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Abstract—Tether-net launched from a chaser spacecraft pro-
vides a promising method to capture and dispose off large space
debris in orbit. This tether-net system is subject to several
sources of uncertainty in sensing and actuation that affect the
performance of its net launch and closing control. Earlier reli-
ability based optimization approaches to design control actions
however remain challenging and computationally prohibitive to
generalize over varying launch scenarios and target (debris) state
relative to chaser. To search for a general and reliable control
policy, this paper presents a reinforcement learning framework
that integrates a proximal policy optimization (PPO2) approach
with net dynamics simulations. The latter allows evaluating the
episodes of net-based target capture, and estimate the capture
quality index that serves as the reward feedback to PPO2.
Here, the learnt policy is designed to model the timing of the
net closing action based on the state of the moving net and
the target, under any given launch scenario. A stochastic state
transition model is considered in order to incorporate synthetic
uncertainties in state estimation and launch actuation. Along
with notable reward improvement during training, the trained
policy demonstrates capture performance (over a wide range
of launch/target scenarios) that is close to that obtained with
reliability based optimization run over an individual scenario.

Keywords: Active Debris Removal, Reinforcement Learning,
Tether-Net, Uncertainty

I. INTRODUCTION

Active Debris Removal (ADR) using tether-net systems has
been proposed and studied as a promising solution to the space
debris problem [1], [2], [3], [4], [5], [6], [7]. Among others,
Botta et al. [8], [9], [10] conducted extensive research on the
dynamics of the deployment and capture phases of net-based
debris removal missions.

The majority of existing works are based on the assumptions
of capturing a specific target with ideal launch conditions,
with a handful of pioneering works (Salvi [11], Botta et al.
[9], [8], and Endo et al. [12]) looking into the robustness of
deployment or capture under various net launch conditions in
the absence of a closing mechanism. In this type of mission, it
is crucial to guarantee a successful capture of the target in the
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presence of uncertainties, and to ensure that the target remains
wrapped by the net when the chaser tugs it to its disposal orbit.
These uncertainties can be attributed to measurement errors,
inaccuracies in net launch control, and to the estimation of the
debris and chaser vehicle inertial and attitude states. However,
to date, very little work has been performed to study the effects
of uncertainties on the system robustness, especially in the
presence of a closing mechanism, with the exception of work
by Chen et al. [13].

The tether-net capture system presents a multidisciplinary
robust design-control problem with pertinent constraints under
uncertainties. In our preceding research[14], a reliability-based
design optimization process was proposed to optimize the
launching and/or closure of the net under the influences of
uncertainties for a known fixed debris target. This process
models uncertainties and performs Bayesian optimization to
determine launch strategies that maximize the capture success
rate. However, such a method only searches for a single
strategy that applies to a predefined debris status, meanwhile
requiring considerable computing power. Therefore, while it
provided valuable insight on robust debris capture under un-
certainty, this approach is ultimately not suitable as a flexible
and flight-worthy solution.

Artificial Neural Networks (ANN) are playing an emerging
role as decision-support models in various intelligent au-
tonomous systems [15]. As a universal function approximator,
an ANN is capable of mapping states to actions in autonomous
systems, a.k.a. a policy model. Various ANN fitting (learning)
methods have seen demonstrations on robotics and control
applications. Popular learning methods include Reinforce-
ment Learning[16], [17], Supervised Learning[18], Imitation
Learning[19], Neuroevolution[20], [21], etc., among which the
advanced reinforcement learning[22] and neuroevolution[23]
methods are directly applicable to launching and wrapping
control of tether-net systems. These aforementioned machine
learning methods bring capabilities of adapting to system un-
certainties, and selecting optimal actions (policies) according
to various debris characteristics. Computation-heavy reliability
analyses required in the optimizations can also be reduced,
retaining the computing load similar to that of reliability-based
optimizations.

