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Abstract

Synthesis of materials with desired structures, e.g. metal-organic frameworks (MOFs),
involves optimization of highly complex chemical and reaction spaces due to multiple choices of
chemical elements and reaction parameters/routes. Traditionally, realizing such an aim requires
rapid screening of these nonlinear spaces by experimental conduction by human intuition, which
is quite inefficient and may cause errors or bias. In this work, we report a platform that integrates
a synthesis robot with a Bayesian optimization (BO) algorithm to accelerate the synthesis of MOFs.
The robotic platform consists of an automatic direct laser writing apparatus, precursors injecting
and Joule-heating components. It can automate the synthesis upon fed reaction parameters which
are recommended by the BO algorithm. Without any prior knowledge, this integrated platform
continuously improves the crystallinity of ZIF-67, a demo MOF employed in this study, as the
operation iterations increase. This work represents a methodology enabled by a data-driven
synthesis robot which achieves the goal of material synthesis with targeted structures, thus greatly
shortening the reaction time and reducing energy consuming. It can be easily generalized to other
material systems, thus paving a new route to autonomous discovery of a variety of materials in a
cost-effective way in future.
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Introduction

Metal-organic frameworks (MOFs), built from metal ions and organic linkers, have emerged
as promising materials for gas adsorption/separation,' sensors,*> catalysis,®” and drug delivery®
? due to their high porosity and chemical tunability.!®!! Until now, several methodologies
including hydro/solvothermal, sonochemical, microfluidic, chemical vapor deposition, and
mechanochemical reactions, have been developed towards synthesis of MOFs.!21¢ Crystallinity
of MOFs can significantly impact the material properties, while realization of high crystallinity
usually involves multiple choices of chemical elements and reaction parameters/routes.!”?° The
methods used in the reported works require long synthesis durations spanning from hours to days,
making rapid screening of the chemical and reaction spaces almost unrealistic. In addition, in a
traditional human centered process, experiments are designed via human intuition and performed
by human who is error-prone, thus resulting in research outcomes with large variances.

High-throughput experimentation (HTE) performed by robotic platforms has emerged as an
enabling technology to accelerate material development.'> 2!">* Yaghi’s group reported HTE of
zeolitic imidazolate frameworks (ZIFs) enabled by commercial synthetic apparatus including
robotic dispensing and handling hardware, and successfully isolated 25 ZIFs from 9600
reactions.'? Greenaway et al. implemented commercial synthesizer platform for high-throughput
screening of 78 building block combinations, which led to synthesis of 33 organic cages.?!
Furthermore, integrating optimization algorithms such as curious algorithm (CA),” genetic
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algorithm (GA)**?® and Bayesian optimization (BO with HTE holds the promise to greatly

minimize the total number of required experiments, thus greatly accelerating the whole workflow

by an order of magnitude. Apart from predicting the physical and chemical properties,*
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establishing the structure-property relationship, and guiding materials synthesis,*® data driven



algorithms by artificial intelligence/machine learning (AI/ML) such as support vector machine
(SVM)*¢ and random forest (RF)*’*® have also been deeply involved in the experimental
optimization processes.>***® Grizou and his colleagues reported a CA-guided chemical robot for
efficiently exploring complex chemical spaces.>’ Pavel and his colleagues built an autonomous
research system (ARES) via integrating a planner of RF/GA with an automated growth reactor for
automatically optimizing the growth parameters of carbon nanotubes.*’ Macleod and co-workers
integrated ChemOS, which uses the Phoneics global BO algorithm, with customized modular
robot platform to autonomously optimize the hole mobility of thin film.?’ Gongora et al. developed
a Bayesian experimental autonomous researcher (BEAR) for autonomously optimizing the
mechanical properties of 3D printed parts.’* Although integration of these optimization algorithms
with HTE is a powerful tool for accelerating materials development, its applications in materials
development are still in its infancy and being continuously developed. For instance, development
of an autonomous robot for rapid MOF synthesis has yet been demonstrated. To realize this goal,
a paramount requirement is to develop a processing method that can rapidly synthesize MOFs.
Recently, our group demonstrated two new methodologies, i.e., Joule and microwave-heating

).*8 During Joule heating (JH), Laser-

to rapidly synthesize zeolitic imidazolate frameworks (ZIFs
induced graphene (LIG) was heat up to drive the conversion of precursors to ZIF-67 with well-
controlled morphology and crystallinity. The JH methodology showed an obvious reduction in
reaction durations, energy consumption and manufacturing costs. However, two limitations still
exist by this approach. First, the whole experimental procedure is still manually conducted, which
makes the material synthesis fall behind the pace of material discovery demanded in the era of

automation. Second, lack of an optimization strategy results in limited exploration of

chemical/reaction spaces towards synthesizing the optimized candidates.



