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Abstract 

Zebrafish is a powerful and widely-used model system for a host of biological investigations 

including cardiovascular studies and genetic screening. Zebrafish are readily assessable during 

developmental stages; however, the current methods for quantification and monitoring of cardiac 

functions mostly involve tedious manual work and inconsistent estimations. In this paper, we 

developed and validated a Zebrafish Automatic Cardiovascular Assessment Framework 

(ZACAF) based on a U-net deep learning model for automated assessment of cardiovascular 

indices, such as ejection fraction (EF) and fractional shortening (FS) from microscopic videos of 

wildtype and cardiomyopathy mutant zebrafish embryos. Our approach yielded favorable 

performance with accuracy above 90% compared with manual processing. We used only black 

and white regular microscopic recordings with frame rates of 5-20 frames per second (fps); thus, 

the framework could be widely applicable with any laboratory resources and infrastructure. Most 

importantly, the automatic feature holds promise to enable efficient, consistent and reliable 

processing and analysis capacity for large amounts of videos, which can be generated by diverse 

collaborating teams. 
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 1. Introduction 

Despite extensive research and medical expenditures, cardiovascular disease continues to be the 

leading cause of mortality and morbidity in the modern world [1]. Among animal models used in 

cardiovascular research, zebrafish (Dario rerio) has been proven to be the premier model for 

studies of developmental genetics and functional genomics owing to their conserved genome, 

small size, low-cost for maintenance, short generation time, and optical transparency, just to 

name a few [2]. In addition, zebrafish cardiac physiology shows similar phenotypes to that of 

humans [3] and the time-lapse videos of the heart development can be easily acquired [4]. All 

these make zebrafish an ideal choice to investigate cardiac development, congenital heart disease 

as well as therapeutic potentials. 

 Dilated cardiomyopathy (DCM) is a hereditary, progressive disease, which eventually 

leads to heart failure [6]. Thus, it is very important to evaluate the early cardiac functions 

associated with DCM. Dozens of pathogenic genes have been found in the genetic studies of 

cardiomyopathy, and the incidence rate of DCM is about 1/250 [7]. Titin truncated variants 

(TTNtv) are the most common genetic factor in DCM, accounting for 25% of DCM cases [8]. 

Therefore, we have recently restated the allelic heterogeneity in zebrafish segments and 

established a stable mutation system to systematically and accurately assess the cardiac functions 

of mutant zebrafish. In order to study the mechanobiology of induced defects of these disease 

models, heart functions need to be reliably assessed [9]. This effort needs a thorough knowledge 

of blood flow patterns as well as hemodynamics. Furthermore, in studies on cardiogenesis for 

screening distinct roles of different genes in mediating heart development and cardiac functions, 

investigating cardiomyocyte sizes and numbers resulting in measures of the ventricular chamber 

volume was usually utilized [10]. To this end, a systematic and simple approach for quantifying 

cardiac functions in zebrafish embryos would provide important insights into of the development 

of phenotypes and disease. The common quantitative indices are Ejection Fraction (EF) and 

Fraction Shortening (FS) which are different measures of the heart's muscular contractility. 

The embryonic zebrafish (up to ~3 days post fertilization - dpf) are transparent with 

decent visibility of internal organs, including heart and blood circulation. Thus, bright field 

microscopic videos can be used for quantification of heart mechanism and morphology at this 

stage [11]. Usually, two dimensional (2D) videos for cardiovascular analysis are recorded. Then, 



continuous changes in ventricular wall position throughout the cardiac cycle would be tracked by 

first identifying a linear region of interest for the borders of the ventricle [11]. Structural analysis 

of the zebrafish heart is based on taking 2D images at specific time points to measure chamber 

dimensions. However, in conventional approaches, researchers have to manually label the 

ventricle, find the End Systolic (ES) and End Diastolic (ED) frames, and then derive the desired 

parameters, such as EF and heartrate (HR). Till date, most of the reported work only dealt with 

simple detection of heartrate, such as via edge tracing [12]. Nasrat et al. presented a method for 

semi-automatic quantification of FS in video recordings of zebrafish embryo hearts [13]. Their 

software provides automated visual information about the ES and ED stages of the heart by 

displaying corresponding-colored lines into a motion-mode display. However, the ventricle 

diameters in frames of ES and ED stages are marked manually, and then the FS is calculated. 

