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ABSTRACT: Water vapor supersaturation in the atmosphere is produced in a variety of ways, including the lifting of a

parcel or via isobaric mixing of parcels. However, irrespective of the mechanism of production, the water vapor super-

saturation in the atmosphere has typically beenmodeled as aGaussian distribution. In the current theoretical and numerical

study, the nature of supersaturation produced bymixing processes is explored. The results from large-eddy simulation and a

Gaussianmixingmodel reveal the distribution of supersaturations produced bymixing to be negatively skewed. Further, the

causes of skewness are explored using the models. The correlation in forcing of temperature and water vapor fields is

recognized as playing a key role.
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1. Introduction

According to Köhler theory, cloud microphysical processes

such as activation, deactivation, and growth of cloud particles

depend on the mean thermodynamic properties of the envi-

ronment surrounding the particle (Yau and Rogers 1996).

These thermodynamic properties are determined by the tem-

perature and water vapor content present in the system. Cloud

particles respond to any nonequilibrium conditions present in

the cloud system by condensational growth or evaporation

according to the Le Chatelier’s principle (Kostinski 2009).

In a thermodynamically stable two-phase system, the water

vapor pressure dynamically balances the condensation and

evaporation fluxes over a flat, pure water surface at tempera-

ture T. This vapor pressure is called the saturation vapor

pressure and is given by the Clausius–Clapeyron equation. Any

excess/deficit of vapor pressure leads to nonequilibrium con-

ditions, and is quantitatively expressed by supersaturation (s),

and is given by

s5
q
y

q
sat
(T)

2 1: (1)

Please refer to the appendix for variable definitions.

Cooper (1989) theoretically explored the implications of

turbulent fluctuations on droplet size distributions, and recent

experimental (Chandrakar et al. 2016; Prabhakaran et al. 2020;

Chandrakar et al. 2020b), field (Gerber 1991; Ditas et al. 2012;

Siebert and Shaw 2017; Yang et al. 2019), and numerical

(Kulmala et al. 1997a,b; Vaillancourt et al. 2002; Paoli and

Shariff 2009; Abade et al. 2018; Sardina et al. 2018; Li et al.

2018; Saito et al. 2019) studies have demonstrated the im-

portance of scalar fluctuations caused by turbulence on

activation, condensational growth and deactivation pro-

cesses for aerosol and cloud particles, in addition to the

mean supersaturation (Yau and Rogers 1996; Krueger 2020).

Thus, an accurate representation of the supersaturation

variability is required to capture the cloud microphysics ef-

fects (Hoffmann et al. 2019).

Inmodeling studies, if supersaturation is treated as a random

variable at all, its probability density function (PDF) is usually

treated as Gaussian (Sardina et al. 2018; Saito et al. 2019;

Chandrakar et al. 2018), similar to scalars like temperature and

water vapor mixing ratio. However, the supersaturation PDF is

dependent on the process by which supersaturation is pro-

duced. In a parcel view of the atmospheric clouds, supersatu-

ration can be produced by the vertical ascent of parcels (Yau

and Rogers 1996) and by the isobaric mixing of parcels

(Korolev and Mazin 2003). Cloud entrainment (Korolev and

Isaac 2000; Pinsky and Khain 2018) and cloud-free Rayleigh–

Bénard convection (Saito et al. 2019; Zhang et al. 2019;

Chandrakar et al. 2020a) are examples of processes that can

produce supersaturation via isobaric mixing, occurring both in

nature and in the laboratory. For the current study, we focus on

supersaturation generated via mixing processes and cloud-free

Rayleigh–Bénard convection (RBC) is an ideal surrogate for

such processes. RBC can be considered the simplest model of

the subgrid-scale mixing within a typical cloud large-eddy

simulation (LES), for example. It is further advantageous

because it efficiently produces a statistically stationary ther-

modynamic state corresponding to the mixing processes.

Furthermore, an atmospheric LES model can be modified to

simulate cloud-free RBC to exclusively study mixing pro-

cesses without any complexities and uncertainties involving

cloud-supersaturation feedback interactions and boundary

forcings. This model not only serves as the test bed to reveal

insights into the nature of supersaturation PDF produced by

mixing processes in the absence of cloud droplets, but also

helps in validating a computationally inexpensive Gaussian

mixing model introduced here.