This paper proposes a machine-learning-based policy op-
timization of a one-shot robotics system with environment
adaptability and robustness under uncertainties. The case study
features the launching and wrapping process for a tether-net
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Fig. 1: Proposed Policy Learning Process for the Tether-Net System

space debris capture system. The machine learning framework
adapts to various environmental parameters (including net
geometry and states of the chaser and the target), considers
multiple sources of uncertainties (including inaccuracies of
state estimation, errors in launching and wrapping parameters,
and sensing errors), and determines the optimal wrapping
parameters that maximize the probability of a successful
capture. Environment parameters are relative to the capture
system (e.g., the mass of the corner masses and the geometry
of the net) and the state of the debris (e.g., the distance
to the chaser, its orientation, and its motion). The wrapping
policy comprises only triggering of the closing mechanism.
The capture success is evaluated by the Capture Quality
Index, or CQI (interpreted later in the manuscript). A case
study scenario is presented with standalone wrapping policy
learning with programmed launching employing a state-of-
the-art learning technique, Proximal Policy Optimization 2
(PPO2)[22].

The remainder of this paper is organized as follows: In
Section II, the architecture of the simulator is presented
briefly, together with the models implemented for the different
components of the system. In Section III, the adopted machine-
learning-based policy optimization is discussed. Section IV
presents validation of the optimization results, and Section V
concludes the paper with a discussion of results and limitations
of the work, and associated planned future work.

II. MODELING: TETHER-NET LAUNCHING AND
WRAPPING MECHANICS

Inherited from the preceding work[10], [24], [14], the mod-
eled system comprises of a chaser carrying a square-shaped
net with 4 corner masses and a closing mechanism around
the perimeter. The tether-net system is simulated in Vortex
Studio, a powerful multibody dynamics simulation platform
designed for real-time simulation of complex mechanics. The

TABLE I: Design and properties of the tether-net system

Variable Description Value

L Side Length of Net 22.0 m
Lmesh Side Length of Mesh 1.375 m
rn Thread Radius 6 mm
mn Total Mass of Net 100 kg
mc Mass of Corner Mass 10.0 kg
Veb Launching Velocity [3.30, 3.54, 7.16] m/s

net is modeled with the standard lumped-parameter approach.
The mass properties of the net are lumped into small spherical
rigid bodies placed at the physical knots of the net, herein
referred to as nodes. The axial stiffness and damping properties
of the net’s threads are represented with massless springs and
dampers in parallel between the nodes.

The chaser spacecraft is modeled as a cubic rigid body in
the simulation. The main tether, linking the net to the chaser,
is modeled with a series of slender rigid bodies, modeled
as relaxed prismatic joints to simulate the axial and bending
stiffness and damping properties.

The closing mechanism applies a drawstring interlaced with
the perimeter of the net, as shown in Fig. 2. The drawstring
passes through 8 nodes on the perimeter as well as the 4
corner masses, and is winched independently from the main
tether[10]. When the closing mechanism is activated, constant
forces are made to act between each pair of adjacent nodes
along the drawstring, pulling the nodes together until contact.
Upon contact, the node pairs are locked to keep the mouth of
the net closed for the rest of the maneuver.

The detailed design of the tether-net system is fixed as the
derived result from preceding work[14]. Table I lists the design
parameters.



Fig. 2: Sketch of the Modeled Tether-net System

III. LEARNING THE OPTIMAL LAUNCHING AND CLOSING
POLICIES

A. Defining the learning task

Reinforcement learning models the actions as Markov De-
cision Processes [25] (MDP) that comprise a comprehensive
state space with a relatively compact action space. There are
2 sets of actions (launching and closing) taking effect on
different stages of the capture operation, we are focusing on
closing within the scope of this paper.

The policy model of the closing signal is time variant,
while the action itself is a logical variable (boolean). The
observations (state space) are assumed to be estimated by
employing readily available sensors, including: 1) internal
measurement units (IMUs), cameras, or Lidar mounted on the
chaser vehicle, 2) IMUs and cameras attached to the corner

masses, as well as 3) monitoring from the Earth. Therefore,
the state space mainly consists of the position, orientation, and
velocities of the target, as well as the positions of the corner
masses of the net. In addition, the velocity of launching the
corner masses, the simulation time, and a flag indicating the
actuation of closing are also part of the observation. Some
parameters, like the position of the net’s center of mass, are
obtained from the simulation for calculations of the reward
and the constraints, but excluded from the state space since
they are unattainable with the conceived sensors. Table II lists
the state space and the action space parameters.

