Deep learning-based framework for cardiac function assessment in embryonic

zebrafish from heart beating videos

Amir Mohammad Naderi®, Haisong Bu®, Jingcheng Su®, Mao-Hsiang Huang®, Khuong Vo',
Ramses Seferino Trigo Torres®, J.-C. Chiao f, Juhyun Lee®, Michael P.H. Lauh, Xiaolei Xub, and

Hung Cao™*"

* Department of Electrical Engineering and Computer Science, University of California, Irvine,
CA

® Department of Biochemistry and Molecular Biology/Department of Cardiovascular Medicine,
Mayo Clinic Rochester, MN

¢ Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
4 Department of Computer Science, University of California, Irvine, CA
¢ Department of Biomedical Engineering, University of California, Irvine, CA

Department of Electrical and Computer Engineering, Southern Methodist University, Dallas,
TX

£ Department of Bioengineering, University of Texas, Arlington, TX

h Sensoriis, Inc., Edmonds, WA

Correspondence

Hung Cao, Ph.D.

Assistant Professor of Electrical and Biomedical Engineering
University of California, Irvine

Irvine, CA 92697

E-mail: hungcao@uci.edu



mailto:hungcao@uci.edu

Abstract

Zebrafish is a powerful and widely-used model system for a host of biological investigations
including cardiovascular studies and genetic screening. Zebrafish are readily assessable during
developmental stages; however, the current methods for quantification and monitoring of cardiac
functions mostly involve tedious manual work and inconsistent estimations. In this paper, we
developed and validated a Zebrafish Automatic Cardiovascular Assessment Framework
(ZACAF) based on a U-net deep learning model for automated assessment of cardiovascular
indices, such as ejection fraction (EF) and fractional shortening (FS) from microscopic videos of
wildtype and cardiomyopathy mutant zebrafish embryos. Our approach yielded favorable
performance with accuracy above 90% compared with manual processing. We used only black
and white regular microscopic recordings with frame rates of 5-20 frames per second (fps); thus,
the framework could be widely applicable with any laboratory resources and infrastructure. Most
importantly, the automatic feature holds promise to enable efficient, consistent and reliable
processing and analysis capacity for large amounts of videos, which can be generated by diverse

collaborating teams.
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1. Introduction

Despite extensive research and medical expenditures, cardiovascular disease continues to be the
leading cause of mortality and morbidity in the modern world [1]. Among animal models used in
cardiovascular research, zebrafish (Dario rerio) has been proven to be the premier model for
studies of developmental genetics and functional genomics owing to their conserved genome,
small size, low-cost for maintenance, short generation time, and optical transparency, just to
name a few [2]. In addition, zebrafish cardiac physiology shows similar phenotypes to that of
humans [3] and the time-lapse videos of the heart development can be easily acquired [4]. All
these make zebrafish an ideal choice to investigate cardiac development, congenital heart disease

as well as therapeutic potentials.

Dilated cardiomyopathy (DCM) is a hereditary, progressive disease, which eventually
leads to heart failure [6]. Thus, it is very important to evaluate the early cardiac functions
associated with DCM. Dozens of pathogenic genes have been found in the genetic studies of
cardiomyopathy, and the incidence rate of DCM is about 1/250 [7]. Titin truncated variants
(TTNtv) are the most common genetic factor in DCM, accounting for 25% of DCM cases [8§].
Therefore, we have recently restated the allelic heterogeneity in zebrafish segments and
established a stable mutation system to systematically and accurately assess the cardiac functions
of mutant zebrafish. In order to study the mechanobiology of induced defects of these disease
models, heart functions need to be reliably assessed [9]. This effort needs a thorough knowledge
of blood flow patterns as well as hemodynamics. Furthermore, in studies on cardiogenesis for
screening distinct roles of different genes in mediating heart development and cardiac functions,
investigating cardiomyocyte sizes and numbers resulting in measures of the ventricular chamber
volume was usually utilized [10]. To this end, a systematic and simple approach for quantifying
cardiac functions in zebrafish embryos would provide important insights into of the development
of phenotypes and disease. The common quantitative indices are Ejection Fraction (EF) and

Fraction Shortening (FS) which are different measures of the heart's muscular contractility.

