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Abstract

The partition function p(n) has been a testing ground for applications of analytic number
theory to combinatorics. In particular, Hardy and Ramanujan invented the “circle method”
to estimate the size of p(n), which was later perfected by Rademacher who obtained an exact
formula. Recently, Chan and Wang considered the fractional partition functions, defined for
a € Q by 30 pa(n)z™ = [[ie;(1 — %)~ In this paper we use the Rademacher circle
method to find an exact formula for p,(n) and study its implications, including log-concavity
and the higher-order generalizations (i.e., the Turén inequalities) that p,(n) satisfies.

1 Introduction and Statement of Results

A partition of a nonnegative integer n is a non-increasing sequence of positive integers with sum n.
We use p(n) to denote the number of partitions of n. One powerful tool for analyzing the partition
function is Euler’s generating function:
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The study of the size of p(n) spurred the development of the “circle method,” which has had many
applications, including the proof of the weak Goldbach conjecture [11]. In 1918, G. H. Hardy and
S. Ramanujan |10] invented this method to obtain an infinite but divergent series expansion for
p(n) and the asymptotic formula:

e 2n/3
p(n) ~ 3

This method was perfected by H. Rademacher [16], who determined the convergent exact formula
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where
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is the modified Bessel function of the first kmd,

Ak(n) = Z eﬁis(h7k)—27rinh/k

0<h<k
ged(h,k)=1

s(h, k) = H% (% _ {%J _ %) (13)

is a Kloosterman sum, and
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is the usual Dedekind sum.

The partition function also satisfies certain congruences, which exhibit a great degree of struc-
ture. Ramanujan was the first to study these congruences, and he discovered examples including
p(bn +4) = 0 (mod 5). In a recent paper, Chan and Wang [4] defined for o € Q the fractional
partition function ps(n) in terms of its generating function

Tl = = S 1y

and studied its congruences, showing, for instance, that p;5(29n + 26) = 0 (mod 29). A general
theory of such congruences has recently been developed by Bevilacqua, Chandran, and Choi [2].
The discussion of congruences for p,(n) is possible because p,(n) is rational whenever « is rational.

When a € Z*, po(n) counts the number of partitions of n in which each term is labeled with
one of « different colors, where the order of the colors does not matter [12]. Moreover, in such
cases, the function

n(T)™* = ¢ 21 P(q)" (1.5)

is a weakly holomorphic modular form of weight —«/2 € (1/2)Z, where 7 is in the upper half-plane,
n(r) == ¢"/* [L,>1(1 —¢") is the Dedekind eta function, and ¢ := e2™7 . This makes it possible
to compute the values of p,(n) using Maass-Poincaré series, as described by Bringmann et al. [3,
§6.3], which give a Rademacher-type infinite series expansion that reduces to (L2 when o = 1.
To do this, one computes the principal part of n(7)™, which correspond to the values p,(n) for
0 < n < |a/24]. Then, using the fact that a weakly holomorphic modular form is determined
by its weight and principal part, one can write it as a finite sum of Maass-Poincaré series and
apply a known formula for the coefficients of such series. While these observations shed light on
the case where « is a positive integer, there is currently no known combinatorial or modular-form
interpretation of p,(n) for arbitrary rational «.

In this paper, we extend the definition of p,(n) to arbitrary real « via (L4]) and give exact
formulas for p,(n) in the spirit of Rademacher. For real o > 0, n > a/24, and m < «/24, we define

the functions
/ « /
Y Noe (16)
and the a-Kloosterman sum

A](c Z eonrzs(hk (mH nh)’ (17)

0<h<k
(hk)=1

where H denotes an inverse of h modulo k and s(h, k) is the Dedekind sum defined in (L3]). Our
exact formulas for p,(n) are the content of the following theorem.

Theorem 1.1. For all o > 0 and n > «/24, we have
_a_q = 27 (a 4
Pa(n) = va(m) 31> pa(m m) ST A )Ty 1 (Lvamalm) ), (1)
m=0 k=1
where q == | 57].

Theorem [I1] also enables the calculation of explicit error bounds for approximations of p,(n)
obtained by truncating (I.8]). These have several implications, including a simple description of the
asymptotic behavior of p,(n) for large n, given in Corollary



Corollary 1.2. For all o > 0, as n — 0o, we have
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where Ao (n) = /22 —1.

