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Mobius formulas for densities of sets of prime ideals

MicHAEL KURAL, VAUGHAN MCDONALD, AND ASHWIN SAH

Abstract. We generalize results of Alladi, Dawsey, and Sweeting and Woo
for Chebotarev densities to general densities of sets of primes. We show
that if K is a number field and S is any set of prime ideals with natural
density 6(S) within the primes, then
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where p(a) is the generalized Mobius function and D(K, S) is the set of
integral ideals a C Ok with unique prime divisor of minimal norm lying
in S. Our result can be applied to give formulas for densities of various
sets of prime numbers, including those lying in a Sato—Tate interval of a
fixed elliptic curve, and those in a Beatty sequence such as |7mn].
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1. Introduction and statement of results. It is a well-known fact that the
identity

wn) 1 1 1 1 1
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where p(n) denotes the Mdbius function, is equivalent to the classical prime
number theorem, which states 7(z) ~ Li(z). This paper explores how general
analogues of the prime number theorem can give similar identities involving
the Mobius function. First, Alladi [1] recognized that such a formula could be
directly interpreted as a statement about the density of primes. In particular,
let pmin(n) denote the smallest prime divisor of an integer n > 2. Alladi [1]
proved
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= o(q)

Pmin(n)=a  (mod q)
for any positive integer ¢ and integer a with ged(a, q) = 1.

Dawsey [5] extended Alladi’s result to the setting of Chebotarev densities
for finite Galois extensions of @Q, while Sweeting and Woo [16] generalized
this formula to finite Galois extensions of number fields L/K. In a somewhat
different direction, Skatba [15] and Tao [17] considered sums of p(n)/n with
all prime factors of n restricted to a fixed subset of the primes (and analogous
sums for ideals in number fields). These results use some related techniques but
recover different identities; for example, in the cases of arithmetic progressions
and Chebotarev sets, such a sum converges to 0.

We wish to further generalize the results of Alladi, Dawsey, and Sweeting
and Woo to arbitrary sets of prime ideals in a number field K. To do so, we
define the concept of the natural density of S C P, where P denotes the set of
integral prime ideals of K:

o Ts(KGX)

8(5) = Xlgnoo m(K; X)’ (1.1)

where mg(K;X) = #{p € S : N(p) < X} and n(K;X) = mp(K;X). Note
that this density does not necessarily exist for arbitrary sets S.

We require some terminology to state our main result. An integral ideal a
is said to be distinguishable! if there is a unique prime ideal p O a attaining
the minimum norm of all such primes. For a distinguishable, let p,,in(a) denote
this minimal prime. We define

D(K,S) := {a C Ok is distinguishable : pyin(a) € S}. (1.2)

We will also require the following natural generalization of the Mobius
function to ideals a C Og:

1 ifa= OK,
pr(a) =40 if a C p? for p prime, (1.3)
(=D ifa=py--pp

Throughout, we will write p(a) := ux(a) when the context is clear.
Our general result is as follows:

Theorem 1.1. Fiz a number field K. If S C P has a natural density 6(S), then
we have that

o wa) _
A 2 N =)
2<N(a)<X
aeD(K,S)

ISweeting and Woo [16] call these ideals salient.
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To obtain this result, we generalize the method of Alladi [1], relying in
particular on a certain “duality property” of minimal and maximal prime
divisors. In the case K = Q, this property takes the form

Z M(d)f(pmax(d)) = _f(pmin(n>) (14)
d|n

for 4 = pg, Pmax(n) the maximum prime divisor of n, and f a function on
integers with f(1) = 0. The duality principle along with methods from analytic
number theory are the key ingredients necessary to prove Theorem 1.1.

In Section 2, we define some basic notions and essential quantities that
we will bound throughout the paper. In Section 2.2, we recall and prove key
number- and ideal-theoretic estimates involving these quantities. In Section 3,
we establish the intermediate sum Theorem 3.1. In Section 4, we use a duality
argument along with the more general version of Axer’s theorem [2] to establish
Theorem 1.1.

Finally, in Section 5, we discuss several interesting applications and new
examples arising from these results. This includes formulas for densities of
primes in Sato—Tate intervals for elliptic curves without CM as well as densities
of primes in Beatty sequences. As an example, we will be able to conclude

Z p(n) _ l
n '
n>2
Pmin(n)EB~

where B, = {3,31,...} denotes the set of primes of the form |7n]| for n € N.