The embryonic zebrafish (up to ~3 days post fertilization - dpf) are transparent with
decent visibility of internal organs, including heart and blood circulation. Thus, bright field
microscopic videos can be used for quantification of heart mechanism and morphology at this

stage [11]. Usually, two dimensional (2D) videos for cardiovascular analysis are recorded. Then,



continuous changes in ventricular wall position throughout the cardiac cycle would be tracked by
first identifying a linear region of interest for the borders of the ventricle [11]. Structural analysis
of the zebrafish heart is based on taking 2D images at specific time points to measure chamber
dimensions. However, in conventional approaches, researchers have to manually label the
ventricle, find the End Systolic (ES) and End Diastolic (ED) frames, and then derive the desired
parameters, such as EF and heartrate (HR). Till date, most of the reported work only dealt with
simple detection of heartrate, such as via edge tracing [12]. Nasrat ef al. presented a method for
semi-automatic quantification of FS in video recordings of zebrafish embryo hearts [13]. Their
software provides automated visual information about the ES and ED stages of the heart by
displaying corresponding-colored lines into a motion-mode display. However, the ventricle
diameters in frames of ES and ED stages are marked manually, and then the FS is calculated.
This will be extremely tedious, time consuming and inconsistent when segmentation is done
manually for a large number of frames. Akerberg et al proposed a Convolutional Neural
Network (CNN) framework that automatically segments the chambers from the videos and
calculates the EF [14]. Nevertheless, particular transgenic animals expressing the myocardial-
specific fluorescent reporter and hi-end fluorescence microscopes were used, which cannot be
widely applicable for the research community, especially those without access to transgenic lines
or fluorescence microscopes. Additionally, Huang ef al. showed that transgenic expression of
fluorescence protein can cause dilated cardiomyopathy [15], as high levels of expression of some
foreign proteins affect the myocardium. Further, more importantly in the work reported by
Akerberg and colleagues, frames from only 4 videos have been used which can result in
overfitting in cases where the features of the video like the position of the fish, lighting, or the
focus of the lens on the ventricle are different comparing to the training set. Zebrafish in the
videos can have different sizes and the focus on the heart can be different in each video. In
manual segmentation, the ventricle could occasionally be partially masked. Therefore, in order to
have a framework with the ability to estimate these masked spots accurately, the dataset should
include a variety of videos with different settings. However, their work has raised the optimism

of applying machine learning to this problem.

U-net, a symmetric convolutional neural network architecture, could be an ideal option
since it is specifically created for biomedical image segmentation [16]. A similar architecture has

been employed by Decourt et al. to segment the human left ventricle from magnetic resonance



imaging (MRI) images [17]. The main idea of the U-net is to complement a traditional
contracting network by successive layers, where pooling operations are replaced by up-sampling
operators. Besides, a successive convolutional layer can then be trained to assemble a precise
output based on this information [16]. The training of the network uses the original image as an
input and the mask of the corresponding image as the output and the objective is to minimize the

error of the estimation and the mask.

In this work, our Zebrafish Automatic Cardiovascular Assessment Framework (ZACAF)
was developed to analyze heart beating videos of zebrafish embryos simultaneously and quantify
specific cardiac functions, namely FS and EF. A deep learning model has been trained using 50
videos of wildtype and mutant zebrafish. Additionally, several image processing techniques have
been applied to the videos to investigate the effectiveness and then the best one was chosen to
preprocess the data before training. We then evaluated the performance of our framework with
the wildtype as well as the established TTNtv mutant fish having a condition of DCM [12].

Finally, in-depth discussion and future directions are presented.
2. Methods

2.1 Experimental animals

Zebrafish (Danio rerio; WIK strain) were maintained under a 14 h light/10 h dark cycle at
28.5°C. All animal study procedures were performed in accordance with the Guide for the Care
and Use of Laboratory Animals published by the U.S. National Institutes of Health (NTH
Publication No. 85-23, revised 1996). Animal study protocols were approved by the Mayo Clinic
Institutional Animal Care and Use Committee (IACUC #A00002783-17-R20).

