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Abstract

The coefficients of the generating function (q; q)α∞ produce pα(n) for α ∈ Q. In par-
ticular, when α = −1, the partition function is obtained. Recently, Chan and Wang
studied congruences for pα(n) and gave several infinite families of congruences of
the form pα(`n+ c) ≡ 0 (mod `) for primes ` and integers c. Expanding upon their
work, given adequate α, we use the lacunarity of the powers of the Dedekind-eta
function to raise the modulus of Chan and Wang’s congruences to higher powers of
`. In addition, we generate new infinite classes of congruences through the multi-
plicative properties of the coefficients of Hecke eigenforms. This allows us to prove
new families of congruences such as: p− 1

8
(72n+ 5) ≡ 0 (mod 72).

1. Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive

integers that sum to n. Per usual, let p(n) denote the number of distinct ways to

partition n. Euler discovered the generating function of the partition function to

be:

P (q) :=

∞∑
n=0

p(n)qn =
1

(q; q)∞
,

where (q; q)∞ :=
∏∞
n=1(1− qn) is the q-Pochhammer symbol, defined for |q| < 1.

Ramanujan observed and proved congruences in p(n) for n in special arithmetic

progressions.

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

In addition, Ramanujan conjectured that for all powers of ` ∈ {5, 7, 11}, there

exists a class of congruences in which the common difference of the arithmetic

progression and the modulus share the same power of `. His conjecture was proven
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to be false when Chowla and Gupta [6] discovered 73 to be a counterexample.

Nonetheless, a slight modification of the conjecture was proven to hold true by Atkin

[2] and Watson [8]: for any k ∈ Z+ and a prime ` ∈ {5, 7, 11}, when r`,k ≡ 1/24

(mod `k), we have for all n that

p(5kn+ r5,k) ≡ 0 (mod 5k),

p(7kn+ r7,k) ≡ 0 (mod 7bk/2c+1),

p(11kn+ r11,k) ≡ 0 (mod 11k).

When the condition that the common difference of the arithmetic sequence and

the modulus have to be the powers of the same prime is relaxed, many more con-

gruences are present. In fact, Ono and Ahlgren [1] proved that for all integers L

co-prime to 6, there exist A,B ∈ Z such that for all n, p(An+B) ≡ 0 (mod L).

The continued search for congruence relations in the partition function led to

the search of congruence relations in fractional partition functions. The fractional

partition function is the generating function of the usual partition function raised

to the power of −α ∈ Q. Throughout this paper, we let α = a
b where α is a fraction

written in lowest terms with a positive denominator. Let

Pα(q) := (q; q)α∞ :=

∞∑
n=0

pα(n)qn.

We set pα(n) := 0 for n < 0. Unlike p(n) that are integral, pα(n) is a non-integral

rational number for most choices of n and α. Chan and Wang [4] addressed this

issue in the context of congruences (Theorem 1.1 of [4]) by showing that that pα(n)

are `-integral for any prime ` - b.
In addition, Chan and Wang (Theorem 1.2 of [4]) displayed infinite families of

congruences for fractional partition functions, making use of the previously-known,

explicit expressions of the coefficients of (q; q)d∞ for d ∈ {1, 3, 4, 6, 8, 10, 14, 26}.

Theorem 1. (Cf. [4, Theorem 1.2]) Supposed that α ∈ Q and d, r ∈ Z are given.

Let ` denote a prime such that ` | a− db. If d, r, and ` satisfy one of the following

conditions:

1. d = 1 and ( 24r+1
` ) = −1;

2. d = 3 and ( 8r+1
` ) 6= 1;

3. d ∈ {4, 8, 14}, ` ≡ 5 (mod 6) and ` | 24r + d;

4. d ∈ {6, 10}, ` ≥ 7, ` ≡ 3 (mod 4) and ` | 24r + d;

5. d = 26, ` ≡ 11 (mod 12) and ` | 24r + d,

then, for all n, we have that pα(`n+ r) ≡ 0 (mod `).
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Notice that for each d ∈ {4, 6, 8, 10, 14, 26}, there are conditions imposed on `

independent of the choices of α and r. For example, when d ∈ {6, 10}, it is required

that ` ≥ 7 and that ` ≡ 3 (mod 4). For each d, we define a prime ` to be d-

satisfactory if ` satisfies such exact conditions, except that we additionally exclude

5 from the list of 14-satisfactory primes and 11 from the list of 26-satisfactory

primes.

