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Abstract. Birkhoff’s representation theorem [11] defines a bijection
between elements of a distributive lattice L and the family of upper sets
of an associated poset B. When elements of L are the stable matchings
in an instance of Gale and Shapley’s marriage model, Irving et al. [22]
showed how to use B to devise a combinatorial algorithm for maximizing
a linear function over the set of stable matchings. In this paper, we intro-
duce a general property of distributive lattices, which we term as affine
representability, and show its role in efficiently solving linear optimization
problems over the elements of a distributive lattice, as well as describing
the convex hull of the characteristic vectors of lattice elements. We apply
this concept to the stable matching model with path-independent quota-
filling choice functions, thus giving efficient algorithms and a compact
polyhedral description for this model. To the best of our knowledge,
this model generalizes all models from the literature for which similar
results were known, and our paper is the first that proposes efficient
algorithms for stable matchings with choice functions, beyond extension
of the Deferred Acceptance algorithm [31].

Keywords: Stable matching · Choice function · Distributive lattice ·
Birkhoff’s representation theorem

1 Introduction

Since Gale and Shapley’s seminal publication [17], the concept of stability in
matching markets has been widely studied by the optimization community. With
minor modifications, the one-to-many version of Gale and Shapley’s original
stable marriage model is currently employed in the National Resident Matching
Program [30], which assigns medical residents to hospitals in the US, and for
matching eighth-graders to public high schools in many major cities in the US [1].

In this paper, matching markets have two sides, which we call firms F and
workers W . In the marriage model, every agent from F ∪W has a strict preference
list that ranks agents from the opposite side of the market. The problem asks
for a stable matching, which is a matching where no pair of agents prefer each
other to their assigned partner. A stable matching can be found efficiently via
the Deferred Acceptance algorithm [17].
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Although successful, the marriage model does not capture features that have
become of crucial importance both inside and outside academia. For instance,
there is growing attention to models that can increase diversity in school
cohorts [28,37]. Such constraints cannot be represented in the original model, or
even its one-to-many or many-to-many generalizations, since admission decisions
with diversity concerns cannot be captured by a strict preference list.

To model these and other markets, every agent a ∈ F ∪ W is endowed with
a choice function Ca that picks a team she prefers the best from a given set
of potential partners. See, e.g., [7,14,23] for more applications of models with
choice functions, and the literature review section for more references. Mutatis
mutandis, one can define a concept of stability in this model as well (for this
and the other technical definitions mentioned below, see Sect. 2). Two classi-
cal assumptions on choices functions are substitutability and consistency, under
which the existence of stable matchings is guaranteed [6,20]. Clearly, existence
results are not enough for applications (and for optimizers). Interestingly, little
is known about efficient algorithms in models with choice functions. Only exten-
sions of the classical Deferred Acceptance algorithm for finding the one-side
optimal matching have been studied for this model [13,31].

The goal of this paper is to study algorithms for optimizing a linear function
w over the set of stable matchings in models with choice functions, where w is
defined over firm-worker pairs. Such algorithms can be used to obtain a stable
matching that is e.g., egalitarian, profit-optimal, and minimum regret [25]. We
focus in particular on the model where choice functions are assumed to be sub-
stitutable, consistent, and quota-filling. This model (QF-Model) generalizes all
classical models where agents have strict preference lists, on which results for
the question above were known. For this model, Alkan [3] has shown that stable
matchings form a distributive lattice. As we argue next, this is a fundamental
property that allows us to solve our optimization problem efficiently. For missing
proofs, extended discussions, and examples, see the full version of the paper [15].
Our contributions and techniques. We give a high-level description of our
approach and results. For the standard notions of posets, distributive lattices,
and related definitions, see [19]. All sets considered in this paper are finite.

Let L = (X ,�) be a distributive lattice, where all elements of X are distinct
subsets of a base set E and � is a partial order on X . We refer to S ∈ X as an
element (of the lattice). Birkhoff’s theorem [11] implies that we can associate1

to every distributive lattice L a poset B = (Y,��) such that there is a bijection
ψ : X → U(B), where U(B) is the family of upper sets of B. U ⊆ Y is an upper set
of B if y ∈ U and y′ �� y for some y′ ∈ Y implies y′ ∈ U . We say therefore that
B is a representation poset for L with representation function ψ. See Example 1
for a demonstration. B may contain much fewer elements than the lattice L it
represents, thus giving a possibly “compact” description of L.

The representation function ψ satisfies that for S, S′ ∈ X , S � S′ if and only
if ψ(S) ⊆ ψ(S′). Albeit B and ψ explain how elements of X are related to each

1 The result proved by Birkhoff is actually a bijection between the families of lattices
and posets, but in this paper we shall not need it in full generality.
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other with respect to �, they do not contain any information on which items from
E are contained in each lattice element. We introduce therefore Definition 1. For
S ∈ X and U ∈ U(B), we write χS ∈ {0, 1}E and χU ∈ {0, 1}Y to denote their
characteristic vectors, respectively.