2.2 Video imaging of beating zebrafish hearts at embryonic stage

Zebrafish in the embryonic stages were anesthetized using 0.02% buffered tricaine methane
sulfonate (MS222 or Tricaine) (Ferndale, Washington, US) for 2 minutes, and then placed lateral
side up with the heart facing the lower-left corner. The specimens were held in a chamber with
3% methylcellulose ( 7Thermo Fisher Scientific, Massachusetts, US). The videos were recorded
using a Zeiss Axioplan 2 microscope (Carl Zeiss, Oberkochen, Germany) with a 10X lens and
differential interference contrast (DIC) capacity. The used Zeiss’ Axiocam 702 mono Digital

Camera 426560-9010-000 records videos with 60 fps; however, using the Zeiss computer



software videos get stored in 5 fps, 10 fps, and 20 fps. Video clips were processed using Imagel
for manual quantification of cardiac functional indices including heart rate and fraction

shortening, as detailed in the next sections.

2.3 Cardiac function assessment

Fraction Shortening (FS), one of the measures of ventricular contractility, can be calculated from
ventricular diameters (Short-axis) at end-diastole (ED) and end-systole (ES) (Dd and Ds,

respectively) as follows [11]:

FS — (Dd_DS) (1)
Dg

By assuming a prolate spheroidal shape for
the ventricle, the following volume formula can be

used: Volume = % X T X D, X Ds* (2)
Long axis

Shortaxis® ‘s.—

where D; and Ds are long and short-axis diameters

of ventricle from 2D static images as shown in Figure 1. A frame in a video recorded from
. a 3-dpf zebrafish with segmentation for
Figure 1. ventricle border and long and short axes.

One extremely important index in
quantifying the heart mechanisms is ejection fraction (EF). It is defined as the fraction of blood

ejected from the ventricle with each heartbeat and can be calculated using the following formula:

EF% = S22 X 100% 3)

where EDV and ESV are volumes at ED (EDV) and ES (ESV), respectively. Since measurement
of the volume of the ventricle is not possible with 2-D videos, researchers usually use the area as
an estimation. Finally, heartrate (HR) could be determined by measuring the time between two
identical successive points (z.e., ED or ES) in the recorded images [11]. The range of EF is 50%-
70% for healthy zebrafish and it is one of the important indications to diagnose heart failure. EF
reflects the function of the ventricular systolic pump. The stronger the myocardial contractility,
the higher the stroke volume and EF will be. Therefore, in patients with heart failure, the left

ventricular ejection fraction of the heart will be significantly reduced.

2.4 Automated quantification of cardiovascular parameters using image processing




For automatic quantification of important cardiovascular parameters like EF or FS from the
microscopic videos, the ventricle of the zebrafish needs to be segmented. Several image
processing methods have been employed as an effort to identify the edges of the ventricle in the
videos; including edge detection, background subtraction, color filtering, and, histogram-based
segmentation. In edge detection, the Canny algorithm was used which has a multi-stage
algorithm to detect a wide range of edges in images [18]. In background subtraction, continuous
frames from a video would be subtracted from each other to find the moving objects.
Considering that most of the fish body is static and the only pixels moving in the video belong to
blood cells and the heart; thus, the static pixels can be removed. Lastly, the idea behind color
filtering and histogram-based segmentation is to identify the ventricle due to its distinct color or
gray intensity. In manual histogram thresholding, after plotting the gray scale histogram of the
image, those peaks and valleys in the histogram are used to locate the clusters in the image [19].
Otsu’s algorithm performs automatic image thresholding by finding a single intensity threshold
that separates pixels into two classes of foreground and background [20]. Finally, contrast
limited AHE (CLAHE) is a variant of adaptive histogram equalization which over-amplifies the
contrast on small regions in the image [21]. Here, the mentioned methods have been

implemented not only to compare with the approach using deep learning described in the next

Figure 2. Ventricle segmentation using different methods. Panel a-d: A frame from the video of a
3 dpf zebrafish with 40X zoom undergoing different HBS algorithms. a. Original frame. b. Manual
histogram thresholding. ¢. CLAHE. d. Otsu thresholding. Panel e-g: A frame from the video of a 3
dpf zebrafish with 10X zoom undergoing GMM and K-means approaches. e. Original frame f.
GMM. g. K-means.



section but also to use them for preprocessing. All these are shown in Figure 2, a-d panels.

Those abovementioned methods, namely edge detection, color filtering and background
subtraction are not robust with different videos, since ventricle edges might have multiple shades
of gray. Therefore, we also attempted to use machine learning approaches to compare. First,
unsupervised learning segmentation methods like K-means and Gaussian mixture model (GMM)
were applied to the videos. As can be seen in Figure 2e, f and g, although these methods
improve the visibility of the ventricle borders, the automatic segmentation of the heart is not
possible. Moreover, many of the unnecessary information (pixels) in the image, particularly in

the image generated using K-means, are still remaining.