This will be extremely tedious, time consuming and inconsistent when segmentation is done 

manually for a large number of frames. Akerberg et al. proposed a Convolutional Neural 

Network (CNN) framework that automatically segments the chambers from the videos and 

calculates the EF [14]. Nevertheless, particular transgenic animals expressing the myocardial-

specific fluorescent reporter and hi-end fluorescence microscopes were used, which cannot be 

widely applicable for the research community, especially those without access to transgenic lines 

or fluorescence microscopes. Additionally, Huang et al. showed that transgenic expression of 

fluorescence protein can cause dilated cardiomyopathy [15], as high levels of expression of some 

foreign proteins affect the myocardium. Further, more importantly in the work reported by 

Akerberg and colleagues, frames from only 4 videos have been used which can result in 

overfitting in cases where the features of the video like the position of the fish, lighting, or the 

focus of the lens on the ventricle are different comparing to the training set. Zebrafish in the 

videos can have different sizes and the focus on the heart can be different in each video. In 

manual segmentation, the ventricle could occasionally be partially masked. Therefore, in order to 

have a framework with the ability to estimate these masked spots accurately, the dataset should 

include a variety of videos with different settings. However, their work has raised the optimism 

of applying machine learning to this problem.  

U-net, a symmetric convolutional neural network architecture, could be an ideal option 

since it is specifically created for biomedical image segmentation [16]. A similar architecture has 

been employed by Decourt et al. to segment the human left ventricle from magnetic resonance 



imaging (MRI) images [17]. The main idea of the U-net is to complement a traditional 

contracting network by successive layers, where pooling operations are replaced by up-sampling 

operators. Besides, a successive convolutional layer can then be trained to assemble a precise 

output based on this information [16]. The training of the network uses the original image as an 

input and the mask of the corresponding image as the output and the objective is to minimize the 

error of the estimation and the mask. 

In this work, our Zebrafish Automatic Cardiovascular Assessment Framework (ZACAF) 

was developed to analyze heart beating videos of zebrafish embryos simultaneously and quantify 

specific cardiac functions, namely FS and EF. A deep learning model has been trained using 50 

videos of wildtype and mutant zebrafish. Additionally, several image processing techniques have 

been applied to the videos to investigate the effectiveness and then the best one was chosen to 

preprocess the data before training. We then evaluated the performance of our framework with 

the wildtype as well as the established TTNtv mutant fish having a condition of DCM [12]. 

Finally, in-depth discussion and future directions are presented.    

 2. Methods  

2.1 Experimental animals 

Zebrafish (Danio rerio; WIK strain) were maintained under a 14 h light/10 h dark cycle at 

28.5°C. All animal study procedures were performed in accordance with the Guide for the Care 

and Use of Laboratory Animals published by the U.S. National Institutes of Health (NIH 

Publication No. 85-23, revised 1996). Animal study protocols were approved by the Mayo Clinic 

Institutional Animal Care and Use Committee (IACUC #A00002783-17-R20). 