In this study, we investigate the shape of the supersaturation

PDF in the context of atmospheric mixing processes in the

absence of cloud droplets using an atmospheric LES and a

Gaussian mixing model detailed in section 3. The results are

presented in section 4, and atmospheric implications are dis-

cussed further in section 5.Corresponding author: Raymond A. Shaw, rashaw@mtu.edu
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2. Theory

a. Scalar equations

We begin by considering the origin of supersaturation fluc-

tuations. The advection–diffusion equation of scalars with ex-

ternal large-scale forcing required to sustain the fluctuations is

given by
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Consider Eq. (2); the rate of change of temperature at a

point depends on the temperature advected by the fluid mo-

tion, the diffusional heat transfer due to local gradients, rate of

release/absorption of latent heat due to condensation/evaporation,

and finally, any external forcing. Similarly in Eq. (3), for water

vapor, all the terms on the right-hand side are analogous to

Eq. (2) except for the latent heat effects term, which is replaced

by rate of condensation/evaporation of water vapor. Note that

we have used temperature (T) instead of pressure compen-

sated potential temperature because isobaric mixing assumes

the process to be local in nature. For parcel studies such as

Abade et al. (2018), fT and fq represent the change in forcing of

temperature and water vapor due to the entrainment of sur-

rounding environmental air into the parcel.

From Eqs. (2) and (3) we gather that for a given flow field,

the difference between appropriately normalized temperature

and water vapor fields at a location can arise only from one of

the following scenarios: (i) differential diffusivity of scalars, (ii)

condensation/evaporation processes, and (iii) correlation be-

tween fT and fq.

In the absence of cloud droplets for a RBC system in steady

state, the bulk mean temperature (T) and water vapor (qy) are

given by
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In this context, bulk refers to the region of fluid sufficiently far

away from the boundaries. Without considering the effects of

turbulence, at a given pressure, the mean supersaturation ex-

pressed in mixing ratios is given by
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For a turbulent flow, Kulmala et al. (1997b) derived the su-

persaturation mean and variance to be Eqs. (7) and (8),

respectively:
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For random variables x and y, the ensemble mean is repre-

sented as x, any fluctuations from the mean by prime x0 and
covariance terms by x0y0.

To understand the role of turbulence on the mean supersat-

uration, one can subtract Eq. (6) from Eq. (7) and the role of

turbulence is reflected by the difference. The coefficient of

terms with (T 0/T)2 is always positive and hence tends to in-

crease the mean supersaturation. On the other hand, the

coefficient of the covariance term q0
yT

0 is negative; hence, its
effect on mean supersaturation depends on the sign of the

covariance term. In the subsequent subsection we explore the

factors affecting q0
yT

0.

b. Discussions on the water vapor temperature covariance

On applying Reynolds decomposition for temperature and

water vapor (e.g., refer to chapters 3 and 4 of Wyngaard 2010)

by separating into mean and fluctuation components and

subtracting the mean equations, we get the evolution equation

for temperature and water vapor fluctuations:
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To derive the evolution equation for q0
yT

0, we multiply Eq. (9)

with q0
y and Eq. (10) with T0:
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Summing Eqs. (11) and (12) we obtain
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The time evolution of q0
yT

0 is obtained by averaging Eq. (13):
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In Eq. (14), the first term on the left-hand side is the time

evolution of q0
yT

0, while the second and the third terms
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represent advective transport by mean and fluctuating com-

ponents of the flow. The fourth and fifth terms on the left-hand

side are the two sources for production of q0
yT

0 due to the

presence of a mean gradient in temperature and water vapor.

The interpretation of the right-hand side of Eq. (14) is com-

plicated due to the production of local gradients in tempera-

ture and water vapor due to phase change processes.