2.6 U-net-based deep learning approach

Figure 3 illustrates the architecture of the proposed U-net model with details. The network

consists of a contracting path and an expansive path, which gives it the U-shaped architecture.
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Figure 3. The process flow and the U-net architecture. Each rectangle represents a layer and the
number above it shows the number of the neurons inside. A trained model can estimate a mask of the
ventricle from all the extracted frame of the input video. When all the frames have a predicted mask, by
determination of ES and ED frames, important cardiac indices like EF, FS, and stroke volume can be
automatically calculated and saved in a desired format.



The contracting path is a typical convolutional network that consists of repeated convolutions,
each followed by a rectified linear unit (ReLU) and a max-pooling operation. Dropouts have
been used to prevent overfitting. The architecture has been optimized to obtain the best result.
For training, NVidia’s T4 GPU from Google Collaboratory was employed. To evaluate the
model, the most commonly used loss functions for semantic image segmentation were deployed,
namely Binary Cross-Entropy and Dice loss function. Cross-entropy can be defined as a measure
of the difference between two probability distributions for a given random variable or set of
events. It is extensively used for classification problems and since segmentation is the
classification in pixel level, cross-entropy has been widely used. Binary Cross-Entropy is defined

as:

Losspce(y,§) = —(ylog(d) + (1 —=y)log(1=3)) (4
where y is the true value and ¥ is the predicted outcome.

The Dice coefficient is a commonly used metric in computer vision problems for
calculating the similarity between two images. In 2016, it has also been adapted as a loss

function, namely Dice Loss [22].

2y9+1 (5)

Losspice(y,9) =1 — y+9+1

The U-net model has been trained with both models and the performance has been
assessed using validation and test sets. Further, calculation of EF has been also evaluated using

both aforementioned loss functions.
a. Dataset

A training dataset was created employing the raw microscopic videos of zebrafish containing
800 pixel-wise annotated images. 50 videos of the lateral view from multiple 3-dpf zebrafish
were analyzed for creating the dataset. 10 of these videos are from the TTNtv mutant line. From
each video, 10 to 30 frames were extracted. Each training set has a frame from the video and a
mask manually created showing only the ventricle with ImageJ software. After creating the
masks, all image and mask sets have been organized into folders. Each set has two folders inside,
one for the original extracted frame and the other for its corresponding mask. Finally, all sets
were shuffled to avoid overfitting. The validation set with the 10% of the size of the data has

been split from the dataset prior to training.



b. Preprocessing

In the preprocessing stage, a region of interest is defined knowing all recordings have the same
positioning for the zebrafish. Although this cropping improves the accuracy by removing
unnecessary information, it can be avoided to make the framework robust to different video
types. Additionally, a sharpening filter accomplished by performing a convolution between a
custom weighed kernel and an image is used to make edges more visible. After training, the U-
net architecture was able to predict the ventricle segment. The model has been trained several
times by applying the mentioned image processing methods to the training images. The method

with the best results was CLAHE thresholding which was added to the preprocessing section.

c. Quantification of the diameters of the predicted ventricle

The diameters of the ventricle are measured for all extracted frames automatically with contour
tool from OpenCV (an open-source computer vision library). The maximum and minimum
measured areas of the ventricle in different frames show the ES and ED stages, respectively.
Using the measurement of ES and ED frames, we can calculate the ejection fraction (EF),
fractional shortening (FS), and stroke volume (SV). Also, the time between two ES (or ED)
frames could be used to derive heartrate (HR). The predicted ventricle is assumed to be an
ellipsoid. For quantification of EF, the area of the ventricle can be used (Eq (3) above) by
counting the pixels inside the predicted shape. Since the frames are 2D, we are estimating the
ventricle volume to its area. For FS, measurements of the short axis in ES and ED frames are
needed. As the ventricle is not a perfect ellipsoid, estimation of the short and long axes can be
carried out in two different ways. In the first method, an ellipsoid could be fitted in the predicted
shape and then the axis of the fitted ellipsoid would be measured. The second way is to find the
longest line as the long axis of the estimated ellipsoid which could be found in the geometrical

shape; then, the short axis of the ellipsoid is the short axis of the ventricle.

