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Abstract—Vehicular Crowd-sensing (VCS) is a new data col-
lection paradigm that leverages the unique characteristics of
vehicular mobility to collect sensing data. One of the main
challenges for VCS is how to assign sensing tasks among
participant so as to maintain the required Quality of Sensing Data
(QoSD), while keeping participation profitable. We tackle this
challenge by designing an incentive mechanism that encourages
the collection of high QoSD, while improve participant utilities.
The proposed mechanism includes a platform which post a set of
sensing tasks and the associated rewards, and a set of participant
vehicles equipped with sensors, who compete for these rewards.
We model this competition as a non-cooperative game in which
the set of vehicles are the players, and their trajectories are
their strategies. Using open-street maps, SUMO vehicular traffic
simulator, and extensive simulations, we show that our algorithm
significantly outperforms a greedy approach in terms of QoSD,
average vehicle utility, spatial coverage, and road utilization.

Index Terms—

I. INTRODUCTION

Vehicular Crowdsensing (VCS) [4] is a data collection
paradigm that extends the concept of Mobile Crowdsensing
(MCS) [5] from pedestrians to all kind of mobile vehicles.
These include regular and connected vehicles, Autonomous
vehicles (AVs), and Unmanned Aerial Vehicles (UAVs) among
others. VCS has been extensively used for satellite data valida-
tion [6], traffic monitoring [10], infrastructure surveillance [2],
and widely used by companies such Google, Here, and Uber
for creating and updating maps [9]. A particular characteristic
of vehicular mobility is its predictability, which results from
setting the traveling route in advance, for instance by using
a GPS. The use of this information constitutes an advantage
when planning a data collection campaign, because we know
in advance the places from where we can get samples, namely
those located in the trajectory of participants. However, in this
settings, a few natural questions arise, for instance, how collect
sensing samples located out of the vehicles trajectories?, how
to reach these locations?, and how often to sample from them?.
We tackle these issues by proposing an incentive mechanism
for VCS which encourage participants to deviate from the pre-
planned trajectories to reach these places and collect samples
at a given frequency. Figure 1 sketches the main components of
the proposed VCS system. It includes a platform (cloud) which
sets a set of sensing tasks at different Places of Sensing Interest
(PsI) across a given area, and the corresponding rewards. It
also includes a set of participant vehicles whose attracted by

Psl Place of
O ,_) sensing interest |

AV

Reward at Psl

Fig. 1: Vehicular Crowdsensing sketch

the offered rewards are willing to visit and collect samples
from Psl located out of their pre-planned trajectories. The
success of such a VCS system heavily depends on the quality
of data sensed by AVs. Thus, ensuring high Quality of Sensing
Data (QoSD) is critical for the successful deployment of such
a VCS system. In this paper, we quantify the utility of the
platform as a function of the QoSD provided by participants,
namely how well spread out is the data gathered from Psls
through a given observation period (i.e., temporal coverage).

Unfortunately, when a participant performs a sensing task, it
incurs in costs associated to data collection, they include gas,
sensors power consumption and calibration, CPU utilization,
time, bandwidth, privacy leakage, etc. Thus, providing high
QoSD may result in higher costs for participants, which in
turn results in less utility for them. Hence, a rational and
self-interested participant would be more inclined to devote
low level efforts [8] to provide low-quality services. For that
reason, an important functionality of the platform is to provide
a good incentive mechanism that encourages high collection
standards, and avoids the inefficiency of the undesirable equi-
librium that results from a flat payment policy by the platform,
and a greedy (low cost) data collection strategy by participants.