Definition 1. Let L = (X ,�) be a distributive lattice on a base set E and
B = (Y,��) be a representation poset for L with representation function ψ. B
is an affine representation of L if there exists an affine function g : R

Y → R
E

such that g(χU ) = χψ−1(U), for all U ∈ U(B). In this case, we also say that B
affinely represents L via affine function g and that L is affinely representable.

Note that in Definition 1, we can always assume g(u) = Au + x0, where x0

is the characteristic vector of the maximal element of L and A ∈ {0,±1}E×Y .

Example 1. Consider the distributive lattice L = (X ,�) with base set E =
{1, 2, 3, 4} whose Hasse diagram is given below.

S1 = {1, 2}

S2 = {1, 3} S3 = {1, 2, 4}

S4 = {1, 3, 4}

A =

⎛
⎜⎜⎝

0 0
−1 0
1 0
0 1

⎞
⎟⎟⎠

The representation poset B = (Y,��) of L is composed of two non-
comparable elements, y1 and y2. The representation function ψ is defined as

ψ(S1) = ∅ =: U1; ψ(S2) = {y1} =: U2; ψ(S3) = {y2} =: U3; ψ(S4) = Y =: U4.

That is, U(B) = {U1, U2, U3, U4}. One can think of y1 as the operation of adding
{3} and removing {2}, and y2 as the operation of adding {4}. B affinely represents
L via the function g(χU ) = AχU + χS1 , with matrix A given above.

Now consider the distributive lattice L′ obtained from L by switching S3 and
S4. One can check that L′ is not affinely representable [15]. �

As we show next, affine representability allows one to efficiently solve linear
optimization problems over elements of a distributive lattice. In particular, it
generalizes a property that is at the backbone of combinatorial algorithms for
optimizing a linear function over the set of stable matchings in the marriage
model and its one-to-many and many-to-many generalizations (see, e.g., [10,22]).
In the marriage model, the base set E is the set of pairs of agents from two sides
of the market, X is the set of stable matchings, and for S, S′ ∈ X , S � S′ if
every firm prefers its partner in S to its partner in S′ or is indifferent between
the two. Elements of its representation poset are certain (trading) cycles, called
rotations.

Lemma 1. Assume poset B = (Y,��) affinely represents lattice L = (X ,�).
Let w : E → R be a linear function over the base set E of L. Then the problem
max{wᵀχS : S ∈ X} can be solved in time min-cut(|Y | + 2), where min-cut(k)
is the time complexity required to solve a minimum cut problem with nonnegative
weights in a digraph with k nodes.
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Proof. Let g(u) = Au + x0 be the affine function for the representation. Then,

max
S∈X

wᵀχS = max
U∈U(B)

wᵀg(χU ) = max
U∈U(B)

wᵀ(AχU + x0) = wᵀx0 + max
U∈U(B)

(wᵀA)χU .

Thus, our problem boils down to the optimization of a linear function over
the upper sets of B. It is well-known that the latter problem is equivalent to
computing a minimum cut in a digraph with |Y | + 2 nodes [29].

We want to apply Lemma 1 to the QF-Model model. Observe that a choice
function may be defined on all the (exponentially many) subsets of agents from
the opposite side of the market. We avoid this computational concern by model-
ing choice functions via an oracle model. That is, choice functions can be thought
of as agents’ private information. The complexity of our algorithms will therefore
be expressed in terms of |F |, |W |, and the time required to compute the choice
function Ca(X) of an agent a ∈ F ∪ W , where the set X is in the domain of
Ca. The latter running time is denoted by oracle-call and we assume it to be
independent of a and X. Our first result is the following.

Theorem 1. The distributive lattice (S,�) of stable matchings in the QF-
Model is affinely representable. Its representation poset (Π,��) has O(|F ||W |)
elements. (Π,��), as well as its representation function ψ and affine function
g(u) = Au + x0, can be computed in time O(|F |3|W |3oracle-call). Moreover,
matrix A has full column rank.

In Theorem 1, we assumed that operations, such as checking if two sets coin-
cide and obtaining an entry from the set difference of two sets, take constant
time. If this is not the case, the running time needs to be scaled by a factor
mildly polynomial in |F | · |W |. Observe that Theorem 1 is the union of two
statements. First, the distributive lattice of stable matchings in the QF-Model
is affinely representable. Second, this representation and the corresponding func-
tions ψ and g can be found efficiently. Those two results are proved in Sect. 3
and Sect. 4, respectively. Combining Theorem 1, Lemma 1 and algorithms for
finding a minimum cut (see, e.g., [34]), we obtain the following.

