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In steady-state Rayleigh-Bénard convection, heat is transported by turbulent thermal
convection from the bottom, hot surface to the top, cold surface, leading to a height-
independent sensible heat flux. When water vapor is present and cloud formation occurs,
there is also an additional latent heat flux. Heat transport in cloudy Rayleigh-Bénard
convection depends on turbulent flow as well as the microphysical state of the clouds:
specifically, whether substantial supersaturations exist and whether cloud liquid water
is removed through sedimentation/precipitation. In this article we bridge between the
Rayleigh-Bénard convection literature and the atmospheric literature. We express the
governing equations for cloudy convection in dimensionless form, thereby explicitly identi-
fying the governing parameters relevant to the cloudy case, including Schmidt, Damköhler,
supersaturation, and sedimentation numbers. We further connect to the atmospheric lit-
erature by obtaining a Nusselt number (dimensionless heat flux) for a cloud-convection
system, directly from the conservation equations for temperature and water vapor. This
flux has the same form as that identified by Zhang et al. [L. Zhang, K. L. Chong, and K.-Q.
Xia, J. Fluid Mech. 874, 1041 (2019)] for convection with water vapor, but is extended
to the cloudy case. For equal thermal and water vapor diffusivities, the flux corresponds
to the widely used atmospheric quantities equivalent temperature and moist static energy.
Using large eddy simulation (LES) of an idealized cloudy Rayleigh-Bénard convection
system with fixed boundary conditions, we find that the equivalent heat flux (Nusselt
number) is only weakly dependent on the microphysical details of the system, such as
liquid water mixing ratio and cloud droplet number concentration. From the results, we
show the vertical profiles of sensible and latent heat fluxes depend on the liquid water
content, whereas the equivalent heat flux remains a constant throughout the height of the
chamber.

DOI: 10.1103/PhysRevFluids.7.010503

I. INTRODUCTION

Classical Rayleigh-Bénard convection is described by the Rayleigh number, Ra =
gβ�T H3/(νT ν), which captures the competing roles of buoyancy forcing and diffusive losses, and
the Prandtl number, Pr = ν/νT , which is a material parameter defining the relative magnitude of
diffusion of momentum and thermal energy. Here, g is the magnitude of gravitational acceleration,
β is the coefficient of thermal expansion, νT is the thermal diffusivity, ν is the kinematic viscosity,
and H is the vertical separation between surfaces with imposed temperature difference �T . For
sufficiently large Ra, and Pr ∼ 1, relevant to atmospheric flows, the convecting flow is strongly
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turbulent. The hallmark of turbulent convection, in turn, is efficient transport of energy. The
nondimensional heat flux is given by the Nusselt number Nu, the ratio of the total heat flux to
the conductive heat flux (νT �T/H) across an identical, static fluid layer:

Nu = w′T ′ + νT ∇zT

νT �T/H
, (1)

where w is the vertical component of velocity, the overbar denotes ensemble average over a
horizontal surface, and the prime denotes fluctuations from the mean [1]. By definition, in steady
state this horizontally averaged heat flux is constant with height within the convecting fluid. Seeking
an understanding of the Nusselt number and its dependence on the Rayleigh number remains a
challenge even for single-fluid (“dry”) convection [1,2]. When phase changes are included at the
boundaries, even in idealized laboratory convection experiments, the heat flux problem becomes
much more complex [3]. Furthermore, the flux problem becomes complex in the presence of
phase change effects in the bulk as it introduces an additional heat source/sink via latent heat
associated with the phase change processes [4,5]. Additionally, the amount of condensate in the
system depends on the rate at which phase change effects (e.g., condensation/evaporation) occur.
In the context of cloudy convection, the rate of evaporation/condensation is strongly influenced
by the properties of the aerosols and cloud droplets including size, number concentration, etc.
(henceforth, referred to as “microphysics”). For example, if the condensate load is fixed, plentiful
small droplets allow for efficient conversion of water vapor to the condensed phase compared to a
few large droplets. Additionally, small droplets have lower sedimentation velocities and thus result
in a higher condensate load in the system [5].

The idealization of Rayleigh-Bénard convection has a long history in guiding our understanding
of cloud formation [6–11]. In the atmospheric context the conundrum posed by the interaction
between temperature, water vapor, and liquid water on large scales is circumvented by using
conserved variables derived from thermodynamics. In this work, however, we consider cloud for-
mation in traditional, laboratory-scale Rayleigh-Bénard convection as a model problem for mixing
clouds. At the same time, the fluid dynamics community has explored the parameter space for
moist Rayleigh-Bénard convection in the absence of any liquid water [3]. In Sec. II, we present
the governing equations for cloudy Rayleigh-Bénard convection and introduce and discuss the
associated dimensionless parameters. Then in Sec. III we provide a nonthermodynamic derivation
of an equivalent heat flux weakly dependent on the microphysics of the system and subsequently
a Nusselt number independent of any cloud droplets analogous to and thus expanding the scope
of the Nusselt number proposed by Zhang et al. [3]. Furthermore, under the assumptions of
constant molecular/turbulent diffusivities of temperature and water vapor, we retrieve the equivalent
temperature and moist static energy from the flux derivations that are widely used in the atmospheric
sciences community (see Sec. III). Both of those are derived using only the first law and therefore
avoid problems of reversibility [12,13]. It should be noted that the equivalent temperature flux is
not limited to atmospheric applications but can be extended to systems with phase change and
chemically reactive systems (see Sec. VI).

