
����������
�������

Citation: Keinert, F.; Weber, E.S. A

Randomized Distributed Kaczmarz

Algorithm and Anomaly Detection.

Axioms 2022, 11, 106. https://

doi.org/10.3390/axioms11030106

Academic Editor: Luigi Brugnano

Received: 10 December 2021

Accepted: 23 February 2022

Published: 26 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

axioms

Article

A Randomized Distributed Kaczmarz Algorithm and
Anomaly Detection

Fritz Keinert and Eric S. Weber *

Department of Mathematics, Iowa State University, 396 Carver Hall, Ames, IA 50011, USA; keinert@iastate.edu
* Correspondence: esweber@iastate.edu

Abstract: The Kaczmarz algorithm is an iterative method for solving systems of linear equations. We
introduce a randomized Kaczmarz algorithm for solving systems of linear equations in a distributed
environment, i.e., the equations within the system are distributed over multiple nodes within a
network. The modification we introduce is designed for a network with a tree structure that allows
for passage of solution estimates between the nodes in the network. We demonstrate that the
algorithm converges to the solution, or the solution of minimal norm, when the system is consistent.
We also prove convergence rates of the randomized algorithm that depend on the spectral data of the
coefficient matrix and the random control probability distribution. In addition, we demonstrate that
the randomized algorithm can be used to identify anomalies in the system of equations when the
measurements are perturbed by large, sparse noise.

Keywords: Kaczmarz method; linear equations; random control; distributed optimization; stochastic
gradient descent; sparse noise; anomaly detection

MSC: 65F10; 15A06; 68W15; 41A65

1. Introduction

The Kaczmarz method [1] is an iterative algorithm for solving a system of linear
equations A~x =~b, where A is an m× k matrix. Written out, the equations are~a∗i ~x = bi for
i = 1, . . . , m, where~a∗i is the ith row of the matrix A. Given a solution guess ~x(n−1) and an
equation number i, we calculate ri = bi −~a∗i ~x(n−1) (the residual for equation i), and define

~x(n) = ~x(n−1) +
ri
‖~ai‖2~ai. (1)

This makes the residual of ~x(n) in equation i equal to 0. Here and elsewhere, ‖ · ‖ is the
usual Euclidean (`2) norm. We iterate repeatedly through all equations (i.e., we consider
limn→∞ ~x(n) where n ≡ i mod m, so the equations are repeated cyclically). Kaczmarz
proved that if the system of equations has a unique solution, then ~x(n) converges to that
solution. Later, it was proved in [2] that if the system is consistent (but the solution is
not unique), then the sequence converges to the solution of minimal norm. Likewise, it
was proved in [3,4] that if inconsistent, a relaxed version of the algorithm can provide
approximations to a weighted least-squares solution.

A protocol was introduced in [5] to utilize the Kaczmarz algorithm to solve a system
of equations that are distributed across a network; each node on the network has one
equation, and the equations are indexed by the nodes of the network. We consider the
network to be a graph and select from the graph a minimal spanning tree. The iteration
begins with a single estimate of the solution at the root of the tree. The root updates this
estimate using the Kaczmarz update as in Equation (1) according to its equation then passes
that updated estimate to its neighbors. Each of these nodes in turn updates the estimate
it receives using its equation then passes that updated estimate to it neighbors (except its

Axioms 2022, 11, 106. https://doi.org/10.3390/axioms11030106 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms11030106
https://doi.org/10.3390/axioms11030106
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-9153-8089
https://doi.org/10.3390/axioms11030106
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms11030106?type=check_update&version=2

Axioms 2022, 11, 106 2 of 22

predecessor). This recursion continues until the estimates reach the leaves of the tree. The
multiple estimates are then aggregated by each leaf passing its estimate to its predecessor;
each of these nodes then take weighted averages of all of its inputs. This second recursion
continues until reaching the root; the single estimate at the root then becomes the input for
the next iteration. To formalize this, we first introduce some notation.

1.1. Notation

A tree is a connected graph with no cycles. We denote arbitrary nodes (vertices) of
a tree by v, u. Let V denote the collection of all nodes in the tree. Our tree will be rooted;
the root of the tree is denoted by r. Following the notation from MATLAB, when v is on
the path from r to u, we will say that v is a predecessor of u and write u ≺ v. Conversely, u
is a successor of v. By immediate successor of v we mean a successor u such that there is an
edge between v and u (this is referred to as a child in graph theory parlance [6]); similarly,
v is an immediate predecessor (i.e., parent) if v is a predecessor of u. We denote the set of all
immediate successors of node v by C(v); we will also use P(u) to denote the parent (i.e.,
immediate predecessor) of node u. A node without a successor is called a leaf ; leaves of the
tree are denoted by `. We will denote the set of all leaves by L. Often we will have need to
enumerate the leaves as `1, . . . , `t, hence t denotes the number of leaves.

A weight w is a nonnegative function on the edges of the tree; we denote this by w(u, v),
where u and v are nodes that have an edge between them. We assume w(u, v) = w(v, u),
though we will typically write w(u, v) when u ≺ v. When u ≺ v, but u is not a immediate
successor, we write

w(u, v) :=
J−1

∏
j=1

w(uj+1, uj) (2)

where v = u1, . . . , uJ = u is a path from v to u.
We let Π denote the affine orthogonal projection onto the solution space of the matrix

equation A~x = ~b. For a positive semidefinite matrix C, λmax(C) denotes the largest
eigenvalue, and λnz

min(C) denotes the smallest nonzero eigenvalue.

1.2. The Distributed Kaczmarz Algorithm

The iteration begins with an estimate, say ~x(n) at the root of the tree (we denote this by
~x(n)r). Each node u receives from its immediate predecessor v an input estimate ~x(n)v and
generates a new estimate via the Kaczmarz update:

~x(n)u = ~x(n)v +
ru(~x

(n)
v)

‖~au‖2 ~au, (3)

where the residual is given by

ru(~x
(n)
v) := bu −~a∗u~x

(n)
v . (4)

Node u then passes this estimate to all of its immediate successors, and the process is
repeated recursively. We refer to this as the dispersion stage. Once this process has finished,
each leaf ` of the tree now possesses an estimate: ~x(n)` .

The next stage, which we refer to as the pooling stage, proceeds as follows. For each
leaf, set ~y(n)` = ~x(n)` . Each node v calculates an updated estimate as:

~y(n)v = ∑
u∈C(v)

w(u, v)~y(n)u , (5)

subject to the constraints that w(u, v) > 0 when u ∈ C(v) (the set of all immediate successors
of v) and ∑u∈C(v) w(u, v) = 1. This process continues until reaching the root of the tree,

resulting in the estimate ~y(n)r .

Axioms 2022, 11, 106 3 of 22

We set ~x(n+1) = ~y(n)r , and repeat the iteration. The updates in the dispersion stage
(Equation (3)) and pooling stage (Equation (5)) are illustrated in Figure 1.

~x(n)r

~x(n)v

~x(n)`t

~x(n)`1
~y(n)`1 ~y(n)v

~y(n)r

~y(n)`t

~x(n+1)

(a) (b)

Figure 1. Illustration of updates in the distributed Kaczmarz algorithm with measurements indexed
by nodes of the tree. (a) Updates disperse through nodes, (b) updates pool and pass to next iteration.

1.3. Related Work

Recent variations on the Kaczmarz method allowed for relaxation parameters [2], re-
ordering equations to speed up convergence [7], or considering block versions of the Kacz-
marz method with relaxation matrices Ωi [3]. Relatively recently, choosing the next equa-
tion randomly has been shown to improve the rate of convergence of the algorithm [8–10].
Moreover, this randomized version of the Kaczmarz algorithm has been shown to be
comparable to the gradient descent method [11]. The randomized version we present
in the present article is similar to the Cimmino method [12], which was extended in [13]
and is most similar to the greedy method given in [14]. Both of these methods involve
averaging estimates, in addition to applying the Kaczmarz update, as we do here. In
addition, a special case of our randomized variant is found in [15]. There, the authors
analyze a randomized block Kaczmarz algorithm with averaging, as we do; however, they
assume that the size of the block is the same for every iteration, which we do not, and they
also assume that the weights associated to the averaging and the probabilities for selecting
the blocks are proportional to the inverse of the norms of the row vectors of the coefficient
matrix, which we also do not do. See Remark 2 for further details.

The situation we consider in the present article can be considered a distributed estima-
tion problem. Such problems have a long history in applied mathematics, control theory,
and machine learning. At a high level, similar to our approach, they all involve averaging
local copies of the unknown parameter vector interleaved with update steps [16–25]. Re-
cently, a number of protocols for gossip methods, including a variation of the Kaczmarz
method, was analyzed in [26].