We tackle this problem by presenting an incentive mech-
anism for VCS that encourage the collection of high QoSD,
while improving participants profits. At the core of the mech-
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anism are the utility functions for both platform and partici-
pants, and a smart data collection strategy. On the participant
side, the reward for sampling at a particular PsI depends on the
time elapsed since the last time any other participant sampled
at that location. Thus, sampling at a Psl right after another
participant just did it results in a small reward. On the another
hand, waiting too long for sensing in the hope of maximizing
reward, may be risky for a participant <. In this settings, any
other participant j may arrive right before at the Psl, takes
i’s place, and collect its reward. Under these circumstances,
participants compete among each other by deviating from their
pre-planned trajectories and selecting to visit and collecting
from the Psls that maximize their utilities. We model this com-
petition as a non-cooperative game in which the set of vehicles
are the players, and the trajectories that result from deviating
and visiting their selected Pols, are the participants’ strategies.
We show that none of the participants can improve their
utilities by unilaterally deviating from their current strategies.
We also show that the set of participants trajectories increases
platform utility (QoSF), spatial coverage, road utilization, and
average participant’s utility. In this paper, we assume that all
vehicles are autonomous, namely passenger decision making
is not involved. In this work the terms user, participant, player,
contributor, AV, and vehicle are used indistinctly.

The followings items summarize the paper’s main contribu-
tions:

e We present a VCS market in which time dependable
sensing and temporal coverage drive the utilities of con-
tributors and crowdsourcers.

o We formulate the VCS Temporal Coverage Nash equilib-
rium (NE) problem.

o« We design a greedy iterative algorithm to approximate
VCS Temporal Coverage NE.

o We evaluate our algorithms using a real-world traffic map,
and the state of the art traffic simulator SUMO

II. RELATED WORK

Here, we present a brief review the of most related works
to the proposed method and its differentiating properties.

One of the first works on VCS is presented by Hi et
al. [4]. Here, authors address the problem of recruiting a subset
of participants to maximize spatial, and temporal coverage
subject to a limited budget k. The authors tackle the problem
by taking advantage of the predictable patterns of vehicles
trajectories, and thus, they recruit the future combination
vehicles that maximize these metrics. This work is similar to
our approach in the sense of using VCS to maximize temporal
and spatial coverage. However, unlike our work, this approach
doesn’t provide any mechanism to collect sensing samples
located out the vehicles pre-planned trajectories. Similar to
Hi’s et al. [4] work are the approaches in [3, 12]. Here, the
authors also look in the future for best combination of vehicles
to maximize the aforementioned metrics. However, this time
using trajectories segments rather than the whole trajectories.
Again, there is not provision for collection out of the planned
vehicles trajectories.

Close to our approach is the work of Zhu et al. [13]. Here,
the platform uses a reverse auction to encourage participants
to generate trajectories and bid for them. The platform on the
another hand, uses path planing concepts to pre-compute a
set of trajectories that maximize coverage, and acquire those
which better match its pre-computed set. Although, Similar to
our approach in the sense of reaching Pols out the vehicles
pre-planned trajectories, this work doesn’t provide details
about the incentive mechanism for data acquisition, cost of
participation, or any participant behavioral model.

Following a game theoretical approach Xiao er al. [11]
propose VCS incentive mechanism in the context of vehic-
ular networks. Here, information quality is influenced by
the vehicle speed and its radio channel conditions. In this
settings, a game between the platform and participants takes
place, in which the accuracy of the sensing report is the
participant strategy and a payment policy is the platform
strategy. This approach is similar to our work in terms of
the game design at high level, namely, they look for a free of
noise set of samples Nash Equilibrium. However, our focus is
on maximizing temporal coverage while reaching PsI located
out of the participants trajectories.

III. SYSTEM MODEL

This section presents the main components of the proposed
incentive mechanism for VCS-QoSD, and how these compo-
nents relate each other. The platform’s goal is to incentivise
the participants (AVs) to collect “high quality” samples of
measurement variables at a set of points of sensing interest
(PsI). The Psls are typically located out of the pre-planned
trajectories for AVs. The quality of the samples is quantified
using a platform utility function which is maximized when the
sample points are uniformly distributed over observation time
(temporal coverage).

