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Abstract
The coeflicients of the generating function (g; ¢)%, produce p,(n) for a € Q. In par-
ticular, when o = —1, the partition function is obtained. Recently, Chan and Wang

studied congruences for p,(n) and gave several infinite families of congruences of
the form p,(¢n+c¢) =0 (mod ¢) for primes ¢ and integers ¢. Expanding upon their
work, given adequate a, we use the lacunarity of the powers of the Dedekind-eta
function to raise the modulus of Chan and Wang’s congruences to higher powers of
£. In addition, we generate new infinite classes of congruences through the multi-
plicative properties of the coefficients of Hecke eigenforms. This allows us to prove
new families of congruences such as: p_1 (7?n+5) =0 (mod 7?).

1. Introduction

A partition of a non-negative integer n is a non-increasing sequence of positive
integers that sum to n. Per usual, let p(n) denote the number of distinct ways to
partition n. Euler discovered the generating function of the partition function to
be:

1

(49

P(q) = p(n)g" = ,
n=0
where (¢; ¢)oo := [[,—;(1 — ¢™) is the g-Pochhammer symbol, defined for |q| < 1.
Ramanujan observed and proved congruences in p(n) for n in special arithmetic
progressions.
p(bn+4) =0 (mod 5),

p(Tn+5)=0 (mod 7),
p(lln+6) =0 (mod 11).

In addition, Ramanujan conjectured that for all powers of ¢ € {5,7,11}, there
exists a class of congruences in which the common difference of the arithmetic
progression and the modulus share the same power of £. His conjecture was proven
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to be false when Chowla and Gupta [6] discovered 73 to be a counterexample.
Nonetheless, a slight modification of the conjecture was proven to hold true by Atkin
[2] and Watson [8]: for any k € ZT and a prime ¢ € {5,7,11}, when ry; = 1/24
(mod £*), we have for all n that

p(5kn +r5,) =0 (mod 5k),
p(7Fn + r7r) =0 (mod 7““/2J+1),
p(11* n + 711 5) =0 (mod 11%).

When the condition that the common difference of the arithmetic sequence and
the modulus have to be the powers of the same prime is relaxed, many more con-
gruences are present. In fact, Ono and Ahlgren [1] proved that for all integers L
co-prime to 6, there exist A, B € Z such that for all n, p(An + B) =0 (mod L).

The continued search for congruence relations in the partition function led to
the search of congruence relations in fractional partition functions. The fractional
partition function is the generating function of the usual partition function raised
to the power of —a € Q. Throughout this paper, we let a = 3 where « is a fraction
written in lowest terms with a positive denominator. Let

Palq) == (9% == Y pa(n)g™
n=0

We set po(n) := 0 for n < 0. Unlike p(n) that are integral, p,(n) is a non-integral
rational number for most choices of n and . Chan and Wang [4] addressed this
issue in the context of congruences (Theorem 1.1 of [4]) by showing that that p,(n)
are (-integral for any prime £ 1 b.

In addition, Chan and Wang (Theorem 1.2 of [4]) displayed infinite families of
congruences for fractional partition functions, making use of the previously-known,
explicit expressions of the coefficients of (¢; ¢)% for d € {1,3,4,6,8,10,14,26}.

Theorem 1. (Cf. [}, Theorem 1.2]) Supposed that o € Q and d,r € Z are given.
Let ¢ denote a prime such that £ | a — db. If d,r, and ¢ satisfy one of the following
conditions:

1. d=1 and (2H) = —1;

2. d=3 and (¥) # 1;

3. de{4,8,14}, £ =5 (mod 6) and £ | 24r + d;

4. de{6,10}, £>7,£=3 (mod 4) and ¢ | 24r + d;
5. d=26, (=11 (mod 12) and ¢ | 24r +d,

then, for all n, we have that po,(dn+ 1) =0 (mod ¢).
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Notice that for each d € {4,6,8,10,14, 26}, there are conditions imposed on ¢
independent of the choices of « and r. For example, when d € {6, 10}, it is required
that ¢ > 7 and that £ = 3 (mod 4). For each d, we define a prime £ to be d-
satisfactory if £ satisfies such exact conditions, except that we additionally exclude
5 from the list of 14-satisfactory primes and 11 from the list of 26-satisfactory
primes.