However, our version of the Kaczmarz method differs from previous work in a few
aspects: (i) we assume an a priori fixed tree topology (which is more restrictive than
typical gossip algorithms); (ii) there is no master node as in parallel algorithms, and no
shared memory architecture; (iii) as we will emphasize in Theorem 2, we make no strong
convexity assumptions (which is typically needed for distributed optimization algorithms,
but see [27,28] for a relaxation of this requirement); and (iv) we make no assumptions on
the matrix A, in particular we do not assume that it is nonnegative.

On the other end of the spectrum are algorithms that distribute a computational task
over many processors arranged in a fixed network. These algorithms are usually considered
in the context of parallel processing, where the nodes of the graph represent CPUs in a
highly parallelized computer. See [29] for an overview.

The algorithm we are considering does not really fit either of those categories. It
requires more structure than the gossip algorithms, but each node depends on results from
other nodes, more than the usual distributed algorithms.

This was pointed out in [29]. For iteratively solving a system of linear equations,
a Successive Over-Relaxation (SOR) variant of the Jacobi method is easy to parallelize;
standard SOR, which is a variation on Gauss-Seidel, is not. The authors also consider what

Axioms 2022, 11, 106 4 of 22

they call the Reynolds method, which is similar to a Kaczmarz method with all equations
being updated simultaneously. Again, this method is easy to parallelize. A sequential
version called Reynolds Gauss–Seidel (RGS) can only be parallelized in certain settings,
such as the numerical solution of PDEs.

A distributed version of the Kaczmarz algorithm was introduced in [30]. The main
ideas presented there are very similar to ours: updated estimates are obtained from prior
estimates using the Kaczmarz update with the equations that are available at the node, and
distributed estimates are averaged together at a single node (which the authors refer to as a
fusion center; for us, it is the root of the tree). In [30], the convergence analysis is limited
to the case of consistent systems of equations, and inconsistent systems are handled by
Tikhonov regularization [31,32]. Another distributed version was proposed in [33], which
has a shared memory architecture. Finally, the Kaczmarz algorithm has been proposed
for online processing of data in [34,35]. In these studies, the processing is online and so is
neither distributed nor parallel.

The Kaczmarz algorithm, at its most basic, is an alternating projection method, con-
sisting of iterations of (affine) projections. Our distributed Kaczmarz algorithm (whether
randomized or not) consists of iterations of averages of these projections. When consistent,
the iterations converge to an element of the common fixed point set of these operators. This
is a special case of the common fixed point problem, and our algorithm is a special case of
the string-averaging methods for finding a common fixed point set. The string-averaging
method has been extensively studied, for example [36–39] in the cyclic control regime,
and [40,41] in the random (dynamic) control regime. An application of string averaging
methods to medical imaging is found in [42]. The recent study [43] provides an overview of
the method and extensive bibliography. While our situation is a special case of these meth-
ods, our analysis of the algorithm provides stronger conclusions, since our main results
(Theorems 2 and 3) provide explicit estimates on the convergence rates of our algorithm,
rather than the qualitative convergence results found in the literature on string-averaging
methods. In addition, Theorem 3 provides a convergence analysis even in the inconsistent
case, which is typically not available for string-averaging methods, as the standard con-
vergence analysis requires that the common fixed point set is nonempty (though ref. [44]
proves that for certain inconsistent cases, convergence is still guaranteed).

1.4. Main Contributions

Our main contributions in this study concern quantitative convergence results of the
distributed Kaczmarz algorithm for systems of linear equations that are distributed over
a tree. Just as in the case of cyclic control of the classical Kaczmarz algorithm, in our dis-
tributed setting, we are able to prove these quantitative results by introducing randomness
into the control law of the method. We prove that the random control as described in
Algorithm 1 converges at a rate that depends on the parameters of the probability distri-
bution as well as the spectral data of the coefficient matrix. This is in contrast to typical
distributed estimation algorithms for which convergence is guaranteed but the convergence
rate is unknown.

As a result of this quantitative convergence analysis, we are able to utilize Algorithm 1
to handle the context of (unknown) corrupted equations. Again, this is in contrast to
distributed estimation methods or string-averaging methods, which are known to not
converge when the system of equations is inconsistent. We note that Algorithm 1 also will
not necessarily converge when the system is inconsistent. We suppose that the number
of corrupted equations is small in comparison to the total number of equations, and
the remaining equations are in fact consistent. If we have an estimate on the number
of corrupted equations, by utilizing Algorithms 2 and 3, with high probability we can
identify those equations and successfully remove them, thereby finding the solution to the
remaining equations. Likewise, in contrast to the string averaging methods, we are are able
to prove convergence rates when the solution set (i.e., the fixed point set in the literature
on string-averaging methods) is nonempty, as well as handle the case of when the fixed
point set is empty provided we have an estimate on the number of outliers (i.e., the number

Axioms 2022, 11, 106 5 of 22

of equations that can be removed so that the solution set of the remaining equations is
nonempty). Our Algorithms 2 and 3 are nearly verbatim those found in [45], as are the
theorems (i.e., Theorems 4 and 5) supporting the efficacy of those algorithms. We prove
a necessary result (Lemma 1), with the remaining analysis as in [45], which also has an
extensive analysis of numerical experiments that we do not reproduce here.

Algorithm 1 Randomized Tree Kaczmarz (RTK) algorithm.

1: Input A,~b, ~x(0), D, K
2: for k ≤ K do
3: Draw sample Z ∼ D
4: if r ∈ Z then

5: ~xr = ~x(k−1) +
br −~a∗r~x(k−1)

‖~ar‖2 ~ar

6: else
7: ~xr = ~x(k−1)

8: end if
9: for q = 1, . . . , Depth do

10: for v with d(v, r) = q do
11: if v ∈ Z then

12: ~xv = ~xP(v) +
bv −~a∗v~xP(v)
‖~av‖2 ~av

13: else
14: ~xv = ~xP(v)
15: end if
16: end for
17: end for
18: for ` ∈ L do
19: ~y` = ~x`
20: end for
21: for q = Depth− 1, . . . , 0 do
22: for u with d(u, r) = q do
23: T(u) = {v ∈ C(u) : ~yv 6= ~xu}
24: if T(u) 6= ∅ then

25: ~yu =
1

|T(u)| ∑v∈T(u)~yv

26: else
27: ~yu = ~xu
28: end if
29: end for
30: end for
31: ~x(k) = ~yr
32: end for
33: return ~x(K)

Algorithm 2 Multiple Round Randomized Tree Kaczmarz (MRRTK) algorithm.

1: Input A,~b, ~x(0), D, K, W, d
2: S = ∅
3: for i ≤W do
4: ~x(K,i) = RTK(A,~b,~x0,D, K)
5: D = argmaxD⊂[A],|D|=d ∑j∈D |A~x(K,i) −~b|j
6: S = S ∪ D
7: end for
8: return ~x, where ASC~x =~bSC

Axioms 2022, 11, 106 6 of 22

Algorithm 3 Multiple Round Randomized Tree Kaczmarz (MRRTKUS) algorithm with
Unique Selection.

1: Input A,~b, ~x(0), D, K, W, d
2: S = ∅
3: for i ≤W do
4: ~x(K,i) = RTK(A,~b,~x0,D, K)
5: D = argmaxD⊂[A]\S,|D|=d ∑j∈D |A~x(K,i) −~b|j
6: S = S ∪ D
7: end for
8: return ~x, where ASC~x =~bSC

2. Randomization of the Distributed Kaczmarz Algorithm

The Distributed Kaczmarz Algorithm (DKA) described in Section 1.2 was introduced
in [5]. The main results there concern qualitative convergence guarantees of the DKA:
Theorems 2 and 4 prove that the DKA converges to the solution (solution of minimal norm)
when the system has a unique solution (is consistent, respectively). Theorem 14 proves that
when the system of equations is inconsistent, the relaxed version of the DKA converges
for every appropriate relaxation parameter, and the limits approximate a weighted least-
squares solution. No quantitative estimates of the convergence rate are given in [5], and in
fact it is observed in [46] that the convergence rate is dependent upon the topology of the
tree as well as the distribution of the equations across the nodes.

2.1. Randomized Variants

In this subsection, we consider randomized variants of the protocol introduced in
Section 1.2 (see Algorithm 1). This will allow us to provide quantitative estimates on the
rate of convergence in terms of the spectral data of A. We will be using the analysis of the
randomized Kaczmarz algorithm as presented in [8] and the analysis of the randomized
block Kaczmarz algorithm as presented in [14].

We will have two randomized variants, but both can be thought of in a similar manner.
During the dispersion stage of the iteration, one or more of the nodes will be active, meaning
that the estimate they receive will be updated according to Equation (3) then passed on
to its successor nodes (or held if the node is a leaf). The remaining nodes will be passive,
meaning that the estimate they receive will be passed on to successive nodes without
updating. In the first variant, exactly one node will be chosen randomly to be active for the
current iteration, and the remaining nodes will be passive. In the second variant, several
of the nodes will be chosen randomly to be active subject to the constraint that no two
active nodes are in a predecessor-successor relationship. The pooling stage proceeds with
the following variation. When a node receives estimates from its successors, it averages
only those estimates that differ from its estimate during the dispersion stage. If a node
receives estimates from all of its successors that are the same as its own estimate during the
dispersion stage, it passes this estimate to its predecessor.