The AVs are rewarded with a monetary amount of R§ per
sample, where R is a fixed amount and the multiplier J is a
carefully designed factor which aims to improve the quality
of samples. The underlying assumption here is that the AVs
are behaving in a selfish and rational way with complete
knowledge about the original trajectories of other participating
AVs. Each AV receives some reward for collecting a sample,
but also incurs some cost for deviating from its pre-planned
trajectory. The multiplier § depends on the sample time of the
previous sample, and is designed in such a way that when the
AVs choose targets in order to maximize their utility (reward-
cost), the resulting samples will be of high quality. Note that
since the utility function of an AV is parameterized by the
choices of other AVs, the task of AVs choosing a Psl to visit
constitutes a competitive game. Any choices made by the AVs
should constitute a Nash equilibrium if one exists.

Also, in order to simplify the task at hand, we make the
following assumptions: 1) all vehicles start from their source
location at the same time, 2) each vehicle deviates from
its original trajectory to visit at most one Psl, and 3) the
vehicles don’t stop at the PsI and the sample time will be
equal to the time of arrival at the Psl. Section VI discusses
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how the proposed mechanism may be modified in case these
assumptions are not met.

In what follows, we will formalize and quantify the platform
utility function and the utility functions for AVs. We will
provide an intuitive justification for why the chosen utility
function for the AVs will result in a high utility for the
platform. We will also describe an algorithm which can be
used by the AVs to choose a Psl to visit such that the choices
for PsIs for all AVs constitute a Nash equilibrium.

A. Notations

This section describes the notations used to denote various
entities. VCS-QoSD includes multiple PsIs and AVs (partici-
pants). The set of M Psls is denoted by T' = {¢1,t2,...,tar}s
and the set of N AVs is denoted by V' = {vy,vq,...,N}. The
sets of source and destination locations for AVs are denoted by
S ={s1,81,...,8n} and D = {dy,da,...,dn} respectively.

B. Platform utility function

The quality of the samples in the sense of temporal coverage
can be determined by how close the samples are to uniform
sampling in time, that is, the ideal sample points will be when
the time periods two consecutive samples are equal. We will
use the notion of entropy to quantify the quality of the samples.

If there are n samples at a given Psl, these divide the
observation interval of length 7, into n + 1 intervals. Denote
these intervals as [;,4# = 1,...n + 1. Note that we have

?H l; = T,. We can then normalize these intervals with
respect to the total observation time 7, as p; = r}—o Note the
values p; lie in the interval [0,1] and ), p; = 1, therefore, we
can interpret the set of these values as a probability distribution
P.

In case of uniform sampling (the ideal case), we will obtain
a uniform probability distribution. The utility function should
achieve its maximum value in this case. The worst case in
terms of temporal coverage is when all the samples are located
at the beginning or at the end of the observation period. In
this case, the probability distribution will have one of the
probability as 1 and the remaining probabilities will be zero.
The utility function should achieve its smallest value in this
case and increase as the sample points are transitioned from
the worst case to the ideal case. The entropy function given
as

1
E(P)=> p I~ (1)

has all the desired properties mentioned above. It can be shown
that Y1, p;In(1/p;i) < In(n), and the maximum value is
achieved when all p;s are equal, i.e., all inter-sample periods
are equal [1]. Furthermore, by defining lim, ,opInl/p = 0
(to make plnl/p continuous), E(P) = 0 when one of the
probability is equal to 1.

The quality of the PsI ¢; is quantified by U/; (utility of ;)
which is calculated using the sample times at the PsI t;. The
utility of the platform is then given as

1 M
u=M;uj, )

the average of the utilities at all Psls.

C. AV utility function

Each AV wv; has a pre-planned trajectory s; — d; from
its source to the destination. The goal of the platform is
to incentivize the AVs to deviate from their pre-planned
trajectories to collect good quality samples at the Psls. The
platform does so by assigning a reward R for every sample,
where R is a fixed maximum reward, and J is a multiplier in
the interval [0, 1] which changes from sample to sample. The
utility function for the AV wv; for collecting a sample at PsI ¢,
is then given as

u; (ty) = R6 — a (|sitdi| — [siti]) 3)

where |s;txd;] is the length of the trajectory s; — t — d;, and
|s;iti] is the length of the trajectory s; — d;. The regulatory
parameter « is used to compare the cost of extra distance
travelled to the monetary reward obtained by collecting the
sample.