It is natural to ask about the significance of the list of d in Chan and Wang’s
theorem. This brings us to a result by Serre [7] on Dedekind eta-functions, defined
as n(7) := ¢*/?**(¢; ¢)oo for q := ™7 Recall that a Fourier expansion > oo ;a(n)q"

is lacunary if
< : —
I #{n < N :a(n) =0}

=1.
N —oc0 N

In 1985, Serre [7] proved that n(7)? is lacunary for d € 27 if and only if d €
{2,4,6,8,10,14,26}. In addition, Serre provided explicit ways of writing such lacu-
nary 7 powers as linear combinations of Hecke eigenforms.

In Theorem 2, we make use of Serre’s results on the lacunarity of 7 powers and
raise the power of ¢ in the modulus of Chan and Wang’s congruences to ord;(a—d).
In other words, given our choice of «, the power of £ in the modulus can be arbitrarily
high.

Theorem 2. For d € {4,6,8,10,14,26}, let ¢ be a d-satisfactory prime. If r
satisfies 07’d(g(gcd(2;ll 57+ gcd(‘é 24)) =1, then, we have for all n that

Pa(PPn+7)=0 (mod ¢ordela=d),

Remark. Although 5 and 11 were removed from the list of 14 and 26— satisfactory
primes, a modified statement of Theorem 2—that is, the power of £ in the modulus is
not ordy(a—d), but instead is ord;(cv—d) — 1 and ordy(a—d) — 2, respectively—holds
true for such choices of d and ¢ (see Section 2.2).

Example. We demonstrate an example and show that for certain choices of o, r, d,
and /¢, the power of £ in the modulus given by Theorem 2 is sharp. Let £ = 7 and
d = 6. ¢ is 6—satisfactory because £ > 7 and ¢ = 3 (mod 4). In addition, we let
r=5asords(4-5+1) = 1. Now, let & = —3. Since ord;(—3 — 6) = 2, we conclude
from Theorem 2 that

p_1(7*n+5)=0 (mod 7?).

ool

The power of 7 in the modulus given by Theorem 2 is sharp in this case because

1
(ﬂ'0+5):p_4®‘*5M35

— 3
t0) = 35140 70 (mod 7).

b_

ool

It is also conspicuous that while many integers in Chan and Wang’s list and
Serre’s list coincide, d = 2 is missing from Chan and Wang’s list. We cover this
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case in Theorem 3 by showing that a slightly weaker statement of Theorem 2 holds
true for d = 2. We define a prime ¢ to be 2-satisfactory if £ Z 1 (mod 12).

Theorem 3. Ford = 2, let £ be a 2-satisfactory prime. Ifr satisfies ordy(12r+1) =
1, then, we have for all n that

pa(PPn+7)=0 (mod (ordela=2)=1y

Example. We once again give an example and show that for certain choices of «,
r, and ¢, the power of ¢ in the modulus given by Theorem 3 is sharp. Let £ = 5,
a 2-satisfactory prime as £ # 1 (mod 12). Let a = {5. Since ords(15 — 2) = 2, it
follows from Theorem 3 that

pa(5*n+7)=0 (mod5").

1
13
The power of 5 in the modulus given by Theorem 3 is sharp in this case because

3395395

52.047
& +7) = 62748517

(7)) =— #0 (mod 5%).

pL
i3

w""

Theorem 2 and Theorem 3 rely heavily on the lacunarity of the corresponding
n powers (see Section 3). For d = 2, however, adequate choices of arithmetic
progressions along the coefficients of 1(127)? produce sequences with elements that
are not uniformly 0, but are nonetheless the multiples of the same prime power.
This leads us to our final theorem.