For the ease of interpretation, let us assume a case in the

absence of droplets and external forcing. Therefore, terms with

_q0
l disappear from the right-hand side of Eq. (14) and only the

diffusive terms are retained. For such a case the right-hand side

can be rewritten as

n
y
=2(q0

yT
0)2 n
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2(=q0
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0)1 (Le2 1)n

y
q0
y=

2T , (15)

where Le5 a/vy is the Lewis number. These terms on the right-

hand side of Eq. (15) can be interpreted as follows: the first

term is the diffusive transport of q0
yT

0 and the second term is

the dissipation term since =q0
y=T

0 is positive definite since both
scalars behave identically in the flow field. The third term is

relevant for cases with differential diffusivity, Le 6¼ 1. The ef-

fects of differential diffusivity make the interpretation of the

term difficult without a fully resolved study. It should be noted

that these effects are significant only at diffusive length scales.

To evaluate the phase change effects, consider a system with

temperature and water vapor transported only by advection

processes but including condensation effects. In such a case,

any local condensation results in the depletion of water vapor

and increase in temperature and vice versa for any local

evaporation. Therefore, (Ly/Cp) _q
0
lq

0
y 2 _q0

lT
0 would always be

negative and hence acts as a sink term for q0
yT

0. However, in

physical systems phase change events produce local gradients of

temperature and water vapor, resulting in interactions of all

terms on the right-hand side of Eq. (14). Strictly speaking, these

processes can only be disentangled through particle-resolved

simulations of the turbulent flow, i.e., even beyond direct nu-

merical simulation of turbulence, down to the temperature and

vapor gradients existing at particle scales. Here, we will focus

primarily on the supersaturation PDF without cloud

droplet growth.

The production terms U0T 0 � =qy and U0q0
y � =T in Eq. (14)

are active only close to the boundaries where =T and =qy are

significant. The terms U0T 0 and U0q0
y at these boundaries are

generally modeled using Monin–Obukhov similarity theory.

The diffusive terms in atmospheric models are modeled using

subgrid-scale parameterizations. Finally, the rate of conden-

sation depends on the microphysical parameterization. It

should be noted that the time rate of change of q0
yT

0 depends
entirely on the level of approximation with reality by Monin–

Obukhov similarity theory, subgrid-scale parameterization of

diffusivity and microphysics.

3. Analysis tools

In this paper,we use two computational approaches to explore

supersaturation fluctuations in a turbulent Rayleigh–Bénard
convection flow. First, we describe a detailed large-eddy

simulation approach, and second, we introduce an idealized

Gaussian mixing model based on observed behavior of scalar

fields from measurements and numerical studies of Rayleigh–

Bénard convection. The latter model also can explore the

effect of differential diffusivity, forcings of temperature and

water vapor and their correlations on the supersatura-

tion PDF.

a. LES

The System forAtmosphericModeling (SAM) (Khairoutdinov

and Randall 2003) coupled with Hebrew University Spectral

Bin Microphysics (Khain et al. 2000; Fan et al. 2009) is con-

figured to simulate the Michigan Tech Pi Cloud Chamber as

described in Thomas et al. (2019). We provide a brief discus-

sion of themodel for completeness. The RBC system is a 2m3
2m 31m box modeled as 64 3 64 3 32 grid points with a grid

size of 3.125 cm. The convective system is initialized by im-

posing an unstable temperature gradient and water vapor

mixing ratio gradient along the height of the chamber, keeping

the top and bottom boundaries saturated. Furthermore, adia-

batic conditions for temperature and water vapor mixing ratio

are imposed for the sidewalls. Once initialized, the system is

allowed to evolve for 2 hours of physical time and the simulation

reaches a stationary state in 20minutes. The results from the last

1 hour of the simulation are used for the analysis presented here.

b. Gaussian mixing model

The isobaric mixing process in a turbulent cloud-free RBC

system is emulated using a Gaussian mixing model. In the

model, the PDFs of temperature andwater vapor are assumed to

be Gaussian in nature, as is observed for the bulk fluid in tur-

bulent RBC (Niemela et al. 2000; Sreenivasan 2019; and refer-

ences therein). The mean for temperature and water vapor are

given by Eqs. (4) and (5). The standard deviation required for

the description of a Gaussian PDF in RBC is given by Eqs. (3.6)

and (3.7) fromChandrakar et al. (2020a) and can be rewritten as

s
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Here, Ram is the ratio of time scale for transportation via dif-