We remark that because p,(n) is rational for any a € Q, Theorem [[L1] implies that the series in
(L8] converges to a rational number when n € Z, n > «/24. We make use of this fact later in the
paper (Corollary [2]) to provide a finite formula for p,(n) in the case where a € Q.

When considering a sequence of real numbers, one is often interested in more than just its
asymptotic behavior. One property that is often studied is log-concavity. A sequence {a(n)} is
called log-concave if we have

a(n+1)2 —a(n)a(n+2) >0

for all n. Nicolas [14] and DeSalvo and Pak [7] independently proved that p(n) is log-concave for
n > 25. In fact, the condition of log-concavity is a special case of what are known as the higher
Turdn inequalities [5]. One can show that a sequence satisfies the higher Turdn inequalities of
degree d if and only if the Jensen polynomials

d

T (@) = (f) a(n + j)a? (1.9)

J=0

have strictly real roots for all n—we say that such a polynomial is hyperbolic |6]. Chen, Jia, and
Wang [5] conjectured that for any fixed degree d, Jg "™ (z) is eventually hyperbolic, and proved this
for d = 3; Larson and Wagner [13] independently proved this conjecture for d € {3,4,5}. Griffin,
Ono, Rolen, and Zagier [9] established the conjecture of Chen et al. for all d by showing that,
after suitable renormalization, the Jensen polynomials of p(n) converge to the Hermite polynomials
Hy(z) as n — oco. We apply their methods to prove the analogue of Chen et al.’s conjecture for

Pa(n).

Theorem 1.3. For o > 0 and d € N, there exists Ng(c) such that Jg,;"(X) is hyperbolic for all
n > Ng(a).

Our paper is divided into five main sections. In Section 2, we establish some preliminary results,
including a modified version of the Dedekind functional equation for n(7). In Section 3, we use the
circle method along with this identity to prove Theorem [[LIl In Section 4, we use Theorem [I.1] to
prove more results about p,(n), including the estimate given in Corollary We also analyze the
hyperbolicity of the Jensen polynomials associated with p,(n). Finally, in Section 5 we provide
numerical illustrations of our main theorems.
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2 Proof of the Functional Equation for P(x)®

In order to apply the circle method to p,(n), we first require a precise statement of Dedekind’s func-
tional equation for the eta function. We derive this from Iseki’s formula [1, §3.5]. For convenience,
when Re(z) > 0, we set

0o _
e 2mmax

AMz) = Z = —log(1 — 6_2”).

m=1
Remark. Throughout this section, we let log z denote the branch of the logarithm with a branch
cut along the negative imaginary axis and log 1 = 0, and we define arg z := Im(log z).

2.1 Derivation of the Logarithmic Functional Equation from Iseki’s Formula

In order to derive the required modification of the functional equation for n(7), we first prove a
lemma which follows from Iseki’s formula [1, §3.5].

Theorem 2.1 (Iseki’s Formula). For Rez >0,0<a <1, and 0 < <1, let

o

Z (r+a)z—1i8)+ AX(r+1—a)z+1iB)].

r=0

Then we have

Ao, B,2) = A1-B,a,z Y —nz <a2 —a+ é>+g (52 - B+ é) +2mi <a — —> </3 — —) . (2.1)

Lemma 2.2. For Rez > 0, we have

g)\(m Z/\ < ) —logz — <% - é) . (2.2)

Proof. Letting 8 = 0 in Iseki’s formula, we obtain

1

_ -1y _ 2 e Y™ et
A, 0,2) =A(l,a, 27 ) 7Tz<a a+6 +6z mila=g ). (2.3)