In this article we aim to connect the Rayleigh-Bénard literature with the atmospheric science
literature in two ways. We present the equations for cloudy convection in dimensionless form,
making clear the relevant parameters describing the system. It is a curiosity of cloud physics
that the governing equations are rarely stated in dimensionless form. Building on some of the
efforts that have already been made in that direction [14–19] we carefully identify all relevant
dimensionless quantities for cloudy Rayleigh-Bénard convection. As part of that, and as described
in the previous paragraph, we derive an equivalent Nusselt number for cloudy Rayleigh-Bénard
convection, directly from the equations for temperature and water vapor mixing ratio. Entropy
conservation is not assumed in the derivation and thus nonequilibrium conditions can be adequately
represented; nevertheless, the derived heat flux is constant with height throughout the convection
system, independent of the dimensionless parameters related to the microphysical properties of
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the cloud. We present large eddy simulations (LES) of cloudy Rayleigh-Bénard convection with
varying aerosol conditions to explore and illustrate the characteristics and the utility of the approach.
Specifically, we use aerosol injection rate as a way to explore the dependence of dimensionless
parameters describing the cloud microphysics (e.g., Damköhler number and sedimentation or Rouse
number) and the heat flux (Nusselt number) at constant Rayleigh number. In the final section,
we discuss the prospective implications of the conserved flux and its applications, as well as its
connections to atmospheric variables.

II. GOVERNING EQUATIONS AND DIMENSIONLESS PARAMETERS
FOR CLOUDY CONVECTION

A. Governing equations in dimensional form

The momentum equation for cloudy Rayleigh-Bénard convection can be written as (Kumar et al.
[20])

∂U
∂t

+ U · ∇U = − 1

ρa
∇p + [β(T − T ) + ε(Qv − Qv ) − QL]gẑ + ν∇2U, (2)

where U is the velocity vector, ρa is the density of air, p is the pressure, and ν is the kinematic
viscosity. The buoyancy term contains three contributions multiplied by the gravitational acceler-
ation g, which acts in the vertical ẑ direction. First, the contribution from the difference between
the temperature T of the fluid parcel and the average value T , multiplied by the thermal expansion
coefficient β. Second, a contribution from the density difference of water vapor expressed in terms
of mixing ratio Qv (the ratio of the mass of water vapor to the mass of the dry air) multiplied by
the term ε = md/mv − 1, where md and mv are the molecular weights of dry air and water vapor,
respectively. Third, a contribution of the condensed liquid water expressed again in terms of mixing
ratio QL, which accounts for the drag force applied to the fluid due to settling cloud droplets.

For Rayleigh-Bénard convection with phase change effects, the continuity equation, the energy
equation, and the water vapor and liquid mass balance equations can be written as

Dρ

Dt
+ ρ∇ · U = 0, (3)

∂T

∂t
= ∇ · (−UT + νT ∇T ) + Lv

Cp
Q̇L, (4)

∂Qv

∂t
= ∇ · (−UQv + νv∇Qv ) − Q̇L, (5)

∂QL

∂t
= ∇ · (−UQL + wT QLẑ) + Q̇L, (6)

where ρ = ρa(1 + 0.61Qv − QL ), νT and νv are thermal and water vapor diffusivities, respectively,
Cp is the specific heat at constant pressure, Lv is the latent heat of vaporization of water, wT is
the terminal speed of a cloud droplet, and Q̇L is the rate of condensation/evaporation of water. It
should be noted here that, while we include the sedimentation term in Eq. (6), we have not included
a corresponding energy-loss term in Eq. (4) because the thermal inertia of droplets is negligible for
typical cloud conditions.

B. Nondimensional formulation

It is instructive to consider the nondimensional form of the governing equations. We take the
height of the chamber (H) and the free-fall velocity for dry Rayleigh-Bénard convection (w =√

gβ�T H ) as the scales for length and velocity. The nondimensional scaled variables (denoted
by the tilde on top of the variable) of length, time, velocity, temperature, and water vapor for moist
Rayleigh-Bénard convection are L̃ = L/H, t̃ = tw/H, Ũ = U/w, T̃ = T −T

�T , and Q̃v = Qv−Qv

�Qv
.
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The acceleration due to gravity is g, thermal expansion coefficient is β, ε is the ratio of dry air
to water vapor gas constants, and �T and �Qv are the temperature and water vapor mixing ratio
differences between the bottom and top plates, respectively. Using these scales, the nondimensional
momentum equation is written as

∂Ũ
∂ t̃

+ Ũ · ∇̃Ũ = − 1

ρa
∇̃ p̃ + (T̃ + Bv Q̃v − BL )ẑ +

√
Pr

Ra
∇̃2

Ũ, (7)

where Ra is the Rayleigh number (Ra = gβ�T H3

νT ν
) and Pr is the Prandtl number (Pr = ν/νT ). The

second term grouped within brackets on the right side of Eq. (7) is the buoyancy contribution to
momentum, and acts along the direction of gravity. Again, the buoyancy contribution comes from
temperature, water vapor, and the drag associated with the sedimentation of the condensate. The
dimensionless parameter for water vapor is Bv = ε�Qv/(β�T ) and that for liquid water is BL =
QL/(β�T ).

