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a b s t r a c t

This paper considers the problem of globally regulating a class of planar nonlinear systems perturbed
by various non-vanishing uncertainties including constant step disturbances, exogenous time-varying
disturbances with unknown magnitudes, and modeling uncertainties with unknown system parame-
ters. A new integral controller consisting of a nonlinear integral dynamic and a semi-linear control
law is constructed to drive the states of the uncertain systems to the origin in a finite time. This is
achieved by three major mechanisms: (i) for the purpose of finite-time convergence, a lower-order
integral dynamic is first constructed; (ii) by revamping the technique of adding a power integrator, a
semi-linear control law containing a linear corrective term is proposed to handle the various forms of
uncertainties; and (iii) a new inequality is established to provide an effective estimating tool for the
selection of a suitable control gain to guarantee finite-time stability.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider a class of planar nonlinear systems
described by
⇢

ẋ1 = x2 + f1(x1)
ẋ2 = u + f2(x1, x2) + d(t, x) (1)

where x = [x1, x2]T 2 R2 are the system states, u 2 R is
control input, and y = x1 is system output. In addition, f1(·)
and f2(·) are unknown functions vanishing at the origin and
d(t, x) represents non-vanishing uncertainties. Planar systems are
widely used to describe dynamics of practical systems such as a
pendulum system considered in Example 5.1.

When d(t, x) = 0, system (1) with known differentiable
nonlinearities fi’s can be globally stabilized by the backstepping
approach (Sepulchre, Jankovic, & Kokotovic, 1997). In the case
when fi’s are unknown, a domination approach was proposed
in Tsinias (1991) to obtain an linear controller under the linear
growth condition. In the case when fi’s only satisfy a Hölder
growth condition (Muñoz-Vázquez, Parra-Vega, & Sánchez-Orta,
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2016), a design methodology called adding a power integrator
technique, which can be traced back to the technique of adding
an integrator (Coron & Praly, 1991), was proposed in Polendo and
Qian (2007) and Qian and Lin (2006) to globally stabilize system
(1).

Recently, finite-time stabilization has been studied due to
many interesting features such as faster convergence rate, higher
accurateness, as well as better disturbance rejection property
(Bhat & Bernstein, 2000; Du & Li, 2012; Li, Liu, & Ding, 2010).
Many interesting results have been achieved for hyperbolic sys-
tems (Coron & Nguyen, 2020), switched nonlinear systems (Fu,
Ma, & Chai, 2015; Song & Zhai, 2019), time-varying nonlinear
systems (Sun, Yun, & Li, 2017), unknown nonlinear systems (Fu,
Ma, & Chai, 2017; Hong, Wang, & Cheng, 2006; Wu, Chen, & Li,
2016), etc. Moreover, in order to meet the requirements on con-
vergence time, fixed-time and prescribed-time controllers have
been designed in Chen, Liu, and Zhang (2020) and Lopez-Ramirez,
Polyakov, Efimov, and Perruquetti (2018). However, those meth-
ods are only applicable to systems with vanishing disturbances.

In the presence of non-vanishing uncertainties, i.e., d(t, x) 6= 0,
the aforementioned results cannot guarantee that all states of the
nonlinear system (1) converge to the origin. In the linear case
when f1(·) = 0, f2(·) = 0, and d(t, x) = ✓ for an unknown
constant ✓ , system (1) can be regulated by the commonly-used
PID controller (O’Dwyer, 2009)

u(t) = �k0
Z t

0
x1(s) ds � k1x1(t) � k2x2(t) (2)
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where k0, k1, k2 are coefficients of the Hurwitz polynomial s3 +

k2s2 + k1s + k0 = 0 (k1k2 > k0) (Dorf & Bishop, 2011).
The corrective term (

R t
0 x1(s) ds) can counteract the effect of

a constant disturbance but also will cause a trade-off between
stability and convergence rate, i.e., a larger k0 desired for a faster
convergence rate may cause instability (when k0 � k1k2). More-
over, the controller (2) cannot handle exogenous time-varying
disturbances, e.g., d(t, x) = c(1 + 0.5 sin(2t)) with an unknown
magnitude c , which drive the states x1 and x2 away from the
origin. The performance of the PID controller will be even worse
when d(t, x) is an internal modeling uncertainty such as d(t, x) =

✓ (1 + x22) with an unknown system parameter ✓ . In fact, a finite-
time escape phenomenon (Khalil, 1992) can be observed as ✓
increases. Therefore, it is of interest to design a controller to
globally regulate the nonlinear systems in the presence of various
uncertainties and achieve a faster convergence rate.

In this paper, we propose a novel integral controller consisting
of a nonlinear integral dynamic and a semi-linear control law
for the nonlinear system (1) with various non-vanishing uncer-
tainties. First, similar to the linear case, we will introduce an
extra integral state to be used in the control law to tackle d(t, x).
In order to achieve finite-time convergence rate, a lower-order
integral dynamic will be used. Then, by revamping the technique
of adding a power integrator (Polendo & Qian, 2007), we will
construct a semi-linear control law with a linear corrective term
to handle the various forms of uncertainties. To address the
challenge in selecting the control coefficients of the semi-linear
control law, we will establish an effective estimating tool in the
form of a new inequality. The proposed integral controller will
drive states of the planar system to the origin in a finite-time con-
vergence rate, regardless of the presence of not-precisely-known
nonlinearities and non-vanishing uncertainties.

