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Exact Formulae for the Fractional Partition Functions

Jonas Iskander, Vanshika Jain, and Victoria Talvola

Abstract

The partition function p(n) has been a testing ground for applications of analytic number
theory to combinatorics. In particular, Hardy and Ramanujan invented the “circle method”
to estimate the size of p(n), which was later perfected by Rademacher who obtained an exact
formula. Recently, Chan and Wang considered the fractional partition functions, defined for
α ∈ Q by

∑
∞

n=0
pα(n)x

n :=
∏

∞

k=1
(1 − xk)−α. In this paper we use the Rademacher circle

method to find an exact formula for pα(n) and study its implications, including log-concavity
and the higher-order generalizations (i.e., the Turán inequalities) that pα(n) satisfies.

1 Introduction and Statement of Results

A partition of a nonnegative integer n is a non-increasing sequence of positive integers with sum n.
We use p(n) to denote the number of partitions of n. One powerful tool for analyzing the partition
function is Euler’s generating function:

P (x) :=

∞∑

n=0

p(n)xn =

∞∏

k=1

1

1− xk
. (1.1)

The study of the size of p(n) spurred the development of the “circle method,” which has had many
applications, including the proof of the weak Goldbach conjecture [11]. In 1918, G. H. Hardy and
S. Ramanujan [10] invented this method to obtain an infinite but divergent series expansion for
p(n) and the asymptotic formula:

p(n) ∼ eπ
√

2n/3

4n
√
3

.

This method was perfected by H. Rademacher [16], who determined the convergent exact formula

p(n) =
2π

(24n − 1)
3

4

∞∑

k=1

Ak(n)

k
· I 3

2

( π

6k

√
24n− 1

)
, (1.2)

where

Iν(z) :=
(z
2

)ν ∞∑

k=0

(z/2)2k

k!Γ(ν + k + 1)

is the modified Bessel function of the first kind,

Ak(n) :=
∑

0≤h<k
gcd(h,k)=1

eπis(h,k)−2πinh/k

is a Kloosterman sum, and

s(h, k) :=

k−1∑

r=1

r

k

(
hr

k
−
⌊
hr

k

⌋
− 1

2

)
(1.3)
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is the usual Dedekind sum.
The partition function also satisfies certain congruences, which exhibit a great degree of struc-

ture. Ramanujan was the first to study these congruences, and he discovered examples including
p(5n + 4) ≡ 0 (mod 5). In a recent paper, Chan and Wang [4] defined for α ∈ Q the fractional

partition function pα(n) in terms of its generating function

P (x)α =

∞∏

k=1

1

(1− xk)α
=:

∞∑

n=0

pα(n)x
n, (1.4)

and studied its congruences, showing, for instance, that p1/2(29n + 26) ≡ 0 (mod 29). A general
theory of such congruences has recently been developed by Bevilacqua, Chandran, and Choi [2].
The discussion of congruences for pα(n) is possible because pα(n) is rational whenever α is rational.

When α ∈ Z+, pα(n) counts the number of partitions of n in which each term is labeled with
one of α different colors, where the order of the colors does not matter [12]. Moreover, in such
cases, the function

η(τ)−α = q−
α
24P (q)α (1.5)

is a weakly holomorphic modular form of weight −α/2 ∈ (1/2)Z, where τ is in the upper half-plane,
η(τ) := q1/24

∏
n≥1(1 − qn) is the Dedekind eta function, and q := e2πiτ . This makes it possible

to compute the values of pα(n) using Maass-Poincaré series, as described by Bringmann et al. [3,
§6.3], which give a Rademacher-type infinite series expansion that reduces to (1.2) when α = 1.
To do this, one computes the principal part of η(τ)−α, which correspond to the values pα(n) for
0 ≤ n ≤ ⌊α/24⌋. Then, using the fact that a weakly holomorphic modular form is determined
by its weight and principal part, one can write it as a finite sum of Maass-Poincaré series and
apply a known formula for the coefficients of such series. While these observations shed light on
the case where α is a positive integer, there is currently no known combinatorial or modular-form
interpretation of pα(n) for arbitrary rational α.

In this paper, we extend the definition of pα(n) to arbitrary real α via (1.4) and give exact
formulas for pα(n) in the spirit of Rademacher. For real α > 0, n > α/24, and m ≤ α/24, we define
the functions

να(n) :=

√
n− α

24
, µα(m) :=

√
α

24
−m (1.6)

and the α-Kloosterman sum

A
(α)
k (n,m) :=

∑

0≤h<k
(h,k)=1

eαπis(h,k)+
2πi
k

(mH−nh), (1.7)

where H denotes an inverse of h modulo k and s(h, k) is the Dedekind sum defined in (1.3). Our
exact formulas for pα(n) are the content of the following theorem.

Theorem 1.1. For all α > 0 and n > α/24, we have

pα(n) = να(n)
−α

2
−1

q∑

m=0

µα(m)
α
2
+1pα(m)

∞∑

k=1

2π

k
A

(α)
k (n,m)Iα

2
+1

(
4π

k
να(n)µα(m)

)
, (1.8)

where q := ⌊ α
24⌋.

Theorem 1.1 also enables the calculation of explicit error bounds for approximations of pα(n)
obtained by truncating (1.8). These have several implications, including a simple description of the
asymptotic behavior of pα(n) for large n, given in Corollary 1.2.
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Corollary 1.2. For all α > 0, as n → ∞, we have

pα(n) ∼ 2π
Iα

2
+1

(
πα
6 λα(n)

)

λα(n)
α
2
+1

∼
√

12

α
· e

απ
6
λα(n)

λα(n)
α+3

2

,

where λα(n) :=
√

24n
α − 1.