The dimensionless equation for temperature [Eq. (4)] can be rewritten as follows:

∂T̃

∂ t̃
+ Ũ · ∇̃T̃ = 1√

Ra Pr
∇̃2T̃ + Lv

Cp�T

H

w

QL

τc
. (8)

Here, we have taken Q̇L = QL/τc, where τc is a characteristic time for the condensation process.
We then note that the terms Lv/(Cp�T ) and τt/τc, where τt = H/w, are dimensionless numbers
associated with the cloud condensation process. The timescale for condensation can be conceptually
understood by considering the idealization of growth of a population of single-sized cloud droplets
in a supersaturated environment. The growth rate of a cloud of droplets with number density N and
radius R is

Q̇L = ρl

ρa

d

dt

(
4π

3
NR3

)
= ρl

ρa
4πNR2 dR

dt
, (9)

where ρl is the density of water and ρa is the density of air. Using an expression for the droplet
growth rate dR/dt , Eq. (9) can be written as [21]

Q̇L = 4πξNRs
ρl

ρa
. (10)

Here s = pv/ps − 1 is the water vapor supersaturation (the excess water vapor pressure compared
to the saturation vapor pressure). The factor ξ is associated with diffusion of water vapor to a
growing droplet, and the associated heat conduction away from the droplet due to latent heat
release during the droplet growth [21]. Thus, the phase relaxation time (τc) can be understood as
the timescale at which droplets respond to any change in its surrounding environment, defined as
τc = (4πξNR)−1 [22]. Assuming the flux timescale, given by τt = H/w, represents the scales at
which environment changes, the Damköhler number (Da) can be defined as τt/τc [15]. At very high
Damköhler numbers, the droplets respond quickly to any change in the surrounding environment
and conversely at small Damköhler numbers the environment changes faster than the droplets can
respond to it. Hence, these regimes are called fast and slow microphysics, respectively. Therefore,
Eq. (8) can be rewritten as

∂T̃

∂ t̃
+ Ũ · ∇̃T̃ = 1√

Ra Pr
∇̃2T̃ + 1

Ste

ρl

ρa
Da s. (11)

We note that the expression on the right-hand side consists of dimensionless quantities Ste =
Cp�T/Lv , ρl/ρa, Da, and s, where Ste is the Stefan number. Similarly, the equation for the water
vapor mixing ratio becomes

∂Q̃v

∂ t̃
+ Ũ · ∇̃Q̃v = 1√

Ra Sc Le
∇̃2Q̃v − 1

�Qv

ρl

ρa
Da s, (12)
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TABLE I. Dimensionless parameters for the microphysical state in cloudy Rayleigh-Bénard convection.

Dimensionless
parameter Definition Description

Ra gβ�T H3/(νT ν ) Buoyancy forcing and diffusive losses
Bv ε�Qv/(β�T ) Relative contribution of water vapor to buoyancy
BL QL/(β�T ) Relative contribution of cloud water to buoyancy
Pr ν/νT Diffusion of momentum relative to thermal energy
Sc ν/νv Diffusion of momentum relative to water vapor
Le νT /νv Diffusion of thermal energy relative to water vapor
Da τt/τc Rate of water vapor condensation in a cloud relative to

rate of turbulent mixing
s Qv/Qs(T ) − 1 Excess water vapor driving condensation
Ste Cp�T/Lv Latent heat compared to sensible heat
Rou wt/w Rate of removal of cloud droplets by sedimentation

relative to rate of turbulent mixing
Nuμ Eq. (22) Equivalent energy flux relative to conductive flux

where Sc is the Schmidt number (Sc = ν/νv) and Le is the Lewis number (Le = Sc/Pr). Using
Q̃L = QL/�Qv , the nondimensional form of liquid water mixing ratio [Eq. (6)] is

∂Q̃L

∂ t̃
+ Ũ · ∇̃Q̃L = Rou ∇̃Q̃Lẑ + 1

�Qv

ρl

ρa
Da s. (13)

An additional dimensionless group appears, the ratio of the droplet terminal speed and the convec-
tion free-fall speed, which is sometimes referred to as the Rouse number Rou = wT /w [23,24]. It is
essentially a gravitational settling parameter or, it can be expressed as the inverse of a dimensionless
droplet residence time τt/τres.

The dimensionless parameters appearing in these equations are summarized in Table I. The pa-
rameters Pr, Sc, and Le describe material properties, so for a water-air system as in Earth clouds, they
are essentially constants. Furthermore, for saturated boundaries and a given mean temperature, the
quantity �Qv can be related to �T by the Clausius-Clapeyron equation d ln ps/dT = Lv/(RT 2),
where ps is the saturation water vapor pressure. Therefore, Bv can be interpreted as a material
property for given mean temperature and boundary conditions. It should be noted, however, that if
the assumption of saturated boundaries is relaxed, then Bv becomes an independently determined
quantity; for example, consider experiments in which the lower boundary contains a salt solution
and therefore has reduced vapor pressure [25]. The Stefan number Ste represents the relative
significance of sensible and latent heat effects due to phase changes; for plausible values of
�T , water clouds always satisfy Ste � 1. The dimensionless parameters that describe the cloud
microphysical properties are s, Da, Rou, and BL. It can be noted that BL connects the microphysics
directly to the buoyancy term in the Navier-Stokes equation, but in fact the phase changes described
by s and Da also influence the buoyancy term through their contributions to the T and Qv fields.
Finally, the state of macroscopic convection is described by the dimensionless parameter Ra, as well
as a Nusselt number Nu discussed in the next section.