2. Problem statement and a new inequality

The purpose of this paper is to solve the problem of Global
Finite-Time Regulation for the nonlinear system (1) in the pres-
ence of non-vanishing uncertainties. More specifically, we aim to
design a controller in the form

ẋ0 = ⌘(x1), u = ↵(t, x0, x1, x2) (3)

with continuous nonlinear functions ⌘ : R ! R and ↵ : R+ ⇥

R3 ! R, such that (i) the trajectories of the closed-loop system
(1) and (3) are uniformly globally stable in the sense of Lyapunov;
and (ii) there is a finite time t⇤ such that (x1(t), x2(t)) = (0, 0) for
any t � t⇤.

To solve the problem, what we need to do is to design a
continuous controller in the form of (3) such that

• there is a constant x⇤

0 such that (x⇤

0, 0, 0) is the equilibrium
point of the closed-loop system (1) and (3);

• under the new coordinates z1 = x0 � x⇤

0, z2 = x1, z3 = x2,
the closed-loop system has an uniformly globally finite-time
stable equilibrium at the origin according to Definition A.1.

Next we introduce a new inequality which plays a crucial role
in designing the proposed semi-linear controller.

Lemma 2.1. For any constant q 2 R+

odd
1 with q < 1 and positive

constants ⇢1 and ⇢2 , there exists a positive constant k⇤, such that
the following holds

⇢1�
2
+ k(�q

+ (1 � �)q) � ⇢2 (4)

for any real-valued functions � and k satisfying k � k⇤.

1 R+

odd := {m/n | m, n are positive odd integers}.

Proof. Denote p = 1/q > 1, x = �q and y = (� � 1)q. It follows
from Lemma B.1 that

1 =
��(�q)p � ((� � 1)q)p

��

 p
���q

+ (1 � �)q
�� ��1�q

+ (� � 1)1�q�

 p
���q

+ (1 � �)q
�� �|�|

1�q
+ (1 + |�|)1�q� . (5)

Note that 0 < (1 � q) < 1 and (�q + (1 � �)q) � 0. Applying
Lemma B.2. (2) to the last part of (5) yields

1  p
�
�q

+ (1 � �)q
� �

2 |�|
1�q

+ 1
�
. (6)

With the help of (6), we have

⇢1�
2
+ k(�q

+ (1 � �)q)

� ⇢1�
2
+

k
p(1 + 2|�|

1�q)

=
⇢1

2
(3 + 2�2) +

k
p(1 + 2|�|

1�q)
�

3
2
⇢1

� 2

s
k⇢1

2p
3 + 2�2

1 + 2|�|
1�q �

3
2
⇢1. (7)

Since (1 � q) < 1, it is clear that

3 + 2�2
= 1 + 2(1 + �2) � 1 + 2|�|

1�q. (8)

Substituting (8) into (7), we have

⇢1�
2
+ k(�q

+ (1 � �)q) �
p
k
p
2⇢1q �

3
2
⇢1. (9)

Hence, given positive constants ⇢1, ⇢2, q, the inequality (4) holds
for any real function k � k⇤ =

(⇢2+1.5⇢1)2
2⇢1q

. ⇤

Remark 2.1. Lemma 2.1 is a previously missing counterpart
of Lemma B.2. (1) in the case when the power is less than 1.
Lemma B.2. (1) pertains to the case when p � 1 for p 2 R+

odd,
i.e.,

k(�p
+ (1 � �)p) � ⇢2, 8� 2 R, (10)

for k � ⇢22p�1. However, when p is less than 1, (10) does not
hold any more. Instead, when q < 1 and q 2 R+

odd, we can only
obtain

(�q
+ (1 � �)q)  21�q, 8� 2 R, (11)

which is unusable for our particular purpose (see (30)) in this
paper. Therefore, Lemma 2.1 is established to get the new rela-
tionship (4) by leveraging the term of ⇢1�

2.

3. Semi-linear controller design

In this section, for the following system

ż1 = z�
2 , ż2 = z3, ż3 = u (12)

with � 2 R+

odd satisfying � < 1, we design a novel finite-time
stabilizer with a special semi-linear structure by revamping the
technique of adding a power integrator.

Theorem 3.1. There are positive constants k⇤, a1 and a2, such that
for any K (t, z) � k⇤, the following semi-linear controller

u = �K (t, z)
⇣
a1z1 + (z

3
�+2
3 + a2z2)

2�+1
3

⌘
(13)

globally stabilizes (12) in a finite time.

2
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Proof. Based on the adding a power integrator technique, we
propose a constructive method to design a controller and a Lya-
punov function in a recursive manner.

