then cut off the rightmost vertex in each row to form P2 (left, darkly shaded) before

shearing P2 to get a burger bun polygon P3. The graph ψ(P3) inside P1 has the same number

of vertices per row as P3 has.

Before shearing, we want to know that the shear does not affect whether the

enclosed lattice graph is connected. To do this, in the next two lemmas we trim

off the short rows and columns of P that would be at risk of being pulled apart
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by the shear.

Lemma 19 (Constructing P1). Let P be a convex polygon enclosing strictly825

more than 4(w(P ) + h(P )) lattice points. Then there exists a polygon P1 ⊆ P

such that

• P1 is the convex hull of its enclosed lattice points;

• The subgraph P \ P1 has at most 4(w(P ) + h(P )) vertices; and

• Every row and column of P1 has at least 4 lattice points.830

Proof. We consider the top and bottom rows of P and the leftmost and right-

most columns of P . If each of these has at least 5 lattice points, we set P1 to

be the convex hull of the lattice points in P . Otherwise, we iteratively remove

one row or column at a time from the graph, choosing either the top row, the

bottom row, the leftmost column, or the rightmost column, whichever has at835

most 4 lattice points. Once the top and bottom rows and the leftmost and

rightmost columns of the remaining graph all have at least 5 lattice points, we

set P1 to be the convex hull of all the lattice points remaining.

Each deletion step reduces the number of lattice points by at most 4, while

also reducing either the width or the height (possibly both) by 1. Thus P \ P1840

has at most 4(w(P ) + h(P )) lattice points, and in particular P1 is nonempty.

To show that every row and column has at least 4 lattice points, because

of the symmetry it suffices to show that every row has at least 4 lattice points.

Consider the parallelogram formed by any choice of 5 consecutive lattice points

from the top row of P1 and 5 consecutive lattice points from the bottom row845

of P1. Because P1 is convex, this parallelogram is contained in P1. Every

horizontal cross-section of the parallelogram is an interval of length 4, so each

cross-section at integer height must contain either 4 or 5 lattice points. Thus

every row has at least 4 lattice points.

The following lemma shows that consecutive rows of P1 are well connected850

to each other, as are consecutive columns.
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Lemma 20 (Property of P1). Let P1 be a convex polygon with at least 4 lattice

points in every row and column. Then every two consecutive rows of P1 have at

least 3 columns in common, and every two consecutive columns of P1 have at

least 3 rows in common.855

Proof. Because of the symmetry, it suffices to show that every two consecutive

rows of P1 have at least 3 columns in common. Suppose for the sake of con-

tradiction that there are two consecutive rows with at most two columns in

common; without loss of generality, suppose that it is the two (or more) right-

most vertices in the upper row that are not adjacent to vertices in the lower row.860

Let u be the vertex in the upper row just to the right of the shared columns,

and let v be the vertex in the lower row just to the left of the shared columns,

as in Figure 18.

u u+ (1, 0)

v

v + (0,−3)

Figure 18: If the rows of u and v have fewer than 3 columns in common, we can contradict

the convexity of P1.

Then v has no vertex immediately above it, so it must have at least three

vertices below it in the same column, which means that the lattice point v +865

(0,−3) is a vertex in P1. We also know that u + (1, 0) is a vertex in P1. The

segment with endpoints v + (0,−3) and u+ (1, 0) has slope at least 1, because

the x-coordinates of u and v differ by at most 3. The lattice point u + (0,−1)

lies on or to the left of this segment, but we have assumed that it is not in P1,

giving a contradiction. Thus we may conclude that each pair of consecutive870
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rows has more than two columns in common.

It turns out that we want to trim off the right side of P1 to form P2 before

shearing. This ensures that later when we construct ψ(P3), it fits inside P1.

Lemma 21 (Constructing P2). Let P1 be a convex polygon. Then there is a

convex polygon P2 that encloses all of the lattice points inside P1 except the875

rightmost lattice point of each row.