III. HEAT FLUX AND AN EQUIVALENT NUSSELT NUMBER

A defining aspect of convection is the efficient transfer of energy, which can be expressed through
the dimensionless Nusselt number. Here we outline a simple route to obtaining a Nusselt number for
cloudy convection and discuss its relationship to known variables of atmospheric thermodynamics
and the relevance of cloud microphysical properties. We proceed initially with the dimensional
forms of the equations for notational clarity.
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Applying Reynolds decomposition, we write the instantaneous variable as a sum of the mean and
the fluctuations represented by the overbar and prime, respectively,

U = Ui + u′
i; T = T + T ′; Qv = Qv + Q′

v , (14)

and it then follows from Eqs. (4) and (5) that the mean scalar evolution equations are

∂T

∂t
= ∇ · (−UiT − u′

iT
′ + νT ∇T ) + Lv

Cp
Q̇L, (15)

∂Qv

∂t
= ∇ · (−UiQv − u′

iQ
′
v + νv∇Qv ) − Q̇L. (16)

The two scalar equations can be combined together by eliminating the net condensation/evaporation
rate Q̇L by adding Eq. (15) and Lv/Cp × Eq. (16):

∂

∂t

(
T + Lv

Cp
Qv

)
= ∇ ·

[
−Ui

(
T + Lv

Cp
Qv

)
− u′

i

(
T ′ + Lv

Cp
Q′

v

)]
+ ∇ · ∇

(
νT T + νv

Lv

Cp
Qv

)
.

(17)

Equation (17), steady in time and averaged over a plane with normal along the direction of gravity,
is

∇z · (−w′T ′ + νT ∇zT ) + Lv

Cp
∇z · (−w′Q′

v + νv∇zQv ) = 0. (18)

Please note, the mean advection of temperature in the vertical direction, W T , is zero, since W = 0
from the continuity equation for the Rayleigh-Bénard convection of Chillà and Schumacher [1].
From Eq. (18), a constant surface flux is obtained along the z direction:

�μ = w′T ′ + Lv

Cp
w′Q′

v − νT ∇zT − Lv

Cp
νv∇zQv. (19)

Thus, an effective Nusselt number can be defined as

Nuμ =
w′T ′ + Lv

Cp
w′Q′

v − νT ∇zT − Lv

Cp
νv∇zQv

νT
�T
H + νv

Lv

Cp

�Qv

H

. (20)

This flux [Eq. (19)] has been obtained from the temperature and water vapor equations, and has
no explicit dependence on the rate and amount of condensation or evaporation occurring within
the flow. It depends only on the temperature difference and water vapor difference imposed at
the top and bottom boundaries across the convecting system. This flux, referred to as equivalent
temperature flux, remains a constant throughout the height of the chamber. It is therefore internally
independent of any microphysical variations within the convection, for example due to gravitational
settling or height-dependent condensation rate. Any change in �μ or Nuμ due to a change in
mean-microphysics properties must come through the density of the fluid and the covariance terms
w′T ′ and w′Q′

v . Although it cannot be shown theoretically that this flux is the same for all possible
microphysical conditions, the LES studies presented in the next section indicate that the flux in
Eq. (19) does not vary significantly with the condensation rate profile, and also appears to be
independent of the cloud microphysics in the bulk. We note that Eq. (20) is identical to the Nusselt
number obtained by Zhang et al. [3] for moist convection without phase change; here we have
demonstrated that it is identical for cases with phase change effects as well.

In fact, assuming temperature and water vapor to have the same diffusivities, the Nusselt number
can be written solely in terms of the familiar atmospheric quantity “equivalent temperature” (e.g.,
refer to Eq. 6.74, p. 285 of Bohren and Albrecht [13]):

Te = T + (Lv/Cp)Qv. (21)
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The equivalent temperature is defined as the temperature a moist air parcel would have if all its
water vapor were to condense in an adiabatic, isobaric process. Such a process is allowed by the
first law of thermodynamics, but is prohibited by the second law of thermodynamics for a closed
system [13]. This connection is discussed further in Sec. VI.

Following the same steps but using the dimensionless forms of the governing equations, we get
the flux [Eq. (19)] in terms of non-dimensional quantities.

�̃μ = W̃ ·
(

T̃ + Lv

Cp

�Qv

�T
Q̃v

)
− 1√

Ra

(
1√
Pr

∇̃T̃ + Lv

Cp

�Qv

�T

1√
Sc Le

∇̃Q̃v

)
z

(22)

The Nusselt number expressed in terms of other nondimensional numbers is

Nuμ = �μ

Lv

Cp

�Qv

�T
1√

Ra Sc Le
�Q̃v + 1√

Ra Pr
�T̃

, (23)

Nuμ =
W̃ · (

T̃ + Lv

Cp

�Qv

�T Q̃v

)
Lv

Cp

�Qv

�T
1√

Ra Sc Le
�Q̃v + 1√

Ra Pr
�T̃

−
1√
Ra

(
1√
Pr

∇̃T̃ + Lv

Cp

�Qv

�T
1√

Sc Le
∇̃Q̃v

)
z

Lv

Cp

�Qv

�T
1√

Ra Sc Le
�Q̃v + 1√

Ra Pr
�T̃

− 1. (24)

From Eqs. (22) and (23), we note that the flux has no explicit dependence on Damköhler number and
supersaturation, the two microphysically relevant dimensionless parameters. As discussed above,
however, the microphysics can affect the Nusselt number through density of the fluid, and through
the magnitude of covariance terms. The possible dependence on microphysics is further explored in
the next section. Compared to the dry-convection Nusselt number, which depends only on Ra and
Pr, for cloudy convection the dimensionless parameters Sc and Le are also needed.