For these random choices, we will require that the root node know the full topology of
the network. For each iteration, the root node will select the active nodes for that iteration
according to some probability distribution; the nodes that are selected for activation will be
notified by the root node during the iteration.

In both of our random variants, we make the assumption that the system of equations
is consistent. This assumption is required for the results that we use from [8,14]. As
such, no relaxation parameter is needed in our randomized variants, though in Section 2.3
we observe that convergence can be accelerated by over-relaxation. See [9,47] for results
concerning the randomized Kaczmarz algorithm in the context of inconsistent systems
of equations.

See Algorithm 1 for pseudocode description of the randomized variants; we refer to
this algorithm as the Randomized Tree Kaczmarz (RTK) algorithm.

Axioms 2022, 11, 106 7 of 22

2.1.1. Single Active Nodes

Let Y denote a random variable whose values are in V. In our first randomized variant,
the root node selects v ∈ V according to the probability distribution

P(Y = v) =
‖~av‖2

‖A‖2
F

;

denote this distribution by D0. Note that this requires the root node to have access to the
norms {‖~av‖}v∈V . During the dispersion stage of iteration n, the node that is selected,
denoted by Yn, is notified by the root node as estimate ~x(n) traverses the tree.

Proposition 1. Suppose that the sequence of approximations ~x(n) are obtained by Algorithm 1
with distribution D0. Then, the approximations have the form

~x(n) = ~x(n−1) +
bYn −~a∗Yn

~x(n−1)

‖~aYn‖2 ~aYn .

Proof. At the end of the dispersion stage of the iteration, we have that the leaves ` ≺ Yn
possess an estimate that has been updated; all other leaves have estimates that are not

updated. Thus, we have ~x(n−1)
` = ~x(n−1)

Yn
= ~x(n−1) +

bYn −~a∗Yn
~x(n−1)

‖~aYn‖2 ~aYn for those ` ≺ Yn,

and ~x(n−1)
` = ~x(n−1) otherwise.

Then, during the pooling stage, the only nodes that receive an estimate that is different
from their estimate during the dispersion stage are u � Yn, and those estimates are all
~x(n−1)

Yn
. Thus, for all such nodes, ~yu = ~x(n−1)

Yn
. Every other node has ~yu = ~x(n−1). Since the

root r � Yn, we obtain that

~x(n) = ~y(n−1)
r = ~x(n−1)

Yn
= ~x(n−1) +

bYn −~a∗Yn
~x(n−1)

‖~aYn‖2 ~aYn .

Corollary 1. Suppose the sequence of approximations ~x(n) are obtained by Algorithm 1 with
distribution D0. Then, the following linear convergence rate in expectation holds:

E‖~x(n) −Π~x(n)‖2 ≤
(

1−
λnz

min(AT A)

‖A‖2
F

)n

‖~x(0) −Π~x(0)‖2. (6)

Proof. When the blocks are singletons, by Proposition 1, the update is identical to the
Randomized Kaczmarz algorithm of [8]. The estimate in Equation (6) is given in [14].

2.1.2. Multiple Active Nodes

We now consider blocks of nodes, meaning multiple nodes, that are active during each
iteration. For our analysis, we require that the nodes that are active during any iteration
are independent of each other in terms of the topology of the tree. Let P(V) denote the
power set of the set of nodes V. Let Z be a random variable whose values are in P(V) with
probability distribution D.

Definition 1. For I ∈ P(V), we say that I satisfies the incomparable condition whenever
the following holds: for every distinct pair u, v ∈ I, neither v ≺ u nor u ≺ v. We say that the
probability distributionD satisfies the incomparable condition whenever the following implication
holds: if I ∈ P(V) is such that P(Z = I) > 0, then I satisfies the incomparable condition.

Axioms 2022, 11, 106 8 of 22

Following [14], we define the expectation for each node v ∈ V:

pv = P(v ∈ Z).

We then define the matrix
W = ∑

v∈V
pv

ava∗v
‖av‖2 . (7)

For I ∈ P(V) and u ∈ V, we define

T(u, I) = {w ∈ C(u)|∃v ∈ I s.t. v � w}

We then define for v ∈ I:

γ(v, I) = ∏
u�v

1
|T(u, I)| . (8)

These quantities reflect how estimates travel from the leaves of the tree back to the root.
As multiple estimates are averaged at a node in the tree, the node needs to know how many
of its descendants have estimates that have been updated, which (essentially) corresponds
to how many descendants have been chosen to be active during that iteration. (Note that
it is possible that a node could be active, but its estimate is NOT updated because it may
be the case that the estimate that is passed to it is already a solution it its equation, but to
simplify the analysis, we suppose that this does not occur). The weights γ(v, I) are the
final weights used in the update when the estimates ultimately return to the root. Note that
these quantities depend on the choice of I ∈ P(V) as well as the topology of the tree itself.

Proposition 2. Suppose that the sequence of approximations ~x(n) are generated by Algorithm 1,
where the probability distribution D satisfies the incomparable condition. Let Zn be the n-th sample
of the random variable Z. Then, the approximations have the form

~x(n) = ~x(n−1) + ∑
v∈Zn

γ(v, Zn)
bv −~a∗v~x(n−1)

‖~av‖2 ~av. (9)

Proof. For any node w such that there is no v ∈ Zn with w ≺ v, then ~x(n−1)
w = ~x(n−1)

r =
~x(n−1). However, if there is a v ∈ Zn with w ≺ v, then by the incomparable condition,

~x(n−1)
w = ~x(n−1)

v = ~x(n−1) +
bv −~a∗v~x(n−1)

‖~av‖2 ~av. (10)

We have in the pooling stage, if v ∈ Zn then ~yv = ~xv. Moreover, for u = P(v),

~y(n−1)
u =

1
|T(u, Zn)| ∑

w∈T(u,Zn)

~y(n−1)
w =

1
|T(u, Zn)| ∑

w∈Zn
w≺u

~y(n−1)
w =

1
|T(u, Zn)| ∑

w∈Zn
w≺u

~x(n−1)
w

where the second equation follows from the incomparable condition. It now follows by
induction that

~y(n−1)
r = ∑

w∈Zn

(
∏

w≺u

1
|T(u, Zn)|

)
~x(n−1)

w .

We now obtain Equation (9) from Equation (8).

For I ∈ P(V) that satisfies the incomparable condition, we define

BI = ∑
v∈I

γ(v, I)
ava∗v
‖av‖2 (11)

Axioms 2022, 11, 106 9 of 22

where γ(v, I) are as in Equation (8).
Let D be a probability distribution on P(V) that satisfies the incomparable condition,

and let Z be a P(V)-valued random variable with distribution D. For each I ∈ P(V) such
that P(Z = I) > 0, let

γmin(I) = min{γ(v, I)|v ∈ I}; γmax(I) = max{γ(v, I)|v ∈ I};

where γ(v, I) are as in Equation (8). Then, let

Γ(A,D) = min{2γmin(I)− γmax(I)λmax(BI)|P(Z = I) > 0}. (12)

For notational brevity, we define the quantity

Σ(A,D) := 1− Γ(A,D)λnz
min(W). (13)

We note that a priori there is no reason that Σ(A,D) < 1. However, we will see in
Section 2.2 examples for which Σ is less than 1 as well as conditions which guarantee
this inequality.

We will use Theorem 4.1 in [14]. We alter the statement somewhat and include the
proof for completeness.

Theorem 1. Let Z1 be a sample of the random variable Z with distribution D. Let Π be the
projection onto the space of solutions to the system of equations, and let ~x(0) be an initial estimate of
a solution that is in the range of AT . Let

~x(1) = ~x(0) +

(
∑

v∈Z1

γ(v, Z1)
bv −~a∗v~x(0)
‖~av‖2 ~av

)
.

Then, the following estimate holds in expectation:

E‖~x(1) −Π~x(1)‖2 ≤ Σ(A,D)‖~x(0) −Π~x(0)‖2. (14)

Proof. As derived in Theorem 4.1 in [14], we have

‖~x(1) −Π~x(1)‖2 ≤
(
~x(0) −Π~x(0)

)∗(
I − 2BZ1 + B2

Z1

)(
~x(0) −Π~x(0)

)
. (15)

We make the following estimates:

BZ1 � γmin(Z1)

(
∑

v∈Z1

~av~a∗v
‖~av‖2

)
,

and

B2
Z1
� λmax(BZ1)BZ1

� λmax(BZ1)γmax(Z1)

(
∑

v∈Z1

~av~a∗v
‖~av‖2

)
.