Proof. Let P1ymax and P1ymin be points on P1 with the maximum and minimum

y-coordinate, respectively. Consider the portion of the boundary of P1 that is

between the points P1ymax and P1ymin when moving clockwise from P1ymax to

P1ymin. Translate this piecewise-linear curve to the left by 1, and define the880

new polygon P2 to be the subset of P1 that is to the left of this translated side.

Then P2 has exactly one less vertex per row than P1.

We construct a shear that transforms P2 into a burger bun polygon, and

label this burger bun polygon P3, in the following lemma.

Lemma 22 (Constructing P3). Let P2 be a convex polygon with w(P2) ≤ h(P2).

Then there exists a shear

S =

⎡⎣1 m

0 1

⎤⎦
with |m| ≤ 1 such that the resulting polygon P3 = SP2 is burger bun, and we885

have w(P3) ≤ 2w(P2).

Proof. Let p = Pymax and q = Pymin. Then
⃓⃓
qx−px

py−qy

⃓⃓
≤ 1 because |qx − px| ≤

w(P ) ≤ h(P ) = |py − qy|. Define the horizontal shear

S =

⎡⎣1 qx−px

py−qy

0 1

⎤⎦ .
The region SP = P ′ is a convex polygon since S is linear. Moreover, P ′

is burger bun because S fixes the y-coordinate of each point and we have con-

43



structed the matrix S so that x(P ′
ymax) = x(P ′

ymin), as follows:

x(P ′
ymax) = x(Sp) = px + py

qx − px
py − qy

=
−pxqy + pyqx

py − qy
=

= qx + qy
qx − px
py − qy

= x(Sq) = x(P ′
ymin).

To show that w(P3) ≤ 2w(P2), let a and b be two arbitrary points in P2.

Then the x-coordinates of their images in P3 are ax+may and bx+mby, which

have absolute difference at most

|ax − bx|+ |m| · |ay − by| ≤ w(P2) +
w(P2)

h(P2)
· h(P2) = 2w(P2).

Before we can apply our burger-bun routing theorem to P3, we need to check

in the following lemma that P3 is connected.

Lemma 23 (Property of P3). Let P3 be a burger bun polygon with vertical890

spine. Suppose that P3 contains at least 3 · w(P3) vertices in total and at least

2 vertices in each row. Then the graph P3 is connected.

Proof. If the spine is at an integer x-coordinate, then P3 is connected because

every vertex is connected by a horizontal path to the spine. Otherwise, we

consider the two columns surrounding the spine. Every vertex in P3 can be895

connected by a horizontal path to one of these two columns, so it suffices to

show that the two columns have a row in common. Suppose to the contrary

that they do not; without loss of generality, the y-coordinates of the subgraph of

P3 to the left of the spine are all greater than the y-coordinates of the subgraph

to the right.900

Because P3 has at least 3 · w(P3) vertices, it must have at least three rows;

without loss of generality, the left subgraph has at least one row, and the right

subgraph has at least two rows. Consider the second-to-right vertex u in the

bottom row of the left subgraph, and the second-to-top vertex v in the leftmost

column of the right subgraph, as in Figure 19. The midpoint of u and v would905

connect the left subgraph to the right subgraph, so our assumptions imply that
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u

v

Figure 19: If a burger bun polygon has at least 3 rows, with at least 2 vertices in each row,

then the subgraphs on either side of the spine must connect to each other, or else contradict

the convexity of the polygon.

it is not a vertex in P3; however, this contradicts the convexity of P3. Thus, it

is impossible for the two columns surrounding the spine not to have a row in

common, and so P3 is connected.

The burger bun bound (Theorem 18) shows that we can route P3. To show910

that this helps us route P , we start by finding a distorted copy of P3 inside P1.

Lemma 24 (Constructing ψ(P3)). Let P1, P2 and P3 be convex polygons con-

structed in Lemmas 19, 21, and 22. Then there is an injective map ψ from the

vertex set of P3 to the vertex set of P1 with the following property. Consider

the graph ψ(P3), the induced subgraph of P1 whose vertices are the image of ψ.915

Then the map ψ sends adjacent vertices in P3 to vertices no more than 3 edges

away from each other in ψ(P3). In particular, the image ψ(P3) is connected.