d. Graphical User Interface (GUI)

This framework was developed in Python and thus, for researchers who are not familiar with
programming, working with it can be challenging. To address this, a Graphical User Interface
(GUI) has been designed to provide a user-friendly interface to facilitate the process for
researchers. Moreover, after training the U-net, the trained model can be saved which means the

most computationally heavy part could be done only once. The GUI saves the output files in the



CSV format, along with information about EF, FS, diameter readings of the area, short and long
axis, and frame numbers. Therefore, the data for each video can be easily accessed at any time,
and anywhere with the expandable cloud feature. Our ZACAF provides an end-to-end interface
to researchers to automatically calculate, classify, and record various cardiac function indices
reliably. ZACAF is able to work with multiple videos at the same time and output the results in
the fraction of the time compared to that of manual segmentation. The deep learning model in the

ZACAF can easily be updated and optimized with a new model and data.

2.7 Ouantitative comparison of approaches

In this framework, our objective is to predict the geometrical shape identifying the ventricle with
high accuracy in terms of its position, size, and shape with the ground truth. Since the manually
created masks are considered as the ground truth, we would expect the predicted shape and the
manual mask to be identical or close to them. In semantic image segmentation, the most
commonly-used metrics include pixel-wise accuracy, Dice coefficient, and Intersection over

Union (IoU).

a. Pixel-wise Accuracy

In this work, since the mask indicating the ventricle is either white or black, there are only two
classes so we can use the binary case of pixel accuracy. The accuracy is defined as the percent of

pixels classified correctly as

. . ixels classified correctl
pixel — wise Accuracy = P f, 24 (6)
All pixels

b. Dice coefficient

Dice coefficient is an extensively used indicator to elaborate the similarity of two objects. It
ranges from 0 to 1 in which 1 means perfectly matched or completely overlapped. For a binary
case, the coefficient is calculated as

2|(ANB)|

Dice =
|A|+|B|

(7

where A is the predicted image and B is the ground truth (manually created mask).

c. Intersection over union




It is also known as the Jaccard Index which is simply the area of overlap between the predicted
segmentation and the ground truth divided by the area of union between the predicted
segmentation and the ground truth. This metric ranges from 0—1 with 0 signifying no overlap and

1 signifying perfectly overlapping segmentation. For the binary case, it can be calculated as:

_4nB|
J = 108 ®)

In this work, all three of the mentioned metrics have been used to show the performance of

the framework.
3. Results
3.1 Assessment of the accuracy of the framework with the defined metrics

The model’s performance can be seen in Figure 4. The model has been trained with two loss
functions discussed in section 2.6 and the best results with parameter tuning are illustrated. The
aforementioned metrics resulted in 99.1% for pixel-wise accuracy, 95.04% for Dice coefficient,
and lastly 91.24% and for the IoU. All mentioned metrics are evaluating the best performing
model that had a Dice loss function with an Adam optimizer and a 0.001 learning rate.
Validation split was 10% which means 80 sets. Following the training, we visually assessed the
framework’s ability to correctly segment ventricular chambers and also the periodic pulsating
movement of it within series of frames of a test video. This process was used in parameter tuning

for the deep learning model.
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Figure 4. The proposed model’s performance plotted with the metrics commonly used in
semantic image segmentation. a. Pixel-wise accuracy b. Dice coefficient c. loU metric. This plot
shows the performance of the framework with the training and validation sets during the process of
training of the deep learning model.

3.2 Assessment of the performance of the framework for EF



The framework was evaluated by comparing the results obtained by manual assessment of EF
from an experienced biologist with those using the software since one of the primary purposes of
this framework is EF calculation. In this calculation, finding the area in all frames of a video is
important because we want to find the ED and ES areas. Hence, assessment should involve the
series of frames in a test video rather than having random images in a validation set. For this
reason, we assess the performance of ZACAF with EF calculation. First, 8 videos of wildtype
zebrafish embryos and another 8 from TTNtv mutant embryos were used as the input to the
framework. These videos are the test set and have not been used in the training. Second, manual
processing and estimation were performed for each video to derive EF by an expert to use as the
ground truth. The program saves the predicted ventricle masks for each and every frame of a
video and the ED and ES frames are simply the frames with maximum and minimum area of the
segmented ventricle respectively. After automatically finding ES and ED frames, the EF of the
fish in the input video would be calculated and saved in a CSV file along with other indices
calculated. The averages of absolute errors and standard deviations for the calculated EF of the 8
wild type test videos comparing to expert’s manual calculation were 6.13% and 3.68%
respectively. As ED and ES frames are the most important parameters to quantify cardiovascular