It is natural to ask about the significance of the list of d in Chan and Wang’s

theorem. This brings us to a result by Serre [7] on Dedekind eta-functions, defined

as η(τ) := q1/24(q; q)∞ for q := e2πiτ . Recall that a Fourier expansion
∑∞
n=0 a(n)qn

is lacunary if

lim
N→∞

#{n ≤ N : a(n) = 0}
N

= 1.

In 1985, Serre [7] proved that η(τ)d is lacunary for d ∈ 2Z if and only if d ∈
{2, 4, 6, 8, 10, 14, 26}. In addition, Serre provided explicit ways of writing such lacu-

nary η powers as linear combinations of Hecke eigenforms.

In Theorem 2, we make use of Serre’s results on the lacunarity of η powers and

raise the power of ` in the modulus of Chan and Wang’s congruences to ord`(α−d).

In other words, given our choice of α, the power of ` in the modulus can be arbitrarily

high.

Theorem 2. For d ∈ {4, 6, 8, 10, 14, 26}, let ` be a d-satisfactory prime. If r

satisfies ord`(
24

gcd(d,24)r + d
gcd(d,24) ) = 1, then, we have for all n that

pα(`2n+ r) ≡ 0 (mod `ord`(α−d)).

Remark. Although 5 and 11 were removed from the list of 14 and 26−satisfactory

primes, a modified statement of Theorem 2–that is, the power of ` in the modulus is

not ord`(α−d), but instead is ord`(α−d)−1 and ord`(α−d)−2, respectively–holds

true for such choices of d and ` (see Section 2.2).

Example. We demonstrate an example and show that for certain choices of α, r, d,

and `, the power of ` in the modulus given by Theorem 2 is sharp. Let ` = 7 and

d = 6. ` is 6−satisfactory because ` ≥ 7 and ` ≡ 3 (mod 4). In addition, we let

r = 5 as ord7(4 · 5 + 1) = 1. Now, let α = − 1
8 . Since ord7(− 1

8 − 6) = 2, we conclude

from Theorem 2 that

p− 1
8
(72n+ 5) ≡ 0 (mod 72).

The power of 7 in the modulus given by Theorem 2 is sharp in this case because

p− 1
8
(72 · 0 + 5) = p− 1

8
(5) ≡ 55615

262144
6≡ 0 (mod 73).

It is also conspicuous that while many integers in Chan and Wang’s list and

Serre’s list coincide, d = 2 is missing from Chan and Wang’s list. We cover this
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case in Theorem 3 by showing that a slightly weaker statement of Theorem 2 holds

true for d = 2. We define a prime ` to be 2-satisfactory if ` 6≡ 1 (mod 12).

Theorem 3. For d = 2, let ` be a 2-satisfactory prime. If r satisfies ord`(12r+1) =

1, then, we have for all n that

pα(`2n+ r) ≡ 0 (mod `ord`(α−2)−1).

Example. We once again give an example and show that for certain choices of α,

r, and `, the power of ` in the modulus given by Theorem 3 is sharp. Let ` = 5,

a 2-satisfactory prime as ` 6≡ 1 (mod 12). Let α = 1
13 . Since ord5( 1

13 − 2) = 2, it

follows from Theorem 3 that

p 1
13

(52n+ 7) ≡ 0 (mod 51).

The power of 5 in the modulus given by Theorem 3 is sharp in this case because

p 1
13

(52 · 0 + 7) = p 1
13

(7) ≡ − 3395395

62748517
6≡ 0 (mod 52).

Theorem 2 and Theorem 3 rely heavily on the lacunarity of the corresponding

η powers (see Section 3). For d = 2, however, adequate choices of arithmetic

progressions along the coefficients of η(12τ)2 produce sequences with elements that

are not uniformly 0, but are nonetheless the multiples of the same prime power.

This leads us to our final theorem.

Theorem 4. For d = 2, fix a prime ` and v ∈ Z+. Then, there exists a finite

w ∈ Z+ such that when ord`(α− 2) = v+w and ord`(12r+ 1) = w, we have for all

n that

pα(`w+1n+ r) ≡ 0 (mod `v).

Remark. The significance of Theorem 4 is that we may drop the 2-satisfactory

condition. If ` is 2-satisfactory, Theorems 3 and 4 give the same congruences.