Proof. First we construct the map ψ. Figure 20 depicts how ψ is defined as

a discrete version of reversing the shear that produced P3 from P2. We start

by defining new coordinates for the vertices in P1 and P3. Without loss of920

generality suppose that the least y coordinate of vertices in each polygon is 1.

Let ri be the set of vertices in P1 with y coordinate i, so ri is the ith row of

P1. Let ri,j be the jth vertex in row ri, counting from left to right. That is,

ri,1 is the vertex with least x coordinate in row i, and r2,i has the second least

x coordinate and so on. Similarly, label the vertices of P3 as r′i,j . Define an925

injection ψ from the vertex set of P3 to P1, given by ψ(r′i,j) = ri,j . That is,

ψ sends the jth vertex in row i of P3 to the jth vertex in row i of P1. We
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have constructed the polygons so that each row of P3 has no more vertices than

the corresponding row of P1: every horizontal cross-section of P3 has the same

length as the corresponding cross-section of P2, so the number of lattice points930

in each row of P3 differs by at most 1 from the number of lattice points in the

corresponding row of P2, and we know that P1 has one more lattice point per

row than P2 has. Thus, our map ψ is well-defined.

P2 P3 ψ(P3) ⊆ P1

Figure 20: The map ψ sends the first vertex in the ith row of P3, denoted by r′i,1, to the first

vertex in the ith row of P1, denoted by ri,1. It sends the other vertices r′i,j in the ith row of

P3 to consecutive vertices ri,j in the ith row of P1. The numbers of vertices in corresponding

rows of P2 and P3 may differ by up to 1 in either direction, so the image ψ(P3) may extend

past P2 in some rows, and may miss vertices of P2 in other rows.

Before proving that ψ stretches distances by at most a factor of 3, as a

preliminary step we show that every two consecutive rows of ψ(P3) have at least935

one column in common. By Lemma 20 we know that every two consecutive rows

of P1 have at least three columns in common. Then P2 is like P1, but with the

rightmost vertex deleted from each row, so every two consecutive rows of P2

have at least two columns in common. Then because corresponding rows of P2

and P3 differ in length by at most 1, we know that ψ(P3) is like P1, but with up940

to two of the rightmost vertices deleted from each row, so every two consecutive

rows of ψ(P3) have at least one column in common.

Using these common columns of pairs of consecutive rows, we can prove that

ψ sends adjacent vertices to vertices no more than 3 edges away from each other.
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Adjacent vertices in a row of P3 are sent to adjacent vertices, so we only need945

to check what ψ does to adjacent vertices in a column of P3. Thus, it suffices

to show that each pair of adjacent rows do not shift in relation to each other

by more than 2 edges under ψ. That is, for all rows rj and rj+1 in P3, we must

show that the difference |[x(rj,1)−x(rj+1, 1)]− [x(r′j,1)− x(r′j+1, 1)]| is no more

than 2.950

Let (x1, j) be the leftmost point in P3 with y-coordinate j, and (x2, j+1) be

the leftmost point of P3 with y-coordinate j+1. Note that rj,1 and rj+1, 1 are the

first vertices in each of these rows, so rj,1 = (⌈x1⌉, j) and rj+1, 1 = (⌈x2⌉, j+1).

After the shear by the matrix

M =

⎡⎣1 m

0 1

⎤⎦ ,
the points (x1, j) and (x2, j+1) are sent to (x1+mj, j) and (x2+m(j+1), j+1).

Therefore, the first vertices in these rows of P1, namely r′j,1 and r′j+1, 1, have

coordinates (⌈x1 +mj⌉, j) and (⌈x2 +m(j + 1)⌉, j + 1) respectively. Bounding

the distance between these two points in P1, we have

(x1 − x2)− |m| − 1 < ⌈x1 +mj⌉ − ⌈x2 +m(j + 1)⌉ < (x1 − x2) + |m|+ 1.