We will now turn our attention to the multiplier J. As the
primary goal of the platform is to analyze temporal variations
of a sensing variables over an observation period, any sample
obtained immediately after an another offers almost no ad-
ditional value'. The multiplier § should be chosen so as to
incentivise the AVs to obtain samples which are “spread out”.

Let a;; be the arrival/sample time? of the AV v; at the PsI
tx, and a;. be the sample time of the most recent sample
(other than that by v;) at tx. If v; is the first AV to arrive
at ty, a;, is set to —oo. Then, § should have the following
properties: 1) As a;; — a;,, we should have 6 — 0, 2) as
a;x — a;, — oo, we should have § — 1, and 3) ¢ should be
a concave function of a;; — a;, to reflect diminishing rate of
return as the sample interval increases. Note that the value of
0 depends on choice/allocation of Psls of other vehicles due
to the use of the term a;; . Let v} denote the PsI chosen by the
AV wv; to visit. Therefore, J is parameterized by a;; — a;;, and
as a consequence, the choices v}, j # 4 of all other AVs. One
such function for & which satisfies all the above properties is

6 (air —ag, {vy,j #i}) =1—e" SE “4)

where 7 is acting as a controlling parameter setting the

desired interval between two samples. Using equations (3) and
(4), we can write the utility function for AVs as :

ik~ %k

wi (1 {5, 5 # 1) = R (1 et

)Oé (|$ztkdzl — |Sltl‘)
®)

A rational AV v; will chose to visit the PsI v which will
maximize its utility as

! Assuming the sensors on the AVs are reasonably accurate
2We assume the arrival time can be estimated with reasonable accuracy.
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vy = argrr%z:xui (tk, {U;-ij # Z})’ ©®)

as long as the utility for visiting v; is positive. Note that if
equation 6 is satisfied for all 7, such an assignment constitutes
a Nash equilibrium.

D. Psl allocation algorithm

The optimization in equation (6) constitutes a game
(V,T,{u;}), where the players are the AVs (V), the actions
available to each AV are the choices of PsIs (7'), and each
AV v; has a utility function u; which determines the utility of
choosing a PsI v} given the choices of all other AVs v}, j # .
The allocation choice according to equation (6) represents a
Nash equilibrium, which if exists, will be chosen by rational
players.

Note that since each vehicle has M + 1 possible allocations
(visting one of M + 1 PslIs, or vising none of them), there are
a total of (M + 1)V possible PsI allocations to vehicles. An
exhaustive search for the best Nash equilibrium over all possi-
ble allocations is therefore not feasible. We therefore present a
heuristic iterative algorithm (1). We call the allocation of Psls
to AVs resulting from this algorithm, the Smart PsI Allocation,
denoted as SPA (pseudocode in table 1).

1) Overview of SPA: We now provide a description of SPA.
We refer to the variables used in the pseudocode as we describe
the algorithm. Initially, all vehicles are assigned Psls randomly.
We maintain a set .S of vehicles whose optimal PslI allocation
is yet to be computed. Note that initially, this set contains all
vehicles (line 7). Then, we remove one vehicle v at random
from the set .S and compute the best Psl ¢; given the current
allocation of other vehicles according to equation (6). If the
current Psl ¢; assigned to v is different from ¢, then ¢y is
assigned to v.

When the PsI allocation for v is changed as above, there
are only two other vehicles whose utilities will be modified.
The utility of the vehicle arriving at ¢t1 immediately after
v will increase, and the utility of the vehicle arriving at ¢
immediately after v will decrease. We refer to the latter as
successor of v, denoted as sc. This means that the best Psl
allocation for sc should be recomputed and sc is added to S
at this point. Note that this step will have no effect if sc is
already in S because S is implemented as a set.