We remark that because pα(n) is rational for any α ∈ Q, Theorem 1.1 implies that the series in
(1.8) converges to a rational number when n ∈ Z, n > α/24. We make use of this fact later in the
paper (Corollary 4.2) to provide a finite formula for pα(n) in the case where α ∈ Q.

When considering a sequence of real numbers, one is often interested in more than just its
asymptotic behavior. One property that is often studied is log-concavity. A sequence {a(n)} is
called log-concave if we have

a(n+ 1)2 − a(n)a(n + 2) ≥ 0

for all n. Nicolas [14] and DeSalvo and Pak [7] independently proved that p(n) is log-concave for
n ≥ 25. In fact, the condition of log-concavity is a special case of what are known as the higher

Turán inequalities [5]. One can show that a sequence satisfies the higher Turán inequalities of
degree d if and only if the Jensen polynomials

Jd,n
a (x) :=

d∑

j=0

(
d

j

)
a(n+ j)xj (1.9)

have strictly real roots for all n—we say that such a polynomial is hyperbolic [6]. Chen, Jia, and

Wang [5] conjectured that for any fixed degree d, Jd,n
p (x) is eventually hyperbolic, and proved this

for d = 3; Larson and Wagner [13] independently proved this conjecture for d ∈ {3, 4, 5}. Griffin,
Ono, Rolen, and Zagier [9] established the conjecture of Chen et al. for all d by showing that,
after suitable renormalization, the Jensen polynomials of p(n) converge to the Hermite polynomials
Hd(x) as n → ∞. We apply their methods to prove the analogue of Chen et al.’s conjecture for
pα(n).

Theorem 1.3. For α > 0 and d ∈ N, there exists Nd(α) such that Jd,n
pα (X) is hyperbolic for all

n > Nd(α).

Our paper is divided into five main sections. In Section 2, we establish some preliminary results,
including a modified version of the Dedekind functional equation for η(τ). In Section 3, we use the
circle method along with this identity to prove Theorem 1.1. In Section 4, we use Theorem 1.1 to
prove more results about pα(n), including the estimate given in Corollary 1.2. We also analyze the
hyperbolicity of the Jensen polynomials associated with pα(n). Finally, in Section 5 we provide
numerical illustrations of our main theorems.
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2 Proof of the Functional Equation for P (x)α

In order to apply the circle method to pα(n), we first require a precise statement of Dedekind’s func-
tional equation for the eta function. We derive this from Iseki’s formula [1, §3.5]. For convenience,
when Re(x) > 0, we set

λ(x) :=
∞∑

m=1

e−2πmx

m
= − log

(
1− e−2πx

)
.

Remark. Throughout this section, we let log z denote the branch of the logarithm with a branch
cut along the negative imaginary axis and log 1 = 0, and we define arg z := Im(log z).

2.1 Derivation of the Logarithmic Functional Equation from Iseki’s Formula

In order to derive the required modification of the functional equation for η(τ), we first prove a
lemma which follows from Iseki’s formula [1, §3.5].

Theorem 2.1 (Iseki’s Formula). For Re z > 0, 0 < α < 1, and 0 ≤ β ≤ 1, let

Λ(α, β, z) :=
∞∑

r=0

[λ((r + α)z − iβ) + λ((r + 1− α)z + iβ)] .

Then we have

Λ(α, β, z) = Λ(1−β, α, z−1)−πz

(
α2 − α+

1

6

)
+
π

z

(
β2 − β +

1

6

)
+2πi

(
α− 1

2

)(
β − 1

2

)
. (2.1)

Lemma 2.2. For Re z > 0, we have

∞∑

r=1

λ(rz) =

∞∑

r=1

λ
(r
z

)
+

1

2
log z −

(πz
12

− π

12z

)
. (2.2)

Proof. Letting β = 0 in Iseki’s formula, we obtain

Λ(α, 0, z) = Λ(1, α, z−1)− πz

(
α2 − α+

1

6

)
+

π

6z
− πi

(
α− 1

2

)
. (2.3)

From here, bringing Λ(1, α, z−1) to the left side, reordering the summations, and setting a(α) :=
λ(αz) − λ(iα) and

br(α) := λ((r + α)z) + λ((r − α)z) − λ
(r
z
− iα

)
− λ

(r
z
+ iα

)

yields

a(α) +
∞∑

r=1

br(α) = −πz

(
α2 − α+

1

6

)
+

π

6z
− πi

(
α− 1

2

)
. (2.4)

The reordering is valid because the sum over each of the four terms in br(α) converges absolutely,
since λ(γz) ∼ e−2πγz as γ → ∞. We proceed by taking the limit as α → 0+. We start by observing
that

lim
α→0+

a(α) = lim
α→0+

[λ(αz) − λ(iα)]

= lim
α→0+

[
log
(
1− e−2πiα

)
− log

(
1− e−2απz

)]

= lim
α→0+

log

(
1− e−2πiα

1− e−2απz

)
, (2.5)
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where the last step is justified because arg(1 − e−2πiα) − arg(1 − e−2απz) ∈ (−π, π) for α > 0. By
L’Hôpital’s rule,

lim
α→0+

1− e−2πiα

1− e−2απz
= lim

α→0+

2πie−2πiα

2πze−2απz
=

i

z
,

and so

lim
α→0+

a(α) = log

(
i

z

)
=

πi

2
− log z,

using the fact that arg(i/z) ∈ (0, π) and log(1/z) = − log z for our definition of the logarithm. We
now show that

lim
α→0+

∞∑

r=1

br(α) =
∞∑

r=1

lim
α→0+

br(α) =
∞∑

r=1

(2λ(rz) − 2λ(r/z)).