Step 1: First, construct U1 =
2�+1
7��

z1
7��
2�+1 . The time derivative of

U1 along system (12) is

U̇1 = (z
3

2�+1
1 )2�� z�

2 = ⇠
2��
1 z⇤

2
�

+ ⇠
2��
1 (z�

2 � z⇤

2
� ) (14)

where ⇠1 = z3/(2�+1)
1 and z⇤

2 is a virtual controller. For (14),
selecting z⇤

2
�

= ��1⇠
�
1 = �3⇠�

1 yields

U̇1 = �3⇠ 2
1 + ⇠

2��
1 (z�

2 � z⇤

2
� ). (15)

Step 2: Construct W2 =
3

7��
(z2 � z⇤

2 )
7��
3 =

3
7��

⇠
7��
3

2 with
⇠2 = z2 � z⇤

2 . Therefore, for U2 = U1 + W2, the time derivative
along system (12) is

U̇2 = � 3⇠ 2
1 + ⇠

2��
1 (z�

2 � z⇤

2
� ) + ⇠

4��
3

2 z⇤

3

+ ⇠
4��
3

2 (z3 � z⇤

3 ) + ⇠
4��
3

2
@(�z⇤

2 )
@z1

ż1. (16)

By the fact that � < 1 and Lemma B.2. (1), we have

⇠
2��
1 (z�

2 � z⇤

2
� ) 21��

|⇠1|
2��

��z2 � z⇤

2

���

=21��
|⇠1|

2��
|⇠2|

�


1
2
⇠ 2
1 + ⌘21⇠

2
2 (17)

where ⌘21 � 0 is a constant obtained by applying Lemma B.3. On
the other hand, by the definitions of z⇤

2 , and Lemma B.2. (2), it is
easy to have
����⇠

4��
3

2
@(�z⇤

2 )
@z1

ż1

���� = |⇠2|
4��
3

3
1
� +1

2� + 1
|z1|

2�2�
2�+1

���⇠2 � 3
1
� ⇠1

���
�

 ⌘̄21|⇠2|
4��
3 |⇠1|

2�2�
3 (|⇠2|� + |⇠1|

� )

for a constant ⌘̄21 > 0. Applying Lemma B.3 to the above equation
yields
����⇠

4��
3

2
@(�z⇤

2 )
@z1

ż1

���� 
1
2
⇠ 2
1 + ⌘22⇠

2
2 (18)

for a constant ⌘22 > 0. Then, substituting (17) and (18) into (16)
and constructing z⇤

3 = ��2⇠
(�+2)/3
2 with �2 = ⌘21 + ⌘22 + 2, we

have the following

U̇2  �2⇠ 2
1 � 2⇠ 2

2 + ⇠
4��
3

2 (z3 � z⇤

3 ). (19)

Step 3: Construct a C1 function W3 =
R z3
z⇤3

(s
3

�+2 � z⇤

3
3

�+2 )
5�2�

3 ds.
The time derivative of U3 = U2 + W3 along (12) is

U̇3  � 2⇠ 2
1 � 2⇠ 2

2 + ⇠
4��
3

2 (z3 � z⇤

3 ) + ⇠
5�2�

3
3 u

+
@W3

@z2
ż2 +

@W3

@z1
ż1 (20)

where ⇠3 = z3/(�+2)
3 � z⇤

3
3/(�+2).

In what follows, we estimated cross-terms in (20). First, by
Lemmas B.2–B.3 and the definition of ⇠3, we have

⇠
4��
3

2 (z3 � z⇤

3 ) = ⇠
4��
3

2 ((z
3

�+2
3 )

�+2
3 � (z⇤

3
3

�+2 )
�+2
3 )

 21� �+2
3 |⇠2|

4��
3 |⇠3|

�+2
3


1
3
⇠ 2
2 + ⌘31⇠

2
3 (21)

where ⌘31 is a positive constant. Considering the definition of W3

and the relation
��z3 � z⇤

3

��  2
1��
3 |⇠3|

�+2
3

2X

j=1

@W3

@zj
żj 

5 � 2�
3

��z3 � z⇤

3

�� |⇠3|
2�2�

3

���
2X

j=1

@z⇤

3
3

�+2

@zj
żj
���

 $ |⇠3|
4��
3

���
2X

j=1

@z⇤

3
3

�+2

@zj
żj
���, (22)

where $ =
(5�2� )2

1��
3

3 . Based on z⇤

3
3

�+2 = ��
3

�+2
2 (z2 +�

1
�

1 z
3

2�+1
1 )

and by Lemma B.3, there is a constant ⌘̄32 > 0

���
2X

j=1

@z⇤

3
3

�+2

@zj
żj
��� = |�

3
�+2
2 (z3 + �1

3
2� + 1

z
2��
2�+1
1 z�

2 )|

 ⌘̄32(|z1|
�+2
2�+1 + |z2|

�+2
3 + |z3|)

 ⌘̂32(|⇠1|
�+2
3 + |⇠2|

�+2
3 + |⇠3|

�+2
3 ) (23)

where ⌘̂32 is an appropriate positive constant. Substituting (23)
into (22) and applying Lemma B.3 to cross-terms |⇠3|

4��
3 |⇠1|

�+2
3

and |⇠3|
4��
3 |⇠2|

�+2
3 , we can find a constant ⌘32 > 0 such that

2X

j=1

@W3

@zj
żj 

3
4
⇠ 2
1 +

2
3
⇠ 2
2 + ⌘32⇠

2
3 . (24)

Substituting (21) and (24) into (20) yields

U̇3  �
5
4
⇠ 2
1 � ⇠ 2

2 + ⇠
5�2�

3
3 u + (⌘31 + ⌘32)⇠ 2

3 . (25)