We thus obtain the estimate

I − 2BZ1 + B2
Z1
� I − 2γmin(Z1)

(
∑

v∈Z1

~av~a∗v
‖~av‖2

)
+ γmax(Z1)λmax

(
BZ1

)(
∑

v∈Z1

~av~a∗v
‖~av‖2

)

� I − Γ(A,D)
(

∑
v∈Z1

~av~a∗v
‖~av‖2

)
,

Axioms 2022, 11, 106 10 of 22

from which Equation (15) becomes

‖~x(1) −Π~x(1)‖2 ≤
(
~x(0) −Π~x(0)

)∗(
I − Γ(A,D)

(
∑

v∈Z1

~av~a∗v
‖~av‖2

))(
~x(0) −Π~x(0)

)
. (16)

Taking the expectation of the left side, we obtain

E‖~x(1) −Π~x(1)‖2 ≤
(
~x(0) −Π~x(0)

)∗
(I − Γ(A,D)W)

(
~x(0) −Π~x(0)

)
(17)

≤ Σ(A,D)‖~x(0) −Π~x(0)‖2. (18)

The last inequality follows from the Courant–Fischer inequality applied to the matrix

D1/2 A: for the matrix W = AT DA, with D = diag
(

pv

‖~av‖2 ; v ∈ V
)

, we obtain

(
~x(0) −Π~x(0)

)∗
W
(
~x(0) −Π~x(0)

)
= ‖D1/2 A

(
~x(0) −Π~x(0)

)
‖2 ≥ λnz

min(W)‖~x(0) −Π~x(0)‖2.

Theorem 2. Suppose the sequence of approximations ~x(n) are obtained by Algorithm 1 with the
distribution D satisfying the incomparable condition and initialized with ~x(0) ∈ R(AT). Then, the
following linear convergence rate in expectation holds:

E‖~x(n) −Π~x(n)‖2 ≤ (Σ(A,D))n‖~x(0) −Π~x(0)‖2. (19)

Proof. We take the expected value of ‖~x(n)−Π~x(n)‖2 conditioned on the history Z1, . . . , Zn−1.
By Theorem 1, we have the estimate

E
{
‖~x(n) −Π~x(n)‖2 : Z1, . . . , Zn−1

}
≤ E

{
‖~x(n) −Π~x(n−1)‖2 : Z1, . . . , Zn−1

}
≤ E

{
Σ(A,D)‖~x(n−1) −Π~x(n−1)‖2 : Z1, . . . , Zn−1

}
≤ Σ(A,D)‖~x(n−1) −Π~x(n−1)‖2.

We now take the expectation over the entire history to obtain

E‖~x(n) −Π~x(n)‖2 ≤ Σ(A,D)E‖~x(n−1) −Π~x(n−1)‖2.

The result now follows by iterating.

Remark 1. We note here that Theorem 2 recovers Corollary 1 as follows: ifD selects only singletons

from P(V), and selects singleton {v} with probability
‖~av‖2

‖A‖2
F

, then we have

γmin({v}) = γmax({v}) = λmax(B{v}) = Γ(A,D) = 1

and W =
AT A
‖A‖2

F
. Thus, Σ(A,D) = 1−

λnz
min(AT A)

‖A‖2
F

.

Remark 2. A similar result to Theorem 2 is obtained in [15]. There, the authors make additional
assumptions that we do not. First, in [15], each block that is selected always contains the same
number of rows; our analysis works when the blocks have different sizes, which is necessary as we
will consider in several of our sampling schemes different block sizes. Second, in [15], their analysis
requires the assumption that the expectation pv and the weights γ(v, Z) satisfy the following
constraint: there exists a α > 0 such that for every v, pvγ(v, Z)‖~av‖−2 = α. We do not make this

Axioms 2022, 11, 106 11 of 22

assumption, and in fact this need not hold, since the weights γ(v, Z) are determined both by Z and
the tree structure. Thus, we do not have control over this quantity.

2.2. Sampling Schemes

We propose here several possible sampling schemes for Algorithm 1 and illustrate their
asymptotics in the special case of a binary tree. Recall that m is the number of equations
(and hence the number of nodes in the tree), and t is the number of leaves (nodes with no
successors) in the tree. To simplify our analysis, we assume that each ‖~av‖ = 1. We note
that for any set I ∈ P(V), we have the estimate

λmax(BI) ≤ 1 (20)

since ∑v∈I γ(v, I) = 1. In addition, if we assume that the distribution D satisfies the
condition that the set I = {I ∈ P(V) : P(Z = I) > 0} is a partition of V, then

λnz
min(W) ≤ 1 (21)

since we have that ∑v∈V pv = 1. As a consequence of these estimates, we obtain the
following guarantee that Σ(A,D) < 1.

Proposition 3. Suppose D satisfies the incomparable condition and that Equation (21) is satisfied.
In addition, suppose that for every I ∈ I has the property that 2γmin(I)− γmax(I) > 0. Then,
Σ(A,D) < 1.

Generations. We block the nodes by their distance from the root: Gk = {v : d(r, v) = k}.
If the depth of the tree is K, then we draw from {G0, . . . , GK−1} uniformly. Here, the

probabilities pv =
1
K

, so we have W =
1
K

AT A since we are also assuming that ‖~av‖ = 1.

Thus, the spectral data λnz
min(W) reduces to

1
K

λnz
min(AT A). Thus, our convergence rate is

Σ(A,D) = 1− Γ(A,D)
λnz

min(AT A)

K
.

For arbitrary trees, the quantities γmin(Gk) and γmax(Gk) depend on the topology, but
for p-regular trees (meaning all nodes that are not leaves have p successors), we have

γmin(Gk) = γmax(Gk) =
1
pk .

Thus, from Equation (20) we obtain the estimate

Γ(A,D) ≥ 1
pK−1

and our convergence rate is bounded by

1− Γ(A,D)λnz
min(W) ≤ 1−

λnz
min(AT A)

KpK−1 .

For our regular p-tree, K = O(log m) and pK−1 = O(m), so asymptotically the conver-
gence rate is at worst 1−O((m log m)−1)λnz

min(AT A).

Axioms 2022, 11, 106 12 of 22

Families. Here, blocks consist of all immediate successors (children) of a common node,
i.e., C(u) for u not a leaf. The singleton {r} also is a block. We select each block uniformly,

so pv =
1

m− t
. In this case, for each family (block) F,

γmin(F) = γmax(F) =
1
|F| .

Thus, we obtain the estimate

Γ(A,D) ≥ 1
c

,

where c denotes the largest family. We obtain a convergence rate of

Σ(A,D) = 1−
λnz

min(AT A)

c(m− t)
.

In the case of a binary tree, c = 2, and m− t = O(m), so asymptotically the conver-
gence rate is at worst 1−O(m−1)λnz

min(AT A).

2.3. Accelerating the Convergence via Over-Relaxation

We can accelerate the convergence, i.e., lower the convergence factor, by consider-
ing larger stepsizes. In the classical cyclic Kaczmarz algorithm, a relaxation parameter
ω ∈ (0, 2) is allowed, and the update is given by

~x(n) = ~x(n−1) + ω
bn −~a∗n~x(n−1)

‖~an‖2 ~an.

Experimentally, convergence is faster with ω > 1 [4,14,46]. We consider here such a
relaxation parameter in Algorithm 1. This alters the analysis of Theorem 1 only slightly.
Indeed, the update in Proposition 2 becomes:

~x(n) = ~x(n−1) + ω ∑
v∈Zn

γ(v, Zn)
bv −~a∗v~x(n−1)

‖~av‖2 ~av. (22)

Thus, Equation (15) in the proof of Theorem 1 becomes:

‖~x(1) −Π~x(1)‖2 ≤
(
~x(0) −Π~x(0)

)∗(
I −ω2BZ1 + ω2B2

Z1

)(
~x(0) −Π~x(0)

)
. (23)

The remainder of the calculation follows through, with the final estimate

E‖~x(1) −Π~x(1)‖2 ≤ (1− Γω(A,D)λnz
min(W))‖~x(0) −Π~x(0)‖2, (24)

where
Γω(A,D) = min

{
2ωγmin(I)−ω2γmax(I)λmax(BI)|P(Z = I) > 0

}
.

If we assume that

λblock
max := max{λmax(BI)|P(Z = I) > 0} < 1,

then we can maximize a lower bound on Γω(A,D) as a function of ω. Indeed, if we assume
that for each I, γmin(I) = γmax(I) =: γ, then the maximum occurs at

ω0 =
1

λblock
max

,

Axioms 2022, 11, 106 13 of 22

and we then obtain the estimate

Γω0(A,D) ≥ γ

λblock
max

(25)

This suggests that the rate of convergence can be accelerated by choosing the stepsize
ω0, since the estimate from Equation (25) is better than the estimate

Γ(A,D) ≥ 2(1− λblock
max).