Corollary 1. The problem of optimizing a linear function over the set of stable
matchings in the QF-Model can be solved in time O(|F |3|W |3oracle-call).

As an interesting consequence of studying a distributive lattice via the poset
that affinely represents it, one immediately obtains a linear description of the
convex hull of the characteristic vectors of elements of the lattice (see Sect. 5).
In contrast, most stable matching literature (see the literature review section)
has focused on deducing linear descriptions for special cases of our model via
ad-hoc proofs, independently of the lattice structure.

Theorem 2. Let L = (X ,�) be a distributive lattice and B = (Y,��) be a
poset that affinely represents it via the affine function g(u) = Au+x0. Then the
extension complexity of conv(X ) := conv{χS : S ∈ X} is O(|Y |2). If moreover
A has full column rank, then conv(X ) has O(|Y |2) facets.
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Theorem 1 and Theorem 2 imply the following description for the stable
matching polytope conv(S), i.e., the convex hull of the characteristic vectors of
stable matchings in the QF-Model.

Corollary 2. conv(S) has O(|F |2|W |2) facets.

We conclude with an example of a lattice represented via a non-full-column
rank matrix A.

Example 2. Consider the distributive lattice given below.

S1 = {1, 2}

S2 = {1, 3}

S3 = {1, 2, 4}

S4 = {1, 3, 4}

A =

⎛
⎜⎜⎝

0 0 0
−1 1 −1
1 −1 1
0 1 0

⎞
⎟⎟⎠

It can be represented via the poset B = (Y,��), that contains
three elements y1, y2, and y3 where y1 �� y2 �� y3. Thus, U(B) =
{∅, {y1}, {y1, y2}, {y1, y2, y3}}. In addition, B affinely represents L via the func-
tion g(χU ) = AχU + χS1 , where A is given below. It is clear that matrix A does
not have full column rank. �

Relationship with the literature. Gale and Shapley [17] introduced the
one-to-one stable marriage (SM-Model) and the one-to-many stable admission
model (SA-Model), and presented an algorithm which finds a stable matching.
McVitie and Wilson [27] proposed the break-marriage procedure that finds the
full set of stable matchings. Irving et al. [22] presented an efficient algorithm
for the maximum-weighted stable matching problem with weights over pairs
of agents, using the fact that the set of stable matchings forms a distributive
lattice [24] and that its representation poset – an affine representation following
our terminology – can be constructed efficiently via the concept of rotations [21].
The above-mentioned structural and algorithm results have been also shown for
its many-to-many generalization (MM-Model) in [8,10]. A complete survey of
results on these models can be found, e.g., in [19,25].

For models with substitutable and consistent choice functions, Roth [31]
proved that stable matchings always exist by generalizing the algorithm pre-
sented in [17]. Blair [12] proved that stable matchings form a lattice, although
not necessarily distributive. Alkan [3] showed that if choice functions are further
assumed to be quota-filling, the lattice is distributive. Results on (non-efficient)
enumeration algorithms in certain models with choice functions appeared in [26].

It is then natural to investigate whether algorithms from [10,21] can be
directly extended to construct the representation poset in the QF-Model. How-
ever, definition of rotations and techniques in [10,21] rely on the fact that there
is a strict ordering of partners, which is not available with choice functions. This,



94 Y. Faenza and X. Zhang

for instance, leads to the fact that the symmetric difference of two stable match-
ings that are adjacent in the lattice is always a simple cycle, which is not always
true in the QF-Model. We take then a more fundamental approach by show-
ing a carefully defined ring of sets is isomorphic to the set of stable matchings,
and thus we can construct the rotation poset following a maximal chain of the
stable matching lattice. This approach conceptually follows the one in [19] for
the SM-Model and leads to a generalization of the break-marriage procedure
from [27]. Again, proofs in [19,27] heavily rely on having a strict ordering of
partners, while we need to tackle the challenge of not having one.

Besides the combinatorial perspective, another line of research focuses on
the polyhedral aspects. Linear descriptions of the convex hull of the characteris-
tic vectors of stable matchings are provided for the SM-Model [32,33,38], the
SA-Model [9], and the MM-Model [16]. In this paper, we provide a polyhe-
dral description for the QF-Model, by drawing connection between the order
polytope (i.e., the convex hull of the characteristic vectors of the upper sets of a
poset) and Birkhoff’s representation theorem of distributive lattices. A similar
approach has been proposed in [5]: their result can be seen as a specialization of
Theorem 2 to the SM-Model.

Aside from the stable matching problem, the feasible spaces of many other
combinatorial optimization problems form a distributive lattice. Examples, as
pointed out in [18], include feasible rooted trees for the shortest path problem,
and market clearing prices for the assignment game [35].