2) Stopping criteria: If a Nash equilibrium is reached, then
by definition, the Psl allocation for each vehicle is the best
given the allocations of all other vehicles. We now justify that
when a Nash equilibrium is reached, the outer while-loop will
terminate. Initially, S is initialized with all the vehicles (line
7). Note that for any vehicle v removed from .S, the current
assignment ¢; will be the best assignment. This means the
assignment for v will not change, and no new vehicle will
be added to S. Eventually, the set S will get empty without
changing any assignment leaving the count variable at 0,
which is the condition for the termination of the outer loop.

There could be cases where a Nash equilibrium does not
exist. In these cases, the iterative algorithm given in table

(1) will not converge. In what follows, we will introduce
some formalization of the iterative algorithm to clarify this
phenomenon, and provide a solution for the convergence
problem.

3) SPA formalization: We will formalize the iterative pro-
cess in SPA as a forward propagation on a directed graph. De-
fine the state space ® = {(v},v3,...,v})} as the collection
of ordered tuples of PsI allocations. Note that since each AV
can be assigned any PsI (or not assigned any), the total number
of states in @ is equal to (M +1)". Then, consider a directed
graph G = (®, E), where (¢4, ¢p) € E is an edge if the tuples
¢q and ¢ differ only in one location, say it" location, and
op; is the best Psl for AV v; (according to equation (6)) given
all {vj,j # i} in ¢, and ¢y.

Example 1: Consider a case where N = 3 and M = 2,
with the set of vehicles {v1, va, v3} and the set of Psls {t1,t2}.
Then an example state could be ¢, = (1, t2, ¢1) implying that
the vehicles vq, vo, and vs are assigned the Psls 1, t5 and #;
respectively. Now, given these assignments for v; and vs, let
the best assignment for vs be t5. Consider the state ¢, =
(t1,t2,t2). Note that ¢, and ¢ differ in only one location
(37%), and ¢y3 = to is the best PsI assignments for vs given
the assignments for other vehicles. In this case, (¢q, ¢p) will
be an edge in the graph.

Referring to algorithm (1), the first for-loop represents
picking a random state in the graph. Lines 10 through 12
describe picking a AV v at random (picking a random location
in the tuple) and determining the best PsI v*. Lines 13
through 15 pair v with v*. This new paring changes the
assignment of a single vehicle to the best PsI while keeping
all other assignments constant. Therefore, this change of state
corresponds to traversing G by one edge in the forward
direction.

4) Nash equilibrium: Section III-D2 provides an intuitive
explanation of why the algorithm will stop at (and only at) a
Nash equilibrium. We will now provide a formal proof. Recall
that given a directed graph G = (®, ), the in-degree d;(¢)
of a vertex ¢ € ® is the number of edges pointing into ¢, i.e.,
the number of edges where ¢ is the second vertex. Similarly,
the out-degree d,(¢) of ¢ is the number of edges pointing out
of ¢. We can now state the following lemma:

Lemma 1: A state ¢, will constitute a Nash equilibrium if
and only if d,(¢e) = 0.

Proof: Assume ¢, is a Nash equilibrium, and that d,(¢.) >
0. Then 3 and edge e € E such that e = (¢., ¢5). According
to the definition of the edges in the graph, ¢. and ¢, differ
in exactly one location, say ¢, and that

Ui(¢fi7 {¢€j7j # Z}) > ui(¢ei7 {¢ej7j # Z})

On the other hand, according to the definition of the Nash
equilibrium, we have

¢ei = arg m?XUi(ta {¢6j7j 7é ’L})a

leading to a contradiction. This means that if ¢. is a Nash
equilibrium, then d,(¢.) = 0.
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Now, for any vertex ¢, € ®, assume that d,(¢.) = 0. This
means that for each i, ¢.; is the best assignment for v; given
all other assignments. Otherwise, there would have been an
edge starting at ¢, making its out-degree positive. This means
that ¢, is a Nash equilibrium. ]

If the algorithm reaches a state with no outward edges, this
would mean all AVs are assigned the best PsI, the if statement
in line 13 will never evaluate to being true, and the algorithm
will stop.