For this purpose, start by noting that for Re x > 0, we have |λ(x)| ≤ λ(Re x) by the series expansion
for λ, and that λ(Re x) is monotonically decreasing. In particular, we have

|λ((r ± α)z)| ≤ λ

((
r − 1

2

)
Re z

)
≤ λ

(
r · Re z

2

)
,

and |λ(rz± iα)| ≤ λ(rRe z). For x > 0, we can verify that
∑∞

r=1 λ(rx) converges by the asymptotic
behavior of λ(rx) as r → ∞. Consequently, by the discrete version of the dominated convergence
theorem, we may exchange the order of the limit and the summation over br. Thus, in the limit,
(2.4) becomes

πi

2
− log z + 2

∞∑

r=1

λ(rz)− 2

∞∑

r=1

λ
(r
z

)
= −πz

6
+

π

6z
+

πi

2
. (2.6)

This is equivalent to (2.2).

For the main theorem of this section, we begin by citing a fact proven in [1, §3.6].

Proposition 2.3. Let Re z > 0, let h, k ∈ Z be coprime with k > 0, and choose H such that

hH ≡ −1 (mod k). Then we have that

∞∑

n=1
n 6≡0 (mod k)

λ
(n
k
(z − ih)

)
=

∞∑

n=1
n 6≡0 (mod k)

λ
(n
k
(z−1 − iH)

)
+
(πz
12

− π

12z

)(
1− 1

k

)
+ πis(h, k). (2.7)

With this fact and Lemma 2.2, we may finally provide the desired logarithmic version of the
functional equation for η(τ).

Theorem 2.4. For Re z > 0 and h, k,H ∈ Z with k > 0, gcd(h, k) = 1, and hH ≡ −1 (mod k),
we have

∞∑

n=1

λ
(n
k
(z − ih)

)
=

∞∑

n=1

λ
(n
k
(z−1 − iH)

)
+

1

k

( π

12z
− πz

12

)
+

1

2
log z + πis(h, k). (2.8)

Proof. Using the periodicity of λ, we note that

∞∑

r=1

λ(rz) =

∞∑

n=1
n≡0 (mod k)

λ
(n
k
(z − ih)

)
and

∞∑

r=1

λ
(r
z

)
=

∞∑

n=1
n≡0 (mod k)

λ
(n
k
(z−1 − iH)

)
.

Substituting this into (2.2) and adding equation (2.7) yields the desired result.
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2.2 Application of the Logarithmic Functional Equation to P (x)α

We recall the generating function

P (x) :=

∞∏

k=1

1

1− xk
=

∞∑

n=0

p(n)xn,

which is holomorphic for x in the open unit disk. In deriving the Hardy-Ramanujan-Rademacher
series formula for the partition function, we rely on the fact that the equation above holds ana-
lytically as well as formally. We extend this observation to pα(n) by showing that the generating
function P (x)α is well-defined.

Lemma 2.5. For x in the open unit disk and α > 0, we have

∞∑

n=0

pα(n)x
n =

∞∏

k=1

e−α log(1−xk) =: P (x)α. (2.9)

Proof. Start by observing that our branch of the logarithm ensures that exp
(
−α log

(
1− xk

))
is

formally equivalent to (1 − xk)−α. Thus, because the pα(n) are defined in terms of the formal
equivalence in (1.4), it suffices to show that P (x)α as defined above is holomorphic for |x| < 1. For
this purpose, let 0 < r < 1, and observe that −∑∞

k=1 α log
(
1− xk

)
converges uniformly for |x| ≤ r

by the ratio test, as

lim
k→∞

∣∣∣∣∣
log
(
1− xk+1

)

log(1− xk)

∣∣∣∣∣ = lim
k→∞

∣∣∣∣
− log(x)xk+1/(1 − xk+1)

− log(x)xk/(1 − xk)

∣∣∣∣ = lim
k→∞

∣∣∣∣x · 1− xk

1− xk+1

∣∣∣∣ = |x| ≤ r.

Thus,
∏∞

k=1 e
−α log(1−xk) converges uniformly for |x| ≤ r, from which it follows that P (x)α is

holomorphic in every closed disk |x| ≤ r and hence in the open unit disk |x| < 1 as desired.

We are finally ready for the main result of this section, which expresses the functional equation for
η(τ) in terms of P (x)α.

Theorem 2.6 (Modified Functional Equation). For Re z > 0, α > 0, h, k,H ∈ Z with k > 0,
gcd(h, k) = 1, and hH ≡ −1 (mod k), we have

P (x)α = eπiαs(h,k)
( z
k

)α/2
exp

(
απ

12k

(
k

z
− z

k

))
P (x′)α, (2.10)

where

x := exp

(
2π

k

(
ih− z

k

))
, x′ := exp

(
2π

k

(
iH − k

z

))
, (2.11)

and real powers are given for the precise branch of the logarithm described in Section 2.1.

Proof. Applying Theorem 2.4 with z/k in place of z and multiplying by α, we obtain

α

∞∑

n=1

λ
(n
k

( z
k
− ih

))
=

απ

12k

(
k

z
− z

k

)
+

α

2
log
(z
k

)
+ πiαs(h, k) + α

∞∑

n=1

λ

(
n

k

(
k

z
− iH

))
.