2 The QF-MODEL

Let F and W denote two disjoint finite sets of agents, say firms and workers,
respectively. Associated with each firm f ∈ F is a choice function Cf : 2W (f) →
2W (f) where W (f) ⊆ W is the set of acceptable partners of f and Cf satisfies
the property that for every S ⊆ W (f), Cf (S) ⊆ S. Similarly, a choice function
Cw : 2F (w) → 2F (w) is associated to each worker w. We assume that for every
firm-worker pair (f, w), f ∈ F (w) if and only if w ∈ W (f). We let CW and
CF denote the collection of firms’ and workers’ choice functions respectively. A
matching market is a tuple (F,W, CF , CW ).

Following Alkan [3], we define the QF-Model by assuming that the choice
function Ca of every agent a ∈ F ∪ W satisfies the three properties below.

Definition 2 (Substitutability). Ca is substitutable if for any set of partners
S, b ∈ Ca(S) implies that for all T ⊆ S, b ∈ Ca(T ∪ {b}).

Definition 3 (Consistency). Ca is consistent if for any sets of partners S and
T , Ca(S) ⊆ T ⊆ S implies Ca(S) = Ca(T ).

Definition 4 (Quota-filling). Ca is quota-filling if there exists qa ∈ N such
that for any set of partners S, |Ca(S)| = min(qa, |S|). We call qa the quota of a.
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Intuitively, substitutability implies that an agent selected from a set of can-
didates will also be selected from a smaller subset; consistency is also called
“irrelevance of rejected contracts”; and quota-filling means that an agent has
a number of positions and she tries to fill those as many as possible. A choice
function is substitutable and consistent if and only if it is path-independent [2].

Definition 5 (Path-independence). Ca is path-independent if for any sets of
partners S and T , Ca(S ∪ T ) = Ca

(
Ca(S) ∪ T

)
.

A matching μ is a mapping from F ∪ W to 2F∪W such that for all w ∈ W
and all f ∈ F , (1) μ(w) ⊆ F (w), (2) μ(f) ⊆ W (f), and (3) w ∈ μ(f) if and only
if f ∈ μ(w). A matching can also be viewed as a collection of firm-worker pairs.
That is, μ ≡ {(f, w) : f ∈ F,w ∈ μ(f)}. We say a matching μ is individually
rational if for every agent a, Ca(μ(a)) = μ(a). An acceptable firm-worker pair
(f, w) /∈ μ is called a blocking pair if w ∈ Cf (μ(f)∪{w}) and f ∈ Cw(μ(w)∪{f}),
and when such pair exists, we say μ is blocked by the pair or the pair blocks μ. A
matching μ is stable if it is individually rational and it admits no blocking pairs.
If f is matched to w in some stable matching, we say that f (resp. w) is a stable
partner of w (resp. f). We denote by S(CF , CW ) the set of stable matchings in
the market (F,W, CF , CW ). Alkan [3] showed the following.

Theorem 3 ([3]). Consider a matching market (F,W, CF , CW ) in the QF-
Model. Then, S(CF , CW ) is a distributive lattice under the partial order � where
μ1 � μ2 if for all f ∈ F , Cf (μ1(f)) ∪ μ2(f)) = μ1(f).

We denote by μF and μW the firm- and worker-optimal stable matchings,
respectively. For every a ∈ F ∪ W , let Φa = {μ(a) : μ ∈ S(CF , CW )}. Alkan [3]
showed that for all S, T ∈ Φa the following holds: |S| = |T | =: qa (equal-quota);
and qa < qa =⇒ |Φa| = 1 (full-quota).

3 Affine Representability of the Stable Matching Lattice

For the rest of the paper, we fix a matching market (F,W, CF , CW ) and often
abbreviate S := S(CF , CW ). In this section, we show that the distributive lattice
of stable matchings (S,�) in the QF-Model is affinely representable. Our app-
roach is as follows. First, we show that (S,�) is isomorphic to a lattice (P,⊆)
belonging to a special class, that is called ring of sets. We then show that rings
of sets are always affinely representable. Next, we show a poset (Π,��) repre-
senting (S,�). We last show how to combine all those results and “translate”
the affine representability of (P,⊆) to the affine representability of (S,�). We
note in passing that in this section we actually rely on weaker assumptions than
those from the QF-Model, essentially matching those from [4]. That is, instead
of quota-filling, we can assume a weaker condition called cardinal monotonicity :
Ca is cardinal monotone if for all sets of partners S ⊆ T , |Ca(S)| ≤ |Ca(T )|.
Isomorphism between the stable matching lattice and a ring of sets. A
family H of subsets of a base set B is a ring of sets over B if H is closed under



96 Y. Faenza and X. Zhang

set union and set intersection [11]. A ring of sets is a distributive lattice with the
partial order relation ⊆, and the join (∨) and meet (∧) operations corresponding
to set intersection and set union, respectively.