Example. We provide an example that is not covered by Theorem 3 by choosing

an ` that is not 2-satisfactory. One such prime is ` = 13, and we let v = 1.

Then, we show that w = 12 is a valid choice of w (see Lemma 4). Computation

on Mathematica shows that a2(1) = 1 and a2(13) = −2. Now, setting ` = 13 in

Equation (14) gives that a2(13k) = (−1)k+1(k + 1) for k ∈ Z+. In particular, we

have that a2(1312) ≡ 0 (mod 13). We let r = 11·1312−1
12 , since ord13(12 · 11·13

12−1
12 +

1) = 12. In addition, note that for α = a
b such that a = 1 and b = 1313+1

2 ,

ord`(α− 2) = ord`(
2

1313+1 − 2) = ord`(
−2·1313
1313+1 ) = 13. Thus, for such α, Theorem 4

gives for all n that

pα(1313 · n+
11 · 1312 − 1

12
) ≡ 0 (mod 131).
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2. Preliminaries

2.1. Modular Forms

These facts are well-known and can be found in any standard text, such as [6].

First, we define the Eisenstein series that describes modular forms. To do so, we

define the divisor function σk−1(n) for positive integers k:

σk−1(n) :=
∑

1≤d|n

dk−1.

Now, recall that all modular forms of SL2(Z) are generated by E4(τ) and E6(τ)

where:

E4(τ) = 1 + 240

∞∑
n=1

σ3(n)qn and

E6(τ) = 1− 504

∞∑
n=1

σ5(n)qn.

Next, we define the congruence subgroup of SL2(Z) of level N , denoted by Γ0(N):

Γ0(N) =
{( a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

In addition, we let Mk(Γ0(N)) refer to the complex vector space of modular

forms of weight k with respect to Γ0(N). If χ is a Dirichlet character modulo N ,

we say that a modular function f(τ) ∈ Mk(Γ0(N)) has a Nebentypus character χ

if for all τ ∈ H and for all

(
a b
c d

)
∈ Γ0(N),

f(
aτ + b

cτ + d
) = χ(d)(cτ + d)kf(τ).

The space formed by such modular forms is referred to as Mk(Γ0(N), χ). Addition-

ally, we note that the mth Hecke operator for m ∈ Z+, Tm,k,χ, is an endomorphism

on Mk. Its action on a Fourier expansion f(τ) =
∑∞
n=0 a(n)qn is illustrated by the

formula:

f(τ) | Tm,k,χ =

∞∑
n=0

 ∑
δ|(m,n)

χ(δ)δk−1a(mn/δ2)

 qn.

When m = ` is a prime, the expression reduces to

f(τ) | T`,k,χ =

∞∑
n=0

(
a(`n) + χ(`)`k−1a(n/`)

)
qn,
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where a(n` ) = 0 for ` - n. Recall that a modular form f(τ) ∈ Mk(Γ0(N), χ) is a

Hecke eigenform if it is an eigenvector of Tm,k,χ for all m ≥ 1, i.e., if there exists a

λ(m) ∈ C such that

f(τ) | Tm,k = λ(m)f(τ).

In particular, if a(1) = 1, then we consider f(τ) to be normalized. This defi-

nition naturally leads us to the following lemma. The proof of this lemma follows

immediately from the definitions.

Lemma 1. Suppose that f(τ) =
∑∞
n=0 a(n)qn ∈ Mk(Γ0(N), χ) is a normalized

cuspidal Hecke eigenform. Then, it follows that

a(n)a(`) = a(n`) + χ(`)`k−1a(
n

`
).

2.2. On the Powers of the Dedekind Eta Function

The Dedekind eta function is defined as η(τ) := q1/24(q; q)∞ for q := e2πiτ . It is

known by Martin [5] that η(τ)d for d ∈ {1, 2, 3, 4, 6, 8, 12, 24} are Hecke eigenforms.

In addition, Carney, Etropolski, and Pitman (Lemma 2.2 of [3]) characterized χ(d)

for each η(τ)d.

Lemma 2. χ(d) for η(τ)d for d ∈ Z is

χ(d) :=


( (−1)

d
2

· ) if d ∈ 2Z
( 12
· ) if d 6∈ 2Z ∪ 3Z

(−4· ) d ∈ 3Z \ 2Z.