IV. NUMERICAL SIMULATIONS OF MOIST RAYLEIGH-BÉNARD CONVECTION
WITH VARYING CLOUD MICROPHYSICS

In this section, we explore the equivalent temperature flux and the equivalent temperature derived
in Sec. III by simulating moist Rayleigh-Bénard convection under varying microphysical conditions.
The simulations are motivated by prior observations from and simulations of the Pi convection-cloud
chamber [4,5,15]. The convection is initiated by imposing an unstable gradient of temperature
and water vapor between the top and bottom plates. The bottom and top plates are maintained at
saturated conditions at 290 and 276 K, respectively. The sidewalls have adiabatic conditions for both
temperature and water vapor mixing ratio, and a no-slip/no-penetration condition for velocity. The
different aerosol injection rates used in the current study are listed in Table II, with a cloud-free case
included for reference. They are selected so as to achieve Damköhler numbers varying by a factor
of approximately 20, centered on Da ∼ 1, thereby allowing both “fast” and “slow” microphysics
regimes to be explored [15]. Corresponding steady-state microphysical properties including the
liquid water mixing ratio, the cloud droplet number concentration, mean diameter, and water vapor
supersaturation are also listed in Table II. As the aerosol injection rate is increased, the cloud
droplet number concentration increases and the mean diameter decreases. For the Da > 1 cases,
we also note that the mean supersaturation is quite small, so aerosol activation by fluctuations likely
becomes the dominant source of cloud droplets [26]. Finally, we also observe an increase in the
liquid water content as the aerosol injection rate is increased, because smaller cloud droplets have
lower sedimentation rates. The result is a monotonic increase in total water content, which has
implications for the effective temperature in the system (discussed later).

Details of the model setup for the Pi convection-cloud chamber are discussed by Thomas et al.
[5]. A brief description of the model is provided here for the sake of completeness. The simulations
use the modified System for Atmospheric Modeling (SAM) [27] combined with a spectral bin
microphysics (SBM) algorithm [28]. The SAM is a LES code that solves the equations of motion
under the anelastic approximation, and that uses a Smagorinsky model for the subgrid scales. The
equations are integrated using a third-order Adams-Bashforth scheme on a fully staggered Arakawa
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TABLE II. Varying microphysical conditions explored in the simulations of moist Rayleigh-Bénard con-
vection. The table shows aerosol (cloud condensation nucleus) injection rate, liquid water mixing ratio, total
water (vapor plus liquid) mixing ratio, cloud droplet number concentration, mean cloud droplet radius, mean
supersaturation, Rouse (sedimentation) number, and Damköhler number. Injection rate is the number of
particles per grid volume (linear dimension 3.125 cm) per model time step (0.02 s). The simulations span
a factor of ∼20 in Da, centered on Da ∼ 1.

Reference Injection rate (s−1) QL (g/kg) QT (g/kg) N (cm−3) R̄ (μm) s (%) Rou Da

A 0.005 0.09 8.22 22.0 7.9 1.26 0.87 0.19
B 0.006 0.11 8.24 37.6 7.2 0.82 0.55 0.30
C 0.007 0.12 8.25 46.6 6.8 0.69 0.55 0.35
D 0.008 0.13 8.26 56.6 6.6 0.58 0.55 0.41
E 0.009 0.14 8.27 67.5 6.3 0.50 0.55 0.47
F 0.01 0.20 8.37 225.8 4.8 0.16 0.35 1.2
G 0.02 0.25 8.45 493.2 4.0 0.08 0.22 2.1
H 0.03 0.29 8.51 909.3 3.3 0.06 0.14 3.3
I 0.05 0.32 8.56 1541.2 2.8 0.05 0.09 4.6
J 0.0 0.0 8.53 0.0 0.0 10.48

C-type grid with uniform horizontal and vertical grid sizes. The prognostic scalars are advected
using a multidimensional positive definite advection transport algorithm [29]. Boundary fluxes are
calculated using Monin-Obukhov similarity theory (MOST).

A SBM algorithm based on Chen and Lamb [28] is implemented in SAM to simulate aerosol-
cloud interactions. In this study, monodisperse aerosol particles are injected uniformly in the
chamber at a constant rate. Once aerosol particles take up water to become haze (unactivated
droplets with radii smaller than 1 μm) and cloud (droplets with radii larger than 1 μm) droplets,
we use 40 mass-doubling bins starting from 0.1 μm to represent the droplet size distribution. One
advantage of this SBM algorithm is that it resolves several crucial microphysical processes such
as deliquescence of dry aerosol and condensational growth of haze and cloud droplets, including
solute and curvature effects (see details in Sec. 3 in [28]), thereby allowing proper representation of
the activation process. The present study focuses only on warm clouds with droplet activation and
diffusional growth, and the effects of collisional growth is turned off.