Theorem 4. For d = 2, fiz a prime { and v € Z*. Then, there exists a finite
w € ZT such that when ordy(a —2) = v +w and ordy(12r + 1) = w, we have for all
n that

Pl +7)=0 (mod ¢*).

Remark. The significance of Theorem 4 is that we may drop the 2-satisfactory
condition. If ¢ is 2-satisfactory, Theorems 3 and 4 give the same congruences.

Example. We provide an example that is not covered by Theorem 3 by choosing
an ¢ that is not 2-satisfactory. Ome such prime is ¢ = 13, and we let v = 1.
Then, we show that w = 12 is a valid choice of w (see Lemma 4). Computation
on Mathematica shows that az(1) = 1 and a2(13) = —2. Now, setting £ = 13 in
Equation (14) gives that as(13%) = (=1)k*+1(k + 1) for k € ZT. In particular, we
have that a2(13'2) =0 (mod 13). We let r = % since ordy3(12 - % +
1) = 12. In addition note that for a = § such that a = 1 and b = 1313"‘1
ordy(a — 2) = ordy(zg — 2) = ordi (52 213" — 13, Thus, for such o, Theorem 4

gives for all n that

315+1 313+1

11-1312 -1

(1313
Pal n+ 13

)=0 (mod 13%).



INTEGERS: 21 (2021) )

2. Preliminaries

2.1. Modular Forms

These facts are well-known and can be found in any standard text, such as [6].
First, we define the Eisenstein series that describes modular forms. To do so, we
define the divisor function oj_1(n) for positive integers k:

op—1(n) := Z dr1L.

1<d|n

Now, recall that all modular forms of SLy(Z) are generated by E4(7) and Eg(7)
where:

Ey(1) =1+ 240 Z o3(n)q" and

n=1
Eg(r) =1-504)  o5(n)q".
n=1
Next, we define the congruence subgroup of SLs(Z) of level N, denoted by I'g(IV):
a b
To(N) = { < . ) € SLa(Z):c=0 (mod N)}.
In addition, we let My (To(N)) refer to the complex vector space of modular

forms of weight k& with respect to I'g(IN). If y is a Dirichlet character modulo N,
we say that a modular function f(7) € My(I'o(N)) has a Nebentypus character x

if for all 7 € H and for all ( CCL Z > e To(N),
FEEED = @ fer + @) £ (7),

cT+d

The space formed by such modular forms is referred to as My (I'o(N), x). Addition-
ally, we note that the mth Hecke operator for m € Z*, T), k., is an endomorphism
on Mj,. Its action on a Fourier expansion f(7) = > .2 a(n)g" is illustrated by the

formula:
o0

FO  Tmry =D | Y. x(8)8* " a(mn/6®) | ¢".

n=0 \¢|(m,n)
When m = £ is a prime, the expression reduces to

o0

F) [ Togy = Z (a(fn) + x(O)¢*'a(n/0)) ¢*,

n=0
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where a(%) = 0 for £ { n. Recall that a modular form f(7) € My(To(N),x) is a
Hecke eigenform if it is an eigenvector of T, 1, for all m > 1, i.e., if there exists a
A(m) € C such that
@) | Tone = AMm) f (7).
In particular, if a(1) = 1, then we consider f(7) to be normalized. This defi-
nition naturally leads us to the following lemma. The proof of this lemma follows
immediately from the definitions.

Lemma 1. Suppose that f(7) = Y .°  a(n)g” € Mi(To(N),x) is a normalized
cuspidal Hecke eigenform. Then, it follows that
n

a(n)a(l) = a(nl) + x(0)¢*ta( 7 ).

2.2. On the Powers of the Dedekind Eta Function

The Dedekind eta function is defined as 7(7) := ¢"/?*(¢;q)o for q := €*™7. It is
known by Martin [5] that n(7)? for d € {1,2,3,4,6,8,12,24} are Hecke eigenforms.
In addition, Carney, Etropolski, and Pitman (Lemma 2.2 of [3]) characterized x(d)
for each n(7)%.