2.2 Video imaging of beating zebrafish hearts at embryonic stage 

Zebrafish in the embryonic stages were anesthetized using 0.02% buffered tricaine methane 

sulfonate (MS222 or Tricaine) (Ferndale, Washington, US) for 2 minutes, and then placed lateral 

side up with the heart facing the lower-left corner. The specimens were held in a chamber with 

3% methylcellulose (Thermo Fisher Scientific, Massachusetts, US). The videos were recorded 

using a Zeiss Axioplan 2 microscope (Carl Zeiss, Oberkochen, Germany) with a 10X lens and 

differential interference contrast (DIC) capacity. The used Zeiss’ Axiocam 702 mono Digital 

Camera 426560-9010-000 records videos with 60 fps; however, using the Zeiss computer 



 
Figure 1. A frame in a video recorded from 
a 3-dpf zebrafish with segmentation for 
ventricle border and long and short axes. 

software videos get stored in 5 fps, 10 fps, and 20 fps. Video clips were processed using ImageJ 

for manual quantification of cardiac functional indices including heart rate and fraction 

shortening, as detailed in the next sections. 

2.3 Cardiac function assessment 

Fraction Shortening (FS), one of the measures of ventricular contractility, can be calculated from 

ventricular diameters (Short-axis) at end-diastole (ED) and end-systole (ES) (Dd and Ds, 

respectively) as follows [11]: 

𝐹𝑆 =
(𝐷𝑑−𝐷𝑠)

𝐷𝑑
   (1) 

By assuming a prolate spheroidal shape for 

the ventricle, the following volume formula can be 

used:  𝑉𝑜𝑙𝑢𝑚𝑒 =
1

6
× 𝜋 × 𝐷𝐿 × 𝐷𝑆

2 (2) 

where 𝐷𝐿 and 𝐷𝑆 are long and short-axis diameters 

of ventricle from 2D static images as shown in 

Figure 1. 

One extremely important index in 

quantifying the heart mechanisms is ejection fraction (EF). It is defined as the fraction of blood 

ejected from the ventricle with each heartbeat and can be calculated using the following formula:   

𝐸𝐹% =
(𝐸𝐷𝑉−𝐸𝑆𝑉)

𝐸𝐷𝑉
× 100%   (3) 

where EDV and ESV are volumes at ED (EDV) and ES (ESV), respectively. Since measurement 

of the volume of the ventricle is not possible with 2-D videos, researchers usually use the area as 

an estimation. Finally, heartrate (HR) could be determined by measuring the time between two 

identical successive points (i.e., ED or ES) in the recorded images [11]. The range of EF is 50%-

70% for healthy zebrafish and it is one of the important indications to diagnose heart failure. EF 

reflects the function of the ventricular systolic pump. The stronger the myocardial contractility, 

the higher the stroke volume and EF will be. Therefore, in patients with heart failure, the left 

ventricular ejection fraction of the heart will be significantly reduced.  

2.4 Automated quantification of cardiovascular parameters using image processing 



 
Figure 2. Ventricle segmentation using different methods. Panel a-d: A frame from the video of a 
3 dpf zebrafish with 40X zoom undergoing different HBS algorithms. a. Original frame. b. Manual 
histogram thresholding. c. CLAHE. d. Otsu thresholding. Panel e-g: A frame from the video of a 3 
dpf zebrafish with 10X zoom undergoing GMM and K-means approaches. e. Original frame f. 
GMM. g. K-means. 

For automatic quantification of important cardiovascular parameters like EF or FS from the 

microscopic videos, the ventricle of the zebrafish needs to be segmented. Several image 

processing methods have been employed as an effort to identify the edges of the ventricle in the 

videos; including edge detection, background subtraction, color filtering, and, histogram-based 

segmentation.  In edge detection, the Canny algorithm was used which has a multi-stage 

algorithm to detect a wide range of edges in images [18]. In background subtraction, continuous 

frames from a video would be subtracted from each other to find the moving objects. 

Considering that most of the fish body is static and the only pixels moving in the video belong to 

blood cells and the heart; thus, the static pixels can be removed. Lastly, the idea behind color 

filtering and histogram-based segmentation is to identify the ventricle due to its distinct color or 

gray intensity. In manual histogram thresholding, after plotting the gray scale histogram of the 

image, those peaks and valleys in the histogram are used to locate the clusters in the image [19]. 