Exponentiating both sides yields

∞∏

n=1

exp (−α log(x)) = exp

(
απ

12k

(
k

z
− z

k

))
exp

(α
2
log
(z
k

))
eπiαs(h,k)

∞∏

n=1

exp
(
−α log

(
x′
))

(2.12)
for x and x′ defined above, which is equivalent to (2.10).
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3 Proof of the Series Formula for pα(n)

In this section, we use Radamacher’s circle method to prove the series formula for pα(n). We closely
follow Apostol’s proof of the α = 1 case [1, §5.7].

Proof of Theorem 1.1. Using Cauchy’s residue theorem and Lemma 2.5, we can write

pα(n) =
1

2πi

ˆ

C

P (x)α

xn+1
dx, (3.1)

where C is any simple closed contour in the unit disk which encloses the origin. To evaluate this,
we consider the change of variables x = e2πiτ , under which the closed unit disk |x| ≤ 1 is the image
of the infinite vertical strip {τ : 0 ≤ Re τ ≤ 1, 0 ≤ Im τ}. We start by recalling the Farey sequences
FN , defined by enumerating the rational numbers in [0, 1] with reduced denominators at most N .
In addition, for gcd(h, k) = 1, we let C(h, k) denote the Ford circle associated with h/k, which has
center h/k+ i/(2k2) and radius 1/(2k2) (details are given in [1, §5.6]). As in Rademacher’s original
work, we integrate along the Rademacher paths R(N) in the τ -plane, consisting of the upper arcs
of the Ford circles associated with FN , with the intent to later take the limit as N → ∞ (depicted
in Figure 2). For N ≥ 1, we write (3.1) as

pα(n) =

ˆ

R(N)
P (e2πiτ )αe−2πinτdτ. (3.2)

Decomposing R(N) into its component arcs, we may write the above integral as

ˆ

R(N)
=

N∑

k=1

∑

0≤h<k
(h,k)=1

ˆ

γ(h,k)
=:
∑

h,k

ˆ

γ(h,k)
, (3.3)

where we define the right side as a shorthand for the double sum over h and k, and γ(h, k) is the
upper arc of the Ford circle C(h, k) of radius 1/(2k2) tangent to the real axis at h/k.

We now introduce a second change of variables given by

z = −ik2
(
τ − h

k

)
, (3.4)

which maps the circle C(h, k) onto the circle K of radius 1/2 centered at 1/2. Let z1(h, k) and
z2(h, k) be the respective endpoints of the image of γ(h, k), and let x and x′ be defined as in
Theorem 2.6. Then

pα(n) =
∑

h,k

ik−2e−
2πinh

k

ˆ z2(h,k)

z1(h,k)
e

2nπz
k2 P (x)α dz,

from which the modified functional equation from Theorem 2.6 yields

pα(n) =
∑

h,k

ik−
α
2
−2e−

2πinh
k ω(α)(h, k)

ˆ z2(h,k)

z1(h,k)
e

2πnz
k2 Ψ

(α)
k (z)P (x′)α dz,

where
ω(α)(h, k) := eαπis(h,k), and Ψ

(α)
k (z) := z

α
2 exp

( απ

12z
− απz

12k2

)
.

Let q = ⌊α/24⌋, and define

Q(α)(x) :=

q∑

m=0

pα(m)xm.
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0 1

i i+ 1

1
2

Figure 1: The Rademacher path R(2)

0

1
2

1

z1(h, k)

K

z2(h, k)

Figure 2: Path of integration in the z-plane

We proceed by separating out a part of the integral that corresponds to Q(α)(x) and showing that
the remaining part goes to zero as N → ∞. In particular, we write

I1(h, k) =

ˆ z2(h,k)

z1(h,k)
Ψ

(α)
k (z)e

2πnz
k2 Q(α)(x′)dz

and

I2(h, k) =

ˆ z2(h,k)

z1(h,k)
Ψ

(α)
k (z)e

2πnz
k2 (P (x′)α −Q(α)(x′)) dz

to obtain

pα(n) =
∑

h,k

ik−2−α
2 e−

2πinh
k ω(α)(h, k) · (I1(h, k) + I2(h, k)). (3.5)

We now show that I2(h, k) is “small” for large N by considering the integral along the chord in
the z-plane joining z1(h, k) and z2(h, k). Because 0 < Re z ≤ 1 and Re(z−1) ≥ 1 for z on the path
of integration, we can write

∣∣∣Ψ(α)
k (z) · e

2nπz
k2 ·

{
P (x′)α −Q(α)(x′)

}∣∣∣ (3.6)

= |z|α2 exp

(
απ

12
Re(z−1)− απ

12k2
Re z +

2nπ

k2
Re z

)
·

∣∣∣∣∣∣

∞∑

m=q+1

pα(m) exp

(
2πiHm

k
− 2πm

z

)∣∣∣∣∣∣

≤ |z|α2 exp

(
απ

12
Re(z−1) +

2nπ

k2

) ∞∑

m=q+1

pα(m)e−2πmRe(z−1)

≤ |z|α2
∞∑

m=q+1

pα(m)e−2π(m− α
24)Re(z−1) (3.7)

≤ |z|α2
∞∑

m=q+1

pα(m)e−2π(m− α
24) = |z|α2 eαπ

12 (P (e−2π)α −Q(α)(e−2π)). (3.8)

8



Since |z| <
√
2k/N for z on the chord from z1(h, k) to z2(h, k), the integrand is less than C(k/N)α/2

for some constant C not depending on N . Thus, because the length of the chord is at most 2
√
2k/N ,

we have

|I2(h, k)| <
Ck

α
2
+1

N
α
2
+1

. (3.9)

Substituting this bound into the sum of the I2 terms in (3.5) yields

∣∣∣∣∣∣

∑

h,k

ik−
α
2
−2e−

2πinh
k ω(α)(h, k)I2(h, k)

∣∣∣∣∣∣
<

N∑

k=1

∑

0≤h<k
(h,k)=1

Ck−1N−α
2
−1 ≤ CN−α

2
−1

N∑

k=1

1 = CN−α
2 .