In 1985, Serre [7] proved that η(τ)d for d ∈ 2Z is lacunary if and only if d ∈
{2, 4, 6, 8, 10, 14, 26}. Additionally, for each of such d, he presented explicit ways

to write η( 24
gcd(d,24)τ)d in linear combinations of Hecke eigenforms. The expression

24
gcd(d,24) , multiplied to τ , ensures that η( 24

gcd(d,24)τ)d is an expression of integral

powers of q. As the specifics of these formulae play an integral role in proving our

results, we list the formulae. In addition, we note that throughout the paper, we

denote η( 24
gcd(d,24)τ)d =

∑∞
n=0 ad(n)qn.

If d ∈ {2, 4, 6, 8, 12}, η(τ)d are Hecke eigenforms themselves. For d = 10, η(12τ)10

can be written as a linear combination of two Hecke eigenforms, E4(12τ)η(12τ)2 ±
48η(12τ)10. We have

η10(12τ) =
1

96
((E4(12τ)η(12τ)2 + 48η(12τ)10)

−(E4(12τ)η(12τ)2 − 48η(12τ)10)).
(1)

Note that because 10-satisfactory primes ` are co-prime with 96, the factor of 1
96

does not interfere with divisibility modulo `.
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Similarly, η(12τ)14 is a linear combination of two Hecke eigenforms, namely,

E6(12τ)η(12τ)2 ± 360
√
−3η(12τ)14. We have

η(12τ)14 =
1

720
√
−3

((E6(12τ)η(12τ)2 + 360
√
−3η(12τ)14)

− (E6(12τ)η(12τ)2 − 360
√
−3η(12τ)14)).

(2)

We remove 5 from the list of 14-satisfactory primes, because the constant factor of
1

720 divides out a factor of 5 from the numerator.

For d = 26, η(12τ)26 can be written as a linear sum of four Hecke eigenforms,

specifically, E2
6(12τ)η(12τ)2 + 9398592η(12τ)26 ± 102960

√
−3E6(12τ)η(12τ)14 and

E2
6(12τ)η(12τ)2 − 6910272η(12τ)26 ± 20592E8(12τ)η(12τ)10. We have

η(12τ)26 =
1

32617728
((E2

6(12τ)η(12τ)2 + 9398592η(12τ)26

+ 102960
√
−3E6(12τ)η(12τ)14) + (E2

6(12τ)η(12τ)2

+ 9398592η(12τ)26 − 102960
√
−3E6(12τ)η(12τ)14)

− (E2
6(12τ)η(12τ)2 − 6910272η(12τ)26 + 20592E8(12τ)η(12τ)10)

− (E2
6(12τ)η(12τ)2 − 6910272η(12τ)26 − 20592E8(12τ)η(12τ)10)).

(3)

For the same reason that we removed 5 from the list of 14-satisfactory primes, we

remove 11 from the list of 26-satisfactory primes.

2.3. Preliminary Results

We state two key results by Chan and Wang [4]. The first result (Theorem 1.1 of

[4]) identifies the congruences that are meaningful to study.

Theorem 5. When written in lowest terms, we have that

denom(pα(n)) = bn
∏
p|b

pordp(n!).

In other words, denom(pα(n)) is `-integral for any prime ` - b. We thus conclude

that for a given rational number α, whenever gcd(`, b) = 1, congruences modulo `

and its powers are well-defined.

The second result is a technical lemma (Lemma 2.1 of [4]) resulting from Frobe-

nius endomorphism. This lemma allows us to move exponents through q-Pochhammer

symbols, a crucial step in the proofs of our main results.

Lemma 3. Let ` be a prime such that ` - b as usual. Then, for any r ≥ 1, we have

that

(q; q)`
rα
∞ ≡ (q`; q`)`

r−1α
∞ (mod `r).
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3. Proofs of the Main Results

Proof of Theorem 2. We work out the case of d = 4. Similar conclusions can be

made about d = 6 and 8 by following the same steps. For simplicity, we write

v := ord`(α− 4) such that α− 4 = `vu for some u ∈ Z(`). First, we relate pα(n) to

η(6τ)4 using the q-Pochhammer symbol. We have that

∞∑
n=0

pα(n)q6n+1 = q(q6; q6)α∞ = q(q6; q6)`
vu+4
∞

= q(q6; q6)4∞(q6; q6)`
vu
∞ = η(6τ)4(q6; q6)`

vu
∞ .