If a Nash equilibrium does not exist, G must have a cycle
since G is a finite graph and every vertex must have at least
one outward edge. In these cases, the algorithm SPA will get
stuck in such a cycle. SPA therefore detects such a cycle, and
uses a subroutine to break it. This is done by reducing the
reward R to remove one of the edges in the cycle. Lines 8,19
and 22 in SPA are dedicated to detecting a cycle.

Breaking a cycle: Say we detect a cycle ¢ =
(e1,e2,...,€n), Where e, = (dp1,0,2) is an edge in the
cycle. For each edge ¢,, let v, be the corresponding AV whose
PsI allocation changed from t; to ¢;. This means, given the
allocation of all other vehicles, ¢; was the best Psl for v,
according to equation (6). In order to break this edge, we need
to reduce the value of R such that ¢; is no longer the best Psl.
We will use the short hand notation w,x = u,(tx, {v},j # p})
and dp = 6 (apk —a,, {vj,i# p}) Arrange the utilities
in descending order as wu,; > Upj, = - 2 Urhoj, = Upk-
Observing equation (5), since the costs of deviating to different
Psls are fixed, and given the choices of other vehicles, the ds
are fixed. Therefore, the utilities u,, are affine functions of R.
Let R, be the value of R such that u, = u,j; . Then, if we
set R < R,, t;, will be the best PsI for v, instead of ¢;, thus
remove the edge e, from G. We can do this for each edge
in the cycle ¢ and set R value to maximum (minus a small
number ¢€) of these R,s so that we remove exactly one edge
from the cycle ¢, thus breaking it.

To summarize, this section describes an iterative algorithm
SPA which finds the Nash equilibrium allocation according to
equation (6). It does so by traversing a directing graph until it
reaches a vertex with zero out-degree. If it encounters a cycles,
it reduces the R to break the cycle.

E. Selection of maximum reward

The reward received by an AV for making a measurement at
a Psl is given by R, where ¢ € [0, 1]. Therefore, the R is the
maximum reward any AV can get for a sample. As shown in
section IV, the average utility &/ of the platform as measured
by equation (2) increases as the value the R increases, and
reaches a maximum value at a certain R,,,,. If the average
utility is the primary concern for the platform, then it would set
R = R,,4,- However, the total reward awarded by the platform
also increases with R, and the rate of return measured as U /R
decreases. If the rate of return is the primary concern for the
platform then it would set R according to a threshold. Also
note that there may not exist a Nash equilibrium according to
utilities in equation (5) for large values of R. Existing of Nash
equilibrium is necessary to ensure compliance from selfish,

Algorithm 1 SPA: Smart PsI Allocation

1: for i< 1to N do > PsI initialization
2: PsIs[i] + rand(1, M) > Random allocation
3: end for

4: count < N

5: while count > 0 do

6: count < 0

7: S«1,...,N > Initialization
8: ts « [PsIs] > Transition sequence
9: while S is not empty do

10: v < pop random AV from S

11: tl + Pslsv]

12: tk < getBestPsI(v)

13: if t1 # tk then

14: count < count + 1

15: PsIs[v] + tk

16: sc + successor(v)

17: if sc then

18: S.add(sc)

19: end if
20: ts.append(PsIs)
21: end if
22: end while
23: if ts[0] = ts[end] then > Cycle detected
24: R <+ breakCycle(transitionSequence)
25: end if

26: end while

rational players (AVs), therefore, this will also be an important
consideration when setting the value of R. Note that the reward
R is set by the platform, where as the algorithm SPA is being
executed by the AVs. Therefore, this indicates that there is a
certain level of cooperation between the two parties in setting
R value.

IV. PERFORMANCE EVALUATION

This section presents experimental validation of the ef-
fectiveness of the proposed VCS-QoSD program. Several
experiments were designed to evaluate our proposed approach
based on the following metrics: temporal coverage, spatial
coverage, road utilization, and average participant utility. We
performed experiments on a unit grid and on a real map. Both
tor the unit grid and the real map, the source and destination
locations were generated randomly as two clusters, and the
PsI locations were scattered randomly between the source and
destination clusters.