2. Nuts and bolts. In this section, we lay out some necessary terminology and
lemmata that will be used throughout the proof.

2.1. Notation and definitions. Fix a number field K and let Ok be its ring of
integers. Denote its set of prime ideals by P. Now, for the rest of our discussion,
we fix a subset S C P of prime ideals that has a natural density.

By the prime ideal theorem [10], we have 7(K; X) ~ Li(X); thus if S has
a natural density, we analogously have mg(K; X) ~ 6(5) Li(X). We define the
error on such an estimate to be

es(X) = sup [ns(K:Y) = 8(S) Li(Y)] (2.1)

which satisfies eg(X)/X = o(1/log X) by the previous asymptotic. To trans-
form this discrepancy into a monotonically decreasing function, define

vg(X) := sup eS(Y).
y>x Y
In particular, note that for all X, eg(X) < Xvg(X).
We will also use estimates on smooth ideals for intermediate purposes. By
smooth we mean ideals that have only prime factors of small norm. These
estimates will be related to the “maximal” primes dividing an given ideal. For
an ideal a, we define its maximal prime norm

(2.2)
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M (@) i= maxN(p) (2.3)
and let
Qs(a) == #{p 2 a: N(p) = M(a),p € S}. (2.4)
Then take
S(X,)Y):={a C Ok :N(a) < X,M(a) <Y}, (2.5)

which is the set of Y-smooth ideals of norm at most X, and let

U(X,Y) = #S(X,Y). (2.6)

2.2. Preliminary lemmata. To discuss the density of prime ideals, the first
theorem we will need is an effective form of the prime ideal theorem (see [9]).

Theorem 2.1. If K is a number field, then there exist constants C1,Co > 0
such that, for large enough X, we have

|T(K; X) — Li(X)| < C1 X exp(—Cay/log X).

We will require an analogue of Alladi’s duality identity (1.4) to our context
of ideals:

Lemma 2.2. For a fized a, we have

Z 1(b)1p(b) = —Qs(a),
bDa

where 1p denotes the indicator function for D(K,S).

Proof. This directly generalizes [16, Lemma 2.1] and the proof follows mutatis
mutandis. 0

The identity will convert our discussion from the domain of minimal prime
divisors to that of maximal prime divisors. As such, we will need to use the
following estimate on smooth ideals.

Theorem 2.3 ([11, Lemma 4.1]). Fize > 0. If 1 < 3 := B(X) < (log X)*~¢
andY = X'/P then

U(X,Y) = 0. (X exp <ﬂlog g)) .

The result follows from [11, Lemma 4.1], after using that p(8) < 1/T'(8+1)
and Stirling’s formula, where p is the Dickman function satisfying
p(B) =1t 5 € [0,1],
—Bp'(B) =p(B—1)if B> 1.
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Indeed, by [11, Lemma 4.1], it is known that if Y = X/ then

5log(ﬂ+1))>.

U(X,Y)=cxXp(0) (1 +O; ( log X

To compute certain integral ideal sums, we will need some knowledge of
the structure of the number field K. Let (k(s) be the Dedekind zeta function
for the number field K, and let its residue at s = 1 be

2m (27r)”2 Regy hi
KV Dk

This is the analytic class number formula: here r; is the number of real em-
beddings and ro the number of conjugate pairs of complex embeddings of K,
hg is the class number, wg is the number of roots of unity in K, Dk is the
absolute discriminant, and Regy is the regulator. We now have the following
estimates, which will be vital in the final steps of the proof of Theorem 1.1.
For convenience, define Q(a) := Qp(a).