(2)

And, bounding the distance between the original points in P3, we have

(x1 − x2)− 1 < ⌈x1⌉ − ⌈x2⌉ < (x1 − x2) + 1. (3)

Combining these inequalities, we find that the absolute difference between

the quantities ⌈x1⌉− ⌈x2⌉ and ⌈x1 +mj⌉− ⌈x2 +m(j + 1)⌉ is strictly less than

|m|+ 2, and thus is strictly less than 3. Because the difference is an integer, it

must be at most 2; in other words, the rows shift by no more than 2 vertices

away from each other. Thus, the map ψ sends adjacent vertices to vertices no955

more than 3 edges away from each other.

Applying the next theorem to ψ gives us a way to route ψ(P3) using our

knowledge of how to route P3.
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Theorem 25 (Bounded stretch). Let A and B be lattice graphs in Z× Z, and

let ψ be a bijection between the vertices of A and the vertices of B, such that for960

any pair of adjacent vertices v1, v2 ∈ A, the path-length distance between ψ(v1)

and ψ(v2) in B is at most a constant c. Then rt(B) ≤ C(c) · rt(A), where C(c)

is a constant depending only on c.

Proof. We would like to color the edges of A, such that if (v1, v2) and (v′1, v
′
2) are

two edges of the same color, and we draw shortest paths between w1 = ψ(v1)965

and w2 = ψ(v2) and between w′
1 = ψ(v′1) and w

′
2 = ψ(v′2) in B, then these two

paths are disjoint. To do this, we would like to assign a color to each pair of

vertices in B that are within distance c of each other, such that pairs of the

same color are more than distance c apart. We do this by first coloring the

vertices of B, and then coloring the distance c pairs by the color pairs of their970

vertices.

Our first coloring assigns colors to the vertices of B, such that if two vertices

have the same color, they have distance greater than 2c in B. To do this, we

construct a graph B′ with the same vertex set as B, with an edge between

vertices w1 and w2 whenever their distance is at most 2c. The maximal degree975

of any vertex in B′ is at most 4c(2c + 1), since there are 4i lattice points with

distance exactly i away in Z × Z for each 1 ≤ i ≤ 2c, and if a pair of vertices

have distance at most 2c in B, they also have distance at most 2c in Z × Z.

Therefore, using a greedy strategy we can color the vertices of B′ with no more

than 4c(2c+1)+1 colors, so that no two vertices of the same color are adjacent980

in B′.

Our second coloring has one color for each pair of colors in the first coloring,

for a total of
(︁
4c(2c+1)+1

2

)︁
= (4c(2c + 1) + 1) · 2c(2c + 1) colors. It assigns one

color to each pair of vertices w1, w2 in B that have distance at most c, given by

the pair of colors of w1 and w2 in the first coloring. Suppose that (w1, w2) and985

(w′
1, w

′
2) are two pairs of vertices at distance at most c in B, and they have the

same color in the second coloring; without loss of generality this means that w1

and w′
1 have the same color in the first coloring, as do w2 and w′

2.
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We claim that if we choose any shortest path from w1 to w2 in B, and any

shortest path from w′
1 to w′

2 in B, then these two paths are disjoint. Suppose990

to the contrary that these two paths cross at a point. Then either w1 or w2 is

within 1
2c of the common point, as is either w′

1 or w′
2. This implies that one of

the pairs (w1, w
′
1), (w1, w

′
2), (w2, w

′
1), or (w2, w

′
2) has distance at most c, and

so either w1 and w′
1 have distance at most 2c, or w2 and w′

2 have distance at

most 2c. This contradicts their having been colored the same color in the first995

coloring. Therefore, any shortest path from w1 to w2 in B, and any shortest

path from w′
1 to w′

2 in B are disjoint.

For each edge in A, we color it by taking the corresponding pair of vertices in

B, and finding the color of that pair in the second coloring. Then, given a pair

of configurations in B, we use the following method to route between them.