Thus, we have

pα(n) =

( N∑

k=1

∑

0≤h<k
(h,k)=1

ik−
α
2
−2e−

2πinh
k ω(a)(h, k)I1(h, k)

)
+O(N−α

2 ). (3.10)

Next we consider I1(h, k). We can write

I1(h, k) =

ˆ

−K
−
ˆ z1(h,k)

0
−
ˆ 0

z2(h,k)
=:

ˆ

−K
− J1 − J2, (3.11)

where we omit the integrands for brevity, and where −K indicates that we integrate in the negative
direction along K. Because |z| ≤

√
2k/N on the paths of integration, we can bound the integrands

of J1 and J2 by

∣∣∣Ψ(α)
k (z)e

2πnz
k2 Q(α)(x′)

∣∣∣

≤ |z|α2 exp

(
απ

12
Re(z−1)− απ

12k2
Re z +

2nπ

k2
Re z

) ∣∣∣∣∣

q∑

m=0

pα(m) exp

(
2πiHm

k
− 2πm

z

)∣∣∣∣∣

≤ |z|α2 exp

(
απ

12
+

2π

k2

(
n− α

24

)
Re z

) ∣∣∣∣∣

q∑

m=0

pα(m)e−2πm

∣∣∣∣∣ (3.12)

≤ e2nπ2
α
4 k

α
2

N
α
2

∣∣∣∣∣

q∑

m=0

pα(m)e−2πm

∣∣∣∣∣ . (3.13)

The lengths of the arcs from 0 to z1(h, k) and z2(h, k) are less than π|z1(h, k)| and π|z2(h, k)|,
respectively, and both of these are bounded by π

√
2k/N , so we get that |J1|, |J2| < C1k

α
2
+1N−α

2
−1

for some constant C1.
Combining (3.10), (3.11), and the bounds for J1 and J2 above, we find that

pα(n) =

N∑

k=1

∑

0≤h<k
(h,k)=1

ik−
α
2
−2e−

2πinh
k ω(α)(h, k)

ˆ

−K
Ψ

(α)
k (z)e

2nπz
k2 Q(α)(x′) dz +O(N−α

2 ), (3.14)
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which in the limit as N goes to infinity becomes

pα(n) =

q∑

m=0

pα(m)

∞∑

k=1

∑

0≤h<k
(h,k)=1

ik−
α
2
−2e−

2πinh
k ω(α)(h, k)

·
ˆ

−K
z

α
2 exp

(
2πnz

k2
+

απ

12z
− απz

12k2
+

2πimH

k
− 2πm

z

)
dz

=

q∑

m=0

pα(m)
∞∑

k=1

∑

0≤h<k
(h,k)=1

ik−
α
2
−2e

2πi
k

(mH−nh)ω(α)(h, k)

·
ˆ

−K
z

α
2 exp

(
2πz

k2
να(n)

2 +
2π

z
µα(m)2

)
dz

=

q∑

m=0

pα(m)

∞∑

k=1

i
A

(α)
k (n,m)

k
α
2
+2

ˆ

−K
z

α
2 exp

(
2πz

k2
να(n)

2 +
2π

z
µα(m)2

)
dz.

To evaluate the integral on the right, we make the change of variables t = 2π(α/24−m)/z to obtain

pα(n) = 2π

q∑

m=0

pα(m)
∞∑

k=1

A
(α)
k (n,m)

k
α
2
+2

[
2πµα(n)

2
]α

2
+1

· 1

2πi

ˆ c+i∞

c−i∞
t−

α
2
−2 exp

(
t+

(
2π

k
να(n)µα(m)

)2 1

t

)
dz,

where c = απ/12. Now recall that the modified Bessel function of the first kind satisfies

Iβ(z) =
(z/2)β

2πi

ˆ c+∞i

c−∞i
t−β−1et+

z2

4t dt (3.15)

for c > 0,Re(ν) > 0 [17, p. 181]. Consequently, for n ≥ α/24, we find that

pα(n) = 2π

q∑

m=0

pα(m)
∞∑

k=1

A
(α)
k (n,m)

k
α
2
+2

(
2πµα(m)2

)α
2
+1
(
2π

k
να(n)µα(m)

)−α
2
−1

Iα
2
+1

(
4π

k
να(n)µα(m)

)

(3.16)

= να(n)
−α

2
−1

q∑

m=0

µα(m)
α
2
+1pα(m)

∞∑

k=1

2π

k
A

(α)
k (n,m)Iα

2
+1

(
4π

k
να(n)µα(m)

)
. (3.17)

4 Applications of the Series Formula for pα(n)

4.1 Estimates of pα(n)

In this section, we consider the error of the approximation

pα(n; δ) := να(n)
−α

2
−1

q∑

m=0

µα(m)
α
2
+1pα(m)

∑

1≤k< 2π
δ
µα(m)

2π

k
A

(α)
k (n,m)Iα

2
+1

(
4π

k
να(n)µα(m)

)
.

(4.1)
for pα(n). Note in particular that in the limit as δ → 0+, we have pα(n; δ) → pα(n).