The objective of reinforcement learning is to train the policy
model to find the optimal timing of sending the closing signal,
based on observations regarding the states of the net and the
target. The policy model adapts a reward function defined as:

max:
Q

RA =

(
tclose∑
t0

r(t) + rend

)
/nsteps (1a)

where: r(t) =


w1 ·

(
C1 −

∣∣∣Vn−VtVt

∣∣∣)+ w2 ·
(
C2 −

∣∣∣Sn−StSt

∣∣∣)+ w3 ·
(
C3 −

∣∣∣ qnqt ∣∣∣)+ w4 · (NL − C4) + . . .

0.4 · (min(t, t1)− 4.6)− (0.12 · (max(t, t2)− t2))2 + C5 (no premature closing)
−(t1 − tclose)2 (with premature closing)

(1b)

rend =


w′1 ·

(
C ′1 −

∣∣∣V ′
n−Vt
Vt

∣∣∣)+ w′2 ·
(
C ′2 −

∣∣∣S′
n−St
St

∣∣∣)+ w′3 ·
(
C ′3 −

∣∣∣ q′nqt ∣∣∣)+ . . .

w′4 · (N ′L − C ′4) + C ′5 (closing started before 60 s)
C6 (not closing by 60 s)

(1c)

In which Q represents the policy model; RA represents the



TABLE II: Parameters of State and Action Spaces

Type Variable Data Type Boundaries

State

Time Scalar 0 to 120 s
Target Coordinates (ptarget) Cartesian [−10,−10, 0] to [10, 10, 50] m
Target Orientation Euler angles [0, 0, 0] to [2π, 2π, 2π] rad
Target Angular Velocity Euler angles [−1,−1,−1] to [1, 1, 1] rad/s
Pos. of Corner Masses (4) Cartesian [−22,−22, 0] to [22, 22, 72] m
Closure Flag (fc) Boolean -
Launching Velocity Cartesian [1, 1, 1] to [5, 5, 10] m/s

Action Closing Signal Boolean 0 and 1

episodic (mean) reward; t represents the simulation time; t0
stands for the initial and final time steps; tclose represents the
time when the closing signal is issued; t1 and t2 are manually
configured time triggers; nsteps stands for the number of
(learning) steps in the episode; r(t) represents the reward at
time step t; rend represents the bonus end-of-episode reward;
Vn, Sn, and qn stand for the enclosed volume, surface area, and
the center-of-mass position of the net at time t; V ′n , S′n, and
q′n stand for those at time (tclose + 20 seconds); Vt, St, and
qt stand for the volume, surface area, and the center-of-mass
position of the target; NL is the number of locked node-pairs
around the edge (12 pairs in total); C1 through C6, as well as
w1 through w4 are tuning weights, in addition to C ′1 through
C ′5 and w′1 through w′4; fC refers to the closure flag.

A premature closing is defined as:
True if (fC = 1) ∩ (tclose < 15 s) ∩ . . .

[(qn(tclose) > 12 m) ∪ (|pcm − ptarget| > 10 m)]

False otherwise
(2)

where pcm represents the mean position of the corner masses,
and ptarget represents the position of the target.

A crucial part of the reward is largely dependent on the
distances between the net and the target in terms of position,
surface area, and volume. Such formulation is inspired by the
Capture Quality Index (CQI)[26], which estimates the success-
fulness of a capture with the aforementioned measurements.
The number of locked node-pairs (NL) indicates the possibility
of the target slipping out of the net, and is also considered in
the formulation for added robustness.

The conditional formulations in the reward function ensures
some substantial penalties for premature closing (too far away
from the target) or delayed closing (too late), and a substantial
bonus (C ′5) for appropriately-timed closing. Timing is vital for
a successful capture, but the time-variant nature of the closing
signal makes it difficult for the policy model to learn to avoid
premature action. A reward function solely based on the CQI
is insufficient to distinguish between an obvious failure and
a possibly successful scenario, hence the added penalty that
overrules the reward is necessary to avoid possible exploitation
of the CQI formulation. Since the reward function returns
positive rewards through the majority of an episode, the policy

model could exploit the formulation by not closing at all. The
bonus reward (C ′5) for well-timed closing and the penalty (C6)
for not closing at all would work together to prevent the policy
model from refusing to close throughout the episode.