Let φ(a) := {b : b ∈ μ(a) for some μ ∈ S} denote the set of stable partners of
agent a. For a stable matching μ, let Pf (μ) := {w ∈ φ(f) : w ∈ Cf (μ(f)∪{w})},
and define the P-set of μ as P (μ) := {(f, w) : f ∈ F, w ∈ Pf (μ)}.

The following theorem gives a “description” of the stable matching lattice as
a ring of sets. Let P(CF , CW ) denote the set {P (μ) : μ ∈ S(CF , CW )}, and we
often abbreviate P := P(CF , CW ).

Theorem 4.(1) the mapping P : S → P is a bijection;
(2) (P,⊆) is isomorphic to (S,�). Moreover, P (μ1 ∨ μ2) = P (μ1) ∩ P (μ2) and

P (μ1 ∧μ2) = P (μ1)∪P (μ2). In particular, (P,⊆) is a ring of sets over the
base set E = {(f, w) ∈ F × W : w ∈ φ(f)}.

Remark 1. An isomorphism between the lattice of stable matchings and a ring of
set is proved in the SM-Model as well [19], where the authors define Pf (μ) :=
{w : f prefers w to μ(f)}, hence including firm-worker pairs that are not stable.
Interestingly, there are examples showing that in the QF-Model, if we were to
use the natural extension of the definition in [19], i.e., Pf (μ) := {w ∈ W (f) :
w ∈ Cf (μ(f) ∪ {w})}, then P is not a ring of set, see [15].

Affine representability of rings of sets. Consider a poset (X,≥). Let a, a′ ∈
X. If a′ > a and there is no b ∈ X such that a′ > b > a, we say that a′ is an
immediate predecessor of a in (X,≥) and that a is an immediate descendant of
a′ in (X,≥). Fix a ring of set (H,⊆) over a base set B and define set D(H) :=
{H\H ′ : H ′ is an immediate predecessor of H in (H,⊆)} of minimal differences
among elements of H. We note that minimal differences are disjoint [19]. We
elucidate in Example 3 these definitions and the facts below.

Theorem 5 ([11]). There is a partial order � over D(H) such that (D(H),�)
is a representation poset for (H,⊆) where the representation function ψ is defined
as follows: for any upper set D of (D(H),�), ψ−1(D) =

⋃
{K : K ∈ D} ∪ H0

where H0 is the minimal element of H. Moreover, |D(H)| = O(|B|).

From Theorem 5, it is not hard to prove the following.

Theorem 6. (D(H),�) affinely represents (H,⊆) via the affine function g(u) =
Au + x0, where x0 = χH0 , and A ∈ {0, 1}B×D(H) has columns χK for each
K ∈ D(H). Moreover, A has full column rank.

Example 3. Consider the ring of sets and its representation poset given below.
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a H1

a bH2 a c H3

a b cH4 a c d e H5

a b c d eH6

a b c d e fH7

(a) (H, ⊆)

b c

d e

f

(b) (D(H), �)

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Representation function ψ maps H1, · · · ,H7 to ∅, {{b}}, {{c}}, {{b}, {c}},
{{c}, {d, e}}, {{b}, {c}, {d, e}}, and {{b}, {c}, {d, e}, {f}}, respectively.
The affine function is g(u) = Au + x0 with xᵀ

0 = (1, 0, 0, 0, 0, 0) and matrix
A given above. Note that columns of A correspond to {b}, {c}, {d, e}, {f} in this
order. �

Representation of (S,�) via the poset of rotations. For μ′ � μ ∈ S
with μ′ being an immediate predecessor of μ in the stable matching lattice, let
ρ+(μ′, μ) = {(f, w) : (f, w) ∈ μ \ μ′} and ρ−(μ′, μ) = {(f, w) : (f, w) ∈ μ′ \ μ}.
We call ρ(μ′, μ) := (ρ+(μ′, μ), ρ−(μ′, μ)) a rotation of (S,�). Let Π(S) denote
the set of rotations of (S,�). We abbreviate D := D(P) and Π := Π(S).

Theorem 7.(1) the mapping Q : Π → D, with Q(ρ) := ρ+, is a bijection;
(2) (D,�) is isomorphic to (Π,��) where for two rotations ρ1, ρ2 ∈ Π, ρ1 �� ρ2

if Q(ρ1) � Q(ρ2);
(3) (Π,��) is a representation poset for (S,�), where the representation func-

tion ψS is defined as follows: ψ−1
S (Π) = μF ∪ (

⋃
ρ∈Π ρ+) \ (

⋃
ρ∈Π ρ−), for

any upper set Π of (Π,��).