Herein, we demonstrate a robotic platform combined with a BO algorithm for rapidly
optimizing the synthesis variables to obtain ZIF-67 with improved crystallinity. The robotic
platform consisted of four main components, i.e., the motion, lasing, injecting, and JH systems,
for automating the synthesis of ZIF-67. The crystallinity of ZIF-67 was indeed improved with the
increase of the synthesis iterations recommended by the BO algorithm. Contribution of our work
to the field includes the following four aspects. First, development of a robotic platform enables
the automated synthesis of ZIF-67. Such a robotic platform can be directly used for exploration of
other MOFs. In future, a roll-to-roll technique can be integrated into the robotic platform for
continuous manufacturing. Second, the automated synthesis of ZIF-67 enabled by the robotic
platform led to shortened reaction time, reduced reagent consumption, and minimized human
interference. Third, the BO algorithm recommends the optimized chemical compositions and
reaction parameters to the robotic platform to synthesize ZIF-67 with continuously improved
crystallinity. Fourth, the established process-property relationship helps to understand the reaction
mechanism, which paves a new route to future design of materials with superior properties. Future
work can be done by further integrating in-situ characterization instruments such as Raman, FTIR,
and UV-vis spectrophotometers, automatic data analysis, and high-throughput electrochemical

tests for the autonomous closed-loop materials development.

Results and Discussion

Previously, we reported the rapid synthesis of ZIF-67 via Joule-heating (JH) by using laser-
induced graphene (LIG) as the microreactors.*® The work showed two limitations, i.e., manual
operation and lack of optimization of experiment. To solve the former limitation, herein, we

designed and built a robotic experimental platform to perform the JH experiments in an automated



way. To solve the latter one, a BO algorithm was developed and integrated with the robotic
platform for efficiently finding the optimized variables for rapid synthesis of ZIF-67 with
improved crystallinity. The scheme illustrated in Figure 1 shows the synthesis and optimization
workflow enabled by the developed robotic platform and the BO algorithm.

First, the search space was determined by two chemical compositions, a molar ratio of Co
ions to 2-methylimidazole (MeIM) and a total volume of precursors, and two processing
parameters, an applied DC voltage and reaction time. Then, combination of these four variables
was sampled from the search space using the BO algorithm. These four variables were coded in a
G-code format and sent to the robotic platform for automatically synthesizing ZIF-67. The
crystallinity of ZIF-67 was determined by measuring the full-width at half maximum (FWHM) of
X-ray diffraction (XRD) patterns. The value of FWHM was fed as the optimization objective into
the BO algorithm. Finally, the BO algorithm recommended a new set of the synthesis variables in

the search space that were expected to synthesize ZIF-67 with increased crystallinity.
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Figure 1. Schematic showing a process of synthesizing MOFs with improved crystallinity via
integration of a robotic platform with BO algorithm.




Figure 2A and 2B shows a 3D rendering and a photograph of the robotic platform featuring
four main components, i.e., the motion, lasing, injecting and Joule heating systems. The detailed
bill of materials (BOM) for each component can be found in Table S1. The total cost of these parts
for the robotic platform was ~$830. The moving system or so-called Gantry XYZ (Figure S1) was

designed based on computer numerical control (CNC)?>#

and its mobility was controlled using a
technology originally coded for an open-source “RepRap” 3D printer. The injecting system
consists of two parts: a syringe pump (Figure S2) and a dispending needle (Figure S3). The syringe
pump, which was modified according to the literature,” consists of 3D printed mounts, plastic
syringe, check-valve, Luer-lock adapters, and stepper motor. Each syringe pump was calibrated,
and the testing results were shown in Table S2. The precursors with specific molar ratios were in
advance loaded into the syringes after preparation. The dispending needle was fixed to Gantry X
and consists of a 3D-printed mount, a Luer-lock needle, a Y adapter, and a Female Luer-to 1/4"-
28 UNF Female adapter. A polytetrafluoroethylene (PTFE) tube was cut into 100 cm length for
connection of the syringe pump and the dispensing needle. The lasing system, consisting of a 5.5
W blue laser, was used to fabricate LIG microreactors on a polyimide (PI) thin film. Joule heating
system was designed to provide DC voltage for rapidly heating up the LIG microreactor. A Rotary
switch (Figure S4) was used to switch on/off the DC voltage. An Arduino RAMPS board (Figure

S5) is assembly of an Arduino Mega 2560 R3 and a RAMPS 1.6 plus board. It was used to receive

and execute the G-Code commands.
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Figure 2. (A) 3D rendering and (B) photograph of a home-made robotic platform. (C) Flow chart
of automated synthesis process procedure of ZIF-67 using the robotic platforms.