indices, we plotted the correlation of the automated and manual measurements (Figure 5).
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Figure 5. After finding and measurement of the ventricle area in ED and ES frames of 8 wild type and
8 TTNtv mutant fish with both manual and automated methods, the results are demonstrated in a
correlation plot. Linear relation of the measurements with slopes close to 1 shows the accuracy of the
ZACAF. (a) ES frame area. (b) ED frame area.
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Figure 6. Validation of U-net image segmentation framework. The sequential frames from a
wild type zebrafish recorded video with fps of 5 are extracted. The respective ventricle mask of
each frame is shown in each panel via manual and automatic segmentation. The area of each
ventricle is measured and written above its own box. Considering the fps of the videos and the
average heart rate of the zebrafish 6 consecutive frames have been shown in this figure to ensure
having at least one full cycle.

Figure 6 presents the comparison of manual and automatic segmentation of the ventricle in 6
continuous frames to cover an entire cardiac cycle for both wild type (a) and TTNtv (b). In

manual segmentation, measures were done using freehand selection tool in the ImagelJ software.

3.3 Comparison of video recording features
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Figure 7. Ventricular area over time. The area is measured by counting the number of pixels inside
the desired shape. Comparison of the ventricle areas from a sequence of extracted frames from 5 fps,
10 fps and 20 fps videos, respectively. Sequence of continues frames from a test video have been
segmented automatically. The measured ventricle area in continues frames plotted with the same
video mapped to different frame rates. a) In a TTNtv mutant video and b) in a wild-type video.

We compare the performance of the program for input videos with different frame rates, z.e.
frames per second or fps. Figure 7a and b show the ventricular area changes over time plotted
for videos with 5, 10, and 20 fps for a wild type video and a TTNtv mutant video selected from
the test set. Further, from these plots, HR and stroke volume (SV) can be simply calculated. The
videos with different frame rates were derived from the raw recording of the camera which
records videos with 60 fps. The purpose here was to investigate the importance of the fps value

in assessing the indices.
4. Discussion

Conventional image processing methods such as background subtraction, HBS, and edge
detection have been widely used for segmentation showing excellent efficiency and efficacy;
however, in this case, as can be seen in Figure 2, automatic segmentation of the ventricle is still
not possible. Past work involving machine learning algorithms have showed promise with the

proved semi-automatic feature, however requiring specific fluorescence videos. Our framework



can be employed to assist researchers to quantify the cardiac functions and parameters of studied
zebrafish with minimum manual engineering efforts. In EF derivation, counting the pixels is
more relevant and accurate than finding the long axis which can be complicated since the
ventricle is not a perfect ellipse. Further, the tool that most researchers use in the ImageJ
software is a freehand ruler which could introduce inaccuracy, especially with the small size of

heart chambers.

Additionally, manual segmentation is not consistent. Segmentation of the ventricle in these
videos is a very difficult task even manually. The small size, ambiguous edges, and partial
obstruction of the heart in the videos can also add complication to manual detection. We have
investigated this quantitatively. We asked two experts to segment and measure the area of the
ventricle in single frames of 12 sample videos. They were instructed to do the measurement
twice for each frame manually with a short break between each try. The results were 12 frames
each measured 4 times. The standard deviation for each frame measurement was calculated and
the average of standard deviations of the measurements in these 12 frames was about 150 pixels
with 50 pixels standard deviation. This is approximately 8% of an average size ventricular area
in our setting’s scale. This shows the inconsistency in the manual segmentation. This could be
especially significant with mutant embryos whose EF is usually very small. In most cases of the
TTNtv videos, the difference of the area in the ED and ES frames is between 100 to 300 pixels
(considering the resolution of the videos used in this work). However, due to the nature of neural
networks, ZACAF is consistent which means that measurement of a frame multiple times will

always result in only one consistent measurement.