CK = hm(s— )¢k (s) =

(2.7)

Lemma 2.4 ([16, Lemma 3.3], [14, Lemma 2.2]). There is a constant C =
C(K) > 0 such that if X > 1, then

> Q@) =X +0(Xexp (-Cllog X)) ), (2.8)
2<N(a)<X

Z ﬁ = cilog X + O(1). (2.9)
N(a)<X

3. Smooth ideal sums. In order to arrive at our final identity in Theorem 1.1,
we will need a key intermediate estimate of a sum involving Qg (a) from (2.3):

Theorem 3.1. If S has natural density within the prime ideals §(S), then we
have the asymptotic

S Qs(a) ~ exd(9)X

2<N(a)<X

Proof. We define a threshold Y (X) := X'/8 to be chosen later, where /3 sat-
isfies the following properties:

i. B > 1is a monotonically increasing function of X such that limx_,.. 5 =
0.
ii. 8<VlogX.
Note that necessarily limx .. Y (X) = oc.
First we write the sum in terms of ¥(X,Y") via counting the prime divisors
of a with largest norm:

Y@= Y @<1\I)((m,N(p)>.

2<N(a)<X N(p)<X
peS
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We break up the sum into

Sii= Y, @(@,N(p)), Spi= Y w(l\é),N(p)).

N(p)<Y Y<N(p)<X
peS peS

We note that

X
51 < V(== Np) ) <[K:Q¥(LX,Y).
PRICED)

Recall Y = X/8 although we still have not chosen 3. Since we are imposing
0 < /log X, it follows from Theorem 2.3 that

S1=0 (X exp <—ﬂlog g)) .

In particular, S; has sublinear growth provided that § — oo as X — 0o. Now,
to estimate So, we first extract what will end up being the main term. Namely,
let

X

5=, (o) 50 [ () s

Y<N(p)<X v
pes

Now, utilizing the definition of ¥, this sum turns into

X

S3= > > 1—5(5)/ > 1(%
YENG) <X aeS(X/N(p).N(b)) 7 \aes(X/t)
X/ N(a)
= > ( > 1-5(9) / S;)
zlvf%)(;))?/)ﬁ/g) M(a)gﬁi&gf /N max(M(a),Y)

= 2 (ms(Kigg) - s Gimaxar(a) v))

1<N(a)<X/Y
M(a)<X/N(a)

—§(S)Li (Nit)) +4(9) Li(max(M(a),Y))),

switching the sum and integral to obtain the second line. Now, by definition,
the error function eg(X) is monotonically increasing, so

1S51<2 ) es(X/N(a)) <2X Y o -vg(X/N(a))
1<N(a)<X/Y 1<N(a)<X/Y
M(a)<X/N(a) M(a)<X/N(a)

< X 1log(X/Y) - vs(Y) < Xvg(Y)log X,
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where we use that vg(X) is monotonically decreasing. Now, since we want this
sum to be sublinear, we will later choose (3 such that vs(Xl/ﬁ) log X — 0 as
X — oo. Overall, we have shown

£ -9 [ () 0 (o (-o0s2))

2<N(a)<X
+O(Xvg(Y)log X). (3.1)

Applying (3.1) to the set P of all prime ideals, we have
Z Qa) = /\IJ(E ) lditt—l—O(Xexp (—Blogg)) + O(Xw(Y)log X),
2<N(a)<X o8

where

sup, <, |mp (K 2) — Li(2)]
w(x) := sup

y>w Y

is the normalized error in the prime ideal theorem. Using (2.8) of Lemma 2.4
and combining these two equations, we thus have

Z Qs(a) =cxd(S)X + 0 (X exp (*C(log X)1/3)>

2<N(a)<X
0 (e (1022
+ O(X (w(Y) + vs(Y)) log X).

Let u(z) = w(x) 4+ vg(x) for convenience. Note that u(z) also monotonically
decreases. Now we are ready to choose 3. First, consider any € > 0. Then there
exists a minimum positive integer constant C' = C'(¢) such that u(X¢)log X <
¢ for all X > C(e) by the prime ideal theorem [9] and the fact that the natural
density of S exists. In particular, we are using that u(z) = o(1/logx).

We can now set

ﬁzminQ\/@J ,sup{meN:(,*(;) <X}>.

The motivation for this formula is that we increase 8 according to a discrete set
of thresholds C'(1/m) that make the desired expression u(X'/%)log X small.
Note in particular that the set within the supremum is a downwards-closed
subset of the positive integers by monotonicity of C(g).