Lemma 2. x(d) for n(7)¢ ford € Z is

a
2

I~

(E2) ifde2z
x(d) = ¢ (12) ifd & 27 U37Z
(=) d € 37\ 2Z.

In 1985, Serre [7] proved that n(7)? for d € 27 is lacunary if and only if d €
{2,4,6,8,10,14,26}. Additionally, for each of such d, he presented explicit ways

to write n(ﬁi%)r)d in linear combinations of Hecke eigenforms. The expression

24
ged(d,24)°
powers of gq. As the specifics of these formulae play an integral role in proving our

results, we list the formulae. In addition, we note that throughout the paper, we
denote n(mﬂd =3 paq(n)g™.

Ifd € {2,4,6,8,12}, n(7)? are Hecke eigenforms themselves. For d = 10, n(127)*°
can be written as a linear combination of two Hecke eigenforms, E4(127)n(127)2 &
48n(127)'0. We have

multiplied to 7, ensures that n(#ﬁzzgr)d is an expression of integral

nt0(127) = %((E4(127)n(127)2 + 48n(127)'9) )

—(Es(127)n(127)% — 48n(127)1%)).

Note that because 10-satisfactory primes ¢ are co-prime with 96, the factor of %
does not interfere with divisibility modulo £.
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Similarly, 1(127)'* is a linear combination of two Hecke eigenforms, namely,
Eg(127)n(127)% £ 360y/—3n(127)**. We have

n(127)1 (Es(127)n(127)2 + 360v/—3n(127)')

1
T 72073 2)
— (Bs(127)n(127)% — 360v/—3n(127)')).

We remove 5 from the list of 14-satisfactory primes, because the constant factor of
% divides out a factor of 5 from the numerator.

For d = 26, n(127)%% can be written as a linear sum of four Hecke eigenforms,
specifically, E2(127)n(127)% + 9398592 (127)2¢ £ 102960/ —3Es(127)n(127)1* and
E2(127)n(127)? — 6910272n(127)%¢ + 20592 F5(127)n(127)°. We have

n(127)% = (Eg(127)n(127)? + 9398592n(127)*¢

32617728
+ 102960y —3Fg(127)n(127)) 4 (B2 (127)n(127)?

+9308592(127)20 — 102960v/—3Eg(127)5(127)14) (3)
— (BZ(127)n(127)% — 69102721 (127)%5 + 20592 F5(127)n(127)'°)
— (BZ(127)n(127)% — 69102721 (127)%° — 20592 F5(127)n(127)'7)).

For the same reason that we removed 5 from the list of 14-satisfactory primes, we
remove 11 from the list of 26-satisfactory primes.

2.3. Preliminary Results

We state two key results by Chan and Wang [4]. The first result (Theorem 1.1 of
[4]) identifies the congruences that are meaningful to study.

Theorem 5. When written in lowest terms, we have that

denom(pa(n)) = b" Hpordp(”!).
plb

In other words, denom(p,(n)) is ¢-integral for any prime ¢t b. We thus conclude
that for a given rational number «, whenever ged(¢,b) = 1, congruences modulo ¢
and its powers are well-defined.

The second result is a technical lemma (Lemma 2.1 of [4]) resulting from Frobe-
nius endomorphism. This lemma allows us to move exponents through ¢-Pochhammer
symbols, a crucial step in the proofs of our main results.