By the traditional adding a power integrator technique (Polendo &
Qian, 2007), we can choose the following conventional controller

u = ��3

⇣
z

3
�+2
3 + �

3
�+2
2 z2 + �

3
�+2
2 �

1
�

1 z
3

2�+1
1

⌘ 2�+1
3

= ��3

⇣
z

3
�+2
3 + a2z2 + (a1z1)

3
2�+1

⌘ 2�+1
3 (26)

with �3 =⌘31+ ⌘32+ 1, a1 = �
2�+1
�+2

2 �
2�+1
3�

1 and a2 = �
3

�+2
2 . Under

the conventional controller (26), (25) becomes

U̇3  �
5
4
⇠ 2
1 � ⇠ 2

2 � ⇠ 2
3 . (27)

Noting that the Lyapunov function U3 is positive definite and
proper with respect to (z1, z2, z3), the closed-loop system (12) and
(26) is globally asymptotically stable.

Semi-linear Controller Design: It is clear that the controller (26)
does not have a linear z1 term. Next, we design a new controller
in the form of (13). To this end, we first rewrite (25) as

U̇3  �⇠ 2
1 � ⇠ 2

2 � ⇠ 2
3 �

⇠ 2
1

4
+ �3⇠

2
3 + ⇠

5�2�
3

3 u, (28)

where �3 is a constant same as the one in (26). Based on the
conventional controller (26), we construct the following new
controller

u = �K (t, z)
✓
a1z1 + (z

3
�+2
3 + a2z2)

2�+1
3

◆
, (29)

with the same constants a1 and a2 as those in (26). When � < 1
in the new controller, by (11), we only can have

⇠
5�2�

3
3 u|(29) = �K⇠

5�2�
3

3 (a1z1 + (⇠3 � (a1z1)
3

2�+1 )
2�+1

3 )
� �K⇠ 2

3

3
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which is not in the correct direction to dominate �3⇠
2
3 in (28).

Fortunately, the new Lemma 2.1 can help resolve this issue by
leveraging the negative term �

1
4⇠

2
1 . Specifically, in what follows,

we show that there is a large enough k⇤, such that when K (t, z) �

k⇤ the following holds

�
1
4
⇠ 2
1 + �3⇠

2
3 + ⇠

5�2�
3

3 u|(29)  0. (30)

Clearly, when ⇠3 = 0, (30) holds. When ⇠3 6= 0, let

� =
(a1z1)3/(2�+1)

z3/(2�+1)
3 +a2z2+(a1z1)3/(2�+1)

=
a3/(2�+1)
1 ⇠1

⇠3
,

1 � � =
z3/(�+2)
3 +a2z2

z3/(�+2)
3 +a2z2+(a1z1)3/(2�+1)

=
z3/(�+2)
3 +a2z2

⇠3
,

⇢1 = 1/(4a6/(2�+1)
1 ), ⇢2 = �3, and q = (2� + 1)/3 < 1. By

Lemma 2.1, there is a k⇤ > 0 such that for any K > k⇤ the
following holds

⇢2  ⇢1�
2
+ K (�q

+ (1 � �)q). (31)

Multiplying both sides of (31) by ⇠ 2
3 yields,

⇢2⇠
2
3 ⇢1

⇣
a

3
2�+1
1 ⇠1

⌘2
+ K⇠

2�q
3

h⇣
a

3
2�+1
1 ⇠1

⌘ 2�+1
3

+

⇣
z

3
�+2
3 + a2z2

⌘ 2�+1
3

i

=
1
4
⇠ 2
1 + K⇠

5�2�
3

3

h
a1z1 + (z

3
�+2
3 + a2z2)

2�+1
3

i

for any K (t, z) � k⇤, which implies the inequality (30) holds.
Substituting (30) into (28) leads to

U̇3|(12)&(29)  �⇠ 2
1 � ⇠ 2

2 � ⇠ 2
3 (32)

which implies that the closed-loop system (12)–(13) is globally
asymptotically stable.

Finite-Time Stability Analysis: Next, we will show that the states
of the closed-loop system (12)–(13) converge to the origin in a
finite time (Bhat & Bernstein, 2000). From the definition of W3
and Lemma B.2. (1), we arrive at

W3 (z3 � z⇤

3 )(z
3

�+2
3 � z⇤

3
3

�+2 )
5�2�

3

2
1��
3 |⇠3|

�+2
3 |⇠3|

5�2�
3 = 2

1��
3 |⇠3|

7��
3 . (33)

This, together with U1 =
2�+1
7��

⇠1
7��
3 and W2 =

3
7��

⇠
7��
3

2 , yields

U3 
2� + 1
7 � �

⇠
7��
3

1 +
3

7 � �
⇠

7��
3

2 + 2
1��
3 ⇠

7��
3

3

d1
⇣
(⇠ 2

1 )
(7�� )/6

+ (⇠ 2
2 )

(7�� )/6
+ (⇠ 2

3 )
(7�� )/6

⌘
(34)

where d1 = 2
1��
3 . By Lemma B.2. (3),

U3  d1(⇠ 2
1 + ⇠ 2

2 + ⇠ 2
3 )