Note that C(g) increases as e decreases. Additionally, § — oo as X — oo
and this function is nondecreasing. Also, we observe that

U (Xl/ﬁ) log X < %
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by construction and the monotonicity of the constants C'(¢). Indeed, if 8 = m,
then we see that C(1/m) < X and thus u(X'/™)log X < 1/m by definition.
And now the above discussion immediately implies that
Xhm U (Xl/ﬁ) log X = 0.
Thus, putting it all together, we have
> Qs(a) =ckd(S)X +o(X),
2<N(a)<X

as desired. 0

4. A Mobius sum for prime ideals. In this section, we use Theorem 3.1 to
prove our main result, Theorem 1.1. This conversion is a generalization of a
theorem of Alladi [1, Theorem 6] to the context of prime ideals. To achieve
this conversion, we will need more general versions of some of Alladi’s tools,
including Axer’s theorem.

Theorem 4.1 (Axer [2]). Define [X|x = [{a € Og : N(a) < X}. If f is a
complez-valued function on the ideals of K satisfying

> (@) =0(X), > fla)=
N(a)<X

N(a)<X
then
2 (oexi [Nm] ) 10 =0

In order to verify the conditions of Axer’s theorem when we apply it, we
need the following intermediate bound.

Lemma 4.2. We have
S i(@)1p(a) = o(X).
N(a)<X

Proof. We break up the sum based on the unique minimal prime divisor of a
since D(K,S) only contains distinguishable ideals. For any N > 1, let ¢y be
the product of all prime ideals of absolute norm at most N.

Y w@)lp(a)| = Z Y ulpb)

N(a)<X p)<X N(b)<X/N(p)
peS (b,ex(py)=(1)

< ¥ S ) (4.1)

N(p)<a(X) |N(b)<X/N(p)
(byen(py)=(1)

+ Z Z 1=:S4+S5

a(X)<N(p)<X N(b)<X/N(p)
(b,engpy)=(1)
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where o(X) is a slow-growing function of X to be chosen later. We thus will
derive estimates on the following two sums:

M(Y):= Y pa), Y)= > L
N(a)<Y N(a)<Y
(a,0)=(1) (a,0)=(1)

By standard Mellin inversion techniques, we see that

24100
_ 1 —1 _ —s —12
M) =5 [ ) [T - N s
2—100 =¢

Estimating this is a matter of pushing the contour to a zero-free region; this
standard computation is done explicitly, for example, in [7, Theorem 1.2].
Following this argument, we can derive

M(Y) [T =N@)™17%) < g(v) = oY),
p2c
where the bound on ¢(Y) is uniform in ¢. By the principle of inclusion-
exclusion, we find

o(eY) = u(@) Y 1=cx¥ [ -Np)™h) + 0. N(),
a’Dc N(a)<Y pIc
a’'Da
using the classical bound [X]x = cx X + O(X~1/[KQ) to control the error
term as well as the fact that at most N(c) ideals divide ¢. Thus we have

Si<n(Ka(X)- [ (Q=N@) ™)™ gx),
N(p)<a(X)

S5 < Me,(y(X)=cxX [[ Q-Nmp™H+o0 (Xll/[K:Q] 11 N(p)) .
N(p)<a(X) N(p)<a(X)
It is immediately apparent that taking «(X) to be a slow enough growing
unbounded monotonic function (in terms of the error term g(X) and so that
the bound on Ss is o(X)) gives Sy = o(X) and S5 = o(X). Here we used the
fact that
-1
1
1-Np)™hH< N(a)~! TE T
II a-NehH<| DY Nao < g alX)

N(p)<e(X) N(a)<a(X)
Now, plugging into (4.1) finishes. In fact, g(Y) = Y exp(—A(logY)~/2) for
some A > 0 depending on K and we can take a(X) = (log X)/2. This actually
gives the effective bound

X
1 JE—
D r@1n(®) <

N(a)<X

using the prime ideal theorem and summation by parts repeatedly. O

This allows us to prove the following conversion.
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Lemma 4.3. If we have
> Qs(a) =cxd(S)X + o(X),
2<N(a)<X
then

: p(a)

-1 = .
2<N(a)<X
a€D(K,S)

Proof. The approach is similar to that of [1, Theorem 6]. By hypothesis,

Lemma 2.2, switching summation, and Axer’s theorem as stated in Theo-

rem 4.1, we have

—ck (S Z Qs(a Z ZN

N(a)<X N(a)<X bDa

S ) [Nﬁ)]K

N(b)<X

_ Z ,LL([])]ID([J)CK%—FO(X)
N(b)<X

_ p(b)