From here, bringing A(1,a, z2~!) to the left side, reordering the summations, and setting a(a) :=
AMaz) — A(ia) and

br(a) == A(r +a)z) + A((r —a)z) — A <z - ia) - A (f + z'oz)

z z

yields
> 5 1 s , 1
a)+2br(a):—7rz a —oz—l—g —1—6—Z—m a5 (2.4)
r=1

The reordering is valid because the sum over each of the four terms in b,(«) converges absolutely,
since A\(yz) ~ e72™* as v — oo. We proceed by taking the limit as o — 0F. We start by observing
that

lim a(a) = lim+[)\(az) — A(ia)]

a—0t a—0
= lim [log(1 — e 2™} —log(1 — 207>
Jim_ [log(1 - e~27%) —log( )
1— e—2mo¢
= lim 1 - 2.5
amor OB <1 - 6—2‘”2> ’ (25)



where the last step is justified because arg(l — e~2™®) — arg(1 — e~2%"%) € (—x,7) for a > 0. By
L’Hopital’s rule,

i 1— e—27rza i 27”'6—27r2a i
m —— = m — = —
a0+ 1 — e—2amz a0+ 2mze—2amz 2’

and so

a—0t 2

lim a(a) = log <%> =T log z,

using the fact that arg(i/z) € (0,7) and log(1/z) = —log z for our definition of the logarithm. We

now show that
[oe) o

lim > " be(e) = lim be(a) =Y (2A(rz) — 2A(r/2)).
1

+ +
a—0 — —1 a—0 —1

For this purpose, start by noting that for Rex > 0, we have |\(z)| < A(Rez) by the series expansion
for A, and that \(Rex) is monotonically decreasing. In particular, we have

A+ a)2) 9(<7~_5> Rez) <) <RT>

and |\(rz+ia)| < A(rRez). For z > 0, we can verify that > 2, A(rx) converges by the asymptotic
behavior of \(rz) as r — oco. Consequently, by the discrete version of the dominated convergence
theorem, we may exchange the order of the limit and the summation over b,.. Thus, in the limit,

([24) becomes
™ > > r TZ T ™
L p ) <— -, r,n 2.
5 og z + ;)\(m) ;/\ z) 5 +6Z+ 5 (2.6)

This is equivalent to (2.2)). O
For the main theorem of this section, we begin by citing a fact proven in [1, §3.6].

Proposition 2.3. Let Rez > 0, let h,k € Z be coprime with k > 0, and choose H such that
hH = —1 (mod k). Then we have that

Z )\( z—zh) Z A( —zH))—i—(?lT—;—é) <1—%>+m‘s(h,k). (2.7)

nZ0 (mod k) nZ0 (mod k)

With this fact and Lemma 2.2] we may finally provide the desired logarithmic version of the
functional equation for n(7).

Theorem 2.4. For Rez > 0 and h,k,H € Z with k > 0, ged(h,k) = 1, and hH = —1 (mod k),
we have

ZA( (z —ih > = i)\ (%(z_l —ZH)) —i—% (é - %) + %logz—kms(h,k). (2.8)
n=1

Proof. Using the periodicity of A, we note that

Z)\rz Z )\< z—zh) and i/\<£): i_o:l A(%(z‘l—z’H)>.
n=0 (mod k) B n=0 (mod k)

Substituting this into ([2.2]) and adding equation (2.7)) yields the desired result. O



2.2 Application of the Logarithmic Functional Equation to P(x)*

We recall the generating function

[ee]

P Tl e = 3ot

k=1
which is holomorphic for z in the open unit disk. In deriving the Hardy-Ramanujan-Rademacher
series formula for the partition function, we rely on the fact that the equation above holds ana-
lytically as well as formally. We extend this observation to p,(n) by showing that the generating
function P(z)® is well-defined.

Lemma 2.5. For x in the open unit disk and o > 0, we have

Zpa( H ~olog(1-a* =: P(z)“. (2.9)
n=0

Proof. Start by observing that our branch of the logarithm ensures that exp(—alog(l — xk)) is
formally equivalent to (1 — 2*)~®. Thus, because the p,(n) are defined in terms of the formal
equivalence in (L4)), it suffices to show that P(z)* as defined above is holomorphic for |z| < 1. For
this purpose, let 0 < r < 1, and observe that — > 77, alog(l — xk) converges uniformly for |z| < r
by the ratio test, as

1— 2k

1 — ght+l

k—i—l) _ log(m)$k+l/(1 _ xk—i—l)

—log(z)a* /(1 — a¥)

10g(1 -

e = 7 — 1
log(1 — z*) e

k—00

lim
k—o0

:nm' z = |z <.

k—o00

Thus, [[,2, e~ log(1-2*) converges uniformly for |z| < 7, from which it follows that P(x)“ is
holomorphic in every closed disk |z| < r and hence in the open unit disk |z| < 1 as desired.
U

We are finally ready for the main result of this section, which expresses the functional equation for
n(7) in terms of P(x)®.