(7�� )/6. (35)

Therefore, by (32) and (35), there is a constant % = d
�6
7��

1 = 4
��1
7�� ,

such that

U̇3  �%Um
3 (36)

with m = 6/(7 � � ) < 1. From (36), we can see that

0  U1�m
3 (t)  U1�m

3 (0) � %(1 � m)t, (37)

for t  t⇤ =
U1�m
3 (0)

%(1�m) , and U3(t) = 0 for t � t⇤. Therefore, the
states of the closed-loop system (12)–(13) will converge to the
origin in a finite time. ⇤

Remark 3.1. By observation, the term z1 in the conventional
finite-time stabilizer (26) has a total power of 1, but it is not a line
term due to the nonlinear composition. In Theorem 3.1, we move
this term out of the nonlinear composition as a linear term in the
semi-linear controller (29), which however destroys the negative
definite property of (28). In this case, a larger control gain in (29)
has been selected with the help of Lemma 2.1.

4. Global finite-time regulation of (1)

In this section, we will solve the global finite-time regulation
problem of (1) by utilizing Theorem 3.1. First, we consider the
relatively simple case of (1) when fi = 0, i = 1, 2, i.e.,

ẋ1 = x2, ẋ2 = u + d(t, x). (38)

To solve the problem, we assume that the non-vanishing uncer-
tainty d(t, x) satisfies the following assumption.

Assumption 4.1. Assume there are an unknown constant ✓ and
a known function ↵(t, x) � 1 such that

d(t, x) = ✓↵(t, x).

Remark 4.1. The uncertain function d(t, x) satisfying
Assumption 4.1 encompasses several types of uncertainties in
system (38). First, it includes constant disturbances as its special
case when ↵(t, x) = 1. For exogenous time-varying disturbances
such as d(t, x) = c(1 + 0.5 sin(2t)) with unknown magnitude c ,
we can simply choose ↵(t, x) = 2(1 + 0.5 sin(2t)) � 1 and ✓ =

c/2. Moreover, d(t, x) can include internal modeling uncertainties
such as d(t, x) = ✓ (1 + x22) with unknown system parameter ✓ .

Theorem 4.1. Under Assumption 4.1, there are constants � 2 R+

odd
with � < 1, k⇤

1, a1, and a2, such that the following integral controller

(
u = �k⇤

1↵(t, x)
⇣
a1x0 + (x

3
�+2
2 + a2x1)

2�+1
3

⌘

ẋ0 = x�
1

(39)

solves the global finite-time regulation problem of (38).

Proof. Define z1 = x0 �
✓

k⇤1a1
, z2 = x1 and z3 = x2. Under the new

coordinates, it is clear that the closed-loop system (38) and (39)
can be rewritten as

ż =

2

64
z�
2
z3

�k⇤

1↵(·)
⇣
a1z1+ (z

3
�+2
3 + a2z2)

2�+1
3

⌘

3

75= F (t, z). (40)

By Theorem 3.1, we can find constants a1, a2 and k⇤ such that
for K (t, z) = k⇤

1↵(t, x) � k⇤ the system (40) is globally finite
time stable. Therefore, there is a finite time t⇤, such that x1(t) =

x2(t) = 0 for t � t⇤. By the definition of t⇤ and (34), we have

t⇤ 
( 2�+1

7��
⇠

7��
3

1 (0) +
3

7��
⇠

7��
3

2 (0) + 2
1��
3 ⇠

7��
3

3 (0))1�m

%(1 � m)
Therefore, the upper bound t1 of t⇤ can be calculated by

t1 =

⇣ (2� + 1)z
7��
2�+1
1 (0) + 3

�
z2(0)+�

1
�

1 z
3

2�+1
1 (0)

� 7��
3

7 � �

+ 2
1��
3
�
z

3
�+2
3 (0)+�

3
�+2
2 (z2(0)+�

1
�

1 z
3

2�+1
1 (0))

� 7��
3

⌘ 1��
7��

⇥ 4
1��
7��

7��

1��
(41)

with the initial conditions [z1(0) = x0(0) �
✓

k⇤1a1
, z2(0) = x1(0),

z3(0) = x2(0)]. ⇤
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In the case when d(t, x) = ✓ for an unknown constant,
Theorem 4.1 holds for a controller with constant gains.

Corollary 4.1. The system (38) with d(t, x) = ✓ for an unknown
constant ✓ can be globally finite-time regulated by the following
integral controller
(

u = �k⇤

⇣
a1x0 + (x

3
�+2
2 + a2x1)

2�+1
3

⌘

ẋ0 = x�
1

(42)

for appropriate positive constants k⇤, a1, a2 and � 2 R+

odd with
� < 1.

Remark 4.2. According to homogeneous system theory (Bhat
& Bernstein, 2000; Hermes, 1991; Kawski, 1990), it is inevitable
that a system needs a negative homogeneous degree in order to
achieve finite-time convergence. To this end, a nonlinear integral
auxiliary equation ẋ0 = y� with � < 1 is proposed in this paper.
However, when � < 1, the traditional adding a power integrator
approach (Polendo & Qian, 2007) will result in a controller with
a nonlinear structure (see (26)) which cannot be used to handle
the uncertain term d(t, x). Therefore, in this paper a novel ‘‘semi-
linear" controller structure is proposed in Theorem 4.1 to derive
a linear corrective term of the integral state x0 (see (39) and (42))
while still preserving homogeneity. This is archived by revamping
the technique of adding a power integrator and introducing a new
inequality described by Lemma 2.1.

