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Abstract

The routing number is a graph invariant introduced by Alon, Chung, and Gra-
ham in 1994, and it has been studied for trees and other classes of graphs such as
hypercubes. It gives the minimum number of routing steps needed to sort a set
of distinct tokens, placed one on each vertex, where each routing step swaps a
set of disjoint pairs of adjacent tokens. Our main theorem generalizes the known
estimate that a rectangular grid graph R with width w(R) and height h(R) sat-
isfies rt(R) € O(w(R) + h(R)). We show that for the subgraph P of the infinite
square lattice enclosed by any convex polygon, we have rt(P) € O(w(P)+h(P)).
Keywords: routing number, makespan, motion planning, token graph, parallel
sorting
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1. Introduction

Routing number is an invariant of graphs, defined by Alon, Chung, and
Graham [I]. Given a connected graph G on n vertices, we imagine tokens

labeled 1 through n sitting on the vertices of G in some order, with exactly
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one token per vertex. That is, the tokens specify a bijection between the set
of vertices and the set of token labels {1,2,...,n}. We refer to each of the n!
bijections as a configuration of labeled tokens on G. We imagine transforming
one token configuration into another using a sequence of routing steps, defined
as follows. In each routing step, we may select any set of disjoint edges in G,
and for each edge, swap the tokens on the two vertices of that edge. The result
is another token configuration.

For any two token configurations, there is a sequence of routing steps we can
apply to the first configuration to transform it into the second configuration.
To see this, take a spanning tree of G, and move the tokens into position one
at a time, starting with the leaves and moving inward. Thus, we may define
the distance between any two configurations to be the least possible number
of routing steps that can be used to transform one configuration into the other.
The routing number of G, denoted rt(G), is the maximum, over all pairs of
token configurations, of the distance between the two configurations.

In our main theorem, the graphs we consider are induced subgraphs of the
infinite grid graph, which has vertex set Z x Z and an edge between each pair of
vertices with Euclidean distance 1. Given a convex polygon P C R?, we define
the convex grid piece cut out by P to be the graph Gp with vertices at all
lattice points in and on P, and edges between pairs of lattice points of distance
1. In the remainder of the paper, we use the letter P for both the polygon and
the graph, using the notation rt(P) to mean rt(Gp). Although there are some
convex polygons P for which the graph G p is disconnected, the routing number
is defined only when Gp is connected. Note also that when P is translated or
rotated, the graph changes, and so the routing number may change slightly.

Our main theorem bounds rt(P) in terms of the width and height of P.
The width w(P) and height h(P) are the maximum absolute differences in -

coordinates and in y-coordinates, respectively, of any pair of points in P.

Theorem 1. Let P be a connected convex grid piece. Then the routing number

of P satisfies the bound rt(P) < C(w(P) + h(P)) for some universal constant
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In other words, we have rt(P) € O(w(P) + h(P)). The reverse inequality is
immediate: the diameter of P is within a constant factor of w(P) + h(P), and
the routing number of any graph is at least its diameter, because a token may
need to travel between two farthest vertices. Thus we may estimate rt(P) as
O(w(P) + h(P)).

One motivation for studying the routing number of convex grid pieces is as
a discrete model of configuration spaces of disks. Given a region R in the plane,
such as a convex polygon, the configuration space Conf,, ,(R) as defined in [2]
is the space of all ways to arrange n disjoint, labeled disks of radius r inside R;
we refer to each of these arrangements as a configuration. If the configuration
space is connected, we can define the distance between two configurations to
be the amount of time it takes to move between them if the disks can move
simultaneously, each with speed at most 1. Roughly, the maximum distance
between two configurations corresponds to the routing number of the grid piece
cut out by R; one major difference is that the routing number does not account
for what proportion of R is covered by disks, simplifying the problem.

Whereas the routing number of graphs has clear significance in terms of rout-
ing information through computer networks, configuration spaces of disks have
their own concrete applications. The 3-dimensional version of disk configuration
spaces is the hard spheres gas model, in which the disks (or spheres) represent
individual molecules moving around in a container; see [3, 4] for exposition on
the hard spheres model. If the molecules are densely packed, they can only
rattle in place, as in a solid; if there is a lot of space, they can move almost
independently, as in a gas, and at intermediate densities the configuration space
is somehow like that of a liquid. Another interpretation of configuration spaces
of disks imagines each disk as a robotic car, moving around in an enclosed room
such as a warehouse floor. The geometry and topology of the configuration
space constrains what instructions may be used to coordinate the motion of the

robots, as in Farber’s “topological complexity” [5]. All of these applications in-
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volve a requirement to avoid collisions, which corresponds in the routing number
setup to the requirement that no two tokens can occupy the same vertex.

Researchers interested in the robotic car interpretation have made various
discrete models of configuration spaces of disks; see, for instance, [6] [7, []].
Typically a discrete result is proved for a rectangular grid, and then the discrete
result implies a continuous result about configurations of disks in a rectangular
region. Although restricting attention to a rectangular regions may seem like a
minor assumption, the proof structure of the discrete results tends to rely on the
rectangular shape. The reason is that rectangles are self-similar: a rectangular
grid is a union of smaller rectangular blocks, with the blocks arranged again in a
rectangular grid pattern. For robotic cars moving in a round disk, for example,
these self-similarity properties do not apply.

Thus, the purpose of our theorem is to prove a discrete result for regions that
are not necessarily rectangular. The proof is for convex regions because the claim
is not true for arbitrary nonconvex regions; for grid pieces cut out by nonconvex
polygons, the bound on routing number is about as bad as for arbitrary trees,
which are the hardest to route of all graphs. Although considering routing
number of convex grid pieces is just one possible discrete model for configuration
spaces of disks, we hope that the proof method suggests the steps needed to
prove such a result for other discrete models as well. Some models allow a large
loop of tokens to cycle by one step simultaneously, rather than only allowing
adjacent pairs to swap. This is similar to the continuous case, where a long
line of disks can slide simultaneously toward an open space. Because our main
theorem is an upper bound on routing number, it also implies an upper bound
on routing in the more permissive model where cycling requires fewer steps.

To prove the theorem, we first construct an algorithm for routing tokens on a
special class of convex grid pieces, which we call ramp-like polygons. This class
generalizes both rectangles and right triangles, and the recursive algorithm is
fairly technical. Then, we prove that bounds on routing number for some graphs
imply bounds on routing number for other graphs: if we can route ramp-like

polygons, then we can route polygons cut into two (and then four) ramp-like
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Figure 1: Given an arbitrary convex polygon, as shown on the left, our overall proof strategy
is to shear it by at most 45° to get a “burger bun” polygon, where the top and bottom are
vertically aligned as shown in the middle. This burger bun polygon can be cut vertically into
two pieces, and then horizontally into four “ramp-like” pieces, as shown on the right. We
show how to route within each of the four pieces, then within each of the two pieces, then

within the burger bun polygon, and then within the original polygon.

pieces, and then if we shear these polygons by at most 45 degrees, we can still
route the result. Using these reductions we show the bound for all convex grid
pieces. Figure [1| depicts the conceptual flow of the strategy.

Section [2] contains definitions and lemmas needed for the rest of the paper.
In Section [3] we prove the routing number bound for the class of ramp-like
polygons (defined in Section [2]). In Section 4} we extend the bound to a more
general class which we call burger bun polygons (defined in Section , each
of which can be cut into four ramp-like pieces. In Section [5| we extend the
bound to arbitrary convex polygons, using the fact that they can be obtained
from burger bun polygons using a shear transformation of at most 45 degrees.
Section [6] contains some questions for further study.
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1851842. H. Alpert was also supported by National Science Foundation Award
No. DMS 1802914. We thank the referees for many helpful suggestions that
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2. Preliminaries

In this section, first we give definitions needed for the rest of the paper.
Then in Theorems and [4] we state the known results on routing number
that we need. Finally in Lemmas [5] and [6] we prove two lemmas that we use
in multiple later sections, showing that adding a small number of vertices to a
graph does not increase the routing number by too much.

We define ramp-like polygons and burger bun polygons to be special classes
of convex polygons in the plane. A ramp-like polygon is a convex polygon
that shares two edges with its bounding box. That is, there is a rectangle
containing our polygon with vertices (z1, y1), (21, y2), (z2,y1), (2, y2), such that
(at least) three of these vertices are vertices of our convex polygon. A burger
bun polygon either has top and bottom points on the same vertical line, or has
leftmost and rightmost points on the same horizontal line. That is, either there
are two points (z,y;) and (z,y2) such that all the y-coordinates in the polygon
are in the interval [y, yo], or there are two points (x1,y) and (z2,y) such that
all the z-coordinates in the polygon are in the interval [z, z2]. Some examples

of each of these polygons can be seen in Figure

(a) (b)

Figure 2: (a) Ramp-like polygons share at least two sides with their bounding boxes (drawn
with dashed lines) and (b) burger-bun polygons either have top and bottom points on the

same vertical line, or have leftmost and rightmost points on the same horizontal line.

We have defined the routing number rt(G) of a graph G to be the minimum
number of routing steps needed to get from any permutation of labeled tokens
on the vertices of G to any other permutation. Sometimes, instead of having
a different label for each token, it helps to consider just two distinct types

of tokens, for instance, black tokens and white tokens. Equivalently, we can
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consider all of the tokens to be identical, but have some vertices with no tokens
on them, so that instead of black tokens and white tokens, we have vertices with
tokens and vertices without tokens. We define the unlabeled routing number
of G, denoted urt(G), to be the minimum number of routing steps needed to get
from any arrangement of black and white tokens, one token per vertex of G, to
any other arrangement with the same number of black and white tokens. That
is, we take the maximum, over all k and all pairs of arrangements with k black
tokens and |V (G)| — k white tokens, of the minimum number of routing steps
needed to get from one arrangement to the other. As before, each routing step
consists of selecting a set of disjoint edges of G and swapping the two tokens
on the ends of each edge. Sometimes we refer to routing number as labeled
routing number to distinguish it from unlabeled routing number.

For reference we state the theorems estimating the routing numbers of paths,
trees, and rectangular grids. The versions that follow are sufficient for our use

in this paper, and the proofs can be found in [IJ.
Theorem 2 (Path bound). For a path P with n vertices, we have rt(P) = n.

Theorem 3 (Tree bound). For a tree with n vertices, and thus for any connected

graph G with n vertices, we have rt(G) < 3n.