Our numerical experiments presented in Section 4 empirically support acceleration
through over-relaxation and in fact suggest further improvement than what we prove here.

3. The RTK in the Presence of Noise

We now consider the performance of the Randomized Tree Kaczmarz algorithm in the
presence of noise. That is to say, we consider the system of equations A~x =~b +~ε, where~ε
represents noise within the observed measurements. We assume that the noiseless matrix
equation A~x = ~b is consistent, and its solution is the solution we want to estimate. We
suppose that the equations~a∗v~x = bv + εv are distributed across a network that is a tree, as
before. We will consider two aspects of the noisy case: first, we establish the convergence
rate of the RTK in the presence of noise and estimate the errors in the approximations due
to the noise; second, we will consider methods for mitigating the noise, meaning that if the
noise vector~ε satisfies a certain sparsity constraint, then we can estimate which nodes are
corrupted by noise (i.e., anomalous) and ignore them in the RTK.

3.1. Convergence Rate in the Presence of Noise

We now consider the convergence rate of Algorithm 1 in the presence of noise. The
randomized Kaczmarz method in the presence of noise was investigated in [47]. The main
result of that study is that when the measurement vector~b is corrupted by noise (likely
causing the system to be inconsistent), the randomized Kacmarz algorithm displays the
same convergence rate as the randomized Kaczmarz algorithm does in the consistent case
up to an error term that is proportional to the variance of the noise, and the constant of
proportionality is given by spectral data of the coefficient matrix.

To formalize, we consider the case that the system of equations A~x =~b is consistent
but that the measurement vector~b is corrupted by noise, yielding the observed system of
equations A~x =~b +~ε. The update in Algorithm 1 then becomes:

~x(n) = ~x(n−1) + ∑
v∈I

γ(v, I)
bv + εv −~a∗v~x(n−1)

‖~av‖2 ~av

= ~x(n−1) + ∑
v∈I

γ(v, I)
bv −~a∗v~x(n−1)

‖~av‖2 ~av + ∑
v∈I

γ(v, I)
εv

‖~av‖2~av.

We denote the error in the update by

EI = ∑
v∈I

γ(v, I)
εv

‖~av‖2~av.

Note that

‖EI‖ ≤ ∑
v∈I

γ(v, I)
|εv|
‖~av‖

≤ max
v∈V

{
|εv|
‖~av‖

}
. (26)

For d× d matrices A1, . . . , AN , we denote the product AN AN−1 · · · A1 = ∏N
n=1 An, so

that the product notation is indexed from right to left. For a product where the beginning
index is greater than the ending index, e.g., ∏k

n=k+1 An, we define the product to be the
identity I. As before, Z is a P(V) valued random variable with distribution D, and BZ is as
given in Equation (11).

Axioms 2022, 11, 106 14 of 22

Theorem 3. Suppose the system of equations A~x =~b is consistent, and let Π denote the projection
onto the solution space. Let ~x(n) be the n-th iterate of Algorithm 1 run with the noisy measurements
A~x =~b +~ε, distribution D, and initialization ~x(0) ∈ R(AT). Then, the following estimate holds
in expectation:

E‖~x(n) −Π~x(n)‖ ≤ Σ(A,D)n/2‖~x(0) −Π~x(0)‖+
[
1− Σ(A,D)1/2

]−1
max
v∈V

{
|εv|
‖~av‖

}
(27)

where Σ(A,D) is as given in Equation (13).

Proof. Let ~xS be any solution to the system of equations A~x =~b. We have by induction that

~xS −~x(n) = (I − BZn)(~x
S −~x(n−1)) + EZn

= (I − BZn)(I − BZn−1)(~x
S −~x(n−2)) + (I − BZn)(EZn−1) + EZn

= . . .

=
n

∏
j=1

(I − BZj)(~x
S −~x(0)) +

n

∑
j=1

n

∏
k=j+1

(I − BZk)EZj .

Note that the first term is precisely the estimates obtained from Algorithm 1 with
~ε = 0, so we can utilize Theorem 2 to obtain the following estimate

E‖~xS −~x(n)‖ ≤ E

∥∥∥∥∥ n

∏
j=1

(I − BZj)(~x
S −~x(0))

∥∥∥∥∥+E

∥∥∥∥∥ n

∑
j=1

n

∏
k=j+1

(I − BZk)EZj

∥∥∥∥∥
≤ (Σ(A,D))n/2‖~xS −~x(0)‖+E

n

∑
j=1

∥∥∥∥∥ n

∏
k=j+1

(I − BZk)EZj

∥∥∥∥∥.

Thus, we need to estimate the terms in the sum.
As in the proof of Theorem 2, we can estimate the expectation conditioned on Z1, . . . ,

Zn−1 as

E
{∥∥∥∥∥ n

∏
k=j+1

(I − BZk)EZj

∥∥∥∥∥ : Z1, . . . , Zn−1

}
≤ (Σ(A,D))1/2

∥∥∥∥∥ n−1

∏
k=j+1

(I − BZk)EZj

∥∥∥∥∥.

Iterating this estimate n− j times using the tower property of conditional expectation yields

E
{∥∥∥∥∥ n

∏
k=j+1

(I − BZk)EZj

∥∥∥∥∥ : Z1, . . . , Zj

}
≤ (Σ(A,D))(n−j)/2

∥∥∥EZj

∥∥∥.

We have by Equation (26) that

E
∥∥∥EZj

∥∥∥ ≤ max
v∈V

{
|εv|
‖~av‖

}
.

Thus, taking the full expectation over the entire history yields

E

∥∥∥∥∥ n

∏
k=j+1

(I − BZk)EZj

∥∥∥∥∥ ≤ (Σ(A,D))(n−j)/2 max
v∈V

{
|εv|
‖~av‖

}
. (28)

Axioms 2022, 11, 106 15 of 22

We thus obtain

E
n

∑
j=1

∥∥∥∥∥ n

∏
k=j+1

(I − BZk)EZj

∥∥∥∥∥ ≤ n

∑
j=1

(Σ(A,D))(n−j)/2 max
v∈V

{
|εv|
‖~av‖

}

≤
∞

∑
j=0

(Σ(A,D))j/2 max
v∈V

{
|εv|
‖~av‖

}

from which the estimate in Equation (27) now follows.

Remark 3. We note here that Theorem 3 recovers a similar, but coarser, estimate as the one obtained
in Theorem 2.1 in [47]. Indeed, as in Remark 1, suppose that the distribution D only selects

singletons from P(V), and each singleton {v} is selected with probability
‖av‖2

‖A‖2
F

. Then, we have

Σ(A,D) = 1−
λnz

min(AT A)

‖A‖2
F

, and so Theorem 3 becomes

E‖~x(n) −Π~x(n)‖ ≤ Σ(A,D)n/2‖~x(0) −Π~x(0)‖+
[
1− Σ(A,D)1/2

]−1
max
v∈V

{
|εv|
‖~av‖

}

=

(
1− 1

R

)n/2
‖~x(0) −Π~x(0)‖+

(
1−

√
1− 1

R

)−1

max
v∈V

{
|εv|
‖~av‖

}
.

Here, R =
‖A‖2

F
λnz

min(AT A)
in the notation of Theorem 2.1 in [47]. The estimate is similar for

R ≈ 1, but for R >> 1, our estimate is worse. This is because the proof of Theorem 2.1 [47] utilizes
orthogonality at a crucial step, which is not valid for our situation—the error EI is not orthogonal
to the solution space for the affected equations.

3.2. Anomaly Detection in Distributed Systems of Noisy Equations

We again consider the case of noisy measurements, again denoted by A~x = ~b +~ε,
where now the error vector~ε is assumed to be sparse, and the nonzero entries are large.
This situation is considered in [45]. In that study, the authors propose multiple methods of
using the Randomized Kaczmarz algorithm to estimate which equations are corrupted by
the noise, i.e., which equations correspond to the nonzero entries of~ε. Once those equations
are detected, they are removed from the system. The assumption is that the subsystem
of uncorrupted equations is consistent; thus, once the corrupted equations are removed,
the Randomized Kaczmarz algorithm can be used to estimate a solution. Moreover, the
Randomized Kaczmarz algorithm can be used on the full (corrupted) system of equations
to obtain an estimate of the solution with positive probability. We demonstrate here that the
methods proposed in [45] can be utilized in our context of distributed systems of equations
to identify corrupted equations and estimate a solution to the uncorrupted equations.

Indeed, we utilize without any alteration the methods of [45] to detect corrupted equa-
tions; we provide the Algorithms 2 and 3 for completeness. To prove that the algorithms are
effective in our distributed context, we follow the proofs in [45] with virtually no change.
Once we establish an initial lemma, the proofs of the main results (Theorems 4 and 5) are
identical. The lemma we require is an adaptation of Lemma 2 in [45] to our Distributed
Randomized Kaczmarz algorithm. Our proof proceeds similarly to that in [45]; we include
it here for completeness.