Otsu’s algorithm performs automatic image thresholding by finding a single intensity threshold 

that separates pixels into two classes of foreground and background [20]. Finally, contrast 

limited AHE (CLAHE) is a variant of adaptive histogram equalization which over-amplifies the 

contrast on small regions in the image [21]. Here, the mentioned methods have been 

implemented not only to compare with the approach using deep learning described in the next 



 
Figure 3. The process flow and the U-net architecture. Each rectangle represents a layer and the 
number above it shows the number of the neurons inside. A trained model can estimate a mask of the 
ventricle from all the extracted frame of the input video. When all the frames have a predicted mask, by 
determination of ES and ED frames, important cardiac indices like EF, FS, and stroke volume can be 
automatically calculated and saved in a desired format.  
 

section but also to use them for preprocessing. All these are shown in Figure 2, a-d panels.  

 Those abovementioned methods, namely edge detection, color filtering and background 

subtraction are not robust with different videos, since ventricle edges might have multiple shades 

of gray. Therefore, we also attempted to use machine learning approaches to compare. First, 

unsupervised learning segmentation methods like K-means and Gaussian mixture model (GMM) 

were applied to the videos. As can be seen in Figure 2e, f and g, although these methods 

improve the visibility of the ventricle borders, the automatic segmentation of the heart is not 

possible. Moreover, many of the unnecessary information (pixels) in the image, particularly in 

the image generated using K-means, are still remaining.  

2.6 U-net-based deep learning approach 

Figure 3 illustrates the architecture of the proposed U-net model with details. The network 

consists of a contracting path and an expansive path, which gives it the U-shaped architecture. 



The contracting path is a typical convolutional network that consists of repeated convolutions, 

each followed by a rectified linear unit (ReLU) and a max-pooling operation. Dropouts have 

been used to prevent overfitting. The architecture has been optimized to obtain the best result. 

For training, NVidia’s T4 GPU from Google Collaboratory was employed. To evaluate the 

model, the most commonly used loss functions for semantic image segmentation were deployed, 

namely Binary Cross-Entropy and Dice loss function. Cross-entropy can be defined as a measure 

of the difference between two probability distributions for a given random variable or set of 

events. It is extensively used for classification problems and since segmentation is the 

classification in pixel level, cross-entropy has been widely used. Binary Cross-Entropy is defined 

as: 

𝐿𝑜𝑠𝑠𝐵𝐶𝐸(𝑦,𝑦 ) = −(𝑦log(𝑦 ) + (1 − y)log(1 − 𝑦 ))       (4) 

where y is the true value and 𝑦  is the predicted outcome. 

The Dice coefficient is a commonly used metric in computer vision problems for 

calculating the similarity between two images. In 2016, it has also been adapted as a loss 

function, namely Dice Loss [22]. 

𝐿𝑜𝑠𝑠𝐷𝑖𝑐𝑒(𝑦,𝑦 ) = 1 −
2𝑦𝑦 +1

𝑦+𝑦 +1
     (5) 

The U-net model has been trained with both models and the performance has been 

assessed using validation and test sets. Further, calculation of EF has been also evaluated using 

both aforementioned loss functions. 

a. Dataset 

A training dataset was created employing the raw microscopic videos of zebrafish containing 

800 pixel-wise annotated images. 50 videos of the lateral view from multiple 3-dpf zebrafish 

were analyzed for creating the dataset. 10 of these videos are from the TTNtv mutant line. From 

each video, 10 to 30 frames were extracted. Each training set has a frame from the video and a 

mask manually created showing only the ventricle with ImageJ software. After creating the 

masks, all image and mask sets have been organized into folders. Each set has two folders inside, 

one for the original extracted frame and the other for its corresponding mask. Finally, all sets 

were shuffled to avoid overfitting. The validation set with the 10% of the size of the data has 

been split from the dataset prior to training.   