Theorem 2.6 (Modified Functional Equation). For Rez > 0, « > 0, h,k,H € Z with k > 0,
ged(h, k) =1, and hH = —1 (mod k), we have

P(z)™ = emias(hk) ( k)“/ ? exp <f‘27; (5 - %)) P, (2.10)

2 = exp <2% (z’h - %)) . 2= exp <2% <’LH - S)) , (2.11)

and real powers are given for the precise branch of the logarithm described in Section 2.1.

where

Proof. Applying Theorem 2.4l with z/k in place of z and multiplying by «, we obtain

oA (G-m) = (5-7) s () s+ o (f (£ -m) ).

Exponentiating both sides yields

};[lexp (—alog(x)) = exp <% <§ - %)) exp (% log (%)) emies(hok) H exp (—ozlog(x/))

- (2.12)
2.12
for 2 and 2’ defined above, which is equivalent to (2I0]). O



3 Proof of the Series Formula for p,(n)

In this section, we use Radamacher’s circle method to prove the series formula for p,(n). We closely
follow Apostol’s proof of the a =1 case [1, §5.7].

Proof of Theorem [I1l. Using Cauchy’s residue theorem and Lemma 2.5], we can write

1 P(z)~
paln) =55 | 1

dx, (3.1)

where C' is any simple closed contour in the unit disk which encloses the origin. To evaluate this,
we consider the change of variables = ¢*™7, under which the closed unit disk |x| < 1 is the image
of the infinite vertical strip {7 : 0 < Re7 <1, 0 < Im7}. We start by recalling the Farey sequences
Fy, defined by enumerating the rational numbers in [0, 1] with reduced denominators at most N.
In addition, for ged(h, k) = 1, we let C'(h, k) denote the Ford circle associated with h/k, which has
center h/k+i/(2k?) and radius 1/(2k?) (details are given in |1, §5.6]). As in Rademacher’s original
work, we integrate along the Rademacher paths R(N) in the 7-plane, consisting of the upper arcs
of the Ford circles associated with Fi, with the intent to later take the limit as N — oo (depicted
in Figure 2). For N > 1, we write (3] as

Dot (’I’L) — / P(€2m7—)a€_2ﬂm7—d7. (32)
R(N)

Decomposing R(N) into its component arcs, we may write the above integral as

N
/R(N) => > /Y(h o hZ};/y(h,k), (3.3)

k=1 0<h<k ’ :
(hk)=1

where we define the right side as a shorthand for the double sum over h and k, and ~y(h, k) is the
upper arc of the Ford circle C(h, k) of radius 1/(2k?) tangent to the real axis at h/k.
We now introduce a second change of variables given by

2= —ik? <7’ — %) : (3.4)

which maps the circle C'(h, k) onto the circle K of radius 1/2 centered at 1/2. Let z;(h,k) and
29(h, k) be the respective endpoints of the image of v(h,k), and let z and 2’ be defined as in
Theorem 2.6 Then

v (2R
pa(n) =Y ik~2e 5 / e P(x)® dz,
hok z1(h,k)

from which the modified functional equation from Theorem yields

@ 2minh Z2(h7k) 2mnz (O!)
pa(n) = Z ik_§_2e_ k w(a) (h7 k)/ e k2 \I/k (z)P(a;')O‘ dZ,
Ik z1(h,k)

where

w(a)(h, k) i= eom's(hJc)7 and \Ill(ga) (2) == . exp (om anz >

12z 12k2
Let ¢ = |a/24], and define
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Figure 1: The Rademacher path R(2) Figure 2: Path of integration in the z-plane

We proceed by separating out a part of the integral that corresponds to Q) (z) and showing that
the remaining part goes to zero as N — oo. In particular, we write

2mnz

z2(h,k) (@)
Ii(h, k) = / U (2)e QW) (a)dz

1(h,k)
and
z2(h,k) P
Btk = [ W@ (P - Q) ds
z1(h,k)
to obtain
pa(n) =Y ik~ 5 T H WO (k) - (1i(h, k) + L(h, k). (3.5)
h.k