We consider a convection chamber of dimensions 2 m × 2 m × 1 m along the x, y, and z direc-
tions, respectively, motivated by the geometry of the Pi chamber [5]. The computational domain is
discretized uniformly with cubic boxes of side length 3.125 cm yielding 64 × 64 × 32 grid boxes.
The time step is 0.02 s, and the system is initialized with an unstable temperature and water vapor
gradient. For the current study, we allow the system to evolve in a cloud-free state and reach a
steady supersaturation of 10.48%. Monodisperse salt particles with a radius of 62.5 nm are injected
uniformly in the volume of the chamber at a constant rate. Dry aerosols become haze droplets if
the environmental saturation ratio is larger than the specified deliquescent relative humidity (set to
be 75%). The cloud reaches a steady state after about an hour of simulated time when activation of
cloud droplets due to condensational growth of haze droplets is balanced by the removal of cloud
droplets due to sedimentation. On reaching a steady state with respect to microphysics after 1 h, the
system is allowed to evolve for another 2 h (for comparison, the free-fall time is of order 1 s and the
large-scale circulation time is of order 1 min).

After 1 h of physical time, three-dimensional (3D) fields are output every 5 min for the next 2 h to
obtain statistically independent droplet size distributions within the simulated cloud chamber (this
time is chosen so as to be larger than the large-scale circulation time so as to ensure independence).
Each grid point thus has a cloud droplet number concentration sorted into 33 different bins according
to their sizes. The fluxes are evaluated from 3D fields of velocity u, v, w, temperature, water vapor,
and liquid water mixing ratio.
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FIG. 1. Vertical profiles of liquid water mixing ratio for five of the cases. These profiles were obtained by
horizontal averaging of the 3D output obtained every 5 min within a span of 2 h, after reaching a steady state.
The colors refer to different CCN injection rates (for details refer to Table II).

V. RESULTS: LES OF CLOUDY CONVECTION WITH VARYING MICROPHYSICS

A. Vertical profiles of scalars

The injection of aerosols into the supersaturated system described in Sec. IV results in the
formation of cloud droplets. The liquid water content in the chamber reaches a steady state through
a dynamic equilibrium between condensational growth and gravitational sedimentation. As shown
already in Table II, and as observed in both experiments and prior simulations [5,15], increasing
the aerosol injection rate results in a corresponding increase in the steady-state liquid water content
in the cloudy Rayleigh-Bénard convection system. Vertical profiles of liquid water mixing ratio for
five of the cases are shown in Fig. 1, further demonstrating that mean QL increases with increasing
aerosol injection rate. More significantly, they show a nontrivial spatial variability, emphasizing the
significance of the internal microphysics independence of the equivalent temperature flux �μ.

Figure 2 shows vertical profiles of temporally and horizontally averaged temperature, water vapor
mixing ratio, and equivalent temperature [Eq. (21)] for the different aerosol injection rates. As stated
in Eq. (10), the condensation rate is proportional to NRs, where N is the number concentration of
droplets and R is the mean droplet radius, and therefore generally increases with aerosol injection

FIG. 2. Averaged profiles of (a) temperature, (b) water vapor mixing ratio, and (c) equivalent temperature
[Eq. (21)]. These profiles were obtained by horizontal averaging of the 3D output obtained every 5 min within
a span of 2 h, after reaching a steady state. The colors refer to different CCN injection rates (for details refer to
Table II).

010503-9



SUBIN THOMAS et al.

FIG. 3. Time-averaged profiles of (a) sensible heat flux (ρ Cpw′T ′), (b) latent heat flux (ρLvw′Q′
v), and

(c) equivalent temperature flux �μ, as defined in Eq. (19), from 3D outputs sampled at a frequency of 5 min
for 2 h. The shaded region shows the turbulent variability in the data. The line colors refer to the different CCN
injection rates, as defined in Table II.

rate (cf. Table II). That leads to an increase in the bulk temperature due to the enthalpy change
associated with condensation (latent heat), as shown in Fig. 2(a). The mean water vapor mixing ratio,
shown in Fig. 2(b), is reduced from the zero-aerosol case denoted by the green line. In spite of the net
decrease from the zero-aerosol case, Qv increases monotonically with increasing aerosol injection
rate, which is a direct result of the increasing temperature in the bulk, given that the humidity is
always close to 100%. Taken together, the reduction in the mean water vapor mixing ratio and
the increase in the mean temperature result in a much lower supersaturation for cloudy conditions
compared to moist conditions without any aerosols. Therefore, as evident from Table II, the mean
bulk supersaturation shifts towards zero as the number concentration and liquid water content
increase. We observe a monotonic increase of equivalent temperature in Fig. 2(c) with increasing
cloud droplet number concentration. From a parcel point of view, i.e., for a closed system, one would
expect the equivalent temperature to be a constant for a given total water content. However, the
system is not closed and the total water content inside the cloud chamber is not necessarily a constant
for different aerosol injection rates. As the number of cloud droplets increases, the droplet radius
decreases, thereby increasing the droplet lifetime. Thus, with a reduced precipitation efficiency, the
total water content, and consequently the equivalent temperature, increases (cf. Table II).