Lemma 3. Let £ be a prime such that £ 1b as usual. Then, for any r > 1, we have
that

(q;q)froz = (qégqé)/““’la (mod ET)

o0 o0
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3. Proofs of the Main Results

Proof of Theorem 2. We work out the case of d = 4. Similar conclusions can be
made about d = 6 and 8 by following the same steps. For simplicity, we write
v := ordg(a — 4) such that o — 4 = ("u for some u € Zy). First, we relate p,(n) to
n(67)* using the g-Pochhammer symbol. We have that

o0
> pa(n)g™ ™ = q(¢% ¢%)% = (g% ")

(4)
= q(q% ¢®)% (% ¢®) 5" = n(67)*(¢% ¢®)5.
Now, applying Lemma 3, we have that
> v—1
3 paln)g® = n(67) (¢% %)t = n(67) (4% g% " (mod ). (5)
n=0

Recall that n(67)* = Y77 jas(n)q™, and let ro denote the smallest positive
integer such that 679 + 1 = 0 (mod /). Extracting the terms of the form ¢‘* from
both sides of Equation (5) and replacing ¢’ with ¢, we arrive at

67‘0+1 o 1
Zpa (bn +19)g®"* = Z (¢%¢®% *  (mod ). (6)

n=0

Since ¢ is 4-satisfactory and because 6rg +1 =0 (mod ¢), it follows from Theo-
rem 1 that p,(fn+19) =0 (mod £). This allows us to divide each side of Equation
(6) by £. We now have that

1 > 6n+Sr0tl 1 - —lay v—1
7 'nz:;)pa(en +170)q CEy Z:: (a%d%)% (mod £°77). (7)
We apply Lemma 3 again and deduce that

o0

Pa (én + 7"0)(]

n=0

6n+ 61“(21»1

~ \

1 > w2 B
7 Z (@%5¢%)5 ™ (mod €°71). (8)

Multiply ¢ back on both sides of Equation (8) to arrive at

S paltn+10)g™ =3 ag(tn)g” - (645 (mod £7).  (9)
n=0 n=0

Recall that @ is expression of ¢°. As a result, a4(¢) =0 for £ =5 (mod 6). In
addition, because 7(67)* is a normalized Hecke eigenform, it follows from Lemma 1

that it has multiplicative coefficients for co-prime indices, i.e., for any k € Z(y), we
have that a4(¢k) = 0.
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Finally, we extract the terms of the form qe"*% from each side of Equation

(9). Because ord(6r +1) = 1, 82 € Z ), and so, the right-hand side reduces to

0. Therefore, we arrive at the desired conclusion, i.e., that

pa(®n4+7)=0 (mod ¢*).

Next, we work out the case of d = 10. Similar arguments can be made about
d = 14 and 26. Our initial steps are nearly analogous to that of d = 4. We once
again start by writing v := ord¢(a — 10) such that o — 10 = ("u for some u € Zy).
We also define 7 to be the smallest positive integer such that 12rg+5 =0 (mod /).
We eventually arrive at the analogue of Equation (9), which is that

>0 12rg+5 > v
Zpa(fn +70)g*2" = Z aro(fn)g"™ - (¢*%; ¢*29° *u (mod ¢%).  (10)

n=0 n=0

Recall from Equation (1) that we can write 1(127)!° as linear combinations of
two Hecke eigenforms. We have that

n(127)'0 = %((&(127)77(127)2 + 487(127)1%) — (E4(127)n(127)2 — 48n(127)1Y)).

Each of E4(127), 77(137)2, and 77(12;)10 on the right-hand side of Equation (1) are
expressions of ¢*. As a result, for 10-satisfactory primes ¢, the £*! coefficient in
both eigenforms of Equation (1) are 0. It follows from Lemma 1 that a19(¢k) = 0
for k € Z,.

We extract the terms of the form ¢ from each side of Equation (10). Once
again, because ord,;(12r +5) = 1, ordy(fn + Lﬁ’) = 0, and so, the right-hand side
reduces to 0. Thus, we arrive at the desired conclusion that