We now show that Is(h, k) is “small” for large N by considering the integral along the chord in
the z-plane joining 21 (h, k) and 25(h, k). Because 0 < Rez < 1 and Re(27!) > 1 for z on the path
of integration, we can write

W (z) e { P - Q)| (3.6)

e am -1, am 2nm ' R 2miHm  2mm

= |2|2 exp<12 Re(z77) o2 Rez + 2 Rez> m_zqzrlpa(m)eXP( A 2

2nm 1
< - -1 mihded —2rmRe(z71)
e (50 1) 3 e

§|Z|2 Z pa(m)e—27r( —%)Re(zfl) (3 7)
m=q+1

<IElE Y0 palm)e > (m8) = )36 (Pe7) — Q1 (7). (3.8)
m=q+1



Since |z| < v/2k/N for z on the chord from z;(h, k) to zo(h, k), the integrand is less than C (k/N)*/?
for some constant C' not depending on N. Thus, because the length of the chord is at most 2v/2k /N,
we have

Ck%-i—l

|I2(h, k)| < NI (3.9)
Substituting this bound into the sum of the I5 terms in (3.5]) yields
_2 h N
S ki % 3 ()Uzkﬂxhk:<<§: > CkTINTEI<CONTET'Y 1=CN"E
hok k=1 0<h<k k=1
(hk)=1
Thus, we have
N _2 h
= <Z > ik % W@ (b, k) I (B, k)> +O(N™2). (3.10)
k=1 0<h<k
(hk)=1

Next we consider I (h, k). We can write

21(h,k) 0
[1(h,/<;)=/ —/ —/ :;/ —Ji — Ja, (3.11)
-K Jo za(h,k) -K

where we omit the integrands for brevity, and where — K indicates that we integrate in the negative
direction along K. Because |z| < v/2k/N on the paths of integration, we can bound the integrands
of J; and Jy by

2mnz

@ Q)

q .
f%s 1 f%s 2miHm  2mm
< halad _ = _
2|2 exp < 1 Re(z77) 122 Rez + 12 Re z> mgzopa(m) exp( 2 ~ >'
om 27 o I
< an e —2mm .
|z| 2 exp < 2T ( 24) Re z> mE_Opa(m)e (3.12)
2T ks | I N
< - o(m)e <™ 3.13
<= mgzop (m) (3.13)

The lengths of the arcs from 0 to z1(h,k) and 29(h, k) are less than w|z1(h, k)| and w|za(h, k)|,
respectively, and both of these are bounded by mv/2k/N, so we get that [.J;], |J2| < Cik2TIN—5-1

for some constant C1.
Combining (310, (3.I1]), and the bounds for J; and Jo above, we find that

Z Z P e ST k)/ P () QO () de + O(N"F),  (3.14)
s



which in the limit as N goes to infinity becomes

Pa(n) = Z Z 3 kT2 T @) (b, k)

k=1 0<h<k

(hk)=1

/ % o 2mnz + am o anz + 2mimH _ 2mm d
P\ T T2, T 1282 k - )

Z Z ik~ e%(mH nh) (a)(h,]{?)

m=0 k=1 0<h<k

( k)=1
. /_Kzg exp <2]:22 o(n)? + 2%T,ua(m)2> dz
q (o)
A a 2mz 9 2T 9
P B [ oo (e + Zatn?)

To evaluate the integral on the right, we make the change of variables t = 2w(«/24—m)/z to obtain

oo A(a) ’ o
_QWZpa Z% [27T,ua(n)2]2+1

k=1

1ot o 2 21
o) t2 2exp (t—i-(?ua(n),ua(m)) : dz,

where ¢ = ar/12. Now recall that the modified Bessel function of the first kind satisfies

B c+o001 L2
Is(z) = M/ tA et dt (3.15)

211 —00i

for ¢ > 0,Re(v) > 0 [17, p. 181]. Consequently, for n > a/24, we find that

g A (n,m) a 2 —2-1 4
el =2 3 pulm) S B o)) (Fvatmmatm)) " Fyer (Fvatmia(m)
(3.16)
= va(n) 73S fa(m)E pa(m) Y 2%,4};” (n,m)Is 41 (%ua(n)ua(m)> . (3.17)
m=0 k=1
|

4 Applications of the Series Formula for p,(n)

4.1 Estimates of p,(n)

In this section, we consider the error of the approximation

Pa(n;6) = vg(n)" 271 Z fra(m) 2 pa(m) Z 2214(&)(71 m)lsiq <4%Va(n)ua(m)> .

m=0 1<k<ZE 1o (m)

for py(n). Note in particular that in the limit as § — 07, we have p,(n;8) — pa(n).