We train the policy model in stages controlled by step count,
while adjusting the tuning weights as the stages progress.
The CQI part of the end-of-episode reward rend is gradually
magnified as the policy model learns to avoid premature
closing. Penalty for delayed closing (C6) is inactive until the
policy model learns to refuse to close. Table III lists the values
of the adjustable parameters applied through various stages of
training.

Two scenarios were conceived: 1) learning a standalone
wrapping policy while launching is programmed; 2) learning
launching and wrapping policies simultaneously. Scenario 2
calls for training two policy models in one simulation, which
brings in questions like reward crediting [27] and the orders of
execution. Limited by time and computing constraints, the case
study in this paper is confined to scenario 1). The programmed
launching policy for scenario 1 was presented in a previous
work [14] (values listed in Table I).

B. Design of experiments and uncertainty modeling

The Design of Experiments samples a range of the target’s
distance, initial orientation, and initial rotating angular veloc-
ity. Every episode of training is sampled with random choices
of the forementioned initial states of the target. Table IV lists
the variations of DoE.

The Simulation cannot directly simulate the onboard sensors
and actuators in high fidelity, therefore uncertainties are mod-
eled in sensing, state estimation, and actuation of the system
by applying stochastic noises to the parameters. Sources of
uncertainties include: 1) estimated state of the debris target
and the corner masses of the net, 2) velocity of launching
the net, 3) timing of triggering the closing mechanism, and
uniquely 4) soft dynamics of the net. The uncertainty of the
net dynamics is aleatoric and unavoidable, while the majority
of the uncertainties in estimation and control are epistemic
[28].

Gaussian noises modeled after Table V are applied upon
the observed parameters from the simulation before delivery
to the learning algorithm. Noises of the constant parameters



TABLE III: Coefficients for the Reward Formulation

Unchanged w1 w2 w3 w4 C1 C2 C3 C4 C5 t1 t2
0.025 0.025 0.2 0.125 3 3 5 2 2 15 20

w′1 w′2 w′3 w′4 C ′1 C ′2 C ′3 C ′4 C ′5 C6

0 to 66,000 steps 0.05 0.05 0.4 0.125 3 4 6 0 50 0
66,001 to 300,000 steps 0.1 0.1 0.8 0.25 3 3 6 0 50 0
300,001 to 800,000 steps 1 1 8 2.5 3 3 6 0 50 -50
800,001 to 1,500,000 steps 2 2 16 5 3 3 3 2 100 -50

Fig. 3: The Workflow of Reinforcement Learning on the Tether-Net Capture Mission

TABLE IV: Initial States of the Target

Name Minimum Maximum

Dist. to chaser 25 m 35 m
Orientation [0, 0, 0] rad [π2 , 0, 0] rad
Angular Vel. [0,− π

18 ,−
π
18 ] rad/s [0, π18 ,

π
18 ] rad/s

(target orientation and launching velocity) are one-shot, while
those of the continuously monitored parameters are sampled
at every time step of learning.

C. Learning and validation techniques

Herein, the learning technique known as Proximal Policy
Optimization 2 (PPO2) from stable baselines [29] is applied
within a case study to provide an opportunity to evaluate and
compare advanced reinforcement learning with prior results
obtained by robust optimization under a fixed environment
[14]. PPO2 is a state-of-the-art actor-critic reinforcement
learning method which has demonstrated high efficiency, wide
adaptability, and robust reliability [30].

PP02 employs a gradient update based on the experiences
collected on the mini-batch of interactions with the environ-
ment. Upon update completion, the experiences collected are
then discarded and the next update is based on new experi-
ences. PPO2 has been proven to demonstrate less variance

during the training process when compared to alternative
learning techniques which ensures a smoother training process
[31]. A multi-layer perceptron model consisting of 2 layers
with 64 neurons is used within the deep Q network. This
network is trained for 500 episodes and the trained policy
is then validated for 100 episodes. Parameters used for the
learning process are provided in Table VI.

For the final evaluation, a reliability sampling process was
performed to examine the probability of success for the trained
policy model. This involved a Monte Carlo sampling process
to sample the impact of the uncertainties, in which N = 100 is
number of independent simulations executed with the trained
policy model. The evaluated probabilities of success are then
compared to the success rate achieved by robust optimization
under a fixed environment[14].