(Π,��) is called the rotation poset. By Theorem 6 and Theorem 7, we deduce
|Π| = O(|F ||W |) and the following, proving the structural statement from The-
orem 1. The base set E of (S,�) is the set of acceptable firm-worker pairs.

Theorem 8. The rotation poset (Π,��) affinely represents the stable matching
lattice (S,�) with affine function g(u) = Au + μF , where A ∈ {0,±1}E×Π has
columns χρ+ − χρ− for each ρ ∈ Π. Moreover, matrix A has full column rank.

4 Algorithms

To conclude the proof of Theorem 1, we show how to efficiently find the elements
of Π, and how they relate to each other via ��. First, we employ Roth’s extension
of the Deferred Acceptance algorithm to find a firm- or worker-optimal stable
matching. Second, we feed its output to an algorithm that produces a maximal
chain C0, C1, . . . , Ck of (S,�) and the set Π. We then provide an algorithm that,
given a maximal chain of a ring of sets, constructs the partial order for the poset
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Algorithm 1. break-marriage(μ′, f ′, w′) with (f ′, w′) ∈ μ′ ∈ S
1: for each firm f �= f ′ do X

(0)
f = Xf (μ′) end for

2: let X
(0)

f ′ = Xf ′(μ′) \ {w′}; set the step count s = 0
3: repeat
4: for each worker w do
5: let X

(s)
w = {f ∈ F : w ∈ Cf (X

(s)
f )}

6: if w �= w′ then Y
(s)

w = Cw(X
(s)
w ) else Y

(s)
w = Cw(X

(s)
w ∪ {f ′}) \ {f ′}

7: end for
8: for each firm f do X

(s+1)
f = X

(s)
f \ {w ∈ W : f ∈ X

(s)
w \ Y

(s)
w } end for

9: update the step count s = s + 1
10: until X

(s−1)
f = X

(s)
f for every firm f

Output: matching μ with μ(w) = Y
(s−1)

w for every worker w

of minimal differences. This and previous facts are then exploited to obtain the
partial order �� on rotations of Π. Lastly, we argue on the overall running time.

For a matching μ and f ∈ F , let Xf (μ) := {w ∈ W (f) : Cf (μ(f) ∪ {w}) =
μ(f)}. Define the closure of μ, denoted by X(μ), as the collection of sets {Xf (μ) :
f ∈ F}. If μ is individually rational, then μ(f) ⊆ Xf (μ) for every f ∈ F .

Lemma 2. Let μ1, μ2 ∈ S such that μ1 � μ2. Then, ∀f ∈ F , μ2(f) ⊆ Xf (μ1).

Deferred Acceptance Algorithm. Roth [31] generalized to choice function
models the algorithm proposed in [17]. There is one side that is proposing –
for the following, we let it be F . Initially, for each f ∈ F , let Xf := W (f),
i.e., the set of acceptable workers of f . At every step, every f ∈ F proposes
to workers in Cf (Xf ). Then, every w ∈ W considers the set of firms Xw who
made a proposal to w, temporarily accepts Yw := Cw(Xw), and rejects the rest.
Afterwards, each firm f removes from Xf all workers that rejected f . Hence,
throughout the algorithm, Xf denotes the set of acceptable workers of f that
have not rejected f yet. The firm-proposing algorithm iterates until there is no
rejection.

Theorem 9. Roth’s algorithms outputs μF in time O(|F ||W |oracle-call).

By symmetry, swapping the role of firms and workers, we have the worker-
proposing deferred acceptance algorithm, which outputs μW .
Constructing Π via a maximal chain of (S,�). A maximal chain C0, · · · , Ck

in (S,�) is an ordered subset of S such that Ci−1 is an immediate predecessor
of Ci in (S,�) for all i ∈ [k], C0 = μF , and Ck = μW .

We now extend to our setting the break-marriage idea proposed by McVitie
and Wilson [27]. This algorithm produces a matching μ starting from μ′ ∈ S.
A formal description is given in Algorithm 1. Roughly speaking, the algorithm
re-initiates the deferred acceptance algorithm from μ′ after suitably breaking
a matched pair. Repeated applications of Algorithm 1 allow us to obtain an
immediate descendant of μ′ in (S,�).
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Algorithm 2. Immediate descendant of μ′ ∈ S
1: set T = ∅
2: for each (f ′, w′) ∈ μ′ \ μW do
3: run the break-marriage(μ′, f ′, w′) procedure
4: if the procedure is successful then add the output matching μ to T
5: end for
Output: a maximal matching μ∗ from T wrt �, i.e. � μ ∈ T such that μ 	 μ∗

It is easy to see that break-marriage(μ′, f ′, w′) always terminates. We let
s� be the value of step count s at the end of the algorithm. Note that by the
termination condition, μ(f) = Cf (X(s�)

f ) for every firm f . Let (f, w) ∈ F × W .