b. Preprocessing 

In the preprocessing stage, a region of interest is defined knowing all recordings have the same 

positioning for the zebrafish. Although this cropping improves the accuracy by removing 

unnecessary information, it can be avoided to make the framework robust to different video 

types. Additionally, a sharpening filter accomplished by performing a convolution between a 

custom weighed kernel and an image is used to make edges more visible. After training, the U-

net architecture was able to predict the ventricle segment. The model has been trained several 

times by applying the mentioned image processing methods to the training images. The method 

with the best results was CLAHE thresholding which was added to the preprocessing section. 

c. Quantification of the diameters of the predicted ventricle 

The diameters of the ventricle are measured for all extracted frames automatically with contour 

tool from OpenCV (an open-source computer vision library). The maximum and minimum 

measured areas of the ventricle in different frames show the ES and ED stages, respectively. 

Using the measurement of ES and ED frames, we can calculate the ejection fraction (EF), 

fractional shortening (FS), and stroke volume (SV). Also, the time between two ES (or ED) 

frames could be used to derive heartrate (HR). The predicted ventricle is assumed to be an 

ellipsoid. For quantification of EF, the area of the ventricle can be used (Eq (3) above) by 

counting the pixels inside the predicted shape. Since the frames are 2D, we are estimating the 

ventricle volume to its area. For FS, measurements of the short axis in ES and ED frames are 

needed. As the ventricle is not a perfect ellipsoid, estimation of the short and long axes can be 

carried out in two different ways. In the first method, an ellipsoid could be fitted in the predicted 

shape and then the axis of the fitted ellipsoid would be measured. The second way is to find the 

longest line as the long axis of the estimated ellipsoid which could be found in the geometrical 

shape; then, the short axis of the ellipsoid is the short axis of the ventricle.  

d. Graphical User Interface (GUI) 

This framework was developed in Python and thus, for researchers who are not familiar with 

programming, working with it can be challenging. To address this, a Graphical User Interface 

(GUI) has been designed to provide a user-friendly interface to facilitate the process for 

researchers. Moreover, after training the U-net, the trained model can be saved which means the 

most computationally heavy part could be done only once. The GUI saves the output files in the 



CSV format, along with information about EF, FS, diameter readings of the area, short and long 

axis, and frame numbers. Therefore, the data for each video can be easily accessed at any time, 

and anywhere with the expandable cloud feature. Our ZACAF provides an end-to-end interface 

to researchers to automatically calculate, classify, and record various cardiac function indices 

reliably. ZACAF is able to work with multiple videos at the same time and output the results in 

the fraction of the time compared to that of manual segmentation. The deep learning model in the 

ZACAF can easily be updated and optimized with a new model and data.  

2.7 Quantitative comparison of approaches 

In this framework, our objective is to predict the geometrical shape identifying the ventricle with 

high accuracy in terms of its position, size, and shape with the ground truth. Since the manually 

created masks are considered as the ground truth, we would expect the predicted shape and the 

manual mask to be identical or close to them. In semantic image segmentation, the most 

commonly-used metrics include pixel-wise accuracy, Dice coefficient, and Intersection over 

Union (IoU). 

 a. Pixel-wise Accuracy  

In this work, since the mask indicating the ventricle is either white or black, there are only two 

classes so we can use the binary case of pixel accuracy. The accuracy is defined as the percent of 

pixels classified correctly as 

𝑝𝑖𝑥𝑒𝑙 − 𝑤𝑖𝑠𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑝𝑖𝑥𝑒𝑙𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

𝐴𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠
   (6) 

 b. Dice coefficient  

Dice coefficient is an extensively used indicator to elaborate the similarity of two objects. It 

ranges from 0 to 1 in which 1 means perfectly matched or completely overlapped. For a binary 

case, the coefficient is calculated as  

𝐷𝑖𝑐𝑒 = 
2 (𝐴∩𝐵) 

 𝐴 + 𝐵 
       (7) 

where A is the predicted image and B is the ground truth (manually created mask). 

 c. Intersection over union  



 
Figure 4. The proposed model’s performance plotted with the metrics commonly used in 
semantic image segmentation. a. Pixel-wise accuracy b. Dice coefficient c. IoU metric. This plot 
shows the performance of the framework with the training and validation sets during the process of 
training of the deep learning model. 