10



Theorem 4.1. For all α > 0, 0 < δ < 2πµα(0), and n > α/24, we have

|pα(n)− pα(n; δ)| <
C

δ

Iα
2
+1(2δνα(n))

να(n)
α
2
+1

< Cδ
α
2

Iα
2
+1(4πµα(0)να(n))

(2πµα(0)να(n))
α
2
+1

, (4.2)

where

C := 4π2

(
1 +

2

α

)
µα(0)

q∑

m=0

µα(m)
α
2
+1pα(m).

Proof. Start by noting that

∣∣∣A(α)
k (n,m)

∣∣∣ ≤
∑

0≤h<k
(h,k)=1

∣∣∣eαπis(h,k)+
2πi
k

(mH−nh)
∣∣∣ =

∑

0≤h<k
(h,k)=1

1 ≤ k. (4.3)

Moreover, using the fact from [15] that for 0 < x < y and ν > 1, the modified Bessel function of
the first kind satisfies

Iν(x)

Iν(y)
<

(
x

y

)ν

, (4.4)

we have that

∑

k≥ 2π
δ
µα(m)

Iα
2
+1

(
4π
k να(n)µα(m)

)

Iα
2
+1(2δνα(n))

<
∑

k≥ 2π
δ
µα(m)

(
2π

kδ
µα(m)

)α
2
+1

< 1 +

ˆ ∞

2π
δ
µα(m)

(
2π

tδ
µα(m)

)α
2
+1

dt

= 1 +
4π

αδ
µα(m)

for 0 ≤ m ≤ q. Thus, we find that

να(n)
α
2
+1 |pα(n)− pα(n; δ)| ≤ 2π

q∑

m=0

µα(m)
α
2
+1pα(m)

∑

k≥ 2π
δ
µα(m)

Iα
2
+1

(
4π

k
να(n)µα(m)

)

< 2πIα
2
+1(2δνα(n))

q∑

m=0

µα(m)
α
2
+1pα(m)

[
1 +

4π

αδ
µα(m)

]
.

Since 1 < 2π
δ µα(0) and µα(m) ≤ µα(0), it follows that

|pα(n)− pα(n; δ)| <
4π2

δ

Iα
2
+1(2δνα(n))

να(n)
α
2
+1

(
1 +

2

α

)
µα(0)

q∑

m=0

µα(m)
α
2
+1pα(m),

or applying the Paris inequality a second time using 2δνα(n) < 4πµα(0)να(n),

|pα(n)− pα(n; δ)| < 4π2δ
α
2

Iα
2
+1(4πµα(0)να(n))

(2πµα(0)να(n))
α
2
+1

(
1 +

2

α

)
µα(0)

q∑

m=0

µα(m)
α
2
+1pα(m).

We are now in a position to prove the simple asymptotic formula for pα(n) stated in the introduction.
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Proof of Corollary 1.2. Observe that since 4π
δ µα(m) is strictly increasing in m, there exists a 0 <

δ < 2πµα(0) such that 2π
δ µα(m) ≤ 2 for 0 < m ≤ q and so

pα(n; δ) = 2π

(
µα(0)

να(n)

)α
2
+1

Iα
2
+1 (4πνα(n)µα(0)) = 2π

Iα
2
+1

(
πα
6 λα(n)

)

λα(n)
α
2
+1

.

Moreover, by Theorem 4.1, we have

|pα(n)− pα(n; δ)| ≤ C
Iα

2
+1(2δνα(n))

να(n)
α
2
+1

for some constant C. Using the fact that Iν(z) ∼ ez/
√
2πz from [8, 10.30.4], we easily verify that

Cνα(n)
−α

2
−1Iα

2
+1(2δνα(n)) ≪ pα(n), from which it follows that

pα(n) ∼ pα(n; δ) ∼
e

απ
6
λα(n)

λα(n)
α+3

2

.

Theorem 4.1 also allows us to derive a finite exact formula for pα(n) when α is rational. This is
made possible by a formula for the denominator of pα(n) from [4], which states that if α = a/b for
coprime a, b ∈ Z with b > 0, then

denom(pα(n)) := bn
∏

p|b
pordp(n!),

where ordp(n) denotes the multiplicity of a prime p as a factor of n.

Corollary 4.2. Let α, ε > 0 and n > α/24 with α rational. Then

pα(n) =
⌊Dpα(n; δ)⌉

D
, (4.5)

where D = denom(pα(n)) and

δ :=

(
(2πµα(0)να(n))

α
2
+1

2DCIα
2
+1(4πµα(0)να(n))

) 2

α

,

with C defined as in Theorem 4.1.

Proof. Observe that by Theorem 4.1, we have

|pα(n)− pα(n; δ)| < Cδ
α
2

Iα
2
+1(4πµα(0)να(n))

(2πµα(0)να(n))
α
2
+1

=
1

2D
. (4.6)

Thus, D|pα(n)− pα(n; δ)| < 1/2, implying that Dpα(n) is the nearest integer to Dpα(n; δ).

4.2 Hyperbolicity of the Jensen Polynomials of pα(n)

In this section, we demonstrate how the asymptotics of pα(n) in this paper can be used to generalize
a recent hyperbolicity result for the usual partition function.
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Proof of Theorem 1.3. Set

m =
α

24
and c0 = log

(√
12

α
·
( α

24

)α+3

4

)
.

Then by Corollary 1.2,

pα(n) ∼ ec0+4π
√
mnn−α+3

4 .

Thus, as in [9, §3], we have

log

(
pα(n+ j)

pα(n)

)
∼ 4π

√
m

∞∑

i=1

(
1/2

i

)
ji

ni−1/2
− α+ 3

4

∞∑

i=1

(−1)i−1ji

ini
,

from which it is clear that pα(n) satisfies the conditions of Theorem 3 from [9] with A(n) =
2π
√

m/n +O(1/n) and δ(n) = (π/2)1/2m1/4n−3/4 +O(n−5/4). It follows immediately that for all
d the Jensen polynomials associated with pα(n) are hyperbolic for sufficiently large n.