We say f is rejected by w at step s if f ∈ X
(s)
w \ Y

(s)
w , and we say f is rejected by

w if f is rejected by w at some step during the break-marriage procedure. Note
that a firm f is rejected by all and only the workers in Xf (μ′) \ X

(s�)
f .

Theorem 10. The running time of Algorithm 1 is O(|F ||W |oracle-call).

Lemma 3. The matching μ output by Algorithm 1 is individually rational, and
for every firm f ∈ F , we have Cf (μ(f) ∪ μ′(f)) = μ′(f).

We say break-marriage(μ′, f ′, w′) is successful if f ′ /∈ Cw′(X(s�−1)
w′ ∪ {f ′}).

Lemma 4. If break-marriage(μ′, f ′, w′) is successful, then μ ∈ S and μ′ � μ.

Next theorem shows a sufficient condition for the break-marriage procedure
to output an immediate descendant in the stable matching lattice.

Theorem 11. Let μ′ � μ ∈ S and assume μ′ is an immediate predecessor of
μ in the stable matching lattice. Pick (f ′, w′) ∈ μ′ \ μ and let μ be the output
matching of break-marriage(μ′, f ′, w′). Then, μ = μ.

Proof. Note that by Lemma 2, μ(f) ⊆ Xf (μ′) for every f ∈ F . We start by
showing that during the algorithm, for every firm f , no worker in μ(f) rejects
f . Assume by contradiction that this is not true. Let s′ be the first step where
such a rejection happens, with firm f1 being rejected by worker w1 ∈ μ(f1).

Claim 1. There exists a firm f2 ∈ Y
(s′)
w1 \μ(w1) such that f2 ∈ Cw1(μ(w1)∪{f2}).

Let f2 be the firm whose existence is guaranteed by Claim 1. In particular,
f2 ∈ Y

(s′)
w1 implies w1 ∈ Cf2(X

(s′)
f2

). Note that by our choice of f1, μ(f2) ⊆ X
(s′)
f2

.

Therefore, using substitutability and w1 ∈ X
(s′)
f2

, we have w1 ∈ Cf2(μ(f2)∪{w1}).
Thus, (f2, w1) is a blocking pair of μ, which contradicts the stability of μ.

Hence, for every firm f , no worker in μ(f) rejects f and thus, μ(f) ⊆ X
(s�)
f .

Because of path-independence and μ(f) = Cf (X(s�)
f ), we have Cf (μ(f)∪μ(f)) =

Cf (Cf (X(s�)
f ) ∪ μ(f)) = Cf

(
Cf (X(s�)

f ∪ μ(f))
)

= Cf (X(s�)
f ) = μ(f) (§). This in
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Algorithm 3. A maximal chain of (S,�) and the set of rotations Π

1: set counter k = 0; let Ck = μF

2: while Ck �= μW do
3: run Algorithm 2 with μ′ = Ck, and let μ∗ be its output
4: update counter k = k + 1; let Ck = μ∗

5: end while
Output: maximal chain C0, C1, · · · , Ck; and Π = {ρi := ρ(Ci−1, Ci)}i∈[k].

particular implies |μ(f)| ≥ |μ(f)| due to individual rationality of μ and quota-
filling. Note also that |μ(f)| = |μ′(f)| = |Cf (μ(f)∪μ′(f))| ≥ |Cf (μ(f))| = |μ(f)|,
where the first equality is due to the equal-quota property, the second and the last
by Lemma 3, and the inequality by quota-filling. We deduce |μ(f)| = |μ′(f)| =
|μ(f)| (�). We now show that break-marriage(μ′, f ′, w′) is successful.

Claim 2. |μ(w)| = |μ′(w)| for every worker w �= w′.

Hence, |μ(w′)| = |μ′(w′)| = qw′ = qw′ , where the first equality holds from
Claim 2 and (�), the second by the equal-quota property, and the last because
μ(w′) �= μ′(w′) by choice of w′ and the full-quota property. Therefore, f ′ �∈
Cw′(X(s�−1)

w′ ∪ {f ′}) because otherwise |μ(w′)| = |Cw′(X(s�−1)
w′ ∪ {f ′}) \ {f ′}| <

|Cw′(X(s�−1)
w′ ∪ {f ′})| ≤ qw′ , where the last inequality holds by quota-filling, a

contradiction. Thus, break-marriage(μ′, f ′, w′) is successful.
Finally, by Lemma 4, we have μ ∈ S and μ′ � μ. Because of (§), we also have

μ � μ. Therefore, it must be that μ = μ by the choice of μ.
We now present in Algorithm 2 a procedure that finds an immediate descen-

dant for any given stable matching, using the break-marriage procedure.

Lemma 5. Let μ1 � μ2 � μ3 ∈ S. If (f, w) ∈ μ1 \ μ2, then (f, w) /∈ μ3.