= _CKX Z T + O(X),

N(b)<X N(
beD(K )

as desired. The hypotheses of Axer’s theorem, which we have applied to the
function a — p(a)lp(a), are satisfied because of the classical bound

> 1=[2]g = cxX +0(X) = O(X)
N(a)<X

and Lemma 4.2, respectively. O
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The desired follows immediately from Theorem 3.1 and
Lemma 4.3. O

5. Applications. Using Theorem 1.1, we can reconstruct the results of Alladi
[1], Dawsey [5], and Sweeting and Woo [16] by choosing S appropriately. For
example, the formula in [16] is recovered by letting S denote the set of primes
within a certain Chebotarev class in L/K and using the effective Chebotarev
density result of [9]. However, our more general framework allows for extensions
to other special sets of primes. The next two applications are elementary and
of separate interest.

Ezxample 5.1. If S a finite set of primes, then

n>2
Pmin(n)ES



Vol. 115 (2020) Mobius formulas for densities of sets of prime ideals 63

and if S is a cofinite set of primes, then

n>2

Pmin(n)€S
Example 5.2. We can obtain a formula for densities of primes lying within
Beatty sequences due to the work of Banks and Shparlinski [3]. An irrational
number « is said to be of finite type if there exists N > 0 such that there are
only finitely many relatively prime pairs (p, q) with
1
q q

Given such o > 1, let B, denote the set of primes of the form |an| for some
n € N. Then the prime number theorem for Beatty sequences [3, Corollary 5.5]
implies §(B,) = 1/a. Thus

n>2
Pmin(n)EBa

As a special case, we obtain the following formula for 7 since 7 is of finite type
[12]. Consider the Beatty sequence |7n]. We have

Z p(n) _ 1
n T
n>2
pmin(n)esﬂ'

However, the series converges rather slowly. Let

SX)=- Y un)

n
2<n<X
Pmin (1) EBx

We have the following partial sums:

X S(X)

10 0.33333...
100 0.23915...
1000 0.31849...
10000 0.344009...
100000 0.342009...
1000000 0.33181...
10000000 0.32456...
100000000 0.32117..

00 1/7 = 0.31831...
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Example 5.3. We can in fact intersect sets of Beatty primes and Chebotarev
primes. Fix an irrational number « > 1 of finite type, a finite Galois extension
K/Q with Galois group G, and a conjugacy class C' of G. Let S denote the set
of primes of the form |an| for some n € N such that it is unramified in K/Q
and has Artin symbol C. Then by the work of [8], we have

yoooum) L o#C

n a #G'

n>2
Pmin (R)ES
Ezample 5.4. Let E be an elliptic curve over Q. For a prime p, let ag(p) :=
p+1—#E(F,) denote the trace of Frobenius. We can obtain a formula for the
density of Lang-Trotter primes, i.e., primes for which ag(p) is a fixed constant.
For any a, we have

n>2
ag (pmin(n))=a
if E' does not have CM (see, for example, [13]). This also holds if E has CM
and a # 0, as then the primes lie in a fixed quadratic progression [6], which
has density 0. When E has CM and a = 0, the density of such primes is 1/2
by [6], so we have

n>2
ag (Pmin(n))=0
Ezxample 5.5. Now we switch to studying the distribution of 6, chosen such
that 6, € [0,7] and cos@, = ag(p)/(2\/p). Suppose that E does not have
CM. We can consider the density of primes with 6, lying in a subinterval of
[0, 7]. From the work of Barnet-Lamb, Geraghty, Harris, and Taylor [4] on the
Sato—Tate conjecture, we have
s
. 1 2 . 9
Ill)n;om Z 1—;/sm 0do.

p<z

— «
Op€lar,az] !

We deduce the following formula for Sato—Tate primes:
o
2
- X M:—/siHQQdG.
n 7r
n>2

aq
epmin (n) € [al ’QQ]

As a numerical example, consider the elliptic curve E with Weierstrass equa-
tion y? = 22 —x+1, which does not have CM. Note that the Sato-Tate measure
of [r/3,2n/3] is approximately 0.60900. We calculate

- 3 1) 0.60805.
n

2<n<1000000
Oprnin (n) E[T/3,27 /3]
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