Remark 4.3. The result can be extended to handle higher-
dimensional and high-order systems such as those considered
in Fu et al. (2017). To this end, a finite-time controller with a
semi-linear term z1 will be designed for the following system
ż1 = z�

2 , żi = zpii+1, i = 2, . . . , n, żn+1 = u where pi’s are odd
positive integers. In this case, the power can be selected as � :=

⌧+1
(···((1�⌧ )pn�1�⌧ )pn�2··· )p1�⌧

for an appropriate constant ⌧ 2 (�1, 0).

For the nonlinear system (1), we can now solve the global
finite-time regulation problem if the nonlinear functions fi’s sat-
isfy the following assumption.

Assumption 4.2. There are constants � 2 R+

odd satisfying � < 1,
c1 and c2 such that

|f1(x1)| c1|x1|
�+2
3 ,

|f2(x1, x2)| c2(|x1|
2�+1

3 + |x2|
2�+1
�+2 ). (43)

Remark 4.4. Assumption 4.2 is known as the Hölder condi-
tion which is commonly used for control of inherently nonlinear
systems (Muñoz-Vázquez et al., 2016; Sun et al., 2017). When
� = 1, the condition becomes the well-known linear growth
condition (Tsinias, 1991). There are many nonlinear functions
satisfying Assumption 4.2 with a constant � 2 (0, 1]. For example,
we know | sin(x1)|  |x1|↵ for any ↵ 2 (0, 1]. For condition (43),
we can choose ↵ =

11
15 and � = 3/5 such that | sin(x1)|  |x1|

2�+1
3 .

Similarly, for any ↵ 2 (0, 1], we can show that | ln(1 + x22)| 

( 2
↵

� 1)|x2|↵ which will lead to Assumption 4.2 by appropriately
selecting ↵ and � .

Theorem 4.2. Under Assumptions 4.1 and 4.2, there are constants
k⇤

1, a1, and a2 such that for a large enough L � 1, the following
integral controller
(

u = �L2k⇤

1↵(·)
⇣
a1x0+

�� x2
L

� 3
�+2+a2x1

�2�+1
3

⌘

ẋ0 = Lx�
1

(44)

with ↵(t, x) from Assumption 4.1 and the constant � from
Assumption 4.2, solves the global finite-time regulation problem of
system (1).

Proof. Define z1 = x0 �
✓

k⇤1a1L
2 , z2 = x1 and z3 =

x2
L . By choosing

the same constants a1, a2 and k⇤

1 as in Theorem 4.1, the closed-
loop system (1) and (44) can be rewritten in the new coordinates
as the following system

ż = LF (t, z) +


0, f1(x1),

f2(x1, x2)
L

�T

(45)

where F (t, z) is the same as the one in (40). By using the same
Lyapunov function U3 constructed in Theorem 3.1, we can see
that the derivative of U3 along (45) is

U̇3 = L
@U3

@z
F (t, z) +

@U3

@z2
f1(·) +

@U3

@z3
f2(·)
L

. (46)

By (32), it is straightforward to see that (46) becomes

U̇3  � L
�
⇠ 2
1 + ⇠ 2

2 + ⇠ 2
3
�
+

@U3

@z2
f1(·) +

@U3

@z3
f2(·)
L

= � L
�
⇠ 2
1 + ⇠ 2

2 + ⇠ 2
3
�

+ (
@W2

@z2
+

@W3

@z2
)f1(z2) +

@W3

@z3
f2(z2, Lz3)

L
. (47)

By Assumption 4.2 and the fact that L � 1 and 2�+1
�+2 < 1

����
f2(·)
L

���� c2
⇣

|z2|
2�+1

3

L
+

|Lz3|
2�+1
�+2

L

⌘

c2(|⇠2 � �
1
�

1 ⇠1|

2�+1
3

+ |⇠3 � �
3/(�+2)
2 ⇠2|

2�+1
3 )

c̄2(|⇠1|
2�+1

3 + |⇠2|
2�+1

3 + |⇠3|
2�+1

3 ) (48)

for a constant c̄2 > 0. Similarly, there is a constant c̄1 > 0 such
that

|f1(·)|  c1|z2|
�+2
3  c̄1(|⇠1|

�+2
3 + |⇠2|

�+2
3 ). (49)

In addition, from the definitions W2 and W3, we have
@W2

@z2
= ⇠

4��
3

2 ,
@W3

@z3
= ⇠

5�2�
3

3 . (50)

By inequality (22) and the definition of z⇤

3 , we can find a positive
constant c̄3, such that

���
@W3

@z2

��� 
(5 � 2� )2

1��
3

3
|⇠3|

4��
3

�����
@z⇤

3
3

�+2

@z2

�����

 c̄3 |⇠3|
4��
3 . (51)

Substituting (50) and (51) into (47), we have

U̇3  � L
�
⇠ 2
1 + ⇠ 2

2 + ⇠ 2
3
�

+ c̄1(|⇠2|
4��
3 + c̄3 |⇠3|

4��
3 )(|⇠1|

�+2
3 + |⇠2|

�+2
3 )