B. Sensible heat flux, latent heat flux, and equivalent temperature flux

The sensible heat flux (SHF), latent heat flux (LHF), and equivalent temperature flux defined
in Eq. (19) are plotted in Fig. 3. The boundary flux contributions are discussed later, and only the
turbulent fluxes are considered in this figure. In the bulk, the turbulent transport terms for scalars
are of the form u′

iφ
′, where φ′ is the fluctuation component of a scalar. The turbulent sensible heat

flux and latent heat flux at any height z are given by

SHFturbulent = ρzCpu′
zT

′, (25)

LHFturbulent = ρzLvu′
zQ

′
v. (26)

The height-dependent density ρz has to be multiplied to account for non–Oberbeck-Boussinesq
effects associated with strong temperature gradients. Again, the subgrid-scale fluxes and boundary
contributions are not considered here, therefore these equations alone are applied along the height
of the chamber to generate Fig. 3. As mentioned in Sec. IV the boundary fluxes are parametrized
using MOST; such parametrizations are used in atmospheric models due to insufficient resolution of
the grids close to the walls. The MOST parameters have been tuned to simulate a convective cloud
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FIG. 4. Averaged profile of nRs. These profiles were obtained by horizontal averaging of the 3D output
obtained every 5 min within a span of 2 h, after reaching a steady state. The colors refer to different CCN
injection rates (for details refer to Table II).

chamber in Thomas et al. [5]. The effects of these parametrizations are confined to the boundaries,
and hence are not plotted in Fig. 3 and leave some residual fluctuations. Further, the focus of the
current study is the bulk flow, where the turbulent fluxes are more significant than the diffusive
fluxes. Hence, for consistency we have plotted the horizontally averaged vertical profile of ρzCpw′T ′

for SHF and ρzLvw′Q′
v for LHF in Fig. 3.

The variability inherent in the turbulent flow is shown with shading, obtained from the standard
deviation of the average values of 12 samples, with each sample representing a 10-min average
(roughly ten large-scale circulation times). It can be considered the uncertainty in the flux profiles,
given the finite sample time. The averaged equivalent temperature flux, as predicted, remains
constant within turbulent variability compared to SHF and LHF under different aerosol injection
rates. Specifically, the sensible and latent heat flux profiles for cases A, B, C, D, and E are strongly
sloped, and the curves lie outside the uncertainty envelopes near the top and bottom boundaries
(not all curves are shown, for the sake of clarity). The equivalent temperature fluxes calculated for
different aerosol injection rates, however, fall within the inherent turbulent variability.

The profiles of SHF [Fig. 3(a)] and LHF [Fig. 3(b)] can be interpreted by considering the
governing equations for temperature and water vapor in the presence of cloud droplets, Eqs. (4)
and (5). For a steady-state system the left sides of Eqs. (4) and (5) are zero. On applying Reynolds
decomposition and horizontal area averaging, the first term in Cp × Eq. (4) is the sensible heat flux
Cp(u′

zT
′ − νT ∇zT ), and the first term in Lv × Eq. (5) is the latent heat flux Lv (u′

zQ
′
v − νv∇zQv ).

Under these assumptions, Cp × Eq. (4) and Lv × Eq. (5) can be written as

d (SHF)

dz
= LvQ̇L, (27)

d (LHF)

dz
= −LvQ̇L. (28)

From Eqs. (27) and (28) it is clear that a net condensation rate results in vertical gradients of SHF
and LHF, and that horizontally averaged vertical profiles of SHF and LHF have opposite slopes for
the low cloud droplet number cases A–E with Da < 1, as illustrated in Fig. 3 (not all shown, for
the sake of clarity). Figure 4 shows vertical profiles of nRs as a proxy for condensation rate. This
illustrates the low- and high-Da regimes, in which the condensation rate is distributed throughout
the volume versus the condensation rate being stronger near the boundaries. We see that though the
condensation rates for cases A and I are identical in the bulk, near the top and bottom boundaries
they vary substantially. For a high Da number such as case I, any supersaturation is consumed by the
presence of the large concentration of cloud droplets. Hence, any supersaturation variation occurs
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only close to the boundaries. Further, the nonlinear behavior of number concentration, radius of
the droplets, and supersaturation (e.g., see Chandrakar et al. [15] and [30]) between low Da and
high Da causes the LHF and SHF to behave nonlinearly with Da. However, as the number of cloud
droplets in the bulk increases, the supersaturation approaches water vapor saturation (see Table II).
In such cases, any supersaturation is produced at the boundaries due to the mixing of plumes from
the boundary with the bulk parcels thus localizing condensation predominantly to the boundaries.
Therefore, the slope of SHF and LHF in the bulk of the chamber, characterizing the condensation
rate, reduces as shown by the SHF and LHF profiles of cases F–I with Da > 1, illustrated in Fig. 3
(again, not all profiles are shown, for clarity). As noted previously, from the derivation we expect
the equivalent temperature flux �μ to remain a constant along the height of the chamber. Panel (c)
of Fig. 3 demonstrates that, indeed, �μ remains within the turbulent variability for different cloud
droplet number cases.

VI. DISCUSSION

The theoretical analysis and LES results presented so far confirm that the equivalent temperature
flux �μ in cloudy convection is constant within the convection flow, and therefore can serve as
the basis for defining a Nusselt number. The LES results further suggest that, at least for the
conditions investigated, it is only weakly dependent on the microphysical details and the resulting
rate of condensation/evaporation in the fluid. Additionally, the theoretical analysis implies that �μ

is independent of the nature of the cloud droplet formation: heterogeneous (aided by aerosols, as
in the current study) or homogeneous, e.g., [31]. Indeed, �μ is only a function of Ra, Pr, Sc, and
Le. The fact that this equivalent temperature flux is independent of the form of phase change aids
in generalizing the present work to any form of phase change in the bulk. This would indicate that
a convective system with a heat source/sink in the core of the flow, similar to effects of a first-order
phase transition, will have an equivalent temperature flux similar to the one in Eq. (19).