fusion to convection, Pr is the ratio of momentum diffusivity to

thermal diffusivity, Sc is the ratio of momentum to vapor dif-

fusivity, and Le is the ratio of thermal diffusivity to vapor

diffusivity or Sc/Pr. The procedure for calculating C is de-

scribed next. For a given temperature difference, the mean and

standard deviation of temperature are obtained at the mid-

plane (z5H/2) of the RBC cell using LES. FromEqs. (16) and

(17),C is calculated after setting Pr equal to Sc since the effects

of differential diffusivity are not captured in the current LES
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model. The mean value of C is 3.378 and its standard deviation

is 0.51 from the 4 LESs. In the absence of any trend, for the

subsequent calculations, C is assumed to be a constant 3.378. A

Gaussian profile is assumed for the temperature and water

vapor, with the mean values calculated using Eqs. (4) and (5).

Thus, a single realization of random variables—temperature

and water vapor mixing ratio—is obtained by the following

expression:

T5T1s
T
N

T
(0, 1), (18)

q
y
5q

y
1s

qy
N

qy
(0, 1). (19)

Here, N T(0, 1) and N qy(0, 1) are normally distributed

Gaussian random numbers with zero mean and unit variance.

Generally, N T and N qv need not be correlated; however, for

physical systems one can expect a certain level of correlation

between the temperature and water vapor scalars. From LES

results, we find this correlation coefficient to be 0.9994. We use

Cholesky decomposition of the T–qy covariance matrix to

generate a lower triangular matrix and its transpose, and fur-

ther we use the resulting lower triangular matrix to create any

desired correlation coefficient between the temperature and

water vapor scalars.

Figure 1 shows the supersaturation PDFs of four cases

with temperature differences of 8, 10, 14, and 18 K. The solid

line shows the data obtained from LES at the midplane of

the chamber, at least 12.5 cm away from the sidewalls. The

dashed lines are the results from the Gaussian mixing model

(GMM) with correlation coefficient between T and qy to be

0.9994 and the constant C set to 3.378. We notice the shapes

of the PDFs are qualitatively the same and the modes are

shifted by 10% maximum. This level of agreement of the

GMM will suffice for exploring the qualitative behavior

of the supersaturation distribution under varying assumed

T–qy correlations.

Assuming the correlation coefficient between temperature and

water vapor remains the same, the effects of differential diffusivity

of scalars are explored by varying Pr and Sc. To understand the

effect of scalar forcings, the correlation coefficient between

N T(0, 1) and N qy(0, 1) is changed and further in section 4 ex-

plored without considering the differential diffusivity effects.

4. Results

The supersaturation PDFs simulated using LES are shown

in Fig. 1, for temperature differences of 8, 10, 14, and 18K with

an initial mean of 283.16K. Though the bulk temperature and

bulk water vapor PDFs are Gaussian in nature, a negatively

skewed supersaturation PDF is observed in the bulk of the

chamber. From Table 1, it is clear that the magnitude of the

skewness is larger at lower temperature differences than at

higher values. For LES, the term ‘‘bulk’’ here refers to all the

grid cells that are at least 12.5 cm away from the walls of the

chamber, in order to avoid the wall effects.

FIG. 1. Cloud-free Rayleigh–Bénard convection supersaturation PDFs for different tem-

perature differences (DT, refer to labels) centered at the same mean temperature (Tm 5
283.16K). As the temperature difference increases, the supersaturation PDF becomes more

symmetric. The LES data are obtained from the bulk, whereas the GMMdata are obtained at

the center of the chamber z 5 0.5H.
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To understand this negative skewness, the supersaturations