In the unit grid, the trajectory between a source destination
pair is a straight line. This simplified environment is used
as a proof of concept and as way to illustrate the concepts
in a simple way. The second and more realistic simulation
environment uses a dense Open Street Map (OSM) from
Cologne Germany with drivable roads to allow variation in
routing possibilities. Then, the OSM and the participant traces
are linked and imported into the traffic simulator SUMO [7].
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SUMO provides realistic vehicle movements and routing al-
gorithms on the imported map.

The proposed VCS-QoSD program involves two parties
with different motives. On one side, we have the platform
whose goal is to incentivise the AVs to deviate from their
original trajectories and deliver high quality samples. On the
other side, we have the AVs whose goal is to maximize their
utility. For the program to be effective, we have to show
that 1) Temporal coverage: VCS-QoSD indeed provides a
way for the platform to obtain high quality samples, and a
way to increase the quality by spending more money, and 2)
Particpant utility the AVs are appropriately incentivised to
use the proposed SPA algorithm to maximize their utility, and
more importantly 3) Systemic incentives that the incentives
for the platform and AVs are compatible, that is, the AVs
acting selfishly to improve their own utility also improve the
platform utility as a by-product.

In order to aid in demonstration of the effectiveness of
VCS-QoSD, we introduce a naive reward mechanism (N) for
the platform, and a greedy algorithm (G) for the AVs. The
reward mechanism in VCS-QoSD is denoted by V. Under the
N reward mechanism, the platform provides a reward of R for
any sample taken by the AVs irrespective of the sample time.
In the G algorithm, the vehicles simply select the PsI with
the lowest cost and a positive utility. Note that the algorithm
G produces a Nash equilibrium for the AVs under N reward
mechanism.

A. Temporal Coverage

We compare the proposed reward mechanism V with N re-
ward mechanism. Figure 2a shows the comparison of average
platform utility ¢/ per unit reward amount paid out (y-axis)
between these two reward mechanisms. The x-axis represents
the R value. As shown in the figure, the V reward mechanism
produces a higher rate of return on the money spent. In these
simulations, the AVs are using a the G algorithm for Psl
allocation. Figure 3 on the other hand illustrates the ability
of the platform to improve the quality of samples by spending
more money using the V reward mechanism. Note that I/ is
an increasing function of R. Also, as seen the figure, such a
control on the quality of samples is not possible using the N
reward mechanism.

B. Participant Utility

In section IV-A, we show that the platform benefits from
using a V reward mechanism if the AVs are using the G
algorithm. Note that transitioning from the G algorithm to
SPA algorithm for the AVs requires them to share their
source and destination locations with the platform and with all
other AVs, and dedicate computational resources to the SPA
algorithm. The AVs have to be appropriately incentivised to
do so. Figure 4 compares the average vehicle utilities (y-axis)
in the case of G and the SPA algorithm. The x-axis represents
the R value. Note that in both the unit grid and the map cases,
the average AV utility is significantly improved when using the
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Fig. 2: (a)Comparison of VCS-QoSD (V) rewarding mecha-
nism with a naive (N) rewarding mechanism. Figures shows
that even when the AVs shift from G algorithm to the SPA
algorithm, the return on investment for platform is superior
when V rewards are used compared to N.
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Fig. 3: Figure shows the utility of the platform U/ increases
with R demonstrating the ability of the platform to improve
the quality of samples by spending more money in the V
reward mechanism. The blue line corresponds to N reward
mechanism.

SPA algorithm, and the incentive for the AVs to swith from
G to SPA increases with increasing R.

C. Systemic Incentives

In this section, we put together the results from sections
IV-A and IV-B to show how the goals of the platform and the
goals of the AVs are aligned. This is pictorially represented
in figure 5. In the figure, rows represent the choice of the
platform (between V reward or N reward) and the columns
represent the choice of the AVs (between G and the SPA (S)
algorithms). When the platform is using N reward mechanism,
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(a) Participant Utility Grid (b) Participant Utility Map

Fig. 4: AV Utility. Comparison between the greedy (G)
algorithm, and the SPA algorithm. The platform is using V
reward mechanism in both cases.