We establish some notation first. For an arbitrary U ⊂ V, we use AV\U to denote
the submatrix of A obtained by removing the rows indexed by U. Similarly, for the
vector~b,~bV\U consists of the components whose indices are in V \U. For the probability
distribution D and U ⊂ V, we denote by D̃ the conditional probability distribution on
P(V \U) conditioned on I ∩U = ∅ for I ⊂ V \U.

Axioms 2022, 11, 106 16 of 22

For the remainder of this subsection, let U ⊂ V denote the support of the noise~ε, with
|U| = s; let ε∗ = min{|~εj| : j ∈ U}. We assume that AV\U~x =~bV\U has a unique solution;
let ~xS be that solution to this restricted system. Let

P(D, U) = ∑
I∩U=∅

PD(I). (29)

Recall that k is the number of variables in the system of equations.

Lemma 1. Let 0 < δ < 1. Define

n∗ = max

0,

log
(

δ(ε∗)2

4‖~xS‖2

)
log Σ(AV\U , D̃)

 (30)

Then, in round i of Algorithm 2 or Algorithm 3, the iterate ~x(n
∗ ,i) produced by n∗ iterations of

the RTK satisfies

P
[
‖~x(n∗ ,i) −~xS‖ ≤ ε∗

2

]
≥ (1− δ)(P(D, U))n∗ . (31)

Proof. Let E be the event that the blocks Z1, . . . , Zn∗ chosen according to distribution D are
all uncorrupted, i.e., Zj ∩U = ∅ for j = 1, 2, . . . , n∗. This is equivalent to applying the RTK
algorithm to the system AV\U~x =~bV\U with distribution D̃. Thus, by Theorem 2, we have
the conditional expectation:

E
[
‖~x(n∗ ,i) −~xS‖2|E

]
≤ EAV\U ,~bV\U

[
‖~x(n∗ ,i) −~xS‖2|E

]
≤ Σ(AV\U , D̃)n∗‖~xS‖2.

From Equation (30), we obtain

E
[
‖~x(n∗ ,i) −~xS‖2|E

]
≤ δ(ε∗)2

4
.

Thus,

P
[
‖~x(n∗ ,i) −~xS‖2 ≥ (ε∗)2

4

]
≤

E
[
‖~x(n∗ ,i) −~xS‖2|E

]
(ε∗)2

4

≤ δ.

Hence,

P
[
‖~x(n∗ ,i) −~xS‖2 ≤ (ε∗)2

4
|E
]
≥ 1− δ

and

P
[
‖~x(n∗ ,i) −~xS‖2 ≤ (ε∗)2

4

]
≥ (1− δ)P(E) ≥ (1− δ)(P(D, U))n∗ .

The following are Theorems 2 and 3 in [45], respectively, restated to our situation; the
proofs are identical using our Lemma 1 and are omitted.

Theorem 4. Let 0 < δ < 1. Fix d ≥ s, W ≤
⌊
|V| − k

d

⌋
, and let n∗ be as in Equation (30). Then,

the MRRTK Algorithm (Algorithm 2) applied to A,~b +~e will detect the corrupted equations with
probability at least

1−
[
1− (1− δ)(P(D, U))n∗

]W
.

Axioms 2022, 11, 106 17 of 22

Theorem 5. Let 0 < δ < 1. Fix d ≥ 1, W ≤
⌊
|V| − k

d

⌋
, and let n∗ be as in Equation (30). Then,

the MRRTKUS Algorithm (Algorithm 3) applied to A,~b +~e will detect the corrupted equations
and the remaining equations will have solution ~xS with probability at least

1−
ds/de−1

∑
j=0

(
W
j

)
pj(1− p)W−j

where p = (1− δ)(P(D, U))n∗ .

See [45] for an extensive analysis of numerical experiments of these algorithms, which
we do not reproduce here.

4. Numerical Experiments
4.1. The Test Equations

We randomly generated several types of test equations, full and sparse, of various
sizes. The results for different types of matrices were very similar, so we just present some
results for full matrices with entries generated from a standard normal distribution.

We generated the matrices once, made sure they had full rank, and stored them. Thus,
all algorithms are working on the same matrices. However, the sequence of equations used
in the random algorithms is generated at runtime.

There are two types of problems we considered. In the underdetermined case, illustrated
here with a 255× 1023 matrix, all algorithms converge to the solution of minimal norm. In
the consistent overdetermined case, illustrated here with a 1023× 255 matrix, all algorithms
converge to the standard solution. The matrix dimensions are of the form 2d − 1, for easier
experimentation with binary trees.

In the inconsistent overdetermined case, deterministic Kaczmarz algorithms will
converge to a weighted least-squares solution, depending on the type of algorithm and
on the relaxation parameter ω. However, random Kaczmarz algorithms do not converge
in this case but do accumulate around a weighted least-squares solution, e.g., Theorem 1
in [15], and Theorem 3.

4.2. The Algorithms

We included several types of deterministic Kaczmarz algorithms in the numerical
experiments:

• Standard Kaczmarz.
• Sequential block Kaczmarz, with several different numbers of blocks. The equations

are divided into a small number of blocks, and the updates are performed as an
orthogonal projection onto the solution space of each block, rather than each individ-
ual equation.

• Distributed Kaczmarz based on a binary tree as in [5].
• Distributed block Kaczmarz. This is distributed Kaczmarz based on a tree of depth 2

with a small number of leaves, where each leaf contains a block of equations.

In sequential block Kaczmarz we work on each block in sequence. In distributed block
Kaczmarz we work on each block in parallel and average the results.

The block Kaczmarz case, whether sequential or distributed, is not actually covered by
our theory. However, we believe that our results could be extended to this case fairly easily,
as long as the equations in each block are underdetermined and have full rank, following
the approach in [4].

These deterministic algorithms are compared to corresponding types of random
Kaczmarz algorithms:

• Random standard Kaczmarz; one equation at a time is randomly chosen.

Axioms 2022, 11, 106 18 of 22

• Random block Kaczmarz; one block at a time is randomly chosen. There is no differ-
ence between sequential and parallel random block Kaczmarz.

• Random distributed Kaczmarz based on a binary tree, for several kinds of ran-
dom choices:

– Generations, that is, we use all nodes at a randomly chosen distance from the root.
– Families, that is, using the children of a randomly chosen node; for a binary tree,

these are pairs.
– Subtrees, that is, using the subtree rooted at a randomly chosen node. This is not

an incomparable choice, so it is not covered by our theory.

For a matrix of size m× k, in the deterministic cases one iteration consists of applying
m updates, using each equation once. A block of size n× k counts as n updates. In the
random cases, different random choices may involve different numbers of equations; we
apply updates until the number of equations used reaches or slightly exceeds m.

After each iteration, we compute the 2-norm of the error. The convergence factor at each
step is the factor by which the error has gone down at the last step. These factors often vary
considerably in the first few steps and then settle down. The empirical convergence factors
given in the tables below are calculated as the geometric average of the convergence factors
over the second half of the iterations.

4.3. Numerical Results

The empirical convergence factors shown in Tables 1 and 2 are based on 10 iterations.
Each convergence factor is computed as the fifth root of the ratio of errors between iterations
5 and 10. For the random algorithms, each experiment (of 10 iterations) was run 20 times
and the resulting convergence factors averaged.

Table 1. Convergence factors for various algorithms, for a random underdetermined equation of size
255× 1023. Numbers in parentheses represent the estimates from Equation (13).

Relaxation Parameter ω
0.5 1 1.5 2 2.5 3 3.5

deterministic
standard 0.8138 0.5428 0.5579
sequential blocks

4 blocks 0.7963 0.4926 0.5227
16 blocks 0.8101 0.5362 0.5531
64 blocks 0.8135 0.5448 0.5628

parallel blocks
4 blocks 0.9346 0.8947 0.8604 0.8276 0.7948 0.7616 0.7273
16 blocks 0.9800 0.9636 0.9499 0.9379 0.9271 0.9173 0.9080
64 blocks 0.9947 0.9897 0.9849 0.9804 0.9761 0.9720 0.9681
255 blocks 0.9986 0.9973 0.9960 0.9947 0.9934 0.9922 0.9909

binary tree 0.9941 0.9903 0.9870 0.9841

random
standard 0.8440 0.7472 0.7039
blocks

4 blocks 0.8013 0.6736 0.6724
16 blocks 0.8146 0.7162 0.7001
64 blocks 0.8252 0.7393 0.7136

binary tree
family 0.9055 0.8510 0.8133 0.7742 0.7692 0.7528 0.8178

(0.9099) (0.8817) (0.9099)
generation 0.9940 0.9903 0.9874 0.9849

(0.9985) (0.9980) (0.9985)
subtree 0.9352 0.9017 0.8617 0.8735 0.9078

Axioms 2022, 11, 106 19 of 22

For binary trees, with a random choice of generations or families, we also calculated
the estimated convergence factors described in Equation (13). These estimates are for one
random step. For a binary tree of K levels, it takes on average K choices of generation
to use the entire tree once. For families, it is 2K−1 choices of families (pairs, in this case).
To estimate the convergence factor for one iteration, we took a corresponding power of
the estimates.