(4)

Now, applying Lemma 3, we have that

∞∑
n=0

pα(n)q6n+1 = η(6τ)4(q6; q6)`
vu
∞ ≡ η(6τ)4(q6`; q6`)`

v−1u
∞ (mod `v). (5)

Recall that η(6τ)4 =
∑∞
n=0 a4(n)qn, and let r0 denote the smallest positive

integer such that 6r0 + 1 ≡ 0 (mod `). Extracting the terms of the form q`n from

both sides of Equation (5) and replacing q` with q, we arrive at

∞∑
n=0

pα(`n+ r0)q6n+
6r0+1

` ≡
∞∑
n=0

a4(`n)qn · (q6; q6)`
v−1u
∞ (mod `v). (6)

Since ` is 4-satisfactory and because 6r0 + 1 ≡ 0 (mod `), it follows from Theo-

rem 1 that pα(`n+ r0) ≡ 0 (mod `). This allows us to divide each side of Equation

(6) by `. We now have that

1

`
·
∞∑
n=0

pα(`n+ r0)q6n+
6r0+1

` ≡ 1

`
·
∞∑
n=0

a4(`n)qn · (q6; q6)`
v−1u
∞ (mod `v−1). (7)

We apply Lemma 3 again and deduce that

1

`
·
∞∑
n=0

pα(`n+ r0)q6n+
6r0+1

` ≡ 1

`
·
∞∑
n=0

a4(`n)qn · (q6`; q6`)`
v−2u
∞ (mod `v−1). (8)

Multiply ` back on both sides of Equation (8) to arrive at

∞∑
n=0

pα(`n+ r0)q6n+
6r0+1

` ≡
∞∑
n=0

a4(`n)qn · (q6`; q6`)`
v−2u
∞ (mod `v). (9)

Recall that η(6τ)4

q is expression of q6. As a result, a4(`) = 0 for ` ≡ 5 (mod 6). In

addition, because η(6τ)4 is a normalized Hecke eigenform, it follows from Lemma 1

that it has multiplicative coefficients for co-prime indices, i.e., for any k ∈ Z(`), we

have that a4(`k) = 0.
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Finally, we extract the terms of the form q`n+
6r+1

` from each side of Equation

(9). Because ord`(6r + 1) = 1, 6r+1
` ∈ Z(`), and so, the right-hand side reduces to

0. Therefore, we arrive at the desired conclusion, i.e., that

pα(`2n+ r) ≡ 0 (mod `v).

Next, we work out the case of d = 10. Similar arguments can be made about

d = 14 and 26. Our initial steps are nearly analogous to that of d = 4. We once

again start by writing v := ord`(α− 10) such that α− 10 = `vu for some u ∈ Z(`).

We also define r0 to be the smallest positive integer such that 12r0 +5 ≡ 0 (mod `).

We eventually arrive at the analogue of Equation (9), which is that

∞∑
n=0

pα(`n+ r0)q12n+
12r0+5

` ≡
∞∑
n=0

a10(`n)qn · (q12`; q12`)`
v−2u
∞ (mod `v). (10)

Recall from Equation (1) that we can write η(12τ)10 as linear combinations of

two Hecke eigenforms. We have that

η(12τ)10 =
1

96
((E4(12τ)η(12τ)2 + 48η(12τ)10)− (E4(12τ)η(12τ)2 − 48η(12τ)10)).

Each of E4(12τ), η(12τ)
2

q , and η(12τ)10

q on the right-hand side of Equation (1) are

expressions of q4. As a result, for 10-satisfactory primes `, the `th coefficient in

both eigenforms of Equation (1) are 0. It follows from Lemma 1 that a10(`k) = 0

for k ∈ Z`.
We extract the terms of the form q`n+

12r+5
` from each side of Equation (10). Once

again, because ord`(12r+ 5) = 1, ord`(`n+ 12r+5
` ) = 0, and so, the right-hand side

reduces to 0. Thus, we arrive at the desired conclusion that

pα(`2n+ r) ≡ 0 (mod `v).

Proof of Theorem 3. The initial steps closely mimic those of the proof of Theorem 2.