10



Theorem 4.1. For all o >0, 0 < § < 2mp4(0), and n > «/24, we have

Te 1(26v,(n oo 1(4mpa(0)vy (n
Pa(n) — pa(n: d)| < %Lafl)) < 058 o 41(47 110 (0) £+1)7 (42)
Va(n)2 (270 (0)va(n)) 2
where .
2 a
Cimtr® (14 2) 1a(0) Y- palm)t T, ).
m=0
Proof. Start by noting that
‘A](f) (n,m)‘ < Z eonris(h,k)-i—%(mH—nh)‘ = Z 1<k, (4.3)
0<h<k 0<h<k
(h,k)=1 (h,k)=1

Moreover, using the fact from [15] that for 0 < z < y and v > 1, the modified Bessel function of

the first kind satisfies
1, v
() _ <§> 7 (4.4)

we have that

[%+1 (%Va(n):ua(m)) 2T R
D P TAC D (F5rm)

k> 2 10, (m) k>2Z 1o (m)
0 2 S+1
<1 +/2 (%,ua(m)> dt
Tﬁﬂa(m)
47
=14+ — i,
+ —sha(m)
for 0 < m < ¢q. Thus, we find that
q
a a 47
1) ()~ a0 0) <203 o)) 30 T (Fvatnalm))
m=0 kZQTﬂMa(m)

< 2Ty (200a () D pnm) o) 14 ().

m=0

Since 1 < 2514(0) and p1a(m) < pa(0), it follows that

72 Tay1(20v4(n g N
[Pa(n) — pa(n; d)| < %L{SL)) <1 + 2) 1a(0) Y pa(m) 2 pa(m),

Va(n) a m=0
or applying the Paris inequality a second time using 20v,(n) < 47pq (0)ve(n),
q

oo 1(4ma (0)vy (n
1Pa(n) — pa(n; )] < 47%6% (;;;(a (0’):: (i));)f (1 n 2) al0) S pa(m)

Nl

+1

Pa(m).

m=0
O

We are now in a position to prove the simple asymptotic formula for p,(n) stated in the introduction.

11



Proof of Corollary [I.2. Observe that since 47” o (m) is strictly increasing in m, there exists a 0 <
§ < 2mq(0) such that 2y (m) < 2 for 0 < m < g and so

§+1 .
pa(n8) =2r (2200) " ry . amn (n)a(0) = 25

Moreover, by Theorem ET], we have

T 1(26v,(n
Pa(n) — pa(n; )| < C%%—i—(l))

for some constant C. Using the fact that I, (z) ~ e*/v/2nz from [§, 10.30.4], we easily verify that
C’Va(n)_%_1[%+1(25ua(n)) < pa(n), from which it follows that
(n) ~ ol 8) ~
DPa\1) ~ Palll; ~ — -
Aaln) =
U

Theorem [4.1] also allows us to derive a finite exact formula for p,(n) when « is rational. This is
made possible by a formula for the denominator of p,(n) from [4], which states that if « = a/b for
coprime a,b € Z with b > 0, then

denom(pq(n)) := b" Hpordp("!),
plb
where ord,(n) denotes the multiplicity of a prime p as a factor of n.