Theorem 4 (Rectangle bound). For a p by q rectangular grid graph R, 4, we
have

rt(Rp,q) < S(p+q)-

N W

The two lemmas in the remainder of this section are stated in terms of
lattice graphs, which we define to be graphs G such that the vertex set is a
set of points (x,y) € Z X Z, and there is an edge between two vertices whenever
the Euclidean distance between them is exactly 1. Our notation sometimes
conflates polygons, graphs, and their vertex sets. When we use set operations
on graphs, we typically mean that the operation should be done on the vertex
sets, and then we should consider the induced subgraph of Z x Z determined by
the resulting set of vertices. We use the notation w(G) and h(G) for the width
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Figure 3: Left: The skin set S (shown with gray background) is part of the core set K, and
its union with the hair set H is connected. In the starting token configuration, the tokens
belonging in H are shown in black. Middle: In the first routing phase, we move the tokens
within K so that those belonging in H occupy S and the vertices nearest to S. The union of
these vertices with H is S’ (shown outlined by dashes). Right: Next, we route within S’ so

that the tokens belonging in H move to their home positions.

and height of a lattice graph G, defined similarly to the width and height of a
polygon.

In the rest of the paper, we will often trim off, or add on, small or skinny
parts of our graphs that do not significantly change the routing numbers. The
following lemma makes that operation precise. In the statement of the lemma,
the words “core”, “hair”, and “skin” do not have any definition beyond what
appears in the lemma statement, but are meant to aid in remembering the roles

of the various subgraphs.

Lemma 5. Let G be a connected lattice graph, with its vertices partitioned into

sets K (“core”) and H (“hair”). Suppose that

1. There are at most ¢1 - (w(G) + h(G)) vertices in H;

2. There is a set of vertices S C K (“skin”) containing at most ¢ - (w(G) +
h(G)) wvertices, such that the induced subgraph S U H is connected; and

3. The routing number of K is at most c3 - (w(G) + h(G)).

Then, we have rt(G) < (6¢1 + 3c2 + 2¢3)(w(G) + h(Q)).
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Proof. Figure [3| shows an example of a core K, skin S C K, and hair H, and
summarizes the routing steps.

First we route within K so that the tokens in K that belong in H have the
following property: no token in K that belongs in H has a greater distance to
S than a token in K that does not belong in H. That is, for the tokens in K
belonging in H, we move them to fill S first, then to fill the vertices at distance
1 from S, and so on. This first phase takes at most cs(w(G) 4+ h(G)) routing
steps, by the hypothesis on the routing number of K.

Next, we consider the induced subgraph S’ of G containing H, S, and any
other vertices with tokens belonging in H. Because of the previous step and
the fact that H U S is connected, we know that S’ is connected. It has at most
21H| + |S| < (2¢1 + ¢2)(w(G) + h(G)) vertices, by the hypotheses on the sizes
of H and S. Thus, if we use the routing method in Theorem [3] to route along
the spanning tree of S’, we may use at most 3(2¢; + ¢2)(w(G) + h(G)) routing
steps on S’ to move all the tokens belonging in H to their home vertices.

Finally, we route within K to move all the tokens belonging in K to their
home vertices. The total number of routing steps is at most (6¢; + 3co +

2¢3)(w(G) + h(G)). O

Sometimes the “skin” set S is very easy to describe, but in the final proof we
need to be able to find the skin set of an arbitrary convex grid piece (as defined

in the introduction). The following theorem describes how to do so.

Lemma 6. Let P C R? be a convex polygon, and suppose that the corresponding
convez grid piece K is a connected graph. Then there is a connected subgraph S
of K containing at most 2(w(K) + h(K)) wvertices, with the following property:
if G is a connected lattice graph containing K, then S U (G \ K) is connected.

Proof. The process of constructing S is shown in Figure [} there, S is the
subgraph shown with thick edges inside the polygon. We think of S as the
circuit enclosing K; informally, if we cut the plane along all the edges of K, we
get many unit square pieces and one unbounded piece, and S is the boundary

of the unbounded piece. To be more precise, we start with the loop P, which
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Figure 4: The circuit S is obtained by replacing each edge of P with a path in K which is
the boundary of the grid square polygon formed by taking the union of grid squares that E
passes through.

we may assume is the boundary of the convex hull of K. Then for each edge F
of P, we modify the loop in the following way. The two ends of E are lattice
points, and we consider the union of grid squares that E passes through. This
union is some polygon with 180° rotational symmetry (probably non-convex),
and FE cuts it into two halves.

We claim that one of the rotationally symmetric halves of the boundary of
this grid-square polygon is completely contained in the graph K. To see this,
suppose to the contrary that another edge F' of P also passes through a grid
square that E passes through. Then we can draw a line segment from one point
on F to one point on F' in the interior of this grid square, and this line segment
cuts P into two pieces in a way that separates the two vertices of E but does not
intersect the graph K. This contradicts the assumption that K is connected.

Thus, one half of the boundary of the grid-square polygon determined by E
is a path in K, and in our loop P, we may replace E by this path in K. By
doing these replacements on all edges of P, we obtain a circuit in K, and we let
S be the set of all vertices and edges in this circuit. S is connected, by following
the circuit.

For each row of vertical edges in K, our subgraph S contains only the leftmost
and rightmost, and for each column of horizontal edges in K, our subgraph S
contains only the topmost and bottommost. Thus the circuit traverses 2h(K)

vertical edges and 2w(K) horizontal edges, and the same number of vertices, so

10
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there are at most 2(w(K) + h(K)) vertices in S.

Suppose that G is a connected lattice graph containing K, and let H = G\ K.
Consider any edge e from H to K. We claim that its vertex v in K is in S.
In the case where v is on the boundary of the polygon P, we know that v is in
S because our replacement process to transform from the boundary loop of P
to the circuit S does not touch the vertices on the loop. Otherwise, the edge
e crosses from inside P to outside P, so it crosses an edge F of P. Then F
crosses the two grid squares containing e, and so the vertex v on their boundary
is part of S. Then, to show that S U H is connected, consider any path in G
between two vertices of SU H. It alternates between sequences of vertices in H
and sequences of vertices in K, and we have just shown that each K sequence
begins and ends with vertices in S. Thus, we may replace each K sequence by

an S sequence to get a walk in S U H connecting the same two vertices. O

3. Ramp-like polygons

The purpose of this section is to prove Theorem[T1} which bounds the routing
number of ramp-like polygons. Subsection [3.] contains all of the proof except
for two big lemmas, which we save for their own subsections: the monotonic
configuration theorem (Theorem@ is proved in Subsection and the column
preparation lemma (Lemma [10]) is proved in Subsection

3.1. Ramp-like routing overview

When routing within ramp-like polygons, the way we use the ramp-like ge-
ometry is by defining a slightly more general property of the induced graph,
and then using that graph property in the routing. The following definition is
illustrated by Figure

Definition 1. A ramp-like graph R is a finite induced subgraph of the infinite
lattice graph Z x Z with the following properties:

1. Rows are contiguous, and start at z-coordinate 0: if (z,y) € V(R), then

(i,y) € V(R) for 0 < i < z. When we give row numbers, we number

11
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Figure 5: A ramp-like graph is shown above. The convex hull of its vertices, in gray, is a
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ramp-like polygon. The discretely convex border property says that the differences between

row lengths roughly increase from bottom to top, failing to increase by at most 1.

the rows by their y-coordinates, so that the row numbers increase from
bottom to top rather than from top to bottom.

2. Columns are contiguous, and start at y-coordinate 0: if (z,y) € V(R),
then (z,i) € V(R) for 0 < i < y. When we give column numbers, we
number the columns by their xz-coordinates.

3. R has discretely convex border: if n; denotes the greatest z-coordinate
among all vertices with y-coordinate ¢, then for all ¢« > j > ¢ > 0, we have

Ni—e — Ny 2 Nj—c— Ny — 1.

The intuition behind the third property is to think of R as being cut out
from the first quadrant by the sideways graph (f(y),y) of a function f. If f
cuts out a convex shape, then for any constant ¢, the function f(y —c) — f(y) is
increasing in y. However, the resulting lattice graph only satisfies the inequality

with the term of —1 included, as in Figure

Lemma 7. The convexr grid piece R cut out by any ramp-like polygon P is

isomorphic to a ramp-like graph.

Proof. We may assume that P is the convex hull of its enclosed lattice points.
By translating P and rotating by some multiple of a right angle, we may assume
that the two sides of P that coincide with sides of its bounding box are along
the positive z-axis and the positive y-axis. Then the rows and columns are
contiguous and start at 0, so it remains to check the third property, about
having discretely convex border.

We consider the rightmost vertices in the rows of R with the y-coordinates

i,i—c,j, and j — ¢, with ¢ > j > ¢ > 0. They are (n;,1), (ni—c, i — ¢, (n;,7),

12



280

285

and (nj_¢, j — ¢), respectively.

We note that by convexity of the ramp-like polygon P, the convex hull of
(ni, 1), (Nj—c,j —¢), (n:,0), (nj_c,0) is contained in P. We know that (n;_. +
1,4—c) and (n; +1,7) are not in P, so they also must not be in the convex hull
of (n;,1), (nj—c,j—c), (n;,0), (nj—c,0). Thus, the lattice points (n;—.+1,i—c)
and (n; + 1,j) must be to the right of the line segment between (n;,i) and
(nj—c,j —c). We let s be the slope of this segment, and compare this slope to
the slopes of the segments from (n;,4) to (n;—. + 1,7 — ¢) and from (n; + 1, j)

to (nj_¢,j —¢), as in Figure@

i—c¢
J
j—c

Figure 6: The slope of the solid line, s must be steeper (more negative) than the slope of

the upper dashed line, m, and shallower (less negative) than the slope of the lower

dashed line, m .

We note that if s is undefined, then each row between ¢ and j — ¢ must
contain n; = n;j_. vertices, so the inequality must be true. Otherwise, the slope
of the segment from (n;,7) to (nj—.+1,i—c) is Tior0—n; and the slope of the
segment from (n; + 1), ) to (nj_c,j—c) is 77— 51y and the three negative

J—c J
slopes are ordered as
—c <s< -
—_— <5< /.
nj—c — (n; +1) (ni—c+1) —n;
Taking absolute values and comparing the denominators, we have
Nj—c—(nj +1) < (Mi—ec +1) = ny,

and since both sides are integers, this is equivalent to our desired inequality

Ni—e — Ny > Nj—c — Ny — 1.

13
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The main goal of this section is to prove the following bound on the unlabeled
routing number of ramp-like graphs. This bound implies the corresponding

bound for labeled routing number relatively easily.

Theorem 8 (Unlabeled ramp-like bound). There is a constant C' such that for

any ramp-like graph R, the unlabeled routing number of R satisfies the bound
urt(R) < C' - (w(R) + h(R)),
where w(R) and h(R) denote the width and height of R as a lattice graph.

Given any k, we define the row-major order configuration of k black tokens
and |V(R)| — k white tokens on the graph R as follows: we order the vertices
in R by row from top to bottom, and within each row from left to right, and
we take the configuration in which all of the black tokens appear before all of
the white tokens. To prove the unlabeled ramp-like bound, we start with an
arbitrary configuration of black and white tokens on R, and describe how to
route from this configuration to row-major order.