Table 1 shows the convergence factors for the underdetermined case. An empty entry
means that the algorithm did not converge for this value of ω.

Here are some observations about Table 1:

• Sequential block Kaczmarz and random block Kaczmarz for 255 blocks are identical
to their standard Kaczmarz counterparts and are not shown.

• Sequential methods, including standard Kacmarz and sequential block Kaczmarz,
converge faster than parallel methods, such as binary trees or distributed block Kacz-
marz. This is not surprising: in sequential methods, each step uses the results of the
preceding step; in parallel methods, each step uses older data.

• The same reasoning explains why the Family selection is faster than Generations.
Consider level 3, as an example. With Generations, we do 8 equations in parallel. With
Families, we do four sets of 2 equations each, but each pair uses the result from the
previous step.

• The block algorithm for a single block with ω = 1 converges in a single step, so the
convergence factor is 0. At the other end of the spectrum, with 255 blocks of one
equation each, the block algorithm becomes standard Kaczmarz. As the number of
blocks increases, the convergence factor is observed to increase and approach the
standard Kaczmarz value.

• Standard Kaczmarz, deterministic or random, converges precisely for ω ∈ (0, 2). By
the results in [4], this is also true for sequential block Kaczmarz.
Distributed Kaczmarz methods are guaranteed to converge for the same range of ω,
but in practice they often converge for larger ω as well, sometimes up to ω near 4.
Random distributed methods appear to have similar behavior.

• The observed convergence factors for random algorithms are comparable to those
for their deterministic counterparts but slightly worse. We attribute this to the fact
that in the underdetermined case, all equations are important; random algorithms
on an m× k matrix do not usually include all equations in a set of m updates, while
deterministic algorithms do.
As pointed out in [8], there are types of equations where random algorithms are signif-
icantly faster than deterministic algorithms, but our sample equations are obviously
not in that category.

Table 2 shows the convergence factors for the consistent overdetermined case.

Table 2. Convergence factors for various algorithms, for a random overdetermined consistent
equation of size 1023× 255. Numbers in parentheses represent the estimates from Equation (13).

Relaxation Parameter ω
0.5 1 1.5 2 2.5 3 3.5

deterministic
standard 0.4923 0.2564 0.2424
sequential blocks

4 blocks 0.0625 0.0000 0.0625
16 blocks 0.4311 0.1863 0.1894
64 blocks 0.4759 0.2131 0.2263

Axioms 2022, 11, 106 20 of 22

Table 2. Cont.

Relaxation Parameter ω
0.5 1 1.5 2 2.5 3 3.5

255 blocks 0.4930 0.2588 0.2409
parallel blocks

4 blocks 0.5000 0.0000 0.5000
16 blocks 0.9125 0.8696 0.8303 0.7919 0.7550 0.7195 0.6795
64 blocks 0.9707 0.9483 0.9313 0.9178 0.9063 0.8958 0.8857
256 blocks 0.9920 0.9845 0.9775 0.9709 0.9647 0.9590 0.9536
1023 blocks 0.9980 0.9960 0.9940 0.9920 0.9901 0.9882 0.9864

binary tree 0.9889 0.9817 0.9758 0.9704

random
standard 0.5481 0.3421 0.2748
blocks

4 blocks 0.0625 0.0000 0.0625
16 blocks 0.4451 0.2464 0.2291
64 blocks 0.4690 0.2847 0.2579
256 blocks 0.4812 0.2874 0.2675

binary tree
family 0.7040 0.5401 0.4225 0.3356 0.2615 0.2769 0.4462

(0.6879) (0.6073) (0.6879)
generation 0.9889 0.9809 0.9768 0.9709

(0.9985) (0.9980) (0.9985)
subtree 0.8349 0.7474 0.6486 0.6408 0.7103

Observations about Table 2:

• All algorithms converge faster in the overdetermined consistent case than in the
underdetermined case. That is not surprising: since we have four times more equations
than we actually need; one complete run through all equations is comparable to four
complete run-throughs for the underdetermined case.

• For the same reason, the parallel block algorithm with four blocks (or fewer) for ω = 1
converges in a single step.

• We observe that random algorithms are still slower in the overdetermined case, even
though the argument from the underdetermined case does not apply here.

Author Contributions: F.K. designed the numerical experiments and produced the associated code.
E.S.W. developed the algorithms and proved the qualitative results. Conceptualization, F.K. and
E.S.W.; methodology, F.K.; software, F.K.; validation, F.K.; writing—original draft preparation, E.S.W.;
writing—review and editing, F.K. All authors have read and agreed to the published version of
the manuscript.

Funding: Fritz Keinert and Eric S. Weber were supported in part by the National Science Foundation
and the National Geospatial Intelligence Agency under award #1830254. Eric S. Weber was supported
in part by the National Science Foundation under award #1934884.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kaczmarz, S. Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Int. Acad. Pol. Sci. Lett. Cl. Sci. Math. Nat. Ser. A

Sci. Math. 1937, 35, 355–357.
2. Tanabe, K. Projection Method for Solving a Singular System of Linear Equations and its Application. Numer. Math. 1971,

17, 203–214. [CrossRef]

http://doi.org/10.1007/BF01436376

Axioms 2022, 11, 106 21 of 22

3. Eggermont, P.P.B.; Herman, G.T.; Lent, A. Iterative Algorithms for Large Partitioned Linear Systems, with Applications to Image
Reconstruction. Linear Alg. Appl. 1981, 40, 37–67. [CrossRef]

4. Natterer, F. The Mathematics of Computerized Tomography; Teubner: Stuttgart, Germany, 1986.
5. Hegde, C.; Keinert, F.; Weber, E.S. A Kaczmarz Algorithm for Solving Tree Based Distributed Systems of Equations. In Excursions

in Harmonic Analysis; Balan, R., Benedetto, J.J., Czaja, W., Dellatorre, M., Okoudjou, K.A., Eds.; Applied and Numerical Harmonic
Analysis; Birkhäuser/Springer: Cham, Switzerland, 2021; Volume 6, pp. 385–411. [CrossRef]

6. West, D.B. Introduction to Graph Theory; Prentice Hall, Inc.: Upper Saddle River, NJ, USA, 1996; p. xvi+512.
7. Hamaker, C.; Solmon, D.C. The angles between the null spaces of X rays. J. Math. Anal. Appl. 1978, 62, 1–23. [CrossRef]
8. Strohmer, T.; Vershynin, R. A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 2009,

15, 262–278. [CrossRef]
9. Zouzias, A.; Freris, N.M. Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 2013, 34, 773–793.

[CrossRef]
10. Needell, D.; Zhao, R.; Zouzias, A. Randomized block Kaczmarz method with projection for solving least squares. Linear Algebra

Appl. 2015, 484, 322–343. [CrossRef]
11. Needell, D.; Srebro, N.; Ward, R. Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm.

Math. Progr. 2016, 155, 549–573. [CrossRef]
12. Cimmino, G. Calcolo approssimato per soluzioni dei sistemi di equazioni lineari. In La Ricerca Scientifica XVI, Series II, Anno IX 1;

Consiglio Nazionale delle Ricerche: Rome, Italy, 1938; pp. 326–333.
13. Censor, Y.; Gordon, D.; Gordon, R. Component averaging: An efficient iterative parallel algorithm for large and sparse

unstructured problems. Parallel Comput. 2001, 27, 777–808. [CrossRef]
14. Necoara, I. Faster randomized block Kaczmarz algorithms. SIAM J. Matrix Anal. Appl. 2019, 40, 1425–1452. [CrossRef]
15. Moorman, J.D.; Tu, T.K.; Molitor, D.; Needell, D. Randomized Kaczmarz with averaging. BIT Numer. Math. 2021, 61, 337–359.

[CrossRef]
16. Tsitsiklis, J.; Bertsekas, D.; Athans, M. Distributed asynchronous deterministic and stochastic gradient optimization algorithms.

IEEE Trans. Autom. Control 1986, 31, 803–812. [CrossRef]
17. Xiao, L.; Boyd, S.; Kim, S.J. Distributed average consensus with least-mean-square deviation. J. Parallel Distrib. Comput. 2007,

67, 33–46. [CrossRef]
18. Shah, D. Gossip Algorithms. Found. Trends Netw. 2008, 3, 1–125. [CrossRef]
19. Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction

method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [CrossRef]
20. Nedic, A.; Ozdaglar, A. Distributed subgradient methods for multi-agent optimization. IEEE Trans. Autom. Control 2009, 54, 48.