obtained from the LES runs are plotted against temperature. A

mixing curve obtained by mixing parcels from top and bottom

plates, characterized by different temperature and saturated

water vapor mixing ratios, in different proportions, is also

shown. In Fig. 2 the mixing curves (dashed lines) are plotted in

supersaturation and temperature coordinates. The filled circles

are the LES results from the bulk of the chamber. For a RBC

system without the density effects, the density-weighted mean

temperature is the mean temperature between the top and the

bottom plates. At low temperature differences, the peak of the

mixing curve coincides with the density-weighted mean tem-

perature; hence, the mode of supersaturation is the maximum

supersaturation. As the temperature difference increases, the

peak of the mixing curve shifts to lower temperature. This

leftward shift of the mixing curve arises from the nonlinear

nature of the Clausius–Clapeyron equation. Hence, the

density-weighted mean temperature in the fluid moves from

the maximum to the relatively linear region of the mixing

curve. Furthermore, the region of the mixing curve sampled

by the bulk increases, due to the increased variance of tem-

perature and water vapor as a result of increase in Rayleigh

number. Though density effects (non-Boussinesq effects) can

counteract these effects by reducing the positive skewness of

the mixing curve and reducing the mean temperature, these

effects are negligible for our conditions (refer to Table 1).

Please note that all of the mixing line is not populated be-

cause only the bulk is sampled, the rest of the mixing line can

be sampled from the boundary layer regions near the top and

bottom walls.

Figure 3a plots qy versus T, comparing the Gaussian mixing

model (red dotted line) and LES results (blue). Notice that

they lie on a straight line joining the points corresponding to

the state of the top and bottom plates. Figure 3b compares the

supersaturation PDFs obtained from the LES and the GMM.

The deviation of the model from the LES results is probably

due to the approximation of scalar fluctuations to be Gaussian.

The skewness of the temperature data from the LES reveals a

slight positive skewness on the order of 0.1, compared to 0.0

for a perfect Gaussian distribution. The NOB effects drive the

mean bulk temperature to slightly less than the average of top

and bottom plate temperatures; hence, more positive fluctua-

tions arise to reduce this difference.

Figure 4a illustrates the effect of differential diffusivities on

supersaturation fluctuations. The case ny 5 a 5 Le21 5 1,

shown in red is the diffusivity formulation ubiquitous across

LES and most DNS. As discussed earlier, this result in a neg-

atively skewed distribution of the supersaturation PDF. The

physical diffusivities follow Le21 5 1.16, and the role of dif-

ferential diffusivity is explored with Le21 of 0.75 and 1.33.

An interesting observation is that except for when Le21 5 1,

the mixing process no longer follows an isobaric mixing line

(black dotted line). From the earlier arguments based on the

density-weighted mean temperature, it is easy to see that the

differential diffusivities do reduce the negative skewness of

supersaturation as illustrated in Fig. 4b. However, note that the

PDF is still non-Gaussian and negatively skewed with Le21 5
1.16. A detailed treatment of differential diffusivity and its role

in the supersaturation PDF pertaining to RBC can be found in

Chandrakar et al. (2020a).

In all the cases discussed above, the forcings of temperature

and water vapor, fT and fq, respectively, have a perfect corre-

lation. In Fig. 5a we can see a broad symmetric supersaturation

PDF for uncorrelated and anticorrelated forcings of tempera-

ture and water vapor. We recall that for a cloud-free RBC

system, as described in section 3, the minimum saturation ratio

that is allowed is 100%. However, for lower correlation coef-

ficients, saturation ratios are as low as 90% as show in the

figure. Any decrease in forcing correlation from a perfect

correlation coefficient of 1 (shown in blue) results in a change

in the average slope of the distribution of points (Fig. 5a) and

an increased spread of the distribution of points around the

average slope. From Fig. 5b, it is observed that the spread

reaches a maximum when the scalar forcings are perfectly

uncorrelated (shown in red) and as they become anticorrelated

the spread starts to reduce and falls on a line for correlation

coefficient of 21 (shown in green). During this process, the

TABLE 1. Mean, mode, and skewness of supersaturation for

different temperature differences. These results are obtained from

the LES starting with a mean temperature of 283.16K. Note the

decrease in supersaturation skewness as DT increases.