It is noteworthy to mention since the ground truth is created using the same frames for
segmentation of the ventricle, the frame rate is less important in comparing manual and
automatic segmentation. The ES and ED frames are the most important frames when it comes to
quantification of parameters like HR, EF, and FS. While recording the videos, the shutter of the
camera takes a sequence of images with a certain fps. The higher the fps of the video, the higher
chance for exact ES and ED stages being recorded. This fact cannot be proved using the metrics
because the prediction is only being compared with the existing manually segmented ground
truth and if the low fps causes the loss of ED or ES frames, there is no way to show it with the
metrics. However, Figure 7 shows the importance of the higher frame rate in exporting useful

information, such as heartrate, and strove volume with a much better accuracy. It suggests the



optimal number of fps to configure settings. Higher frame rates will result in bigger video file
sizes, while low frame rate reduces the probability of identifying ED and ES frames. As seen in

Figure 7a, a higher frame rate is particularly important with mutants since the EF is small.

From the segmentation point of view, there are two major differences between the mutant
and wildtype fish. The ventricle and the heart in general have abnormal shapes in a number of
mutant types. In our case here, EF is much lower in the TTNtv model as the shape as well as the
contractility are significantly affected. Thus, the ventricle area difference in ES and ED frames in
TTNtv mutants is very low. Figure 8 provides examples to compare wild and TTNtv zebrafish.
In some cases, the ventricle is barely beating in a way that the area difference in ED and ES
frames is lower than the segmentation error. In other word, the area of the ventricle barely
changes to the point that occasionally the nominator of the formula of EF is lower than the
estimation error. That is the main source for the inaccuracies with the TTNtv mutants and further
improvements of preprocessing or optimization of the framework will not affect the result with
the mutant significantly. The videos used in this work have low resolution (data rate of 2500
kbps), in order to demonstrate the capability of our framework. Although this is beneficial for

researchers to reduce required storage capacity, higher resolution would help resolve this issue,

Figure 8. Comparison of the shape and size of wildtype (a) and TTNtv mutant zebrafish
(b). Besides the abnormal shape of the heart with the swollen ventricular wall, the smaller
size of the ventricle is also found with TTNtv mutants. Further, the swollen chest can be also
noticed.



thus improving the robustness and accuracy for TTNtv mutant and wildtype fish in general.

The novelty of our supervised learning-based ZACAF lies in the automatic feature and
the robustness in working with black and white videos at different configurations (z.e. frame
rate). The first novelty was demonstrated as creating mask and training can be carried out only
once then ZACAF can be run easily by a non-expert person. The second novelty possesses
several broader impacts. First, the versatility to work with regular bright field microscopic videos
would make ZACAF widely accepted by the research community. Second, the capability to work
with monochrome low fps videos would help save storage space when thousands or more videos
are used. Resolution and frame rate of the videos have a direct connection with the size of them;
thus, it is useful to find out the minimum required video quality. In our work, videos with
resolution of 640x404 pixels, a frame rate of 5 fps, and a data rate of 2500 kbps would have a
file size of about 5 megabytes for a 20-second video. It is evident that improving the resolution
will increase the accuracy and robustness of the framework. This also helps reduce the
processing time as well as increase the accuracy and robustness; and thus, enabling big scale

projects involving multiple research groups.

For future work, we plan to not only improve the deep learning model in our ZACAF, but
also include additional information in the output. It is straightforward to improve the accuracy of
the deep learning model by adding more labeled data to its training dataset. The GUI can be
improved in a way so the framework can process multiple videos simultaneously. We also plan
to improve our framework for 3-D segmentation of the ventricle. Using the same state of the art
with z-stack images of the heart sequentially recorded from the beating heart as the input allows
for a 3-D segmentation of the ventricle over time. This is important because it would further

avoid estimation and improve the overall accuracy significantly.
5. Conclusions

In this work, a framework, namely ZACAF has been developed to automatically segments the
beating ventricle of zebrafish embryos from microscopic videos. The employed U-net deep
learning algorithm was evaluated with wildtype and cardiomyopathy mutant fish (TTNtv) using
three metrics and favorable accuracy was achieved. Our framework would help enable and
accelerate numerous biological studies in cardiology and developmental biology using the

zebrafish model. Moreover, as the work is being improved, it could be utilized with other animal



models and even humans, and with different imaging techniques such as ultrasound or MRI
imaging. Ultimately, this automated system could be translated for use not only in processing
and machine learning-based analysis of various physiological parameters to support studies and

disease diagnosis but also in manufacturing and automation.
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