The process for arbitrary ramp-like graphs is considerably more complicated
than it is for rectangular grids. On a rectangular grid, given a configuration
of black and white tokens, we can move them within their rows to get the
right number of each color into each column, and then move them within their
columns to achieve row-major order. An arbitrary ramp-like graph may be
much narrower at the top than at the bottom, so our starting configuration
could be a few wide rows of black tokens along the bottom, which we want to
move to form several narrow rows at the top. In this case we would need to
alternate between horizontal and vertical motion several times to move between
the configurations. Whatever the starting configuration is, our first phase is to

route to what we call a monotonic configuration.

Definition 2. We say a configuration of tokens on a ramp-like graph R is

left-aligned if for every black token on some (z,y) € V(R), there is also a

14
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black token on (z — 1,y) € V(R), or (x — 1,y) ¢ V(R). Similarly, we say a
configuration of tokens is up-aligned if for every black token on some (z,y) €
V(R), either there is also a black token on (z,y+1) € V(R), or (z,y+1) ¢ V(R).
Additionally, we say a given black token is left-aligned or up-aligned if it satisfies
the corresponding condition stated above.

We say a configuration is monotonic if it is both left-aligned and up-aligned.

Examples of configurations with each of these properties can be seen in Figure[7]

Figure 7: (a) A left-aligned configuration of tokens, (b) an up-aligned configuration of tokens,

and (c) a monotonic configuration of tokens.

We note that routing all black tokens such that they are as far up or left
as possible within their column or row results in an up-aligned or left-aligned
configuration, respectively. We abbreviate the process of routing all black tokens
as far up as possible (within their column) with the phrase “pushing up,” and
routing all black tokens as far left as possible (within their row) with “pushing
left.”

The following theorem describes a process sufficient for moving the tokens

to a monotonic configuration.

Theorem 9 (Monotonic configuration). For any configuration Xo of black and
white tokens on a ramp-like graph, after pushing the black tokens up, then left,

then up, then left, the new configuration of tokens is monotonic.

Proving the monotonic configuration theorem (Theorem@ is the most tech-
nical aspect of routing within ramp-like polygons, and the proof appears in
Subsection After routing to a monotonic configuration, we are in a better
position to move the tokens to the correct columns, after which all that remains

is to push up all the black tokens to get to row major order. Our proof that we

15
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can move the tokens to the correct columns sufficiently quickly is by induction
on the number of rows in our graph. To do this, we want to partition the graph
into a top slice (denoted by Ry,,—1 in the next lemma) and a bottom slice and
route the two slices separately; that is, we want a way to move the tokens to the
correct columns without crossing between the two slices. The next lemma states
that this division into top and bottom is possible. For the lemma statement,
we denote the number of vertices in the y = ¢ row by 1 + n;, so that as before

the z-coordinates of those vertices range from 0 to n;.

Lemma 10 (Column preparation). Let R be a ramp-like graph with m rows
(that is, fromy = 0 through y = m —1), and let R; denote the induced subgraph
of R consisting of the top i rows (that is, from y = m — i through y = m — 1).
Let X be a monotonic configuration on R with t black tokens, and let my be

such that

mlfl

Z (1 + Tlm_i) <t< i(l —|—nm_i),

i=1 i=1
meaning that t black tokens can fit on the vertices of R, but are not able to fit

on the vertices of Ry, —1. Then, there exists a configuration Y on R such that

1. Ry, —1 contains the same number of tokens of each color in'Y as in X,
and

2. InY, each column of R contains the same number of tokens of each color

as there are in row major order.

The proof of the column preparation lemma (Lemma is also fairly tech-
nical, and it appears in Subsection Outside of the proof of the lemma, we
do not need to remember the definition of my; rather, what is important is the
conclusion of the lemma, which makes R,,, 1 the top slice and the remainder
of R the bottom slice. It would be more intuitive to choose the top slice to be
Ry, but then in the case where R,,, is the whole graph R, we would not be
able to apply the inductive hypothesis to it. Thus, we choose the top slice to be
R,,,—1. Assuming the monotonic configuration theorem (Theorem E[) and the
column preparation lemma (Lemma, we can finish proving the upper bound

on unlabeled routing number of ramp-like graphs.
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Proof of unlabeled ramp-like bound (Theorem @ Let m be the number of rows
in our ramp-like graph R, and let u be the number of columns. If m or p is
1, then R is a path, which we already know how to route by the path bound
(Theorem [2). Thus, we may assume that w(R) and h(R) are both at least 1.
In this case, we have u = w(R) + 1 < 2w(R) and m = h(R) + 1 < 2h(R), so it
suffices to find a constant C' such that we can move an arbitrary configuration
of black and white tokens to row-major order in at most C'(m+ ) routing steps.

Let Cy be the constant from the rectangle bound (Theorem |4 such that a
rectangular grid with p rows and ¢ columns has unlabeled routing number at
most Co(p + q).

First we show by induction on m that the process in the column preparation
lemma (Lemma of moving from configuration X to configuration Y can
be accomplished in at most Co(m + p) moves. In the base case m = 1, our
ramp-like graph is a path of length u, which is already rectangular. For m > 1,
we partition the ramp-like graph R into three parts: the upper ramp-like shape
Ry, —1, the rectangular piece containing the row below R,,,_; and all vertices
directly below this row, and the ramp-like graph consisting of columns to the
right of the rectangular piece (Figure .

To move from configuration X to configuration Y, we apply the inductive
hypothesis to R,,, —1 while simultaneously routing within the rectangular piece;
the graph to the right of the rectangular piece has no tokens in it, so it does
not need any routing. Because R,,,_1 has strictly fewer rows than the original
graph R, the inductive hypothesis applies. The rectangular piece has at most
m rows and at most p columns, so it requires at most Co(m + p) routing steps
to move from X to Y, and by the inductive hypothesis, R,,, 1 also requires at
most Co(m + p) routing steps. Performing the steps simultaneously completes
the induction.

Given an arbitrary token configuration Xy on the ramp-like graph R, we
start by pushing all the tokens up, then left, then up, then left, which by the
monotonic configuration theorem (Theorem@ gives a monotonic configuration.

We apply the column preparation lemma (Lemmal[L0) to the resulting monotonic
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Figure 8: R is partitioned into R,,, —1 (light gray), a rectangle, and a subgraph to the right
of the rectangle (dark gray). Ry, 1 is routed using the inductive hypothesis, and in parallel,
the rectangular piece is routed to produce a configuration, which, when pushed up, is in row
major order. The subgraph to the right of the rectangle contains no black tokens either in

the monotonic configuration X or in row-major order.

configuration, and then we push all the tokens up to get to row-major order.
By the path bound (Theorem [2)) it takes at most m routing steps to push up
and at most p routing steps to push left, so the total number of routing steps
to get to row-major order is at most 3m + 2u + Co(m + p) < (34 Cp)(m + p).

Given any two configurations of the same set of white and black tokens
on R, we can route from one to the other by routing the first into row-major
order, and then routing from row-major order to the second. Thus, if we choose
C = 4(34C)y), we can route between the two configurations in 2(3+Cp)(m+pu) <
C(w(R) + h(R)) routing steps. O

We can use the bound on unlabeled routing number of ramp-like graphs
to give a bound on labeled routing number, by dividing the graph into four

quadrants and applying recursion.

Theorem 11 (Labeled ramp-like bound). There is a constant C' such that for
any ramp-like polygon P, the routing number of P satisfies the bound

rt(P) < C - (w(P) + h(P)).
Proof. The idea of the proof is to divide P into quadrants, each with width at
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most $w(P) and height at most h(P). Using the unlabeled ramp-like bound
(Theorem , we can move each token into the correct quadrant. Then, each
quadrant is ramp-like, so we can apply recursion to route within all four quad-

rants simultaneously, as shown in Figure [0}

\
\

Figure 9: P is divided into four quadrants, and all tokens are routed into the correct quadrant

using unlabeled routing twice. Then, this process is repeated recursively for each quadrant,

simultaneously.

We may assume that the vertical and horizontal sides that P shares with
its bounding box have rational z-coordinate and y-coordinate, respectively, and
that the width and height of P are both irrational. These assumptions guarantee
that when we cut P in half, the cut does not go through any lattice points. If
P does not have these properties already, we can make P very slightly bigger so
that it does, which increases the right-hand side of the desired inequality very
slightly; taking the limit of a shrinking sequence of approximations gives the
desired inequality.

Let Cy be the constant for unlabeled routing from the unlabeled ramp-like
bound (Theorem . We divide P into halves with a vertical line bisecting the
width, and then into quadrants with a horizontal line bisecting the height. One
of the quadrants may be empty. It takes at most Co(w(P) + h(P)) routing
steps to move the tokens so that those that belong in the left half go to the
left half, and those that belong to the right half go to the right half. Then
each half is ramp-like and has width 2w(P) and height h(P), so it takes at
most Cy (2w(P) 4+ h(P)) additional routing steps to move the tokens into the
quadrants where they belong, working with both halves simultaneously.

We select C' = 4C), and prove the theorem by induction on [w(P)+h(P)]. If
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[w(P)+h(P)] =1, then P has only one vertex, so the routing number is 0, which
is certainly at most C'- (w(P)+ h(P)). Otherwise, we have [Fw(P)+ 1h(P)] <
[w(P)+h(P)], so we may apply the inductive hypothesis to find that the routing
number of each quadrant of P is at most C- (3w(P) + 1h(P)). Then the total
number of steps to route an arbitrary configuration of tokens on P to a home

configuration is at most

Co(w(P) + h(P)) + Co (;w(P) + h(P)) e (;w(P) + 1h(P))

- (zco + ;c> (w(P) + h(P))

= C- (w(P) + h(P)).

3.2. Moving to a monotonic configuration

In this subsection we prove the monotonic configuration theorem (Theo-
rem E[) To understand the strategy, we observe that if our ramp-like graph
were a rectangular grid, then pushing the black tokens up and then left would
already give a monotonic configuration. This is because after pushing up from an
arbitrary configuration, every black token below the top row has another black
token directly above it, so the number of tokens in each row is non-increasing as
we consider the rows from top to bottom. However, for an arbitrary ramp-like
graph, after pushing up from an arbitrary configuration, a row might have more
black tokens than the row above it, because the lower row might have black
tokens in columns to the right of all columns in the upper row.

The proof of the theorem is based on Lemmas [[2] and [I3] which together
show that after pushing up, left, and up on a ramp-like graph, the result is
similar to what we would get from simply pushing up on a rectangular grid.
Namely, if we consider the rightmost column that contains black tokens, then
we show that all of the rows that are too short to extend to that column are

completely full of black tokens. The configuration below these rows looks like
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an up-aligned configuration on a rectangular grid, so pushing left one more time
results in a monotonic configuration.