DT (K) T (K) sT (K) Mean (%) Mode (%) Skewness

8 283.09 0.2492 3.201 3.22 22.70

10 283.05 0.3993 4.985 5.04 22.47

14 282.94 0.5012 9.842 9.91 21.51

18 282.86 0.6041 16.437 16.53 21.14

FIG. 2. Supersaturation vs temperature, illustrating the mixing

line (dashed line) and LES data (filled circles) for different tem-

perature differences (DT, refer to labels) centered at the same

mean temperature (Tm 5 283.16K). Note that only a small part of

the mixing curve is sampled during a turbulent mixing process in

the bulk. The part of the mixing curve sampled becomes less

symmetric as the temperature difference is increased.
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points fall below the limit imposed by the Clausius–Clapeyron

line resulting in subsaturated conditions.

Figure 6 illustrates the effect of cloud droplet growth on the

supersaturation generated by mixing. The blue dots represent

the mixing line in the absence of cloud droplets and red dots

represent the mixing in the presence of cloud droplets at the

high Damköhler (Da) number limit (Chandrakar et al. 2016).

The high Da case is similar to the bulk microphysics limit for

which the mixing leads to points collapsing onto the Clausius–

Clapeyron line. In Fig. 6 the straight, cloud-free mixing line

approaches the Clausius–Clapeyron curve as the Damköhler
number increases. The slight deviation the from Clausius–

Clapeyron curve can either be the result of a numerical artifact

or a physical process and cannot be resolved using the current

LES model. This transition requires careful investigation and

will be explored in a future study.

5. Discussion and concluding remarks

The comparison and verification of the previously dem-

onstrated numerical results with experiments is the focus of

ongoing research. It depends on making measurements of

the distribution of supersaturation in a turbulent flow, which

is a significant experimental challenge. Very few direct

measurements are available from the field (Gerber 1991;

Siebert and Shaw 2017). Progress toward in situ measure-

ment of supersaturation in cloud-free Rayleigh–Bénard
convection is discussed in Anderson et al. (2021, manu-

script submitted toAtmos. Meas. Tech. Discuss.). Efforts for

simultaneous remote measurement of temperature and

water vapor concentration at sufficiently high precision for

obtaining reliable supersaturation estimates are also being

made (Capek et al. 2020).

In the current study, we use LES and a Gaussian mixing

model to explore the isobaric mixing processes in an idealized

turbulent cloud-free Rayleigh–Bénard convection system. In

the idealized system we observe the supersaturation PDF to be

non-Gaussian and negatively skewed, as shown in Fig. 1.

Further, we observe the PDF to be more negatively skewed for

smaller temperature differences than at higher temperature

differences.

To understand the supersaturation PDF and how it may be

generalized to other contexts, we explore the covariance term q0
yT

0.
We identify differential diffusivity, condensation/evaporation pro-

cesses and the correlation coefficient between any forcing of

temperature and water vapor as possible causes of any change

in the magnitude of the covariance q0
yT

0. For example, using

the GMM we notice that the supersaturation PDF tends to be

less skewed when differential diffusivity is accounted for.

Adetailedunderstandingof theeffectof condensation/evaporation

on q0
yT

0 would require a dedicated study over a range of mi-

crophysical conditions. However, for a high Dämkohler num-

ber (Chandrakar et al. 2016) case, we observe that the mixing

line falls on the Clausius–Clapeyron curve, assuming the same

diffusivity for temperature and water vapor. In Hoffmann et al.

(2019) it is observed that the supersaturation PDF tends to

become narrower in the interior of the cloud, consistent with

the high Dämkohler number predictions from Chandrakar

et al. (2016). Such a narrowing of the supersaturation PDF can

be observed in the current study also—however, the detailed

source of destruction of the width of the supersaturation PDF

would require a cloud droplet resolved study.

FIG. 3. (a) Water vapor mixing ratio vs temperature, showing the Clausius–Clapeyron line

(black dashed line), LES data (blue filled circles), and GMM data (red dotted line).