In+ 1271'{«#5

Pa(Pn+7)=0 (mod (7). O

Proof of Theorem 3. The initial steps closely mimic those of the proof of Theorem 2.
For convenience, we write that v + 1 := ordy(a — 2) such that a — 2 = (**1y for
some u € Zg). We relate p, (n) with 1(127)? through the following steps. Then, we
have that

o0
PES]
Zpa(n)q12n+1 — q(q12;q12>go — q(q12;q12)f>o u+2

n=0 (11)
12, 12\2 .12, 12\ Tly 2/ 12, 12 0Ty
=q(0 %50 7)%(@ 750 7)o “=n(127)%(¢ ¢ )5 -
Now, applying Lemma 3 twice, we have that
°© 1
v+
D paln)g?™ T = n(127)%(¢"% ¢") 5
n=0 (12)

= n(127)%(¢"*" ;)5 (mod £7),
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We rewrite Equation (12) into

o0 oo
2 2 v—1
Zpa(n)q12n+l = Z az(n)qn . (q12€ ;q122 )fx; u (mod gv) (13)
n=0 n=0
Since 2027 i an expression of ¢'2, as(¢) = 0 for 2-satisfactory primes /. And once

again, since 7)(127)? is a cuspidal Hecke eigenform, its coefficients are multiplicative
among co-prime indices. Therefore, for k € Z,, we have that az(¢k) = 0.

Finally, we extract the terms of the form qe2”+12r+1 from each side. We notice
that the right-hand side reduces to 0 as ord,(12r + 1) = 1 and arrive at the desired
conclusion that

Pa(®n4+7)=0 (mod ¢%). O

Before diving into the proof of Theorem 4, we prove an auxiliary lemma.

Lemma 4. Given a fized prime ¢ and v € ZT, there exists a w € ZT such that
w < 2 and
az(£) =0 (mod ¢¥).

Proof of Lemma 4. Because @

holds true for w = 1 when /¢ is 2-satisfactory.
Let ¢ be a prime that is not 2-satisfactory. We let n = ¢’ for ¢ € Z* in Lemma, 1.
Because x(2) =1 from Lemma 2, it follows that

a2(€i+1) = ag(ﬂi)ag(é) — ag(éiil). (14)

is an expression in terms of ¢'2, the statement

Equation (14) displays a recursion on the sequence of as(¢?) for i € Z* U {0}.
Notice that the sequence is periodic with respect to modulo ¢¥ due to the pigeon
hole principle. It follows that the length of the period is at most £2V, and we let
s < £2¥ denote the length of the period.

Moreover, it can be observed that the period begins at as(1). To prove this,
assume for the sake of contradiction that the period does not begin at as(1). We let
the first term of the period be az(£°) for some ¢ > 0. Then, rearranging Equation

(14) and letting k = ¢ + 1 gives

as (L) = ag(€9)ag () — ag(£1)
1 1 (15)
= as (0% az(0) — ax (€75 = ap (¢t~ (mod £Y).

This is contradictory to our assumption that a2(¢¢) is the first term of the period.
Thus, we conclude that the period begins at as(1).
Now, notice that

ap (0571 = ag(0%)az(0) — ax(£¥11) = ax(®)az(€) — az(£*) =0 (mod ¢v).

As ay(1) = 1, setting w = s — 1 in the statement of the lemma completes the
proof. O
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Proof of Theorem 4. We choose w such that az(¢*) = 0 (mod £V), which we know
exists by Lemma 4. Write o — 2 = £?T% for some u € Zyg)- 1t follows that

0o

vtw
Zpa<n)q12n+1 — q(q12;q12)go — q<q12;q12)£0 u+2
n=0

(16)
vtw,, vtw,,
=4q(a"% 0% (0% ¢ = n(127)%(¢"%5¢)%
Apply Lemma 3 w + 1 times to arrive at
n w+'uu
Zpa(n)qlz +1 _ 77(127_)2((]12; q12)£o
n=0 (17)

= n(127)2(q12€w+1;q12€“’+1)l”71u (mod ev)

oo

Since 1(127)? is a cuspidal Hecke eigenform, we have that as(¢“k) =0 (mod ¢?)
for all k € Zyy. As ordy(12r+1) = w, extracting the terms of the form gt n 12+l
from both sides of Equation (17) gives for all n that

Pl +7) =0 (mod £°). O
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