+ c̄2|⇠3|
5�2�

3 (|⇠1|
2�+1

3 + |⇠2|
2�+1

3 + |⇠3|
2�+1

3 ). (52)

Note the summations of the powers of any two |⇠i| terms in (52)
are 2. Therefore, by Lemma B.3, there is a positive constant M and
⌅ = L � M such that

U̇3  � L(⇠ 2
1 + ⇠ 2

2 + ⇠ 2
3 ) + M(⇠ 2

1 + ⇠ 2
2 + ⇠ 2

3 )

 � ⌅ (⇠ 2
1 + ⇠ 2

2 + ⇠ 2
3 ). (53)

Selecting a large enough L, we can get a relation same as (32). As
a result, the integral controller (44)) can stabilize system (1) in a

5
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finite time under Assumptions 4.1–4.2. Considering (35) and (53),
the upper bound t2 of t⇤ is

t2 =

⇣ (2� + 1)z
7��
2�+1
1 (0) + 3

�
z2(0)+�

1
�

1 z
3

2�+1
1 (0)

� 7��
3

7 � �

+ 2
1��
3
�
z

3
�+2
3 (0)+�

3
�+2
2 (z2(0)+�

1
�

1 z
3

2�+1
1 (0))

� 7��
3

⌘ 1��
7��

⇥
4

1��
7��

⌅

7��

1��
(54)

with the initial conditions [z1(0) = x0(0) �
✓

k⇤1a1L
2 , z2(0) =

x1(0), z3(0) =
x2(0)
L ]. ⇤

Remark 4.5. Compared with the PID controller, our semi-linear
controller has several advantages. First, the linear coefficients of
the PID controller are fixed constants which contribute to the
trade-off between stability and convergence rate. The nonlinear
structure and coefficients of our controller however are chosen
in the way such that both fast convergence rate such as finite-
time convergence (by a negative homogeneous degree) and global
stability (by Lyapunov function) can be guaranteed at the same
time. Second, for exogenous time-varying disturbances, due to
the domination nature of our design method, we can choose K =

k⇤

1↵(·) as a time-varying function to handle time-varying distur-
bances and use a scaling gain L to dominate nonlinearities f1 and
f2 in system (1). Finally, the total power of each variable in con-
troller (42) are not greater than one since � < 1, and therefore
the closed-loop system (1) and (42) will not have the finite-
time escape phenomenon according to the Gronwall–Bellman
inequality.

5. Examples

In this section, we show how those results in the previous
section can be applied to some examples. First, we consider a
pendulum system perturbed by a disturbance.

Example 5.1. The state model of a pendulum system (Moreno &
Osorio, 2008) is described by
⇢

ẋ1 = x2
ẋ2 =

1
J u �

MpgL1
2J sin(x1) �

Vs
J x2 + d(t, x) (55)

where y = x1 is the angle of oscillation, x2 is the angular
velocity, Mp is the pendulum mass, g is the gravitational force,
L1 is the pendulum length, J = MpL21 is the arm inertia, Vs is
the pendulum viscous friction coefficient, and d(t, x) is a non-
vanishing unknown bounded disturbance. If J , MpgL1 and Vs are
known constants, under v =

1
J u�

MpgL1
2J sin(x1)� Vs

J x2, system (55)
can be rewritten as follows

ẋ1 = x2, ẋ2 = v + d(t, x), y = x1. (56)

We first consider the case when the disturbance is a unknown
constant in (56), i.e., d(t, x) = ✓ . By Corollary 4.1, a finite-time
integral controller is designed as

v = �k⇤(a1x0 + (x15/132 + a2x1)11/15), ẋ0 = x3/51 . (57)

The controller parameters are selected as k⇤ = 3, a1 = 0.8, a2 =

3, � = 3/5 and the initial conditions are set as [x0(0), x1(0), x2(0)]
= [2, �1.5, 3], i.e., [z1(0), z2(0), z3(0)] = [1.1667, �1.5, 3]. Re-
viewing the definition of a1 and a2 in (26), we can obtain �1 =

0.431 and �2 = 2.5912. Thus, by (41), the settling time upper
bound of t1 = 17.6723 seconds can be obtained. The simulation
result is shown in Fig. 1 where we choose ✓ = 2, Mp = 1 (kg),

Fig. 1. Trajectories of (38) and (57) with d(t, x) = 2.

Fig. 2. Trajectories of (56) and (57) with time-varying d(t, x).

g = 9.8 (m/s2), L1 = 0.5 (m), and Vs = 0.18 (kg m/s2). It is
clear that the states x1 and x2 will converge to zero and x0 will
converge to the constant 5/6 in a finite time bounded by t1.

When d(t, x) is a time-varying function with an unknown
magnitude, for example d(t, x) = ✓ (1+0.5 sin(2t)), the controller
(57) with a constant gain will not be sufficient to drive the output
to zero in a finite time. As a matter of fact, as shown in the
simulation in Fig. 2 under ✓ = 5, k⇤ = 6 and other conditions
the same as in Fig. 1, there are oscillations even for a large k⇤.