(b) Comparison of supersaturation PDF of LES data (blue) andGMMdata (red); notice LES

data have a longer negatively skewed tail compared toGMM results. Plots are generatedwith

DT5 18K and Tm 5 283.16K. LES assumes the same turbulent diffusivities for temperature

and water vapor, and for comparison the GMM also assumes the same diffusivities for

temperature and water vapor in the calculation of standard deviations of these scalars.
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A key point emerging out of the current study is the im-

portance of correlation coefficient between external forc-

ings of temperature and water vapor, fTfq. Figure 7 shows

saturation ratio PDFs for several values of fT fq in Fig. 7a,

and the corresponding mixing diagrams in Fig. 7b. The

temperature difference is chosen to be 8 K (corresponding

to Fig. 9 from Chandrakar et al. 2020a), so that for cloud-

free RBC with saturated boundary conditions any point in

the bulk of the chamber cannot be subsaturated. However,

by varying the correlation coefficient of fTfq, such non-

physical subsaturation fluctuations can be seen to exist. For

an 8-K temperature difference, correlation coefficients of

FIG. 4. Supersaturation vs temperature and supersaturation PDFs illustrating the effect of

differential diffusivity in the mixing process, by varying the ratio of ny/a shown in different

colors. (a) The distribution of these points about the mixing curve (dashed black curve).

(b) PDF generated with real physical diffusivities (black) compared to a case with same

diffusivities (red). The differential diffusivity results in a deviation from theoretical mixing

processes and this deviation results in the reduction of negative skewness. Though differential

diffusivity reduces the skewness of the supersaturation PDF and increases the left–right

symmetry, the supersaturation PDF is still negatively skewed. Results are obtained from the

GMM for DT 5 8K.

FIG. 5. (a) The saturation ratio PDF and (b) the mixing ratio vs temperature for different

correlation coefficients (fT fq) shown in different colors. Results are plotted assuming equal

scalar diffusivities with DT 5 8K. The mean temperature and the variance of scalars are the

same across the different cases.
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0.5 (green), 0.0 (purple), and20.5 (black) are cases identical

to those specified in Paoli and Shariff (2009); with super-

saturation fluctuations induced by water vapor alone (red)

as in Saito et al. (2019); and with correlation coefficient of 1.0

(blue) from cloud-free one-dimensional turbulence model

(ODT) as in Chandrakar et al. (2020a).

It should be noted that even though cloud-free RBC requires

the forcings of temperature and water vapor to follow a relation

of the formsT ;sqyDT/Dqy , that is not necessarily the case in all

atmospheric contexts. For example, in the case of cloud-top

entrainment (Mellado 2017), even though entrained air from

above a capping inversion is at higher temperature, it is drier

than the cloud air itself. Forcing terms for the air from a capping

inversion region would have a correlation coefficient closer

to 21, resulting in a more symmetric PDF for supersaturation

fluctuations. In contrast, for lateral entrainment from subsiding

shells into a cumulus cloud, the temperature and water vapor is

more likely to be positively correlated (Katzwinkel et al. 2014).

For LES studies of the convection-cloud chamber (Chang

et al. 2016) such as in Thomas et al. (2019), the boundary fluxes

are modeled using Monin–Obukhov similarity theory, result-

ing in a perfectly correlated forcing from the boundaries.

However, in the subgrid-scale model the temperature and

water vapor fields are diffused with the same turbulent diffu-

sivity. Therefore, any positive supersaturations arising due to

differential diffusivity are not captured, thus impeding the

cloud droplet growth. Therefore, the droplet size distributions

obtained from such simulations should be at least somewhat

narrower than what would arise from experiments or from a

DNS accounting for differential diffusivity. In DNS studies

that do not account for differential diffusivity effects, such as

the cloud parcel studies by Saito et al. (2019) that have only

water vapor forcing (refer to the red points in Fig. 7), a broader

FIG. 6. Mixing ratio vs temperature for cloud-free (blue) and

cloudy (red) conditions simulated using LES for DT 5 20K with

Tm 5 283.16K, with equal diffusivities for temperature and water

vapor. On reaching a steady-state cloudy condition, the water va-

por mixing ratio moves closer to the Clausius–Clapeyron line.

FIG. 7. (a) Saturation ratio PDF and (b) mixing ratio for different correlation coefficients

(fT fq) from studies by Paoli and Shariff (2009), Saito et al. (2019), andChandrakar et al. (2020a)

shown in different colors. Results are plotted assuming same scalar diffusivities with DT5 8K.