It is also known as the Jaccard Index which is simply the area of overlap between the predicted 

segmentation and the ground truth divided by the area of union between the predicted 

segmentation and the ground truth. This metric ranges from 0–1 with 0 signifying no overlap and 

1 signifying perfectly overlapping segmentation. For the binary case, it can be calculated as: 

𝐽 = 
 𝐴∩𝐵 

 𝐴∪𝐵 
      (8) 

In this work, all three of the mentioned metrics have been used to show the performance of 

the framework. 

 3. Results 

3.1 Assessment of the accuracy of the framework with the defined metrics   

The model’s performance can be seen in Figure 4. The model has been trained with two loss 

functions discussed in section 2.6 and the best results with parameter tuning are illustrated. The 

aforementioned metrics resulted in 99.1% for pixel-wise accuracy, 95.04% for Dice coefficient, 

and lastly 91.24% and for the IoU. All mentioned metrics are evaluating the best performing 

model that had a Dice loss function with an Adam optimizer and a 0.001 learning rate. 

Validation split was 10% which means 80 sets. Following the training, we visually assessed the 

framework’s ability to correctly segment ventricular chambers and also the periodic pulsating 

movement of it within series of frames of a test video. This process was used in parameter tuning 

for the deep learning model. 

3.2 Assessment of the performance of the framework for EF 



 
Figure 5. After finding and measurement of the ventricle area in ED and ES frames of 8 wild type and 
8 TTNtv mutant fish with both manual and automated methods, the results are demonstrated in a 
correlation plot. Linear relation of the measurements with slopes close to 1 shows the accuracy of the 
ZACAF. (a) ES frame area. (b) ED frame area. 

The framework was evaluated by comparing the results obtained by manual assessment of EF 

from an experienced biologist with those using the software since one of the primary purposes of 

this framework is EF calculation. In this calculation, finding the area in all frames of a video is 

important because we want to find the ED and ES areas. Hence, assessment should involve the 

series of frames in a test video rather than having random images in a validation set. For this 

reason, we assess the performance of ZACAF with EF calculation. First, 8 videos of wildtype 

zebrafish embryos and another 8 from TTNtv mutant embryos were used as the input to the 

framework. These videos are the test set and have not been used in the training. Second, manual 

processing and estimation were performed for each video to derive EF by an expert to use as the 

ground truth. The program saves the predicted ventricle masks for each and every frame of a 

video and the ED and ES frames are simply the frames with maximum and minimum area of the 

segmented ventricle respectively. After automatically finding ES and ED frames, the EF of the 

fish in the input video would be calculated and saved in a CSV file along with other indices 

calculated. The averages of absolute errors and standard deviations for the calculated EF of the 8 

wild type test videos comparing to expert’s manual calculation were 6.13% and 3.68% 

respectively. As ED and ES frames are the most important parameters to quantify cardiovascular 

indices, we plotted the correlation of the automated and manual measurements (Figure 5).  



 
 
Figure 6. Validation of U-net image segmentation framework. The sequential frames from a 
wild type zebrafish recorded video with fps of 5 are extracted. The respective ventricle mask of 
each frame is shown in each panel via manual and automatic segmentation. The area of each 
ventricle is measured and written above its own box. Considering the fps of the videos and the 
average heart rate of the zebrafish 6 consecutive frames have been shown in this figure to ensure 
having at least one full cycle. 
 