Detailed wiring of each component to two Arduino RAMPS boards can be found in Figure
S6. The Gantry XYZ, rotary switches, and the blue laser were connected to the X, Y, Z, EO and
D9 interface ports of the first Arduino RAMPS board, respectively. Four syringe pump couples
and the JH cable were connected to the X, Y, Z, EO and D9 interface ports of the second Arduino
RAMPS board, respectively. The detailed control logic can be found on Figure S8. Marlin
firmware was modified and uploaded to the Arduino Mega 2560 board. All the linear movement
of these components such as Gantry XYZ and the syringe pumps can be controlled by Gl
command with the given distance and federate. For example, G1 X10 F1000 means moving the
distance of 10 mm on the X axis with the feedrate of 1000 mm/min. Turning on/off the blue laser
and JH was controlled by the M106 command with given numbers. For instance, M106 S203

outputs DC of 10 V from the D9 port, while G4 S300 keeps the output for 5 min. The detailed



correlation between the DC voltage from the D9 port and G-code command M 106 can be found
in Figure S7.

Figure 2C depicts a typical procedure for the automatic synthesis of ZIF-67 via the JH
technique using the robotic platform (Supplementary Video 1). First, the LIG microreactors were
prepared on a PI film using laser induction with an optimized laser power and a scan rate.>® Then,
the electrodes of LIG were cast with silver paints and extended with conductive copper tapes to
the alligator clips affiliated with the rotary switch. After that, a predetermined volume of the
precursors containing Co?" and MeIM was injected to the surface of LIG microreactor via the
dispensing needles from the syringe pump couples. Then, the DC voltage was applied to the
electrodes of the LIG microreactors for controlled durations, during which the heating generated
by the LIG microreactors converted the precursors into ZIF-67.

To improve the crystallinity of the ZIF-67, a BO algorithm®' was implemented for efficiently
sampling the synthesis variables from the search space. Description of BO can be found in
supporting information. BO has shown considerable promise in materials discovery for navigating
Quantitative Structure-Pharmacokinetics Relationship (QSPR) space, property prediction, and
synthesis optimization.?® > Herein, the search space to be explored consists of four variables:
the ratios of the metal ions to the organic linkers, the volumes of the precursors, the applied DC
voltages, and the Joule heating durations (Table S3). The optimization objective was the
crystallinity of the synthesized ZIF-67. First, four variables (molar ratio, volume, DC voltage and
JH durations) recommended by the BO algorithm were programmed in G-code command. Then,
the G-code was sent to two Arduino RAMPS boards for driving the smooth operation of each
component. The as-synthesized ZIF-67 was characterized using XRD and its crystallinity was

determined by calculating the FWHM (Figure S9). FWHM can be a straightforward indicator of



materials’ crystallinity.?® It can be derived from the Scherrer equation: D = Ky/(Bcosf), where K
is a dimensionless shape factor, y refers to the wavelength of X-ray, 3 refers to the FWHM of XRD

pattern, and 0 refers to the Bragg angle.>® First, FWHM can be obtained via fitting the peaks using

Gaussian function according to the following formula FWHM = 2\/@0, where o refer to the
standard deviation. Then, the FWHM at 20 of 7.36°, 10.42°, 14.76°, 16.52°, 18.10° was averaged.
Finally, the ratio of the averaged FWHM of experimental to theoretical XRD pattern was reported
as the crystallinity indicator. The calculated crystallinity values were the output of the BO
algorithm. Initially, the BO algorithm randomly selected the four synthesis variables. The BO
algorithm was then updated based on the outcome of the measured crystallinity. Based on the result
from the previous iterations, it recommended the synthesis variables for the next cycle of
experiment. Finally, the crystallinity was improved as the iteration increased (detailed iterations
can be found in Table S4).