Remark. The proof of Theorem 1.3 follows [9, §3]. In particular, we consider the renormalization
of the Jensen polynomials given by

Ĵd,n
pα (X) =

δ(n)−d

pα(n)
· Jd,n

pα

(
δ(n)X − 1

exp(A(n))

)
. (4.7)

Theorem 1.3 follows from the fact that for fixed d,

lim
n→∞

Ĵd,n
pα (X) = Hd(x), (4.8)

where Hd(x) is the degree d renormalized Hermite polynomial in [9].

5 Numerical Data1

In this section, we illustrate the theorems of the previous sections using numerical examples. For
simplicity, we limit our examples to cases where 0 < α < 24. For such α, it will be convenient to
define

rα(n;m) =
Re
(
pα

(
n; 2πµα(0)

m+1

))

pα(n)
, (5.1)

the ratio between the real part of the m-term approximation to pα(n) and the actual value. Note
that a value of rα(n;m) closer to 1 indicates that the m-term approximation to rα(n) is more
accurate.

By Corollary 1.2, we know that pα(n) is asymptotically equivalent to the first term in the series
expansion in Theorem 1.1 as n goes to infinity. Table 1 displays the accuracy of the first-term
expansion for α = e and n varying from 1 to 10. Table 3 shows the ratio of both the first-term
and the five-term approximation to pα(n) where α = 1/π and α = 5. Note that the sign of the
error term |pα(n) − pα(n;m)| is usually periodic with period m+ 1. This is a consequence of the
periodicity of the Kloosterman sums.

Table 2 displays how pα(n,m) converges to pα(n) for α = 1/e, n = 50, and 1 ≤ m ≤ 10. Table 4
displays the ratio of the m-term approximation of pα(n) to the actual value for n = 100 and various
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n pe(n) Re(pe(n; 1)) re(n; 1)

1 2.71 2.83 1.04253
2 7.77 7.65 0.98444
3 18.05 18.23 1.01014
4 40.26 39.96 0.99263
5 81.84 82.28 1.00543
6 161.99 161.41 0.9964
7 303.75 304.41 1.00217
8 556.32 555.61 0.99873
9 985.41 986.27 1.00086
10 1710.31 1709.07 0.99927

Table 1: Accuracy of first-term approxima-
tions to pe(n)

m Re(p1/e(50;m)) r1/e(50;m)

1 356.2898 0.997668
2 357.2586 1.000381
3 357.1278 1.000014
4 357.053 0.999805
5 357.1236 1.000003
6 357.1195 0.999991
7 357.1169 0.999984
8 357.1208 0.999995
9 357.1201 0.999993
10 357.1296 1.00002

Table 2: Accuracy of m-term approxima-
tions to p1/e(50) = 357.1225

n r1/π(n; 1) r1/π(n; 5) r5(n; 1) r5(n; 5)

1 1.294180591 0.953980957 1.015286846 1.000097277
2 0.970982400 0.982523054 0.994583967 1.000042848
3 1.083673986 1.018088216 1.002732222 1.000007177
4 0.923295102 1.02170408 0.998466124 0.999992664
5 1.124698668 1.016001474 1.000871244 0.999999382
6 0.897139773 1.004350338 0.999524823 1.000000088
7 1.108496000 0.978153497 1.000255655 1.000000217
8 0.943494666 1.002688299 0.999854031 1.000000092
9 1.034408356 1.003218418 1.000093623 0.999999982
10 0.961090657 1.005487344 0.999935881 0.999999997
11 1.076769973 0.993996646 1.000043109 0.999999968
12 0.923558631 1.005396386 0.999972215 1.000000007
13 1.058750442 0.996292489 1.000017874 1.000000008
14 0.980265489 0.993723758 0.999987986 1.000000000

Table 3: Accuracy of approximation to pα(n) as n increases

m r0.01(100;m) r0.1(100;m) r1(100;m) r10(100;m)

1 0.846079580 0.988058877 0.999998178 1.000000000
2 0.969774117 0.999386989 1.000000009 1.000000000
3 0.920711483 0.997246602 0.999999995 1.000000000
4 0.973881495 0.999016179 0.999999999 1.000000000
5 1.040636574 1.000923931 1.000000000 1.000000000
6 1.028999226 1.000579623 1.000000000 1.000000000
7 1.020829553 1.000421683 1.000000000 1.000000000
8 0.995326778 0.999817677 1.000000000 1.000000000
9 0.995461037 0.999846688 1.000000000 1.000000000
10 1.011689149 1.000211135 1.000000000 1.000000000

Table 4: Accuracy of approximation to pα(n) as number of terms in series increases
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values of α and m. As we increase α, we see that the relative error of the approximation for pα(n)
decreases.