As an example, we consider the simple case of a boiling system [32]. A similar formulation is
applicable in the context of a two-phase boiling convection system (e.g., boiling of water), where
the roles of vapor and liquid are reversed with reference to the current study. The sign of the phase
change term in the temperature, water vapor, and liquid water equation is reversed. Furthermore,
the rate of boiling in the bulk of the fluid will depend on the number concentration of the bubbles
and their total surface area, similar to the observations discussed in Sec. V. Thus, the net heat flux
in a boiling convective system will have the exact form as Eq. (19), assuming the latent heat of
condensation and the latent heat of vaporization are identical.

Additionally, this analysis can be extended to chemically reacting systems, where the
heat release/absorption associated with the reaction is analogous to the latent heat of
condensation/evaporation in a cloudy system. Indeed, the Damköhler number discussed in the
present work is borrowed from studies involving chemically reacting systems, and is used for
identifying slow, moderate, and fast reaction with respect to the flow timescale [33]. Thus, a
chemically reacting system is analogous to a cloudy convection system, and will have an equivalent
temperature flux that will be independent of the Damköhler number. This is typically accomplished
by using an enthalpy-based treatment.

The discussion so far suggests that in a convection system, the heat released/absorbed in the bulk
of the fluid due to phase change effects or chemical reactions does not influence internal changes
in the equivalent temperature flux, which only depends on the boundary contributions. Thus, this
flux is conserved and could be used for identifying the effects of nonconservative contributions to
the flow, such as entrainment effects in a cloudy boundary layer flow (see the next paragraph on
atmospheric implications for additional details) and evaporating jets. Additionally, the properties of
the equivalent temperature flux are applicable in the context of extrasolar planetary atmospheres that
have cloud systems composed of fluids with properties very different from that of water [31,34].

The current work has several connections to the atmospheric thermodynamics literature.
Equation (17) reduces to an advection-diffusion equation for the equivalent temperature Te given by
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Eq. (21) when the molecular diffusivities of temperature and water vapor are identical. As typically
derived, equivalent temperature (e.g., Eq. 6.74 of Albrecht and Bohren [13]) does not require
isentropic assumptions, and hence can represent nonequilibrium conditions such as those illustrated
in the previous section. Additionally, the equivalent temperature has an adiabatic definition that
can be connected to the equivalent potential temperature. The corresponding derivation, however,
assumes saturated conditions, which limits its utility for conditions far from equilibrium. Replacing
Qs with Qv ,

θe = θ exp(LvQv/CpT ) ≈ θ + LvQv/Cp. (29)

The second equality is not an approximation when defining the first-law version of the equivalent
temperature [21]. Finally, multiplying the second equality in Eq. (29) with Cp, gives another familiar
atmospheric quantity, the moist static energy Se = CpT + gz + LvQv . The moist static energy is
obtained from the first law and is essentially equivalent to the enthalpy [35]. It has been widely used
to study the energy budget in deep convective clouds as well as the response of clouds to entrainment
[36–39].

VII. SUMMARY AND OUTLOOK

In an effort to help in connecting the fluid dynamics and cloud physics literature, we began this
article by nondimensionalizing the governing equations for cloudy Rayleigh-Bénard convection.
Specifically, the equations of temperature and water vapor mixing ratio include terms related
to the rate of condensation, which is tied to the microphysical properties of the cloud, such as
droplet number concentration and mean radius. Traditional dry Rayleigh-Bénard convection can
be described by the Rayleigh number and the Prandtl number. When cloud formation is included,
the dimensionless space becomes vastly more complex. We identify the additional dimensionless
parameters of the Damköhler number, Rouse number (also known as the settling parameter), Stefan
number, Schmidt number, and Lewis number as relevant for cloudy Rayleigh-Bénard convection.
Dimensionless terms that related to the relative contributions of water vapor (Bv) and condensed
cloud (BL) water to the buoyancy are also identified.

In Sec. III, we have derived a flux �μ that is independent of microphysical details, and should
therefore remain a constant throughout the height of a convection-cloud chamber. Subsequently, we
use this flux to expand the definition of Nusselt number to include the effect of cloud condensation.
It turns out to be identical to the Nusselt number proposed by Zhang et al. [3] for cloud-free
convection. We show that �μ and the resulting Nusselt number can be related to the equivalent
temperature, as well as to the moist static energy, commonly used in atmospheric thermodynamics.

In Sec. V we demonstrate that the equivalent temperature flux is nearly constant for different
aerosol injection cases using an atmospheric LES modified to simulate cloudy Rayleigh-Bénard
convection. One of the caveats associated with atmospheric models is that they assume the same
turbulent diffusivities for temperature and water vapor. We demonstrate the increase in latent heat
flux and a commensurate decrease in the sensible heat flux with height from the bottom surface, as a
result of the volumetric heating due to condensation. Further, we demonstrate that these profiles of
latent heat flux and sensible heat flux within the chamber change as a function of the condensation
rate within the bulk of the chamber, depending on the Damköhler number.

In Sec. VI, we point out that the nondimensionalization presented here may lend itself to
application in cloudy convection in other contexts, such as extrasolar planetary atmospheres.
Furthermore, we explore the possibility of using fluxes analogous to the equivalent temperature
flux for other phase change systems such as boiling convection systems and for chemically reacting
systems. Ideally, investigations using particle-resolved direct numerical simulations would allow for
a more detailed investigation of the behavior of the equivalent temperature flux. Thus a parameter
space varying Ra, Pr, Sc, and Da can be explored from a fluid dynamics perspective and from an
atmospheric context. Further aspects can also be explored, for example the effect of roughness and
surface flux parametrizations.
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