Corollary 4.2. Let a,e > 0 and n > a/24 with a rational. Then

_ Dpa(n:9)]

TP (4.5)

Pa(n)

where D = denom(p,(n)) and

2
AR B
- 2DCI%+1(47TN<X(O)V0¢(”)) 7
with C' defined as in Theorem [{.1]

Proof. Observe that by Theorem E.Il we have

. %I%H(élw,ua(())l/a(n)) 1
|pa(n) — pa(n;d)| < Co @O 3 3D (4.6)

Thus, D|ps(n) — pa(n;d)| < 1/2, implying that Dp,(n) is the nearest integer to Dp(n; ). O

4.2 Hyperbolicity of the Jensen Polynomials of p,(n)

In this section, we demonstrate how the asymptotics of p,(n) in this paper can be used to generalize
a recent hyperbolicity result for the usual partition function.
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Proof of Theorem [1.3. Set

_a 1 ) 12 <C¥)QT+3
m=g; and co=log ~ (5 .

Then by Corollary [[.2]

Paln) ~ e HTVI =2,

Thus, as in [9, §3], we have

Pa(n +j) — (1/2) J1 a+3 s (=)
log< pa(n)> 47”/%;(1 ni—1/2 4 ; int

from which it is clear that p,(n) satisfies the conditions of Theorem 3 from [9] with A(n) =
2my/m/n + O(1/n) and §(n) = (7/2)'/2m/*n=3/* 4 O(n=5/*). Tt follows immediately that for all
d the Jensen polynomials associated with p,(n) are hyperbolic for sufficiently large n. O

Remark. The proof of Theorem [L.3] follows |9, §3]. In particular, we consider the renormalization
of the Jensen polynomials given by

e~ s(n)y=® <5(n)X - 1)
JE(X) = o K Rl I 4.7
e 0 =5y exp(am) D
Theorem [L3] follows from the fact that for fixed d,
Jim J(X) = Ha(w), (4.8)

where Hgy(x) is the degree d renormalized Hermite polynomial in [9].

5 Numerical Datal

In this section, we illustrate the theorems of the previous sections using numerical examples. For
simplicity, we limit our examples to cases where 0 < a < 24. For such «, it will be convenient to

define
Re o (228

pa(n)

ro(n;m) = ) (5.1)
the ratio between the real part of the m-term approximation to p,(n) and the actual value. Note
that a value of r,(n;m) closer to 1 indicates that the m-term approximation to r,(n) is more
accurate.

By Corollary [[.2] we know that p,(n) is asymptotically equivalent to the first term in the series
expansion in Theorem [I11] as n goes to infinity. Table [ displays the accuracy of the first-term
expansion for & = e and n varying from 1 to 10. Table [ shows the ratio of both the first-term
and the five-term approximation to p,(n) where & = 1/m and o = 5. Note that the sign of the
error term |po(n) — pa(n;m)| is usually periodic with period m + 1. This is a consequence of the
periodicity of the Kloosterman sums.

Table 2 displays how p,(n, m) converges to p,(n) for « = 1/e,n = 50, and 1 < m < 10. Table @
displays the ratio of the m-term approximation of p,(n) to the actual value for n = 100 and various

13



n_| pe(n) | Re(pe(n;1)) | re(ns1) m_| Re(p1/e(50;m)) | r1/e(50;m)
1 | 271 2.83 1.04253 1 | 356.2808 0.997668
2 | 7.77 7.65 0.98444 2 | 357.2586 1.000381
3 |18.05 | 18.23 1.01014 3 | 357.1278 1.000014
4 | 4026 | 39.96 0.99263 4 | 357.053 0.999805
5 |81.84 | 82.28 1.00543 5 | 357.1236 1.000003
6 | 161.99 | 161.41 0.9964 6 | 357.1195 0.999991
7 |303.75 | 304.41 1.00217 7 | 357.1169 0.999984
8 | 556.32 | 555.61 0.99873 8 | 357.1208 0.999995
9 | 985.41 | 986.27 1.00086 9 | 357.1201 0.999993
10 | 1710.31 | 1709.07 0.99927 10 | 357.1296 1.00002

Table 2: Accuracy of m-term approxima-
tions to p;/.(50) = 357.1225

Table 1: Accuracy of first-term approxima-
tions to pe(n)

1 W(na 1)

1 7'('(”7 5)

r5(n; 1)

75(n;5)

© 00~ U A WN S

10
11
12
13
14

1.294180591
0.970982400
1.083673986
0.923295102
1.124698668
0.897139773
1.108496000
0.943494666
1.034408356
0.961090657
1.076769973
0.923558631
1.058750442
0.980265489