Take the corresponding pair of configurations in A, and consider a shortest

sequence of steps to route between them. For each step in A, a set of disjoint

swaps, all swaps along edges of the same color in A can be carried out in

parallel in B, because the corresponding paths are disjoint. There are at most

(4c(2c+1)+1)·2c(2c+1) colors of edges in A, and each color may take c+1 steps

to route in B, since a path of length c can be routed in c+ 1 steps. Therefore,

it will take at most

C(c) = (4c(2c+ 1) + 1) · 2c(2c+ 1) · (c+ 1)

steps in total to route a single step in A, a set of disjoint swaps. Therefore,

rt(B) ≤ C(c) · rt(A).

At this point, we have obtained a bound on the routing number of ψ(P3),1000

using the bound on the routing number of P3. To extend this result to route all

of P , we have to check the hypotheses of Lemmas 5 and 6, and then applying

these lemmas will show that because P is not too much bigger than ψ(P3), its

routing number is also not too much bigger.

Lemma 26 (Hair and skin of ψ(P3)). Let P be a convex polygon enclosing1005

strictly more than 4(w(P ) + h(P )) lattice points, let P1, P2, and P3 be convex
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polygons constructed in Lemmas 19, 21, and 22, and let ψ : P3 → P1 be the

injection constructed in Lemma 24. Then the subgraph ψ(P3) of P has the

following properties:

1. P \ ψ(P3) has at most 6(w(P ) + h(P )) vertices; and1010

2. There is a subset S of vertices in ψ(P3) such that S has at most 4(w(P )+

h(P )) vertices and the induced subgraph S∪ (P \ψ(P3)) of P is connected.

Proof. Let P4 be the convex polygon obtained from P2 by removing the right-

most vertex of each row, as in Lemma 21. Then ψ(P3) contains P4. We know

that P1 \ P4 contains exactly 2h(P1) vertices and that P \ P1 contains at most1015

4(w(P ) + h(P )) vertices, so in total P \ P4, and therefore P \ ψ(P3), contains

at most 4w(P ) + 6h(P ) vertices.

Lemma 6 implies that P4 has at most 2(w(P4) + h(P4)) ≤ 2(w(P ) + h(P ))

vertices in its boundary. We choose S to contain the boundary of P4, as well

as all of ψ(P3) \ P4. Because ψ(P3) has at most two more vertices in each row1020

than P4, the number of vertices in S is at most 2w(P ) + 4h(P ).

To show that S ∪ (P \ ψ(P3)) is connected, we observe that it is the same

induced subgraph of P as the union of the boundary of P4 with P \P4; Lemma 6

states that because P is connected and contains P4, this induced subgraph is

also connected.1025

Finally we are ready to finish proving the bound on routing number of arbi-

trary convex polygons.

Proof of Theorem 1. Let P be a convex polygon such that the grid piece con-

tained in P is connected. If P has at most 4(w(P )+h(P )) vertices, then the tree

bound (Theorem 3) implies that rt(P ) ≤ 12(w(P )+h(P )), and there is nothing1030

more to prove. Thus, we may assume that P has more than 4(w(P ) + h(P ))

vertices.

We apply Lemma 19 to find P1 inside P with at least 4 vertices per row and

column. Without loss of generality, we may assume that h(P1) ≥ w(P1). Then

we apply Lemma 21 to find P2 inside P1 by removing the rightmost vertex of1035

50



each row. Then P2 has the same height as P1, and w(P2) = w(P1) − 1. We

apply Lemma 22 to shear P2 to get a burger bun polygon P3.