Lemma [T2) shows how the shape of our ramp-like graph affects the possible
numbers of black tokens per row after our first step of pushing up, and thus after
our second step of pushing left as well. Then Lemma [13| describes the result of
our third step of pushing up. For both lemmas, we use the following notation.
Given a ramp-like graph R, we let #(R, i) denote the number of vertices in the
row of R with y-coordinate i. Given a configuration X on R, we let #(X,1)

denote the number of black tokens in X with y-coordinate 1.

Lemma 12. Let Xy be an up-aligned configuration on a ramp-like graph R.
Then for all rows b and b+ ¢ > b of R, we have

#(X1,0) — #(X1,0+¢) < #(R,b) — #(R, b+ ).

Proof. Let d be the number of black tokens in row b of X; that are to the right
of column nyy., the rightmost column of row b + ¢. Using the fact that X is
up-aligned, we have

#(X1,0) — #(X1,b+¢) < d,
because every token in row b has a token directly above it in row b+ ¢, except for
those in the d columns to the right of column n44.. Because the total number

of columns in row b to the right of npi. is #(R,b) — #(R, b + ¢), we also have
d < #(R,b) — #(R,b+c).
Together, these inequalities give the desired inequality
F#(X1,0) — #(X1,b+¢) < #(R,b) — #(R,b+¢).
O

Geometrically, the lemma says that after we push up to form X; and then
left to form a configuration X5, the right boundary of the cluster of black tokens
is steeper than the right boundary of the graph R. The next lemma starts with
this configuration X5 that results from pushing up and left, and describes what

happens after pushing up again.
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Lemma 13. Let Xs be the left-aligned configuration on a ramp-like graph R
which was produced by starting from some up-aligned configuration and pushing
left. Let (x2,b) be the coordinates of T, a black token in X5, and let v > b be a
row number such that n,. < xa, if such a row exists. Then when we push up to
reach another configuration X3, all rows with y-coordinate at least r will have

only black tokens.

Proof. We imagine translating all of the tokens upward in the lattice so that
row b moves up to row r and some tokens may occupy lattice points that are
not in the graph R. If all rows r and above are covered by black tokens in this
arrangement, they also have only black tokens in X3. Thus, it suffices to show
that for all ¢ > 0, the number of black tokens in row b + ¢ of X5 is at least the
number of vertices in row r + c.

To show this, we make the following note: from Lemma [I2] for all rows b

and b+ ¢ > b of R in configuration X7, we have
#(X1,0) — #(X1,0+ ¢) < #(R,b) — #(R, b+ c).

Because when we push left to get to Xo, every token is in the same row in
X5 as in X1, so the same inequality is true of Xs.
We then combine this inequality with an inequality resulting from the dis-

cretely convex border property of R: because r > b, we have
Ny — Npge = Np — Npye — 1,
or equivalently,
#(R,r) — #(R,m+¢c)+ 1> #(R,b) — #(R,b+¢).

Putting these inequalities together with the assumption n, < z2 (or equiv-

alently #(R,r) < #(X2,b)), we have

#(X2,b+ ¢) = #(X2,b) — [#(X2,b) — #(X2,b+ ¢)]
> #(R,r) — [#(R,b) — #(R, b+ c)]
> #(R,r) — [#(R,r) — #(R,r + ) +1]
= #Rr+¢)—1,
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and so because all of the quantities are integers, we obtain our desired inequality

#(X2,b+¢) > #(R,r + ¢). O

Having described the configuration that results from pushing up, left, and up,
we are ready to prove that pushing this configuration left results in a monotonic

configuration.

Proof of monotonic configuration theorem (Theorem @ We label the sequence

of configurations as follows: let

e the starting configuration be Xy,

the configuration after pushing up be Xj,

the configuration after pushing left be Xs,
e the configuration after pushing up a second time be X3, and

e the configuration after pushing left a second time be X, which is also the

final configuration.

Note that X, is left-aligned, so in order to show X, is monotonic, we just
need to show it is up-aligned. We will do this by showing that all black tokens
in X, are up-aligned.

We consider an arbitrary black token 7 in Xj. Let the vertex which 7 is on
in X5 be (22,b). Then by Lemma we have that when we push up to get to
X3, all rows with y-coordinate at least r will contain only black tokens.

Let s be the row such that 7 is in row s — 1 in X3. Because 7 is in the
same column x5 in X5 and X3, and this column is to the right of n,, we have
s —1 < r, or in other words s < r. If s = r, then 7 is up-aligned in X, because
the row above 7 is row r, and we have shown that rows r and above are all black
in X3.

If s < r, then because of how r is defined we have zo < ng. Thus, in X3
(which is up-aligned), for 7 and every black token to the left of it in row s — 1,

there is a corresponding black token immediately above, in row s. When we
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push left to get X4, there are at least as many black tokens in row s as there
are black tokens in row s — 1 to the left of and including 7, so 7 is up-aligned.
Thus, for any black token 7 in Xy, in Xy, there is a black token (or no

vertex) above it and a black token (or no vertex) to the left of it. O

8.8. Distributing tokens among columns

Proving the column preparation lemma (Lemma is the last piece needed
to complete the proof of the unlabeled ramp-like bound (Theorem [§) and thus
the labeled ramp-like bound (Theorem. The goal is to get the right number
of tokens of each color into each column, without moving tokens between the
top slice Ry, -1 and the bottom slice R\ R,,, 1. For the top slice, we choose to
move the tokens to row-major order; this determines how many black tokens we
want in each column of the bottom slice. The only thing that could potentially
go wrong is if we have somehow assigned more black tokens to a column of
the bottom slice than its number of vertices. We show this does not happen,
roughly because the black tokens in the bottom slice are more evenly spaced,
among at least as many columns, in our target configuration Y as in our starting

configuration X.

Proof of column preparation lemma (Lemma @) Let ¢1 be the number of black
tokens in R,,, -1 in configuration X, and let mo < m; — 1 be the number such

that

mgfl

Z (1 + nm_i) <t < io:(l + nm—i)a

i=1 i=1
meaning that ¢; black tokens can fit on the vertices of R,,,, but are not able to
fit on the vertices of R, _1.

On any ramp-like graph, we denote the configuration of ¢ black tokens (and
the remainder white tokens) in row-major order by RM(t). We set Y to be
equal to RM (t1) on R,,,—1. Let Z be the configuration of ¢ — ¢; black tokens,
one at every vertex where RM (t) has a black token but RM (t1) does not, and

let z; be the number of black tokens in Z that are in the x = j column of R.
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We note that z; = 0 for j > n,,,. To prove the lemma, we need to show that
z; black tokens can fit into column j of R\ R,,,_1; that is, z; < m —mq + 1.

First we address the case where X contains a black token in a column strictly
to the right of the subgraph R,,,. We claim that in this case, z; <1 < m—m;+1
for all j, so we are done. Because X is monotonic, if X contains a black token
to the right of R,,,, then R,,, must be entirely full of black tokens, and the row
below it must also contain black tokens. Thus, R,,,+1 contains more than ¢;
black tokens. Because R,,,_1 contains only ¢; black tokens, this then implies
that R,,, 1 must be smaller than R,,,+1. Because we always have mg < mj;—1,
we conclude that in this case we have m; —1 = mg, with R,,,, _1 entirely full of
black tokens. The definition of m; implies that the black tokens not in R, 1
all fit into the row just below R,,, _1, so z; < 1.

Thus, we may assume that we are in the case where all black tokens in X
are in columns 0 through n,,,. In this case, the idea of the proof is that if
we were to distribute the tokens in the bottom slice R \ R,,,_1 as evenly as
possible among the columns 0 through n,,,, the column with the most black
tokens would have at least as many as in Z, because Z may use the columns to
the right of n,,, as well.

More precisely, the portion of X in R\ R,,,—1 has ¢t — t; black tokens, all of

which are in columns 0 through n,,,, so we have
t—t1 < (14 nmy)(m —mqg +1). (1)

Also, because Z has t — t1 black tokens in total, we have
t—ti= Y 2
0<j<my
Let § be the greatest x-coordinate of the black tokens in the y = m — m; row
of RM(t) (the myst row from the top, and the last not-all-white row), and let
01 be the greatest xz-coordinate of the black tokens in the y = m — mg row of
RM (t1) (the moth row from the top, and the last not-all-white row). We now

estimate z; in the three possible cases for how ¢; and J compare, depicted in

Figure
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Figure 10: In every case, the black tokens of Z = RM (t) \ RM (t1) have enough vertical space
to slide down below subgraph R,,, 1, because the total area of columns 0 through nm,, in

R\ R, —1 is large enough for the black tokens in columns 0 through nm,, of Z.

If 61 = 9, or if n,, = 01 < 0, then every column j with j < n,,, has
z; = my1 — mg. For j > n.,,,, because row m — mg has no vertices in column j,
we have z; < my —mg. The total number ¢ —¢; of black tokens in Z is at least
the number in columns 0 through 7, so we have t —t; > (1 + 1, ) (M1 —mo).

Combining this inequality with inequality 7 we have
(14 nmg)(m1 —mo) <t —1t1 < (14 np,)(m —mq + 1),

som; —mo <m—my+1,and so z; <m —my +1 for all j.
If 1 < § and §; < nyy,, then for j < 6; and for 6 < j < n,y,, we have
zj = mi — my, and for §; < j < min(d, ny,,) we have z; = 1 +my — mq. For

J > Mumg, We have z; <14 mq —mg as well. Thus we have
(14 nmg)(m1 —mo) <t —1t1 < (14 np,)(m—mq + 1),

which implies that m; —mo < m —m; + 1, and so z; <m —my + 1 for all 5.
If, finally, d; > J, then for j < d and for §; < j < nyy, We have z; = my —mo,
and for 6 < j < 0; we have z; = —1 + m; — mg. For j > n,,, we have

z; <myp —mg as well. Thus we have

(T4 1) (=1 4+mp —mg) <t —1t1 < (14 npm,)(m—mq + 1),
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which implies that —1 +m; —mo < m —my + 1, and so z; < m —my + 1 for
all 7.

Thus, in every case, R\ R,,,—1 has enough space to fit the same number of
black tokens in each column as Z. We set Y to be any configuration that in
R, -1 has the same number of black tokens in each column as RM (t1), and

that in R\ R,,,—1 has z; black tokens in column j for each j. O

4. Burger bun polygons

In this section we prove Theorem[I8] the bound on routing number of burger
bun polygons. Our strategy is to divide the burger bun polygon in half, then to
divide each half into two ramp-like pieces. We know that we can route a single
ramp-like piece from the ramp-like bound (Theorem , so our first step is to
use this to prove that we can route a pair of ramp-like pieces and thus a half
of a burger bun polygon. Then, using a similar argument, we show that this
implies that we can route a whole burger bun polygon.