This temperature difference is chosen to match the supersaturation PDF shown in Fig. 9 of

Chandrakar et al. (2020a). Supersaturation fluctuations introduced by keeping temperature

constant and fluctuating water vapor mixing ratio (red) (Saito et al. 2019).
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size distribution of cloud droplets is obtained than warranted

by a physically consistent supersaturation field.

Atmosphericmodels (Clark 1973;Khairoutdinov andRandall

2003) typically use two separate prognostic variables to capture

temperature and water vapor. Subsequently, the diagnostic

variable—mean supersaturation—is calculated from tempera-

ture and water vapor in individual grid boxes ignoring any

subgrid-scale variability that is important for cloud droplet

activation (Prabhakaran et al. 2020) and growth (Chandrakar

et al. 2016). The calculated supersaturation interacts with the

microphysics scheme to produce cloud droplet numbers and

the correspondingmasses or highermoments depending on the

scheme’s complexity. Often, DNS studies (Siewert et al. 2017;

Sardina et al. 2018; Li et al. 2018) intended to understand the

cloud droplet growth in a turbulent environment and treat

supersaturation as a prognostic scalar disregarding the non-

linear behavior of the Clausius–Clapeyron equation. The

treatment of supersaturation as a scalar is suitable in regimes

where the Clausius–Clapeyron equation can be linearly ap-

proximated. However, in systems such as Rayleigh–Bénard
convection, this is no longer true since the production of mixing

supersaturation relies inherently on the nonlinear behavior of

the Clausius–Clapeyron equation. Furthermore, there may be

scenarios in which differential diffusivity needs to be accounted

for, which would lead to the decorrelation of q0
yT

0. Ignoring such
processes may result in overestimating the effect of turbulence

on droplet growth. Finally, the correlation between temperature

and water vapor depends on the processes that produce these

fluxes. Hence, careful evaluation of the correlation of temper-

ature andwater vapor is needed to accurately capture the extend

of supersaturation fluctuations, as demonstrated earlier.

In the larger context, the concerns about subgrid-scale var-

iability of temperature, water vapor and subsequent micro-

physics interactions highlighted by Sommeria and Deardorff

(1977) and Clark (1973) remains an open challenge even today,

even in spite of LES studies with increasing resolution. One

approach for addressing the subgrid-scale fluctuations consid-

ered by Hoffmann et al. (2019) is the use of a linear-eddy

model, although this may be computationally expensive in full

implementation. However, the GMM described here may

provide a computationally inexpensive but efficient alternative

to incorporate physically consistent subgrid-scale variability. A

second part of the puzzle, involving supersaturation–cloud

particle interactions still needs to be addressed. Reexamination

of lateral entrainment studies with the consideration of neg-

atively skewed supersaturation–microphysics interactions in

the context of droplet activation and growth can help in an-

swering the latter part of the puzzle.
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APPENDIX

List of Symbols

qy Water vapor mixing ratio

qsat(T) Saturation vapor mixing ratio at temperature T

qy/qsat(T) Saturation ratio

U Velocity vector of the fluid

_ql Rate of condensation/evaporation of water vapor

Ly Latent heat of vaporization of water

Cp Specific heat of air at constant pressure

fT, fq External forces on T and qy
rt/b Density of air at top (t) and bottom (b)

Tt/b Temperature at top (t) and bottom (b)

qyt/b Water vapor mixing ratio at top (t) and bottom (b)

ny Water vapor diffusivity

a Thermal diffusivity

Le Lewis number (a/ny)

DT Temperature difference between top and bot-

tom plate

Dqy Water vapor mixing ratio difference between top

and bottom plate

sT Standard deviation of temperature T

sqy Standard deviation of water vapor mixing ratio qy
Sc Schmidt number (n/ny)

Pr Prandtl number (n/a)

Le Lewis number (a/ny)

n Momentum diffusivity

ny Water vapor diffusivity

a Thermal diffusivity

C1 Proportionality constant for Eqs. (16) and (17)

z Vertical location in the chamber, assumed to be 0.5H

H Height of the chamber

Ram Moist Rayleigh number

�
gbDTH3

na
1
g«DqyH

3

na

�
g Acceleration due to gravity

b Thermal expansion coefficient (1/T)

« Ratio of gas constants of air and water va-

por (’0.622)
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