0.953980957
0.982523054
1.018088216
1.02170408

1.016001474
1.004350338
0.978153497
1.002688299
1.003218418
1.005487344
0.993996646
1.005396386
0.996292489
0.993723758

1.015286846
0.994583967
1.002732222
0.998466124
1.000871244
0.999524823
1.000255655
0.999854031
1.000093623
0.999935881
1.000043109
0.999972215
1.000017874
0.999987986

1.000097277
1.000042848
1.000007177
0.999992664
0.999999382
1.000000088
1.000000217
1.000000092
0.999999982
0.999999997
0.999999968
1.000000007
1.000000008
1.000000000

Table 3: Accuracy of approximation to p,(n) as n increases

m | 79.01(100;m) | r9.1(100;m) | 71(100;m) r10(100; m)

1 | 0.846079580 | 0.988058877 | 0.999998178 | 1.000000000
2 1 0.969774117 | 0.999386989 | 1.000000009 | 1.000000000
3 1 0.920711483 | 0.997246602 | 0.999999995 | 1.000000000
4 | 0.973881495 | 0.999016179 | 0.999999999 | 1.000000000
) 1.040636574 | 1.000923931 | 1.000000000 | 1.000000000
6 | 1.028999226 | 1.000579623 | 1.000000000 | 1.000000000
7 | 1.020829553 | 1.000421683 | 1.000000000 | 1.000000000
8 1 0.995326778 | 0.999817677 | 1.000000000 | 1.000000000
9 | 0.995461037 | 0.999846688 | 1.000000000 | 1.000000000
10 | 1.011689149 | 1.000211135 | 1.000000000 | 1.000000000

Table 4: Accuracy of approximation to p,(n) as number of terms in series increases
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values of & and m. As we increase «, we see that the relative error of the approximation for p,(n)
decreases.
Table [b] depicts the convergence of jg(;"(X ) to the Hermite polynomial Hs(z) = 22 — 2, and the

convergence of j;’;"(X ) to the Hermite polynomial Hs(x) = 2® — 6. Here,

1
o 24 12ma2 288
A(n) =27 51 ~ 51 , and d(n) = T~ o 5
Vol —a " 2m-a @in—a) @i —a)

as in Theorem [[3] for /3. To compute p,(n) for large n, we used the 100-term approximation
of our series formula; this is valid for our purposes because by Theorem (.1l the relative error
Ir 5(n,100) — 1] is bounded by 10~ for the values of n we consider.

2.n T3.n
n Tyt () Tp5 (%)
10000 | 0.9995982% + 0.120905z — 2.03828 | 0.99994223 + 0.0939817x2 — 6.035262 — 0.648632
20000 | 0.99980422 + 0.0966267x — 2.02711 | 0.99997123 + 0.076706122 — 6.02522x — 0.543473
30000 | 0.99987122 + 0.0852795x — 2.02216 | 0.999981z3 + 0.068380122 — 6.02072 — 0.495049
40000 | 0.999904z2 + 0.0782302z — 2.0192 | 0.999986x> + 0.063117422 — 6.017992 — 0.435239
50000 | 0.99992322 + 0.0732538x — 2.01719 | 1.0025222 + 0.059508622 — 6.03131x — 0.429626

00 x2—2 3 — 6z

Table 5: Convergence to the Hermite polynomial of degree 2, 22 — 2, and of degree 3, z° — 6z

In Table[6] we provide the actual value of ps; /7(n) alongside the minimum number Ms, /7(n) for

which Corollary A.2] guarantees that ps;/7(n) is given by a suitable rounding of p, <n; M?%‘ES;L),

which has Ms;/7(n) terms. We also provide M} /7(n), the minimum number of terms such that
this is numerically true.

n | psiy7(n) My, /7(n; D) | MZ, -(n; D)
1 | 51/7 2 1

2 1836/49 3 2

3 52751/343 5 3

4 1322226/2401 8 4

5 29852442 /16807 14 7

6 623075585/117649 23 10
7 85346705106/5764801 67 26
8 1583888229297 /40353607 114 43
9 28093059550223 /282475249 194 63
10 | 479246612549889 /1977326743 | 330 109

Table 6: Number of terms for exact solution for ps; /7(n)

L All computations in this section were done with Wolfram Mathematica.
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