Table 5 depicts the convergence of Ĵ2,n
pα (X) to the Hermite polynomial H2(x) = x2 − 2, and the

convergence of Ĵ3,n
pα (X) to the Hermite polynomial H3(x) = x3 − 6x. Here,

A(n) = 2π

√
α

24n− α
− 24

24n − α
, and δ(n) =

√√√√ 12πα
1

2

(24n − α)
3

2

− 288α

(24n − α)2

as in Theorem 1.3, for
√
3. To compute pα(n) for large n, we used the 100-term approximation

of our series formula; this is valid for our purposes because by Theorem 4.1, the relative error
|r√3(n, 100) − 1| is bounded by 10−75 for the values of n we consider.

n Ĵ2,n
p√

3
(x) Ĵ3,n

p√
3
(x)

10000 0.999598x2 + 0.120905x − 2.03828 0.999942x3 + 0.0939817x2 − 6.03526x − 0.648632
20000 0.999804x2 + 0.0966267x − 2.02711 0.999971x3 + 0.0767061x2 − 6.02522x − 0.543473
30000 0.999871x2 + 0.0852795x − 2.02216 0.999981x3 + 0.0683801x2 − 6.0207x − 0.495049
40000 0.999904x2 + 0.0782302x − 2.0192 0.999986x3 + 0.0631174x2 − 6.01799x − 0.435239
50000 0.999923x2 + 0.0732538x − 2.01719 1.00252x3 + 0.0595086x2 − 6.03131x − 0.429626

...
...

...
∞ x2 − 2 x3 − 6x

Table 5: Convergence to the Hermite polynomial of degree 2, x2 − 2, and of degree 3, x3 − 6x

In Table 6, we provide the actual value of p51/7(n) alongside the minimum number M51/7(n) for

which Corollary 4.2 guarantees that p51/7(n) is given by a suitable rounding of pα

(
n; 2πµα(0)

M51/7(n)+1

)
,

which has M51/7(n) terms. We also provide M∗
51/7(n), the minimum number of terms such that

this is numerically true.

n p51/7(n) M51/7(n;D) M∗
51/7(n;D)

1 51/7 2 1
2 1836/49 3 2
3 52751/343 5 3
4 1322226/2401 8 4
5 29852442/16807 14 7
6 623075585/117649 23 10
7 85346705106/5764801 67 26
8 1583888229297/40353607 114 43
9 28093059550223/282475249 194 63
10 479246612549889/1977326743 330 109

Table 6: Number of terms for exact solution for p51/7(n)

1All computations in this section were done with Wolfram Mathematica.

15



References

[1] Tom M. Apostol. Modular Functions and Dirichlet Series in Number Theory. Graduate Texts
in Mathematics. Springer-Verlag, New York, 2nd edition, 1990.

[2] Erin Bevilacqua, Kapil Chandran, and Yunseo Choi. Ramanujan Congruences for Fractional
Partition Functions. Unpublished, 2019.

[3] Kathrin Bringmann, Amanda Folsom, Ken Ono, and Larry Rolen. Harmonic Maass forms and

mock modular forms: theory and applications, volume 64 of American Mathematical Society

Colloquium Publications. American Mathematical Society, Providence, RI, 2017.

[4] Heng Huat Chan and Liuquan Wang. Fractional powers of the generating function for the
partition function. Acta Arithmetica, 187:59–80, 2019.

[5] William Chen, Dennis Jia, and Larry Wang. Higher order Turán inequalities for the partition
function. Transactions of the American Mathematical Society, 2018.

[6] Thomas Craven and George Csordas. Jensen polynomials and the Turán and Laguerre in-
equalities. Pacific Journal of Mathematics, 136(2):241–260, 1989.

[7] Stephen DeSalvo and Igor Pak. Log-concavity of the partition function. The Ramanujan

Journal, 38(1):61–73, Oct 2015.

[8] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.23 of 2019-
06-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller and B. V. Saunders, eds.

[9] Michael Griffin, Ken Ono, Larry Rolen, and Don Zagier. Jensen polynomials for the Rie-
mann zeta function and other sequences. Proceedings of the National Academy of Sciences,
116(23):11103–11110, 2019.

[10] Godfrey H. Hardy and Srinivasa Ramanujan. Asymptotic formulæ in combinatory analysis.
Proceedings of the London Mathematical Society, 2(1):75–115, 1918.

[11] H. A. Helfgott. The ternary Goldbach conjecture is true. arXiv e-prints, page arXiv:1312.7748,
Dec 2013.

[12] William J. Keith. Restricted k-color partitions. Ramanujan J., 40(1):71–92, 2016.

[13] Hannah Larson and Ian Wagner. Hyperbolicity of the partition Jensen polynomials. Research
in Number Theory, 5(2):19, June 2019.

[14] Jean-Louis Nicolas. Sur les entiers n pour lesquels il y a beaucoup de groupes abéliens d’ordre
n. Annales de l’Institut Fourier, 28(4):1–16, 1978.

[15] R. Paris. An Inequality for the Bessel Function Jν(νx). SIAM Journal on Mathematical

Analysis, 15(1):203–205, January 1984.

[16] Hans Rademacher. On the Partition Function p(n). Proceedings of the London Mathematical

Society, s2-43(1):241–254, 1938.

[17] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University Press,
Cambridge, England, 1922.

16

http://dlmf.nist.gov/
http://arxiv.org/abs/1312.7748


J. Iskander, 2046 Deren Way NE, Atlanta, GA 30345

Email address: jonasiskander@gmail.com

V. Jain, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

Email address: vanshika@mit.edu

V. Talvola, Department of Mathematics, Princeton University, Princeton, NJ 08544

Email address: vtalvola@princeton.edu

17


	1 Introduction and Statement of Results
	2 Proof of the Functional Equation for P(x)
	2.1 Derivation of the Logarithmic Functional Equation from Iseki's Formula
	2.2 Application of the Logarithmic Functional Equation to P(x)

	3 Proof of the Series Formula for p(n)
	4 Applications of the Series Formula for p(n)
	4.1 Estimates of p(n)
	4.2 Hyperbolicity of the Jensen Polynomials of p(n)

	5 Numerical Data