We have defined a ramp-like polygon to be a convex polygon such that two
of its edges coincide with edges of its bounding box; we refer to each of these
edges as a spine of the ramp-like polygon. If two otherwise disjoint ramp-
like polygons have a common spine, then their union is also a convex polygon.
Similarly, every burger bun polygon is divided in two by a spine. Specifically,
if a burger bun has two points of maximum and minimum y-coordinate with
equal z-coordinate, then we refer to the segment between those two points as its
(vertical) spine, and if it has two points of maximum and minimum z-coordinate
with equal y-coordinate, then we refer to the segment between those two points
as its (horizontal) spine.

Our strategy for this section is as follows. In our situation, we have two
polygons with a common spine, and we may assume that we know how to route
within each of the two polygons. Given an arbitrary configuration of labeled
tokens on the union of the polygons, we want to route those tokens to their home

positions. It suffices to get each token into the half where it belongs, because
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Figure 11: Left: The two ramp-like polygons shaded in different shades of gray share a spine,
forming half of a burger bun polygon. Middle: To find the shared subpolygon of each half,
we intersect it with the reflection (gray dashed) of the other half across the spine. Right: The

shared subpolygons are mirror images (dashed line).

then we can route within the halves separately to get each token to its home
vertex. Thus, we have an unlabeled routing problem, thinking of the tokens
belonging in the first half as black, and the tokens belonging in the second half
as white.

In the special case where the two polygons, and their corresponding graphs,
are mirror images across the spine, we can route as follows: first we route within
the second half so that the configuration is a color-reversed mirror image of the
first half. This is possible because when the two halves have the same number
of vertices, the number of black tokens in the second half is equal to the number
of white tokens in the first half. Once the two halves are color-reversed mirror
images, each row (if the spine is vertical) has the same number of white tokens
as black tokens, so we may route all rows simultaneously to get each token into
the half where it belongs.

In the general case, where the two polygons are two ramp-like polygons or
two halves of a burger bun polygon, the polygons may not be mirror images.
Instead, we find a subpolygon inside each side, called the shared subpolygon,
such that the two shared subpolygons are mirror images and still contain a
significant fraction of the vertices. Informally, to find the shared subpolygons,
we imagine reflecting either polygon over the spine and intersecting the other
polygon with the reflection, as in Figure This construction only makes sense
when the spine has an integer or half-integer coordinate, so for the general case
of two ramp-like polygons sharing an arbitrary spine, the following theorem

finds those shared subpolygons and shows that they contain enough vertices.
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Figure 12: The tokens belonging in the left ramp-like polygon (shaded in darker gray) are
colored black, and in the right ramp-like polygon (shaded in lighter gray) are colored white.
The union of the shared polygons of each side is marked with a dashed line. Part a) shows
the starting configuration. In b), as many improper tokens as possible, one for each vertex,
are routed into the union of the shared polygons. Note that the tokens in this union are
color-reversed mirror images of each other along the spine. Along each horizontal path of
vertices, the improper tokens are routed to the proper half to produce c). Then, once again,
as many improper tokens as possible are routed into the union, such that the tokens in it are
color-reversed mirror images of each other, shown in d). In e), again, along each horizontal
path of vertices, the improper tokens are routed to the proper half, completing the routing

process.

We consider both the case where the ramp-like polygons together form half of
a burger bun (that is, their non-shared spines are collinear) and the case where
they do not, because this latter case turns out to be useful in the next part of
the proof, where the two polygons are halves of a burger bun. Once we have
found the shared subpolygons, then we can solve the unlabeled routing problem
by repeatedly applying the mirror-image technique to these shared subpolygons;
Figure illustrates the routing process, which is presented in more detail in

the routing between ramp-like theorem (Theorem [17)).

Theorem 14 (Intersection magnitude). Let P; and Py be two ramp-like poly-

gons with common vertical spine E, such that the widths of Py and Py and the
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length of E are all at least 41. Then there exist subgraphs G and Go of Py
and Py, respectively, both disjoint from E, such that G is a reflection of G4
over some vertical line, and the equal number of vertices in Gy or Gg is at least
1

55 min{|P1|, | P2|}, where | P;| denotes the number of lattice points in the interior

and boundary of P;.

The proof of this theorem is based on two lemmas: the spine alignment
lemma (Lemma , and the triangle trimming lemma (Lemma |16)). Roughly,
the idea is that to find the subgraphs G; and Gs, we should reflect P; over
the shared spine and intersect it with P, to find Gs, or reflect P, over the
shared spine and intersect it with P; to find G;. The spine alignment lemma
(Lemma accounts for the fact that the shared spine might not be at an
integer or half-integer coordinate, so reflecting across it might not take lattice
points to lattice points. Then the triangle trimming lemma (Lemma starts
from a quick estimate of the area of the polygon intersection, and produces an

estimate of the number of lattice points inside that polygon.

Lemma 15 (Spine alignment). Let P be a burger bun polygon with vertical spine
FE dividing P into left side Py and right side Py. Suppose that the x-coordinate
of E is not an integer. Then there is another burger bun P’ with vertical spine

E', dividing P’ into left side P] and right side Pj, with the following properties:
e The x-coordinate of E' is an integer.
e Py and P| contain the same lattice points.
e The set of lattice points inside P} is obtained by translating the set of

lattice points inside Py one unit to the right.

Proof. Figure [13| shows the relationship between the polygons. Let P, and P»
be arbitrary convex polygons sharing a vertical edge F with a non-integer x-
coordinate zg. Construct a new vertical line segment E’ with the same length
as E and integer x-coordinate [z(]. Translate all polygon vertices of P, one

unit to the right, and take the convex hull of these vertices with the endpoints of
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Figure 13: If we cut a burger bun polygon along its spine and insert a rectangle of width 1
instead, the result is a burger bun polygon with one additional column and a spine along that

column.

E’ to form congruent polygon Pj. Similarly, take the convex hull of all polygon
vertices of P, with the endpoints of E’ to form congruent polygon P;. The set
of lattice points inside P; disjoint from E’ is equal to the set of lattice points
inside Pp, and the set of lattice points inside Pj disjoint from E’ is equal to the

set of lattice points inside P» translated by 1 in the positive z-direction. O

To prove the intersection magnitude theorem (Theorem 7 we find a tri-
angle in each ramp-like piece that covers at least half the area, then intersect
these triangles to get a smaller triangle that covers at least i of the area of the
smaller ramp-like piece. Once we have this triangle in common, we need to show
that it has sufficiently many lattice points. The following lemma estimates the

number of lattice points in such a triangle.

Lemma 16 (Triangle trimming). Let P be a triangle with at least one side

parallel to an axis. Then the number of lattice points strictly inside P is at least
Area(P) — 2 - Perimeter(P) + 1,
if this quantity is at least 1.

Proof. The strategy is to use Pick’s theorem, which relates the area of a lattice
triangle to the number of enclosed lattice points and the number of boundary
lattice points. Our triangle P does not necessarily have vertices at lattice points,
so our goal is to find a large enough lattice triangle inside P. First we construct
a parallel line 2 units inward from each side of P. We call the similar triangle

defined by these parallel lines the “trimmed triangle”, denoted P;. We show
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below that P; has area at least Area(P) — 2 - Perimeter(P). (In the case that
there is no triangle left after the trimming process, we show that Area(P) —
2 - Perimeter(P) < 0 and so the lemma is vacuously true.) If we can find an
“intermediate triangle” P; that is a lattice triangle and is strictly between P;

and P, then Pick’s theorem states
1
Area(P;) = #(interior lattice points) + 3 #(boundary lattice points) — 1,

so we have

#(total lattice points of P;) > Area(P;) + 1,

giving our goal inequality
# (interior lattice points of P) > Area(P;)+1 > Area(P)—2-Perimeter(P)+ 1.

We begin by estimating the area of P;,. The region inside P and outside
P; consists of three trapezoids, each with height 2 and one base a side of P.
Because the two angles bordering that side add up to less than 180°, the other
base of each trapezoid—that is, the corresponding side of P,—must be shorter.
Thus, the total area of the trapezoids is less than 2 - Perimeter(P), giving the
estimate

Area(P;) > Area(P) — 2 - Perimeter(P).

Suppose there is no triangle left after the trimming. Then the inradius r of P is
at most 2, and connecting the vertices of P to the incenter divides P into three

triangles, each with height r and base equal to one side of P. Thus we have
Area(P) = g - Perimeter(P) < 2 - Perimeter(P),

and so the quantity Area(P) — 2 - Perimeter(P) is negative.

At each corner of the triangle, there is a parallelogram enclosed by the two
sides of the triangle and the lines parallel to each side at distance 2, as in
Figure It suffices to find a lattice point inside each of these corner parallel-
ograms, because these three points determine a triangle for which none of the

sides crosses either a side of the original triangle P or a side of the trimmed
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Figure 14: The parallelogram trimmed off near each vertex of the original triangle contains a
lattice point, because it contains a circle of radius 1, which contains a square of side length 1.

The lattice points from the three parallelograms form the intermediate triangle P; (dashed).

triangle P;; thus, we can choose that triangle to be our intermediate triangle
P;.

To find the lattice point, first we observe that there is an inscribed circle of
radius 1 inside each corner parallelogram; this is because the parallelogram is the
intersection of two infinite strips of width 2, and the center lines of the two strips
intersect at the center of the circle. We also know that every square with sides
parallel to the axes and of length 1 must contain a lattice point, because tiling
the plane with such squares gives lattice points at the same relative locations in
each square. Any circle of radius 1 contains such a square of side length 1—in
fact, it contains a square of side length v/2, because the diagonal has the same
length 2 as the diameter of the circle.

Thus every corner parallelogram does contain a lattice point in its interior,
so we can select one such lattice point from each corner parallelogram to define
the intermediate triangle P;. Because the area of P; is greater than that of the
trimmed triangle P;, Pick’s theorem implies that P; must have enough lattice

points in its interior and boundary. O

Using these lemmas, we can finish proving that our pair of ramp-like polygons
contains a pair of subgraphs, one on each side of the spine, that are mirror

images.

Proof of intersection magnitude theorem (Theorem . If the common vertical
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Figure 15: The shared subpolygon T7 N T% is formed by taking the largest right triangles T1
and T% inside the two ramp-like polygons, and intersecting T} with the reflection of T>. In the
case where the non-shared spines of the two ramp-like polygons are collinear, this intersection

T1 NT> is equal to the smaller right triangle, T7.

edge E does not have an integer x-coordinate, we apply the spine alignment
lemma (Lemma to replace P; and P by polygons that cut out the same
subgraphs in their interiors. Thus, we may assume that E has an integer z-
coordinate.