For convenience, we write that v + 1 := ord`(α − 2) such that α − 2 = `v+1u for

some u ∈ Z(`). We relate pα(n) with η(12τ)2 through the following steps. Then, we

have that

∞∑
n=0

pα(n)q12n+1 = q(q12; q12)α∞ = q(q12; q12)`
v+1u+2
∞

= q(q12; q12)2∞(q12; q12)`
v+1u
∞ = η(12τ)2(q12; q12)`

v+1u
∞ .

(11)

Now, applying Lemma 3 twice, we have that

∞∑
n=0

pα(n)q12n+1 = η(12τ)2(q12; q12)`
v+1u
∞

≡ η(12τ)2(q12`
2

; q12`
2

)`
v−1u
∞ (mod `v).

(12)
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We rewrite Equation (12) into

∞∑
n=0

pα(n)q12n+1 ≡
∞∑
n=0

a2(n)qn · (q12`
2

; q12`
2

)`
v−1u
∞ (mod `v). (13)

Since η(12τ)2

q is an expression of q12, a2(`) = 0 for 2-satisfactory primes `. And once

again, since η(12τ)2 is a cuspidal Hecke eigenform, its coefficients are multiplicative

among co-prime indices. Therefore, for k ∈ Z(`), we have that a2(`k) = 0.

Finally, we extract the terms of the form q`
2n+12r+1 from each side. We notice

that the right-hand side reduces to 0 as ord`(12r+ 1) = 1 and arrive at the desired

conclusion that

pα(`2n+ r) ≡ 0 (mod `v).

Before diving into the proof of Theorem 4, we prove an auxiliary lemma.

Lemma 4. Given a fixed prime ` and v ∈ Z+, there exists a w ∈ Z+ such that

w < `2v and

a2(`w) ≡ 0 (mod `v).

Proof of Lemma 4. Because η(12τ)2

q is an expression in terms of q12, the statement

holds true for w = 1 when ` is 2-satisfactory.

Let ` be a prime that is not 2-satisfactory. We let n = `i for i ∈ Z+ in Lemma 1.

Because χ(2) = 1 from Lemma 2, it follows that

a2(`i+1) = a2(`i)a2(`)− a2(`i−1). (14)

Equation (14) displays a recursion on the sequence of a2(`i) for i ∈ Z+ ∪ {0}.
Notice that the sequence is periodic with respect to modulo `v due to the pigeon

hole principle. It follows that the length of the period is at most `2v, and we let

s ≤ `2v denote the length of the period.

Moreover, it can be observed that the period begins at a2(1). To prove this,

assume for the sake of contradiction that the period does not begin at a2(1). We let

the first term of the period be a2(`c) for some c > 0. Then, rearranging Equation

(14) and letting k = c+ 1 gives

a2(`c−1) ≡ a2(`c)a2(`)− a2(`c+1)

≡ a2(`c+s)a2(`)− a2(`c+s+1) ≡ a2(`c+s−1) (mod `v).
(15)

This is contradictory to our assumption that a2(`c) is the first term of the period.

Thus, we conclude that the period begins at a2(1).

Now, notice that

a2(`s−1) ≡ a2(`s)a2(`)− a2(`s+1) ≡ a2(`0)a2(`)− a2(`1) ≡ 0 (mod `v).

As a2(1) = 1, setting w = s − 1 in the statement of the lemma completes the

proof.
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Proof of Theorem 4. We choose w such that a2(`w) ≡ 0 (mod `v), which we know

exists by Lemma 4. Write α− 2 = `v+wu for some u ∈ Z(`). It follows that
∞∑
n=0

pα(n)q12n+1 = q(q12; q12)α∞ = q(q12; q12)`
v+wu+2
∞

= q(q12; q12)2∞(q12; q12)`
v+wu
∞ = η(12τ)2(q12; q12)`

v+wu
∞ .

(16)

Apply Lemma 3 w + 1 times to arrive at

∞∑
n=0

pα(n)q12n+1 = η(12τ)2(q12; q12)`
w+vu
∞

≡ η(12τ)2(q12`
w+1

; q12`
w+1

)`
v−1u
∞ (mod `v).

(17)

Since η(12τ)2 is a cuspidal Hecke eigenform, we have that a2(`wk) ≡ 0 (mod `v)

for all k ∈ Z(`). As ord`(12r+1) = w, extracting the terms of the form q`
w+1n+12r+1

from both sides of Equation (17) gives for all n that

pα(`w+1n+ r) ≡ 0 (mod `v).
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