 

 

Figure 6 presents the comparison of manual and automatic segmentation of the ventricle in 6 

continuous frames to cover an entire cardiac cycle for both wild type (a) and TTNtv (b). In 

manual segmentation, measures were done using freehand selection tool in the ImageJ software.  

3.3 Comparison of video recording features  



 
Figure 7. Ventricular area over time. The area is measured by counting the number of pixels inside 
the desired shape. Comparison of the ventricle areas from a sequence of extracted frames from 5 fps, 
10 fps and 20 fps videos, respectively. Sequence of continues frames from a test video have been 
segmented automatically. The measured ventricle area in continues frames plotted with the same 
video mapped to different frame rates. a) In a TTNtv mutant video and b) in a wild-type video. 

We compare the performance of the program for input videos with different frame rates, i.e. 
frames per second or fps. Figure 7a and b show the ventricular area changes over time plotted 

for videos with 5, 10, and 20 fps for a wild type video and a TTNtv mutant video selected from 

the test set. Further, from these plots, HR and stroke volume (SV) can be simply calculated. The 

videos with different frame rates were derived from the raw recording of the camera which 

records videos with 60 fps. The purpose here was to investigate the importance of the fps value 

in assessing the indices. 

 4. Discussion 

Conventional image processing methods such as background subtraction, HBS, and edge 

detection have been widely used for segmentation showing excellent efficiency and efficacy; 

however, in this case, as can be seen in Figure 2, automatic segmentation of the ventricle is still 

not possible. Past work involving machine learning algorithms have showed promise with the 

proved semi-automatic feature, however requiring specific fluorescence videos. Our framework 



can be employed to assist researchers to quantify the cardiac functions and parameters of studied 

zebrafish with minimum manual engineering efforts. In EF derivation, counting the pixels is 

more relevant and accurate than finding the long axis which can be complicated since the 

ventricle is not a perfect ellipse. Further, the tool that most researchers use in the ImageJ 

software is a freehand ruler which could introduce inaccuracy, especially with the small size of 

heart chambers. 

Additionally, manual segmentation is not consistent. Segmentation of the ventricle in these 

videos is a very difficult task even manually. The small size, ambiguous edges, and partial 

obstruction of the heart in the videos can also add complication to manual detection. We have 

investigated this quantitatively. We asked two experts to segment and measure the area of the 

ventricle in single frames of 12 sample videos. They were instructed to do the measurement 

twice for each frame manually with a short break between each try. The results were 12 frames 

each measured 4 times. The standard deviation for each frame measurement was calculated and 

the average of standard deviations of the measurements in these 12 frames was about 150 pixels 

with 50 pixels standard deviation. This is approximately 8% of an average size ventricular area 

in our setting’s scale. This shows the inconsistency in the manual segmentation. This could be 

especially significant with mutant embryos whose EF is usually very small. In most cases of the 

TTNtv videos, the difference of the area in the ED and ES frames is between 100 to 300 pixels 

(considering the resolution of the videos used in this work). However, due to the nature of neural 

networks, ZACAF is consistent which means that measurement of a frame multiple times will 

always result in only one consistent measurement. 

 It is noteworthy to mention since the ground truth is created using the same frames for 

segmentation of the ventricle, the frame rate is less important in comparing manual and 

automatic segmentation. The ES and ED frames are the most important frames when it comes to 

quantification of parameters like HR, EF, and FS. While recording the videos, the shutter of the 

camera takes a sequence of images with a certain fps. The higher the fps of the video, the higher 

chance for exact ES and ED stages being recorded. This fact cannot be proved using the metrics 

because the prediction is only being compared with the existing manually segmented ground 

truth and if the low fps causes the loss of ED or ES frames, there is no way to show it with the 

metrics. However, Figure 7 shows the importance of the higher frame rate in exporting useful 

information, such as heartrate, and strove volume with a much better accuracy. It suggests the 



 
Figure 8. Comparison of the shape and size of wildtype (a) and TTNtv mutant zebrafish 
(b). Besides the abnormal shape of the heart with the swollen ventricular wall, the smaller 
size of the ventricle is also found with TTNtv mutants. Further, the swollen chest can be also 
noticed. 

optimal number of fps to configure settings. Higher frame rates will result in bigger video file 

sizes, while low frame rate reduces the probability of identifying ED and ES frames. As seen in 

Figure 7a, a higher frame rate is particularly important with mutants since the EF is small. 