[CrossRef]
21. Johansson, B.; Rabi, M.; Johansson, M. A randomized incremental subgradient method for distributed optimization in networked

systems. SIAM J. Optim. 2009, 20, 1157–1170. [CrossRef]
22. Yuan, K.; Ling, Q.; Yin, W. On the convergence of decentralized gradient descent. SIAM J. Optim. 2016, 26, 1835–1854. [CrossRef]
23. Sayed, A.H. Adaptation, learning, and optimization over networks. Found. Trends Mach. Learn. 2014, 7, 311–801. [CrossRef]
24. Zhang, X.; Liu, J.; Zhu, Z.; Bentley, E.S. Compressed Distributed Gradient Descent: Communication-Efficient Consensus

over Networks. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France,
29 April–2 May 2019; pp. 2431–2439. [CrossRef]

25. Scaman, K.; Bach, F.; Bubeck, S.; Massoulié, L.; Lee, Y.T. Optimal algorithms for non-smooth distributed optimization in
networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018;
pp. 2740–2749.

26. Loizou, N.; Richtárik, P. Revisiting Randomized Gossip Algorithms: General Framework, Convergence Rates and Novel Block
and Accelerated Protocols. arXiv 2019, arXiv:1905.08645.

27. Necoara, I.; Nesterov, Y.; Glineur, F. Random block coordinate descent methods for linearly constrained optimization over
networks. J. Optim. Theory Appl. 2017, 173, 227–254. [CrossRef]

28. Necoara, I.; Nesterov, Y.; Glineur, F. Linear convergence of first order methods for non-strongly convex optimization. Math. Progr.
2019, 175, 69–107. [CrossRef]

29. Bertsekas, D.P.; Tsitsiklis, J.N. Parallel and Distributed Computation: Numerical Methods; Athena Scientific: Nashua, NH, USA, 1997.
Available online: http://hdl.handle.net/1721.1/3719 (accessed on 1 December 2021).

30. Kamath, G.; Ramanan, P.; Song, W.Z. Distributed Randomized Kaczmarz and Applications to Seismic Imaging in Sensor Network.
In Proceedings of the 2015 International Conference on Distributed Computing in Sensor Systems, Fortaleza, Brazil, 10–12 June
2015; pp. 169–178. [CrossRef]

31. Herman, G.T.; Hurwitz, H.; Lent, A.; Lung, H.P. On the Bayesian approach to image reconstruction. Inform. Control 1979,
42, 60–71. [CrossRef]

32. Hansen, P.C. Discrete Inverse Problems: Insight and Algorithms; Fundamentals of Algorithms; Society for Industrial and Applied
Mathematics (SIAM): Philadelphia, PA, USA, 2010; Volume 7, p. xii+213. [CrossRef]

33. Liu, J.; Wright, S.J.; Sridhar, S. An asynchronous parallel randomized Kaczmarz algorithm. arXiv 2014, arXiv:1401.4780.
34. Herman, G.T.; Lent, A.; Hurwitz, H. A storage-efficient algorithm for finding the regularized solution of a large, inconsistent

system of equations. J. Inst. Math. Appl. 1980, 25, 361–366. [CrossRef]

http://dx.doi.org/10.1016/0024-3795(81)90139-7
http://dx.doi.org/10.1007/978-3-030-69637-5_20
http://dx.doi.org/10.1016/0022-247X(78)90214-7
http://dx.doi.org/10.1007/s00041-008-9030-4
http://dx.doi.org/10.1137/120889897
http://dx.doi.org/10.1016/j.laa.2015.06.027
http://dx.doi.org/10.1007/s10107-015-0864-7
http://dx.doi.org/10.1016/S0167-8191(00)00100-9
http://dx.doi.org/10.1137/19M1251643
http://dx.doi.org/10.1007/s10543-020-00824-1
http://dx.doi.org/10.1109/TAC.1986.1104412
http://dx.doi.org/10.1016/j.jpdc.2006.08.010
http://dx.doi.org/10.1561/1300000014
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.1109/TAC.2008.2009515
http://dx.doi.org/10.1137/08073038X
http://dx.doi.org/10.1137/130943170
http://dx.doi.org/10.1561/2200000051
http://dx.doi.org/10.1109/INFOCOM.2019.8737489
http://dx.doi.org/10.1007/s10957-016-1058-z
http://dx.doi.org/10.1007/s10107-018-1232-1
http://hdl.handle.net/1721.1/3719
http://dx.doi.org/10.1109/DCOSS.2015.27
http://dx.doi.org/10.1016/S0019-9958(79)90160-8
http://dx.doi.org/10.1137/1.9780898718836
http://dx.doi.org/10.1093/imamat/25.4.361

Axioms 2022, 11, 106 22 of 22

35. Chi, Y.; Lu, Y.M. Kaczmarz method for solving quadratic equations. IEEE Signal Process. Lett. 2016, 23, 1183–1187. [CrossRef]
36. Crombez, G. Finding common fixed points of strict paracontractions by averaging strings of sequential iterations. J. Nonlinear

Convex Anal. 2002, 3, 345–351.
37. Crombez, G. Parallel algorithms for finding common fixed points of paracontractions. Numer. Funct. Anal. Optim. 2002, 23, 47–59.

[CrossRef]
38. Nikazad, T.; Abbasi, M.; Mirzapour, M. Convergence of string-averaging method for a class of operators. Optim. Methods Softw.

2016, 31, 1189–1208. [CrossRef]
39. Reich, S.; Zalas, R. A modular string averaging procedure for solving the common fixed point problem for quasi-nonexpansive

mappings in Hilbert space. Numer. Algorithms 2016, 72, 297–323. [CrossRef]
40. Censor, Y.; Zaslavski, A.J. Convergence and perturbation resilience of dynamic string-averaging projection methods. Comput.

Optim. Appl. 2013, 54, 65–76. [CrossRef]
41. Zaslavski, A.J. Dynamic string-averaging projection methods for convex feasibility problems in the presence of computational

errors. J. Nonlinear Convex Anal. 2014, 15, 623–636.
42. Witt, M.; Schultze, B.; Schulte, R.; Schubert, K.; Gomez, E. A proton simulator for testing implementations of proton CT

reconstruction algorithms on GPGPU clusters. In Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging
Conference Record (NSS/MIC), Anaheim, CA, USA, 27 October–3 November 2012; pp. 4329–4334. [CrossRef]

43. Censor, Y.; Nisenbaum, A. String-averaging methods for best approximation to common fixed point sets of operators: The finite
and infinite cases. Fixed Point Theory Algorithms Sci. Eng. 2021, 21, 9. [CrossRef]

44. Censor, Y.; Tom, E. Convergence of string-averaging projection schemes for inconsistent convex feasibility problems. Optim.
Methods Softw. 2003, 18, 543–554. [CrossRef]

45. Haddock, J.; Needell, D. Randomized projections for corrupted linear systems. In Proceedings of the AIP Conference Proceedings,
Thessaloniki, Greece, 25–30 September 2017; Volume 1978, p. 470071.

46. Borgard, R.; Harding, S.N.; Duba, H.; Makdad, C.; Mayfield, J.; Tuggle, R.; Weber, E.S. Accelerating the distributed Kaczmarz
algorithm by strong over-relaxation. Linear Algebra Appl. 2021, 611, 334–355. [CrossRef]

47. Needell, D. Randomized Kaczmarz solver for noisy linear systems. BIT 2010, 50, 395–403. [CrossRef]

http://dx.doi.org/10.1109/LSP.2016.2590468
http://dx.doi.org/10.1081/NFA-120003670
http://dx.doi.org/10.1080/10556788.2016.1209500
http://dx.doi.org/10.1007/s11075-015-0045-z
http://dx.doi.org/10.1007/s10589-012-9491-x
http://dx.doi.org/10.1109/NSSMIC.2012.6551986
http://dx.doi.org/10.1186/s13663-021-00694-4
http://dx.doi.org/10.1080/10556780310001610484
http://dx.doi.org/10.1016/j.laa.2020.10.035
http://dx.doi.org/10.1007/s10543-010-0265-5

	Introduction
	Notation
	The Distributed Kaczmarz Algorithm
	Related Work
	Main Contributions

	Randomization of the Distributed Kaczmarz Algorithm
	Randomized Variants
	Single Active Nodes
	Multiple Active Nodes

	Sampling Schemes
	Accelerating the Convergence via Over-Relaxation

	The RTK in the Presence of Noise
	Convergence Rate in the Presence of Noise
	Anomaly Detection in Distributed Systems of Noisy Equations

	Numerical Experiments
	The Test Equations
	The Algorithms
	Numerical Results

	References