Next, by Theorem 4.1, we design an integral controller with a
time-varying gain k(t, x) = 6(1+ 0.5 sin(2t)) � k⇤ = 3 as
⇢

v = �k(t, x)(a1x0 + (x15/132 + a2x1)11/15)
ẋ0 = x3/51

(58)

In the simulation, we set ✓ = 5 and choose a1 = 0.8, a2 =

3, � = 3/5 and [x0(0), x1(0), x2(0)] = [2, �1.5, 3], i.e., [z1(0),
z2(0), z3(0)] = [0.9583, �1.5, 3]. In this case, we have �1 =

0.4310, �2 = 2.5912 and t1 = 17.5908 seconds. Clearly, as shown
in Fig. 3 the states x1 and x2 of the closed-loop system (56) and
(58) converge to zero in a finite time.

Next, we consider a system with both a vanishing nonlinearity
and a non-vanishing uncertainty.

Example 5.2. Consider the following system

ẋ1 = x2, ẋ2 = u + ✓ (1 + x22) + sin(x1)�(t), (59)

6
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Fig. 3. Trajectories of (56) and (58) with time-varying d(t, x).

Fig. 4. Trajectories of (59) and (61).

where ✓ is an unknown constant and �(t) is an unknown distur-
bance satisfying |�(t)|  1. We can verify that

| sin(x1)�(t)|  |x1|
11
15  |x1|

2�+1
3 (60)

which satisfies Assumption 4.2 with � = 3/5. By Theorem 4.2,
we can design the following integral controller
(

u = �L2k⇤

1(1+x22)
⇣
a1x0+

�� x2
L

� 15
13 +a2x1

� 11
15

⌘

ẋ0 = Lx3/51

(61)

In the simulation shown in Fig. 4, we choose �(t) = sin(t), ✓ = 3,
L = 1.5, k⇤

1 = 3, a1 = 0.8, a2 = 3 and the initial conditions
[x0(0), x1(0), x2(0)] = [2, �1.5, 3], i.e., [z1(0), z2(0), z3(0)] =

[1.4444, �1.5, 2]. Because a1 and a2 are the same as in Exam-
ple 5.1, the values of �1, �2 are same too. By (54), we can get the
settling time upper bound t2 = 16.9330 seconds for M = 0.401
and ⌅ = L � M = 1.099.

In order to better observe the convergence performance of the
system with different disturbances, we draw the norms of states
shown in Fig. 5.

Remark 5.1. As demonstrated in Fig. 1, 3, 4, and 5, the states
x1, x2 convergence to zero in a finite time, regardless of various
formats of the uncertainties. The unknown constant ✓ in the step
disturbance, time-varying disturbance, or system uncertainty can
also be recovered in a finite time from the final value of the
integral state x0, guaranteed by Theorem 4.1 or 4.2.

Fig. 5. Norms of the trajectories in logarithmic scale.

6. Conclusion

This paper has presented a new method to design a finite-time
integral controller to regulate the states of a class of uncertain
planar systems. Compared to the traditional PID controller, our
proposed controller can handle more general uncertainties be-
yond constant step disturbances, such as external time-varying
disturbances with unknown magnitudes and internal modeling
uncertainties with unknown parameters. Moreover, owing to the
use of a homogeneous integral element and a special semi-linear
control law, the system states will converge to the origin and the
unknown constant magnitude/parameter can be recovered from
the integral state in a finite time.

Appendix A. Finite-Time Stability

Definition A.1 (Finite-Time Stability (Bhat & Bernstein, 2000; Fu
et al., 2015)). Considering the following system

ż(t) = f (t, z(t)), t � t0, z(t0) = z0, (A.1)

where z 2 Rn is the state vector and f : R+ ⇥ Rn �! Rn is a
nonlinear continuous vector field satisfying f (t, 0n) = 0n.2

The origin of system (A.1) is said to be globally uniformly
finite-time stable if it is uniformly Lyapunov stable and finite-
time attractive, i.e. there exists a locally bounded function T :

Rn �! R+, such that z(t, t0, z0) = 0n for all t � t0 +T (z0), where
z(t, t0, z0) is a solution of (A.1) with z0 2 Rn. The function T is
called the settling time function of system (A.1).

Appendix B. Useful lemmas

In this section, we list three lemmas whose proofs can be
found in the literature (e.g. Hardy, Littlewood, and Polya (1952),
Polendo and Qian (2007), Qian and Lin (2001)).

Lemma B.1. Let p 2 R+

odd with p � 1, and x, y be real-valued
functions. Then the following holds:
��xp � yp

��  p |x � y| (xp�1
+ yp�1).

Lemma B.2. For x, y, z 2 R, and p 2 R+

odd with p � 1, the following
inequalities holds:

(1) |x + y|p  2p�1 |xp + yp|,

2 0n is the n-dimensional zero vector [0, . . . , 0]T .
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(2) |x + y|
1
p  |x|

1
p + |y|

1
p ,

(3) (|x|p + |y|p + |z|p)  (|x| + |y| + |z|)p.

Lemma B.3. Let c, d be positive constants. Given any positive
number " � 0, the following inequality holds:

|x|c |y|d 
c

c + d
" |x|c+d

+
d

c + d
"�

c
d |y|c+d .
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