Authorized licensed use limited to: Florida Polytechnic University. Downloaded on March 01,2022 at 18:05:27 UTC from IEEE Xplore. Restrictions apply.



2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC)

VG——¢V.5)

|
|

N.G)

(N,S)

Platform choice

AVs choice

Fig. 5: Figure shows the incentive drives for the players
involved. The platform is incentivised to used a well designed
reward mechanism to improve return on investment, and the
AVs are incentivised to share information and use the target
allocation algorithm.
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Fig. 6: Spatial coverage: figure (a) shows that the sample
entropy of PsI utilities increases when AVs switch from G
algorithm to SPA algorithm. Figure (b) a scatter plot of PsI
utilities in the case of G algorithm (x-axis) vs SPA algorithm
(y-axis). Note that the spread in the Psl utilities is much less
in the SPA case.

both G and S algorithms lead to the same result.

As shown in section IV-A, platform will get a better return
on investment if it switches to V reward mechanism. Also, as
seen in section IV-B, when the platform is using V reward
mechanism, the utility of the AVs is improved when they
switch from G algorithm to S algorithm. Therefore, starting
from the base case of (N,G), the system ends up in the state
of (V,S) as both the platform and the AVs behave selfishly.
Finally, figure 2b shows that the return on investment is
improved for the platform when the system switches from the
base case (N,G) to the equilibrium case of (V,S).

As an interesting by-product of the SPA algorithm, we
also observe that sample entropy of the Psl utilities increases
(illustrated in figure 6) when the AVs switch from G algorithm
to S algorithm. This leads to spatial coverage as the spread in
sample quality at different PsIs goes down, resulting in another
aspect where the goals of the platform and the AVs are aligned
and both benefit while acting selfishly. The underlying reason
behind this is that the V reward mechanism disincentivises
AVs from taking sample close together in time, and therefore
the AVs are forced to seek out distant Psls to avoid sample
crowding.

D. Road Utilization

The goal of this experiment is to explore the effects of
reward on road network utilization. Figure 7 visualizes the
set of trajectories that result from using our proposed SPA
algorithm versus the G algorithm. Here, different trajectories
are overlaid on the map of Cologne Germany. Only a part of
the simulated map is shown here for the sake of clarity. It can
be seen that the a greater portion of the roads are utilized in
case of the SPA algorithm.

SRR S A R &
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Fig. 7: Road Utilization

Figure 8 shows the effect of reward on road utilization.
Here, the values of road utilization for SPA and G are
normalized by baseline. Interestingly SPA and G have the
same road utilization for reward values between 100, and
700. This is explained by the fact that before 700, cost is
the dominant factor driving the decision of whether or not
visiting a PsI. However, this change for reward values greater
than 700, here, Psls start to attract participants using PSA
otherwise constrained by cost. On the other hand, G is based
on maximizing profit by selecting visiting PsI at the lowest
cost. Thus, after 700 there is not motivation for visiting other
Psls for those using G.
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Fig. 8: Road utilization SPA vs G on the Map
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VI. CONCLUSION

In this paper, we presented the design and evaluation of an
incentive mechanism for VCS that encourages the collection of
High Quality Sensing Data (QoSD). We modeled the incentive
mechanism as a non-cooperative game where the AVs are the
players and their trajectories are their strategies. We formu-
lated the target allocation problem, present utility functions
for both participants, and platform, and proposed an iterative
algorithm to compute a Nash equilibrium. Using open-street
maps, SUMO vehicular traffic simulator, and extensive simu-
lations, we show how our algorithm significantly outperforms
a greedy approach in terms of QoSD, average vehicle utility,
spatial coverage, and road utilization. We demonstrate that the
goals for selfish players are aligned and that the equilibrium
state is beneficial for both the platform and the AVs.
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