Let a be the length of F, and let b and ¢ be the widths of graphs P, and P,
respectively. Without loss of generality we assume b < c. We observe that P;
and P, are contained in their bounding boxes, which have (a 4+ 1)(b+ 1) lattice
points and (a+1)(c+1) lattice points, respectively. Thus it suffices to construct
subgraphs Gy and G with at least 55 (a + 1)(b+ 1) vertices each.

Let T1 and 75 be right triangles constructed from the endpoints of F and
the vertices of P; and P, (respectively) with the greatest horizontal distance
from E. We construct G; by reflecting 75 over E and taking all the vertices in
the interior of 77 that are also in the interior of the reflected Ts; similarly, we
construct Go by reflecting T; over E and taking all the vertices in the interior
of Ty that are also in the interior of the reflected T;. Abusing notation, we let
T1NT5 denote the triangle formed by intersecting 77 with the reflection of T5, as
in Figure Once we estimate its area and perimeter, we can use the triangle
trimming lemma (Lemma to get a lower bound on the number of vertices

of GG1, and hence of G5 as well.
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First we claim

Area(Ty NT3) > azb.

To prove this area bound, we observe that given lengths a, b, and ¢, the case
where Area(T; NTy) is the least is the case where the third vertex of T3—that
is, the vertex not on the common spine E—shares a y-coordinate with the top
vertex of F/, and the third vertex of T shares a y-coordinate with the bottom
vertex of F, or vice versa. In this case, if b = ¢ then the width of the intersection
triangle is exactly % so we have Area(T1NT5) = “Ib. If ¢ > b then the intersection
triangle is larger. Thus, in every case we have the desired area bound.
We also claim

Perimeter(Th NT2) < 2(a + b).

This is because the perimeter of T7 NT5 is less than the perimeter of its bounding
box, which has height a and width at most b.

We put together the area and perimeter bounds with the triangle trimming
lemma (Lemma to estimate the number of lattice points enclosed by T3 NT5.
It is algebraically true that for all a,b > 41, we have

ab 1
> _ > .
1 4(a+b)+1> 20(a+1)(b+1)

(To check this, we can use ab = Sa+ b > 20(a+b).) Thus, using our hypothesis
that a,b,c > 41, we see that the number of vertices in the interior of T} N Ty

satisfies the inequalities

b
|Gl\2%—4(a+b)+1> (a+1)(b+1),

1
20
as desired. O

Having proved this estimate on the size of the shared subpolygons, we can
finish proving a bound on the routing number of the union of two ramp-like

polygons along a shared spine.

Theorem 17 (Routing between ramp-like). Consider two ramp-like pieces Py
and Py with common vertical spine E. There exists a constant C > 0 such that

rt(Plng)SC(w(P1UP2)+h(P1UP2))
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Proof. First consider the case where w(P;), w(Ps), and the length of E are all
at least 41, so the intersection magnitude theorem (Theorem applies. Fix a
home configuration of tokens on the vertices of P;UP;, and consider an arbitrary
starting configuration. The ramp-like bound (Theorem implies that we can
efficiently route the tokens within P; and the tokens within P,. Thus, what we
need to show is that we can efficiently route the tokens into their home halves—
that is, those that belong in P; should go to P; and those that belong in P»
should go to Ps.

We label each token either black or white indicating whether it belongs in
Py or Py, respectively, in the home configuration. If the common spine E has
an integer x-coordinate, then some lattice points are shared between P; and Ps.
In this case we count those lattice points as part of P; and not P, so that each
token belongs in exactly one of the halves, and without loss of generality, we
may assume that there are at least as many lattice points in P; as in P,. In any
configuration, we say that a given token is ¢mproper if it is in the opposite half
from where it belongs. The number of improper tokens in P; is always equal
to the number of improper tokens in P,, which is at most the total number of
lattice points in Ps.

We use the intersection magnitude theorem (Theorem to find subgraphs
G1 and G2 in P; and P, that are reflections over a vertical line and have size
at least o5|P|. Then we can move up to |G1| = |G2| improper tokens into their

home halves, using the following sequence of phases:

1. Use the ramp-like bound (Theorem to route within P; and P, sep-
arately so that as many improper tokens as possible are in G; and Gs.
If there are at least |G| improper tokens on each side, then G; and Gs
become completely filled with improper tokens.

2. In the case where G; and G5 do not become completely filled with im-
proper tokens, continue to route within P, so that the locations of the
improper tokens in G5 are exactly the mirror image of the locations of the

improper tokens in Gj.
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3. Route each row of P; U P, simultaneously so that the improper tokens
in G; exchange places with their mirror-image improper tokens in Gs,

leaving no more improper tokens in either G or Gs.

Each of these three phases takes at most C(w(Py U P2)+ h(Py U Ps)) routing
steps, for some constant C'. Repeating up to 20 times if necessary, we can move
every token into its home half so that no improper tokens remain. Applying the
ramp-like bound (Theorem once more to route within each half, we move
all tokens to their home lattice points in at most C(w(Py U P2) + h(P; U Py))
routing steps, for some constant C.

We now consider the case where the widths of P; and P, and the length of E
are not all at least 41. Suppose without loss of generality that it is P, that has
height or width less than 41. We apply Lemma [5] with G = P, U P2, K = P,
the constant ¢; is 41, and S is the rightmost column of P;. Because we have a
bound on the routing number of P;, Lemma [5] states that the routing number

of P U Py is at most C(w(Py; U Py) 4+ h(Py U Py)) for some constant C'. O

Using the bound for a pair of ramp-like polygons, we can follow a similar
sequence of steps again to finish proving the bound on routing number of burger

bun polygons.

Theorem 18 (Burger bun bound). There exists a constant C' > 0 such that

for any burger bun polygon P, the routing number of P satisfies the bound
t(P) < C - (w(P) + h(P)).

Proof. Let E be the spine of P. Without loss of generality we may assume that
FE is vertical, so F divides P into a left half P; and a right half P,. Each of
P, and Ps, if it is not ramp-like already, is the union of two ramp-like pieces
sharing a horizontal spine. Thus, Theorem gives a bound on the routing
number of P; and P, separately. In the present proof, we follow the proof of
Theorem but instead of using the ramp-like bound (Theorem to route
the two ramp-like halves, we use Theorem itself to route P; and Ps.

We still need to prove an analogue of the intersection magnitude theorem
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(Theorem that applies to the present P; and P,, which are not necessarily
ramp-like. To do this, we construct two right triangles T and T5 that are ramp-
like with common spine F, such that the intersection of 77 with the reflection
of T, is contained in the intersection of P; with the reflection of P,. Then we

apply the intersection magnitude theorem (Theorem to T7 and T5.

Figure 16: We use the intersection magnitude bound for ramp-like polygons to show a similar
bound for burger bun halves, by applying it to ramp-like triangles 77 = ABW; and Th =
ABW.>, which are sufficiently large but still have (reflected) intersection inside our burger bun

halves.

We construct T and 75 as follows, shown in Figure Let V; and V5 be the
points on P; and P, (respectively) farthest from edge F, and let A and B be the
top and bottom points of E. Then the triangle ABV; intersects the reflection
of ABV; in some triangle ABC. We construct the third vertex Wi of T} (that
is, the vertex other than A and B) by continuing the segment BC upward until
it intersects the horizontal line containing A. Similarly, we construct the third
vertex Wy of T by continuing the reflection of AC' downward until it intersects
the horizontal line containing B.

By applying the intersection magnitude theorem (Theorem to T7 and T,
we find subgraphs G and G2 in Ty and T, consisting of at least 55 min{|T1|, |T»|}
vertices each. The construction of T} and Ty guarantees that G is also in P;
and that Gy is also in P,. We compare |T7| and |T%| to |P1| and |Ps| by observing

that T7 and T5 each have at least half as many vertices as their bounding boxes,
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and that those bounding boxes contain the bounding boxes of P; and P,. Thus
we have |Ti| > 1|Py| and [T3| > 3|P2|. The result is the lower bound

1 .
|G1] = |G2| > %mln{|P1|, | P2},

in the case where the width and height of P, and P, are all at least 41.

Thus, following the proof of the routing between ramp-like theorem (Theo-
rem7 in the case where the height and width of P, and P> are all at least 41,
we can move at least % of the improper tokens into their home halves by first
routing each half to put the improper tokens into G; and Gs, and then routing
each row simultaneously to swap the improper tokens in G; with the improper
tokens in G5. Repeating this process at most 40 times puts every token into its
home half, and then one more instance of routing within the two halves moves
every token to its home vertex.

In the case where the height or width of (without loss of generality) P is less
than 41, as in the proof of Theorem [I7|we may apply Lemmal[f| with G = PiUP;,
K = Py, ¢c; =41, and S is the rightmost column of P;. O

5. Proof of main theorem

In this section we prove the main theorem. For convenience we reproduce

the statement of the main theorem here.

Theorem Let P be a connected convex grid piece. Then the routing number
of P satisfies the bound rt(P) < C(w(P) 4+ h(P)) for some universal constant
C.

The idea of the proof is much simpler than the details. We show that our
arbitrary convex polygon P is related to a burger bun polygon by a shear trans-
formation of at most 45°. Roughly, this transformation corresponds to a map
between the sets of enclosed lattice points that stretches distances by at most a
fixed factor. We show that if two graphs are related by a map that stretches by

at most a fixed factor, then their routing numbers are also related by at most
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a fixed factor. Thus, if we shear the original polygon to get a burger bun, then
routing the resulting burger bun polygon helps us to route the original polygon.

The actual proof becomes more complicated to account for how the shear
transformation does not respect the integer lattice—in particular, it does not
necessarily preserve the number of lattice points inside the polygon. Lemmas
and [20] describe how we cut off part of P to form Py C P, and Lemma
describes how we cut off a little more to form P, C P;. Lemmas and
describe how we shear P to get a burger bun polygon P5, which we know how
to route. Lemma [24] describes how to map the lattice points inside P3 into P; to
form a subgraph ¢(P3) of P;, and the bounded stretch theorem (Theorem
implies that the routing number of ¢(Ps) is at most a constant factor greater
than that of P;. Then Lemma [26] checks the hypotheses of Lemmas [5] and [6]
which will show that the routing number of P is not much greater than that
of ¥(Ps3). Figure shows the relationship between these polygons and their

associated graphs.

Figure 17: We cut off any short rows or columns of the original polygon P to form P; (left,
shaded), then cut off the rightmost vertex in each row to form P> (left, darkly shaded) before
shearing P» to get a burger bun polygon Ps. The graph ¢ (Ps) inside P; has the same number

of vertices per row as P3 has.

Before shearing, we want to know that the shear does not affect whether the
enclosed lattice graph is connected. To do this, in the next two lemmas we trim

off the short rows and columns of P that would be at risk of being pulled apart
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by the shear.