BO with the random forest (BO-RF) as a surrogate model was implemented to optimize the
crystallinity of ZIF-67. BO was selected based on two considerations.”’ First, BO is simple to
implement since it requires less hyperparameters tuning. Second, BO is excellent in processing
sparse datasets. Within a smaller number of initial datasets and less iterations steps, BO can quickly
find the optimal parameters than a genetic algorithm.>® As for the surrogate model, RF, instead of
the Gaussian process, was chosen since the search space contains categorical and continuous
variables.’! BO-RF can maximize the objective function which is then evaluated by an acquisition
function (expected improvement, EI) via quantifying the utility of candidates (Figure 3A). As
shown in Figure 3B, FWHM of representative peaks in the XRD spectra of four ZIF-67 samples
synthesized with the reaction parameters recommended by BO-RF decreased as the increased

iterations, suggesting the improved crystallinity. Figure 3C exhibited the evolution of crystallinity
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of ZIF-67. It can be seen that variance of FWHM of all ZIF samples synthesized in the different
iterations converges to higher values, indicating that the decreased quality variances (Figure 3B).
In addition, the mean value over the samples synthesized from recommendations of BO is
calculated to be 0.67, which is higher than that of random optimization (0.47). This result further

confirmed the improvement of BO over the random optimization.
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Figure 3. (A) Flowchart showing the BO process. (B) XRD patterns of four representative ZIF-67
synthesized with the reaction parameters recommended at different iterations. (C) Evolution of
crystallinity vs. the generations of BO. (D) Bar chart showing statistics of the achieved crystallinity
over the random and BO optimization processes. The error bar in (D) indicates the standard
deviation of the data obtained from (C).

The plots of crystallinity dependent on the four variables (Figure 4A and 4B, and their
projection views can be found in Figure S10) showed that a higher crystallinity appears at the

synthesis variables of smaller molar ratios, larger volumes of precursors and higher DC voltages

while heating durations had the marginal contribution to the improvement of the crystallinity.
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Figure 4C-4E show the partial dependence (PD) of marginal relationship between the synthesis
parameters and crystallinity. Due to its categorical property, real value of the molar ratio was
shown in Figure 4F. The PD plots reveal the margin relationship between the continuous
parameters in search space and the optimal crystallinity. The surrogate model (RF) was first trained
on the available datapoints, then used to predict the EI value. From Figure 4C-4E, one can find
that the crystallinity gradually increased as the increase of volume and voltage, and first increased
then gradually decreased as the increase of time. This trend is similar as that of molar ratio (Figure
4F). It is obvious that a higher molar ratio leads to a higher crystallinity.

To further illustrate the correlation of the crystallinity with the four variables, we also trained
a multilayer perceptron algorithm (MLP) from all the experimental data. Figure S11A and 11B
showed the histogram of the crystallinity and heatmap of the four variables. From Figure S11C
and S11D, we can see that a higher crystallinity appears under the reaction conditions with a
smaller molar ratio, a higher precursors volume, a higher DC voltage, and lower reaction time.
This result is in good agreement with the previous findings shown in Figure 4. These results
validate that BO-RF can be applied to optimize experiments so that the required number of
background experiments performed on a robotic platform can be reduced. The demonstrated
robotic platform showed impressive capability of reaching the optimal results within relatively
small iterations. Considering that the experiments performed by the robot can minimize human
bias and intervention, this platform would afford a promising paradigm for future material

development.
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Figure 4. Plots of crystallinity on (A) the molar ratio and volume and (B) the DC voltage and
reaction durations. Partial dependence plots of crystallinity over (C) volume, (D) voltage, and (E)
Time. (F) Box chart of crystallinity over molar ratio.

Conclusion
In summary, in this work we reported integration of a robotic synthesis platform with the BO
optimization algorithm for rapid synthesis of MOFs with improved crystallinity. An automatic

synthesis robot was designed and constructed to realize the goal. In addition, the applied BO-RF
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could successfully optimize the crystallinity of ZIF-67 within limited iterations. The partial
dependencies showed that the molar ratio, precursors volume, and DC voltage played much more
important role in improving the crystallinity than the reaction duration. This methodology not only
greatly shortens the reaction time, reduces energy consumption and toxic wastes, but also provides
a general platform for synthesis, optimization and discovery of new materials, thus paving a new
avenue to other metal-organic complexes where the target materials are built from metal ions and
organic linkers. There are still several limitations including the manual measurement and analysis
of XRD data, batch-to-batch manufacturing and non-closed-loop optimization, which restricts the
further development of robotic platform. In future, an autonomous platform that incorporates in-
situ characterization techniques, automatic data analysis, and self-optimization algorithms will be

developed to greatly accelerate the rate of materials processing.
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