We would like to apply Lemma 23 to check that P3 is connected, so we need

to estimate the number of vertices in P3. We know that P1 has more than

4(w(P1) + h(P1)) vertices, so because P2 is missing one vertex from each row,1040

we see that P2 has more than 4w(P1) + 3h(P1) vertices. Then every horizontal

cross-section of P3 has the same length as the corresponding cross-section of

P2, so the number of vertices in each row of P3 differs by at most 1 from the

number of vertices in the corresponding row of P2. This implies that P3 has

more than 4w(P1) + 2h(P1) vertices. Lemma 22 tells us that w(P3) ≤ 2w(P2),1045

and we know that w(P2) ≤ w(P1) ≤ h(P1), so the number of vertices in P3

is more than 4w(P2) + 2w(P2) ≥ 3w(P3). Thus we may apply Lemma 23 to

conclude that P3 is connected.

The burger bun bound (Theorem 18) implies that because P3 is connected

and burger bun, we have rt(P3) ≤ C(w(P3)+h(P3)) for some constant C. Then1050

Lemma 24 and the bounded stretch theorem (Theorem 25) together imply that

rt(ψ(P3)) ≤ C(w(P3) + h(P3)) for some larger constant C, and so rt(ψ(P3)) ≤

C(2w(P1) + h(P1)). Lemma 26 implies that Lemma 5 applies to G = P and

K = ψ(P3), so we may conclude that rt(P ) ≤ C(w(P )+h(P )) for some constant

C, as desired.1055

6. Further questions

Our main theorem suggests several extensions to explore. The first direction

is the question of bounded stretch.

Question 1. Suppose that two token configurations on a connected convex grid

piece P have the property that the distance between each token’s positions in1060

the two configurations is at most δ. Is there a sequence of C · δ routing steps

that transform the first configuration into the second, where C is a constant not

depending on the configurations or on P?
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An affirmative answer would strengthen our main theorem. Such an answer

when P is a rectangular grid graph is proved in [6] with a slightly different1065

routing setup.

A second direction for further research is to ask for the appropriate formu-

lation when the convex polygon P is replaced by a nonconvex polygon. In this

case the bound on routing number should depend on the presence of bottlenecks

in the polygon. One way to quantify the idea of bottlenecks is as follows. Given

a polygon P in the plane, we define a chord of P to be any line segment such

that its two endpoints are on the boundary of P , and such that the interior of

the segment is in the interior of P . Each chord γ divides P into two smaller

polygons P1 and P2. We define the chord Cheeger constant of P , denoted by

ch(P ), to be

ch(P ) = inf
γ

length(γ)

min(area(P1), area(P2))
.

A small value of ch(P ) indicates that P has a severe bottleneck. We should

expect that rt(P ) is at least proportional to 1
ch(P ) , because in each routing step,

the maximum number of tokens that can cross γ is at most proportional to

length(γ), and we may need enough routing steps for all the tokens belonging1070

in the smaller of P1 and P2 to cross γ.

Question 2. Is there a constant C such that given a connected, possibly non-

convex grid piece P , we have

rt(P ) ≤ C

ch(P )
?

An affirmative answer would generalize our main theorem, because when P

is convex, the quantity 1
ch(P ) is within a constant factor of w(P ) + h(P ).

A third way to try to extend our main result is by replacing the Z2 grid and

2-dimensional polygons by the Zd grid (again with edges between vertices at1075

distance 1) and d-dimensional polytopes. The following theorem on rectangular

d-dimensional grid graphs is a consequence of the theorem on Cartesian product

graphs from [1].
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Theorem 27 ([1]). Let R be a d-dimensional rectangular grid graph, of size p1

by p2 by. . . by pd. Then we have

rt(P ) ≤ Cd · (p1 + p2 + · · ·+ pd),

where the constant Cd depends only on the dimension.

We note that the quantity p1+· · ·+pd is within a constant factor of the graph1080

diameter of R, which is within a dimensional constant factor of the Euclidean

diameter of R. An affirmative answer to the following question would generalize

the theorem above to non-rectangular convex shapes and would generalize our

main theorem to all dimensions.

Question 3. Are there dimensional constants Cd, such that if P is a connected

induced subgraph of the infinite grid graph Zd consisting of all vertices contained

in a given convex subset of Rd, we have

rt(P ) ≤ Cd · diam(P )?
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