Lemma 19 (Constructing Py). Let P be a convex polygon enclosing strictly
more than 4(w(P) + h(P)) lattice points. Then there exists a polygon Py C P
such that

e Py is the convex hull of its enclosed lattice points;
e The subgraph P\ Py has at most 4(w(P) + h(P)) vertices; and
e Every row and column of Py has at least 4 lattice points.

Proof. We consider the top and bottom rows of P and the leftmost and right-
most columns of P. If each of these has at least 5 lattice points, we set P; to
be the convex hull of the lattice points in P. Otherwise, we iteratively remove
one row or column at a time from the graph, choosing either the top row, the
bottom row, the leftmost column, or the rightmost column, whichever has at
most 4 lattice points. Once the top and bottom rows and the leftmost and
rightmost columns of the remaining graph all have at least 5 lattice points, we
set P to be the convex hull of all the lattice points remaining.

Each deletion step reduces the number of lattice points by at most 4, while
also reducing either the width or the height (possibly both) by 1. Thus P\ P,
has at most 4(w(P) 4+ h(P)) lattice points, and in particular P; is nonempty.

To show that every row and column has at least 4 lattice points, because
of the symmetry it suffices to show that every row has at least 4 lattice points.
Consider the parallelogram formed by any choice of 5 consecutive lattice points
from the top row of P; and 5 consecutive lattice points from the bottom row
of P;. Because P; is convex, this parallelogram is contained in P;. Every
horizontal cross-section of the parallelogram is an interval of length 4, so each
cross-section at integer height must contain either 4 or 5 lattice points. Thus

every row has at least 4 lattice points. O

The following lemma shows that consecutive rows of P; are well connected

to each other, as are consecutive columns.
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Lemma 20 (Property of Py). Let P; be a convex polygon with at least 4 lattice
points in every row and column. Then every two consecutive rows of P; have at
least 3 columns in common, and every two consecutive columns of Py have at

least 3 rows in common.

Proof. Because of the symmetry, it suffices to show that every two consecutive
rows of P; have at least 3 columns in common. Suppose for the sake of con-
tradiction that there are two consecutive rows with at most two columns in
common; without loss of generality, suppose that it is the two (or more) right-
most vertices in the upper row that are not adjacent to vertices in the lower row.
Let u be the vertex in the upper row just to the right of the shared columns,
and let v be the vertex in the lower row just to the left of the shared columns,

as in Figure [I§

u u+(1,0)
@ ]
v O
®
®
')
v+ (0,—3)

Figure 18: If the rows of u and v have fewer than 3 columns in common, we can contradict

the convexity of Pj.

Then v has no vertex immediately above it, so it must have at least three
vertices below it in the same column, which means that the lattice point v +
(0, —3) is a vertex in P;. We also know that u + (1,0) is a vertex in P;. The
segment with endpoints v + (0, —3) and u + (1,0) has slope at least 1, because
the x-coordinates of v and v differ by at most 3. The lattice point u + (0, —1)
lies on or to the left of this segment, but we have assumed that it is not in Py,

giving a contradiction. Thus we may conclude that each pair of consecutive
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rows has more than two columns in common. O

It turns out that we want to trim off the right side of P; to form P, before

shearing. This ensures that later when we construct ¢(Ps), it fits inside P;.

Lemma 21 (Constructing P). Let Py be a convex polygon. Then there is a
convex polygon Ps that encloses all of the lattice points inside Py except the

rightmost lattice point of each row.

Proof. Let P1ymax and Py, be points on P; with the maximum and minimum
y-coordinate, respectively. Consider the portion of the boundary of P; that is
between the points Piypax and Ppyp,;, when moving clockwise from Py, to
Piymin. Translate this piecewise-linear curve to the left by 1, and define the
new polygon P, to be the subset of P; that is to the left of this translated side.

Then P, has exactly one less vertex per row than P;. O

We construct a shear that transforms P» into a burger bun polygon, and

label this burger bun polygon Ps, in the following lemma.

Lemma 22 (Constructing Ps). Let Py be a convex polygon with w(Ps) < h(Ps).

Then there exists a shear
1 m

0 1

S:

with |m| < 1 such that the resulting polygon Ps = SPy is burger bun, and we
have w(P3) < 2w(Ps).

Proof. Let p = Pymax and ¢ = Pymin. Then |ﬁ| < 1 because |q; — po| <

w(P) < h(P) = |py — qy|. Define the horizontal shear

The region SP = P’ is a convex polygon since S is linear. Moreover, P’

is burger bun because S fixes the y-coordinate of each point and we have con-
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structed the matrix S so that (P, ...) = z(P.

ymax ymin)» as follows:

dz — Pz —Dzqy + Pydx
T(Pimax) = 2(Sp) = pz +py—— = =

Dy — 4y Py — 4y

Qe — P
y — dy

To show that w(P;) < 2w(F%), let a and b be two arbitrary points in Ps.
Then the z-coordinates of their images in P3 are a, +ma, and b, +mb,, which

have absolute difference at most

|ag — by| + |m] - |ay - by| < w(Py) +

Before we can apply our burger-bun routing theorem to P, we need to check

in the following lemma that Ps is connected.

Lemma 23 (Property of P3). Let Ps be a burger bun polygon with vertical
spine. Suppose that Ps contains at least 3 - w(Ps3) vertices in total and at least

2 wvertices in each row. Then the graph Ps is connected.

Proof. If the spine is at an integer x-coordinate, then Pj is connected because
every vertex is connected by a horizontal path to the spine. Otherwise, we
consider the two columns surrounding the spine. Every vertex in P3 can be
connected by a horizontal path to one of these two columns, so it suffices to
show that the two columns have a row in common. Suppose to the contrary
that they do not; without loss of generality, the y-coordinates of the subgraph of
P; to the left of the spine are all greater than the y-coordinates of the subgraph
to the right.

Because P; has at least 3 - w(Ps) vertices, it must have at least three rows;
without loss of generality, the left subgraph has at least one row, and the right
subgraph has at least two rows. Consider the second-to-right vertex w in the
bottom row of the left subgraph, and the second-to-top vertex v in the leftmost
column of the right subgraph, as in Figure The midpoint of u and v would
connect the left subgraph to the right subgraph, so our assumptions imply that
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Figure 19: If a burger bun polygon has at least 3 rows, with at least 2 vertices in each row,
then the subgraphs on either side of the spine must connect to each other, or else contradict

the convexity of the polygon.

it is not a vertex in P3; however, this contradicts the convexity of P3. Thus, it
is impossible for the two columns surrounding the spine not to have a row in

common, and so Pj is connected. O

The burger bun bound (Theorem shows that we can route Ps. To show
that this helps us route P, we start by finding a distorted copy of Ps inside P;.

Lemma 24 (Constructing ¢ (P3)). Let P1, P> and Ps be convex polygons con-
structed in Lemmas and[29 Then there is an injective map 1 from the
verter set of Ps to the vertex set of P1 with the following property. Consider
the graph ¥(Ps), the induced subgraph of Py whose vertices are the image of 1.
Then the map v sends adjacent vertices in Ps to vertices no more than 3 edges

away from each other in ¥ (Ps). In particular, the image ¥ (Ps) is connected.

Proof. First we construct the map 1. Figure depicts how 1 is defined as
a discrete version of reversing the shear that produced P3; from P,. We start
by defining new coordinates for the vertices in P, and P;. Without loss of
generality suppose that the least y coordinate of vertices in each polygon is 1.
Let r; be the set of vertices in P; with y coordinate i, so r; is the ith row of
Py. Let r; ; be the jth vertex in row 7;, counting from left to right. That is,
;1 is the vertex with least = coordinate in row 7, and 73 ; has the second least
x coordinate and so on. Similarly, label the vertices of P3 as rgjj. Define an
injection 1 from the vertex set of P3 to P, given by z/J(r;j) = 1;;. That is,

1 sends the jth vertex in row ¢ of P3; to the jth vertex in row ¢ of P;. We
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have constructed the polygons so that each row of P3 has no more vertices than
the corresponding row of P;: every horizontal cross-section of P3; has the same
length as the corresponding cross-section of Ps, so the number of lattice points
in each row of P differs by at most 1 from the number of lattice points in the
corresponding row of P», and we know that P; has one more lattice point per

row than P, has. Thus, our map v is well-defined.

O O O O O 0O O O O

O O O O O 0O O O

Figure 20: The map 1 sends the first vertex in the ith row of P3, denoted by 7";71, to the first
vertex in the ith row of P, denoted by r; 1. It sends the other vertices rg’j in the ith row of
P3 to consecutive vertices 7; ; in the ith row of P;. The numbers of vertices in corresponding
rows of P> and P3 may differ by up to 1 in either direction, so the image ¢(P3) may extend

past P in some rows, and may miss vertices of P in other rows.

Before proving that 1 stretches distances by at most a factor of 3, as a
preliminary step we show that every two consecutive rows of 1(P3) have at least
one column in common. By Lemma [20{we know that every two consecutive rows
of P; have at least three columns in common. Then P, is like Py, but with the
rightmost vertex deleted from each row, so every two consecutive rows of P
have at least two columns in common. Then because corresponding rows of Ps
and Pj differ in length by at most 1, we know that ¢ (Ps) is like P;, but with up
to two of the rightmost vertices deleted from each row, so every two consecutive
rows of 1(P3) have at least one column in common.

Using these common columns of pairs of consecutive rows, we can prove that

1 sends adjacent vertices to vertices no more than 3 edges away from each other.
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Adjacent vertices in a row of P3 are sent to adjacent vertices, so we only need
to check what 1 does to adjacent vertices in a column of P3;. Thus, it suffices
to show that each pair of adjacent rows do not shift in relation to each other
by more than 2 edges under . That is, for all rows 7; and 741 in P, we must
show that the difference |[z(r1) — 2(7j11, 1)] = [#(r] ;) — 2(r} 1 1)]| is no more
than 2.

Let (z1, j) be the leftmost point in P with y-coordinate j, and (x2,7+1) be
the leftmost point of P3 with y-coordinate j+1. Note that ;1 and r;41, 1 are the
first vertices in each of these rows, so ;1 = ([z1],7) and 7j4+1, 1 = ([22], 7 +1).