From the segmentation point of view, there are two major differences between the mutant 

and wildtype fish. The ventricle and the heart in general have abnormal shapes in a number of 

mutant types. In our case here, EF is much lower in the TTNtv model as the shape as well as the 

contractility are significantly affected. Thus, the ventricle area difference in ES and ED frames in 

TTNtv mutants is very low. Figure 8 provides examples to compare wild and TTNtv zebrafish. 

In some cases, the ventricle is barely beating in a way that the area difference in ED and ES 

frames is lower than the segmentation error. In other word, the area of the ventricle barely 

changes to the point that occasionally the nominator of the formula of EF is lower than the 

estimation error. That is the main source for the inaccuracies with the TTNtv mutants and further 

improvements of preprocessing or optimization of the framework will not affect the result with 

the mutant significantly. The videos used in this work have low resolution (data rate of 2500 

kbps), in order to demonstrate the capability of our framework. Although this is beneficial for 

researchers to reduce required storage capacity, higher resolution would help resolve this issue, 



thus improving the robustness and accuracy for TTNtv mutant and wildtype fish in general.  

The novelty of our supervised learning-based ZACAF lies in the automatic feature and 

the robustness in working with black and white videos at different configurations (i.e. frame 

rate). The first novelty was demonstrated as creating mask and training can be carried out only 

once then ZACAF can be run easily by a non-expert person. The second novelty possesses 

several broader impacts. First, the versatility to work with regular bright field microscopic videos 

would make ZACAF widely accepted by the research community. Second, the capability to work 

with monochrome low fps videos would help save storage space when thousands or more videos 

are used. Resolution and frame rate of the videos have a direct connection with the size of them; 

thus, it is useful to find out the minimum required video quality. In our work, videos with 

resolution of 640×404 pixels, a frame rate of 5 fps, and a data rate of 2500 kbps would have a 

file size of about 5 megabytes for a 20-second video. It is evident that improving the resolution 

will increase the accuracy and robustness of the framework. This also helps reduce the 

processing time as well as increase the accuracy and robustness; and thus, enabling big scale 

projects involving multiple research groups. 

For future work, we plan to not only improve the deep learning model in our ZACAF, but 

also include additional information in the output. It is straightforward to improve the accuracy of 

the deep learning model by adding more labeled data to its training dataset. The GUI can be 

improved in a way so the framework can process multiple videos simultaneously. We also plan 

to improve our framework for 3-D segmentation of the ventricle. Using the same state of the art 

with z-stack images of the heart sequentially recorded from the beating heart as the input allows 

for a 3-D segmentation of the ventricle over time. This is important because it would further 

avoid estimation and improve the overall accuracy significantly. 

 5. Conclusions 

In this work, a framework, namely ZACAF has been developed to automatically segments the 

beating ventricle of zebrafish embryos from microscopic videos. The employed U-net deep 

learning algorithm was evaluated with wildtype and cardiomyopathy mutant fish (TTNtv) using 

three metrics and favorable accuracy was achieved. Our framework would help enable and 

accelerate numerous biological studies in cardiology and developmental biology using the 

zebrafish model. Moreover, as the work is being improved, it could be utilized with other animal 



models and even humans, and with different imaging techniques such as ultrasound or MRI 

imaging. Ultimately, this automated system could be translated for use not only in processing 

and machine learning-based analysis of various physiological parameters to support studies and 

disease diagnosis but also in manufacturing and automation.  
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