Theorem 12. The output μ∗ of Algorithm 2 is an immediate descendant of μ′

in (S,�). Its running time is O(|F |2|W |2oracle-call).

Proof. First note that due to Lemma 4, all matchings in the set T are stable
matchings. Assume by contradiction that the output matching μ∗ is not an
immediate descendant of μ′ in (S,�). Then, there exists a stable matching μ
such that μ′ � μ � μ∗. By Lemma 5, for every firm-worker pair (f ′, w′) ∈ μ′ \μ,
we also have (f ′, w′) /∈ μW . Thus, μ ∈ T due to Theorem 11. However, this
means that μ∗ is not a maximal matching from T , which is a contradiction. The
runtime follows from Theorem 10 and the fact that |μ′| = O(|F ||W |).

Algorithm 3 employs Algorithm 2 to find a maximal chain of the stable
matching lattice, as well as the set of rotations.

Theorem 13. Algorithm 3 is correct and runs in time O(|F |3|W |3
oracle-call).
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Algorithm 4. Construction of the rotation poset (Π,��)

1: Run Roth’s algorithm [30], to obtain μF and μW .
2: Run Algorithm 3 to obtain a maximal chain C0, C1, · · · , Ck of the stable matching

lattice (S, �), and the set of rotations Π ≡ {ρ1, ρ2, · · · , ρk}.

3: Run the algorithm from Theorem 14 to obtain the partial order ��.

Proof. By Theorem 7 and Theorem 12, the maximal chain output is correct.
Additionally, by Theorem 5, |Π| = O(|F ||W |) and the running time follows.
By [19, Section 2.4.3], all elements of D(P) are found on a maximal chain of
P. Then, by Theorem 7, Π can also be found on a maximal chain of S. Thus,
output Π is correct.

Partial order �� over Π. Consider a ring of sets (H,⊆). We can produce an
efficient algorithm that obtains the partial order � of (D(H),�) from a maximal
chain of (H,⊆), based on the classical concept of irreducible elements: see [15]
for details. Together with Theorem 4 and Theorem 7, we have the following.

Theorem 14. There is an algorithm with runtime O(|F |3|W |3oracle-call)
that constructs the partial order �� given as input the output of Algorithm 3.

Summary and time complexity analysis. The complete procedure to build
the rotation poset is summarized in Algorithm 4. Its correctness and runtime of
O(|F |3|W |3oracle-call) follow from Theorem 9, Theorem 13, and Theorem 14.
This concludes the proof of Theorem 1.

5 The Convex Hull of Lattice Elements: Proof of
Theorem 2

The order polytope associated with poset (Y,��) is defined as

O(Y,��) := {y ∈ [0, 1]Y : yi ≥ yj , ∀i, j ∈ Y s.t. i �� j}.

Stanley [36] showed that the vertices of O(Y,��) are the characteristic vectors
of upper sets of (Y,��), and gave a complete characterization of the O(|Y |2)
facets of O(Y,��). We claim that

conv(X ) = {x0} ⊕ A · O(Y,��) = {x ∈ R
E : x = x0 + Ay, y ∈ O(Y,��)},

where ⊕ denotes the Minkowski sum operator. Indeed, g defines a bijection
between vertices of O(Y,��) and vertices of conv(X ). The claim them follows
by convexity. As O(Y,��) has O(|Y |2) facets, we conclude the first statement
from Theorem 2.

Now suppose that A has full column rank. Then, since O(Y,��) is full-
dimensional, conv(X ) is affinely isomorphic to O(Y,��). Hence, there is a one-
to-one correspondence between facets of O(Y,��) and facets of conv(X ). The
second statement then follows from the characterization given in [36]. Example 4
shows that statements above do not hold when A does not have full column-rank.
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Example 4. Consider the lattice (X ,�) and its representation poset (Y,��) from
Example 2. Note that

conv(X ) = {x ∈ [0, 1]4 : x1 = 1, x2 + x3 = 1}.

Thus, conv(X ) has dimension 2. On the other hand, O(Y,��) has dimension 3.
So the two polytopes are not affinely isomorphic.

More generally, one can easily construct a distributive lattice (X ,�) such
that the number of facets of O(Y,��) gives no useful information on the number
of facets of conv(X ), where (Y,��) is a poset that affinely represents (X ,�).
In fact, the vertices of any 0/1 polytope can be arbitrarily arranged in a chain
to form a distributive lattice (X ,�). A poset O(Y,��) that affinely represents
(X ,�) is given by a chain with |Y | = |X | − 1. It is easy to see that O(Y,��) is
a simplex and has therefore |Y | + 1 = |X | facets. However, conv(X ) could have
much more (or much less) facets than the number of its vertices. �

References
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