After the shear by the matrix

1 m
M = ,
0 1
the points (21, j) and (z2, j+1) are sent to (x1+my, j) and (xa+m(j+1),j+1).
Therefore, the first vertices in these rows of P, namely 77, and r/,, ;, have

coordinates ([z1 +mj],7) and ([z2 +m(j + 1)],5 + 1) respectively. Bounding

the distance between these two points in P;, we have

(21— w2) — |m| = 1 < [21 +mj] = [z +m(j + 1)] < (21— 22) + |m] + 1.
(2)

And, bounding the distance between the original points in Ps, we have
(r1 —x9) — 1 < [x1] — [x2] < (21 —22) + 1. (3)

Combining these inequalities, we find that the absolute difference between
the quantities [z1] — [z2] and [z1 +mj]| — [x2 + m(j + 1)] is strictly less than
|m| 4 2, and thus is strictly less than 3. Because the difference is an integer, it
must be at most 2; in other words, the rows shift by no more than 2 vertices
away from each other. Thus, the map 1 sends adjacent vertices to vertices no

more than 3 edges away from each other. O

Applying the next theorem to v gives us a way to route ¥(P3) using our

knowledge of how to route Pj.
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Theorem 25 (Bounded stretch). Let A and B be lattice graphs in Z x Z, and
let v be a bijection between the vertices of A and the vertices of B, such that for
any pair of adjacent vertices v1,vy € A, the path-length distance between 1p(vy)
and (va) in B is at most a constant ¢. Then rt(B) < C(c) - rt(A), where C(c)

18 a constant depending only on c.

Proof. We would like to color the edges of A, such that if (v1, v2) and (v}, v}) are
two edges of the same color, and we draw shortest paths between w; = 1 (v1)
and we = 1(vy) and between w| = ¥ (v]) and wh = ¥ (v}) in B, then these two
paths are disjoint. To do this, we would like to assign a color to each pair of
vertices in B that are within distance ¢ of each other, such that pairs of the
same color are more than distance ¢ apart. We do this by first coloring the
vertices of B, and then coloring the distance ¢ pairs by the color pairs of their
vertices.

Our first coloring assigns colors to the vertices of B, such that if two vertices
have the same color, they have distance greater than 2c in B. To do this, we
construct a graph B’ with the same vertex set as B, with an edge between
vertices wy and we whenever their distance is at most 2¢. The maximal degree
of any vertex in B’ is at most 4¢(2¢ + 1), since there are 4i lattice points with
distance exactly i away in Z x Z for each 1 < i < 2¢, and if a pair of vertices
have distance at most 2¢c in B, they also have distance at most 2¢ in Z x Z.
Therefore, using a greedy strategy we can color the vertices of B’ with no more
than 4¢(2¢+ 1) +1 colors, so that no two vertices of the same color are adjacent
in B'.

Our second coloring has one color for each pair of colors in the first coloring,
for a total of (**TVT) = (4¢(2¢ +1) + 1) - 2¢(2¢ + 1) colors. Tt assigns one
color to each pair of vertices wy, w2 in B that have distance at most ¢, given by
the pair of colors of w; and wy in the first coloring. Suppose that (wy,ws) and
(w},wh) are two pairs of vertices at distance at most ¢ in B, and they have the
same color in the second coloring; without loss of generality this means that w;

and w} have the same color in the first coloring, as do ws and wj.
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We claim that if we choose any shortest path from w; to wy in B, and any
shortest path from w} to w} in B, then these two paths are disjoint. Suppose
to the contrary that these two paths cross at a point. Then either wy or wy is
within %c of the common point, as is either w} or w). This implies that one of
the pairs (wy,w}), (w1, w}), (wa,w]), or (wq,w)) has distance at most ¢, and
so either w; and w] have distance at most 2¢, or wy and w) have distance at
most 2¢. This contradicts their having been colored the same color in the first
coloring. Therefore, any shortest path from w; to we in B, and any shortest
path from w] to w) in B are disjoint.

For each edge in A, we color it by taking the corresponding pair of vertices in
B, and finding the color of that pair in the second coloring. Then, given a pair
of configurations in B, we use the following method to route between them.
Take the corresponding pair of configurations in A, and consider a shortest
sequence of steps to route between them. For each step in A, a set of disjoint
swaps, all swaps along edges of the same color in A can be carried out in
parallel in B, because the corresponding paths are disjoint. There are at most
(4¢(2¢+1)+1)-2¢(2¢+1) colors of edges in A, and each color may take c+1 steps
to route in B, since a path of length ¢ can be routed in ¢ + 1 steps. Therefore,

it will take at most
Cle) = (4e(2¢+ 1)+ 1) - 2¢(2¢+ 1) - (¢ + 1)

steps in total to route a single step in A, a set of disjoint swaps. Therefore,

rt(B) < C(e) - rt(A). O

At this point, we have obtained a bound on the routing number of ¥(Ps),
using the bound on the routing number of Ps. To extend this result to route all
of P, we have to check the hypotheses of Lemmas [f] and [6} and then applying
these lemmas will show that because P is not too much bigger than ¢ (Ps), its

routing number is also not too much bigger.

Lemma 26 (Hair and skin of ¢(Ps)). Let P be a convex polygon enclosing
strictly more than 4(w(P) + h(P)) lattice points, let Py, Py, and P3 be convex
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polygons constructed in Lemmas and [23, and let ¢: Py — Pp be the
injection constructed in Lemma . Then the subgraph 1¥(Ps3) of P has the

following properties:

1. P\ (Ps) has at most 6(w(P) + h(P)) vertices; and
2. There is a subset S of vertices in (Ps) such that S has at most 4(w(P)+
h(P)) vertices and the induced subgraph SU(P\ v (Ps)) of P is connected.

Proof. Let P, be the convex polygon obtained from P, by removing the right-
most vertex of each row, as in Lemma Then ¢(Ps) contains P;. We know
that Py \ P, contains exactly 2h(P;) vertices and that P\ P; contains at most
4(w(P) 4 h(P)) vertices, so in total P\ P,, and therefore P \ ¢ (P3), contains
at most 4w(P) + 6h(P) vertices.

Lemma [6] implies that P, has at most 2(w(Py) + h(Py)) < 2(w(P) + h(P))
vertices in its boundary. We choose S to contain the boundary of Py, as well
as all of ¢¥(P3) \ Ps. Because 9(Ps) has at most two more vertices in each row
than Py, the number of vertices in S is at most 2w(P) + 4h(P).

To show that S U (P \ (Ps)) is connected, we observe that it is the same
induced subgraph of P as the union of the boundary of Py with P\ Py; Lemma@
states that because P is connected and contains P, this induced subgraph is

also connected. O

Finally we are ready to finish proving the bound on routing number of arbi-

trary convex polygons.

Proof of Theorem[]l Let P be a convex polygon such that the grid piece con-
tained in P is connected. If P has at most 4(w(P)-+h(P)) vertices, then the tree
bound (Theorem [3|) implies that rt(P) < 12(w(P)+ h(P)), and there is nothing
more to prove. Thus, we may assume that P has more than 4(w(P) + h(P))
vertices.

We apply Lemma[19]to find P; inside P with at least 4 vertices per row and
column. Without loss of generality, we may assume that h(P;) > w(P;). Then

we apply Lemma [21] to find P inside P, by removing the rightmost vertex of
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each row. Then P, has the same height as P;, and w(P;) = w(P;) — 1. We
apply Lemma [22| to shear P, to get a burger bun polygon Ps.

We would like to apply Lemma[23] to check that Pj is connected, so we need
to estimate the number of vertices in P3. We know that P; has more than
4(w(P1) + h(Py)) vertices, so because P» is missing one vertex from each row,
we see that P has more than 4w(P;) 4+ 3h(P;) vertices. Then every horizontal
cross-section of P3 has the same length as the corresponding cross-section of
P, so the number of vertices in each row of Pj differs by at most 1 from the
number of vertices in the corresponding row of P,. This implies that P; has
more than 4w(Py) + 2h(Py) vertices. Lemma [22] tells us that w(Ps) < 2w(Py),
and we know that w(P) < w(P;) < h(Py), so the number of vertices in P
is more than 4w(P,) 4+ 2w(Py) > 3w(P;). Thus we may apply Lemma [23| to
conclude that Ps is connected.

The burger bun bound (Theorem implies that because P5 is connected
and burger bun, we have rt(Ps) < C(w(Ps)+ h(Ps)) for some constant C. Then
Lemma [24] and the bounded stretch theorem (Theorem together imply that
rt((Ps)) < C(w(Ps) + h(Ps)) for some larger constant C, and so rt(¢(P3)) <
C2w(Py) + h(P1)). Lemma [26] implies that Lemma 5| applies to G = P and
K = ¢(P3), so we may conclude that rt(P) < C(w(P)+h(P)) for some constant
C, as desired. O

6. Further questions

Our main theorem suggests several extensions to explore. The first direction

is the question of bounded stretch.

Question 1. Suppose that two token configurations on a connected conver grid
piece P have the property that the distance between each token’s positions in
the two configurations is at most 6. Is there a sequence of C' - § routing steps
that transform the first configuration into the second, where C' is a constant not

depending on the configurations or on P?
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An affirmative answer would strengthen our main theorem. Such an answer
when P is a rectangular grid graph is proved in [6] with a slightly different
routing setup.

A second direction for further research is to ask for the appropriate formu-
lation when the convex polygon P is replaced by a nonconvex polygon. In this
case the bound on routing number should depend on the presence of bottlenecks
in the polygon. One way to quantify the idea of bottlenecks is as follows. Given
a polygon P in the plane, we define a chord of P to be any line segment such
that its two endpoints are on the boundary of P, and such that the interior of
the segment is in the interior of P. Each chord v divides P into two smaller
polygons P; and P,. We define the chord Cheeger constant of P, denoted by
ch(P), to be

. length
<h(P) = 1gf min(area(il),(zzea(]gg)) '
A small value of ch(P) indicates that P has a severe bottleneck. We should
expect that rt(P) is at least proportional to Ch(l—m7 because in each routing step,
the maximum number of tokens that can cross < is at most proportional to
length(y), and we may need enough routing steps for all the tokens belonging

in the smaller of P; and P; to cross 7.

Question 2. Is there a constant C' such that given a connected, possibly non-

convez grid piece P, we have

rt(P) <

ch(P)

An affirmative answer would generalize our main theorem, because when P
is convex, the quantity Wlm is within a constant factor of w(P) + h(P).

A third way to try to extend our main result is by replacing the Z? grid and
2-dimensional polygons by the Z¢ grid (again with edges between vertices at
distance 1) and d-dimensional polytopes. The following theorem on rectangular

d-dimensional grid graphs is a consequence of the theorem on Cartesian product

graphs from [IJ.
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Theorem 27 ([1]). Let R be a d-dimensional rectangular grid graph, of size py
by p2 by...by pq. Then we have

rt(P) < Ca - (p1+p2+ - +pa),
where the constant Cy depends only on the dimension.

‘We note that the quantity p;+- - -+pg is within a constant factor of the graph
diameter of R, which is within a dimensional constant factor of the Euclidean
diameter of R. An affirmative answer to the following question would generalize
the theorem above to non-rectangular convex shapes and would generalize our

main theorem to all dimensions.

Question 3. Are there dimensional constants Cy, such that if P is a connected
induced subgraph of the infinite grid graph Z¢ consisting of all vertices contained

in a given convex subset of R?, we have

rt(P) < Cy - diam(P)?
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