IV. RESULTS

The learning trials were executed on a Windows workstation
with 16 CPU cores with parallel computing with 30 workers
for the episode evaluations. The learning process progresses
in 20,000-to-500,000-step stages as we examine the learning
rate and adjust the reward weights in between stages. By the
conclusion of this paper, a total of 1.5 million steps of learning
have been finished. The time cost of learning was 41.2 hours.

The history of episodic reward from one of the 30 workers
is displayed in Figure 4. This specific worker finished 549



TABLE V: Noise Levels of Modeled Uncertainties

Sampled During: Noise Source Data Type Margin of Error (2σ)

Step-wise
Target Orientation 3D Vector ±[π/36, π/36, π/36] rad
Target Angular Velocity 3D Vector ±[π/36, π/36, π/36] rad/s
Corner Masses Position 3D Vector ±[0.1, 0.1, 0.25] m

Only Once Target Position (CoM) 3D Vector ±[0.1, 0.1, 0.25] m
Launching Velocity 3D Vector ±[0.05, 0.05, 0.1] m/s

TABLE VI: Reinforcement Learning Parameters

Algorithm PPO2

Neural Network type Multi-Layer Perceptron
Total Timesteps 1,500,000
Learning Rate 2.5e-4

Discount Factor 0.999
Number of Steps 128

Entropy Coefficient 0.01
Clip Range 0.2

Value Function Coefficient 0.5
Max. Gradient Norm 0.5

episodes in 46,437 steps. Since the episode tends to extend
longer as the learning progresses, the later 89% of the steps
only contributed to 80 episodes. The lowest episodic reward
is -69.0, and the highest episodic reward is 9.7.

The episodic reward plot shows strong fluctuations, indi-
cating the learning rate is unstable throughout the learning
process and has yet to approach convergence. The 10-episode
mean reward is also shown within the figure, which provides a
more stable indication of the range and the trend of the reward
values. The policy model received negative rewards throughout
most of the episodes, but just managed to receive near-zero or
positive rewards after 460 episodes. The trend of the rewards
and the fluctuations are both signs of insufficient training. The
episodic mean reward is unsuitable as a direct measurement of
capture quality (for the successfully closed cases), considering
the lengths of episodes fluctuate in a wide margin.

Fig. 4: History of Episodic Rewards

To evaluate the quality of the trained policy models, we

tested all the neural networks obtained via different stages
of learning with a Monte Carlo sample set sampled from
the same initial states as shown in Table IV and applied the
same level of uncertainties as shown in Table V. The best-
performing policy model so far is from the end of 120,000
steps, which is compared to results from the previous work.
The CQI values of the test result are calculated and compared
with an optimized closing time under a static initial condition
obtained from the predeceasing paper[14] (only closing was
optimized for a single initial state). The mean CQI value
of the policy model tests is 1.035, and the percentage of
the samples with CQI values lower than 2 (seen as secure
captures) is 94%. In contrast, the optimized fixed close timing
managed to achieve 96% success rate and a mean CQI of
1.010 for the single initial state. The policy model of closing
achieves a high success rate in a range of initial states, near
that for the fixed close timing optimized for a single initial
state, suggesting the policy model is approaching the maximal
possible reliability. The policy model should keep improving
if given more learning steps, and we expect the converged
policy model to outperform the optimization results, especially
in situations with large deviations.

V. CONCLUDING REMARKS

A machine-learning-based tether-net system wrapping pol-
icy optimization for ADR with environment adaptability and
robustness under uncertainties was proposed and a trade
study involving standalone wrapping policy learning with
programmed launching employing a state-of-the-art learning
technique, Proximal Policy Optimization 2 (PPO2), was per-
formed.

Despite cutting off the learning process early, evaluation of
the policy learning results shows that the proposed approach
for wrapping policy learning proves promising, resulting in
capture reliability comparable to earlier robust Bayesian opti-
mization which involved a similar computational load, despite
optimizing the wrapping strategy under a much wider range
of state scenarios with larger uncertainty.

Future work will investigate standalone launching policy
learning with programmed wrapping, and simultaneous learn-
ing of launching and wrapping policies. Additional machine
learning tools, including reinforcement learning algorithms
and advanced neruoevolution techniques[23] will also be ap-
plied for experiments.
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