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Abstract. Gale and Shapley’s stable assignment problem has been extensively studied, ap-
plied, and extended. In the context of school choice, mechanisms often aim at finding an as-
signment that is more favorable to students. We investigate two extensions introduced in
this framework—Iegal assignments and the efficiency adjusted deferred acceptance mechanism
(EADAM) algorithm—through the lens of the classic theory of stable matchings. In any in-
stance, the set £ of legal assignments is known to contain all stable assignments. We prove
that £ is exactly the set of stable assignments in another instance. Moreover, we show that
essentially all optimization problems over £ can be solved within the same time bound
needed for solving it over the set of stable assignments. A key tool for this latter result is an
algorithm that finds the student-optimal legal assignment. We then generalize our algo-
rithm to obtain the assignment output of EADAM with any given set of consenting stu-
dents without sacrificing the running time, hence largely improving in both theory and
practice over known algorithms. Finally, we show that the set £ can be much larger than
the set of stable matchings, connecting legal matchings with certain concepts and open
problems in the literature.
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1. Introduction
Stable matchings and stable assignments are funda-
mental paradigms in operations research and the de-
sign of matching markets. Since the seminal work of
Gale and Shapley (1962), stable assignments have re-
ceived widespread attention for their mathematical el-
egance and broad applicability (see, e.g., Gusfield and
Irving 1989, Roth and Sotomayor 1992, Manlove
2013). Those two facets are tightly connected. For in-
stance, a detailed understanding of the lattice struc-
ture of stable matchings led to many fast algorithms
for, for example, enumerating all stable matchings
(Gusfield 1987) and finding a stable matching that
maximizes some linear profit function (Irving et al.
1987). In turn, these algorithmic results propelled the
application of stable matchings to many markets, such
as college admission, assigning residents to hospitals
(Roth 1984), and kidney transplant (Roth et al. 2005).
One of the most important applications of matching
theory, the school choice problem, considers the as-
signment of high school students to public schools.
After the pioneering work of Abdulkadiroglu and

Sonmez (2003), many school districts, such as New
York City and Boston, adopted the student-optimal
stable mechanism for its fairness (no priority violation
or stability) and strategy-proofness (for students). The
mechanism asks students to report their (strict) prefer-
ences of the schools and schools to report their priori-
ties' (preferences with ties) over the students. It then
randomly breaks ties in the latter to obtain an instance
of the stable assignment problem and performs
Gale-Shapley’s algorithm” to obtain the student-
optimal stable assignment. Gale-Shapley’s algorithm
embodies many desirable qualities an algorithm can
have: it is simple and elegant, runs in time linear in
the size of the instance, and outputs an assignment
that satisfies the aforementioned strong properties. In
our simulations, on random instances of the size of
the New York City school system, it terminates on av-
erage in less than three minutes (see Figure 1).

In this setting, schools are often perceived as com-
modities, and only students” welfare matters. Hence,
enforcing stability implies a loss of efficiency. Abdul-
kadiroglu et al. (2009) demonstrate the magnitude of
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such efficiency loss with empirical data from the New
York City school system, in which more than 4,000
eighth-graders in their sample could improve their
assignments if stability constraints were relaxed.
Striving to regain this loss in welfare for the stu-
dents, many alternative concepts and mechanisms
have, therefore, been introduced and extensively
studied (see, e.g., Erdil and Ergin 2008, Kesten 2010,
Abdulkadiroglu et al. 2015, Kloosterman and Troyan
2016, Morrill 2016).

Those mechanisms lead to solutions outside the
well-structured set of stable assignments. As a con-
sequence, ad hoc structural studies and algorithms
must be presented. Unfortunately, properties of the
former and performance of the latter rarely match
theory of and algorithms for stable assignments
(Kesten 2010, Tang and Yu 2014, Kloosterman and
Troyan 2016). For instance, Kesten’s (2010) Efficien-
cy Adjusted Deferred Acceptance Mechanism (EA-
DAM) (one of the main focuses of the present
paper), in our experiments, cannot terminate after
24 hours of computation, on average, on random in-
stances of similar size as the New York City high
school system. This algorithmic inefficiency harms
the applicability of such mechanisms to real-world
instances, especially if policy designers want to run
them multiple times either as a subroutine in a
more complex mechanism or to test the effects of
different tie-breaking rules (Erdil and Ergin 2008,
Ashlagi and Nikzad 2020).

The goal of this paper is to show how certain con-
cepts, introduced in the literature to regain the loss
of welfare caused by stability constraints, can be
fully understood through the lens of classic theory
of stable assignments. Moreover, we show that this
better understanding leads to theoretically and
practically faster algorithms as well as extensions
and new connections within this classic theory. We
believe that our results can stimulate further appli-
cations of those concepts as well as future theoreti-
cal research. The two topics that we study in depth
are legal assignments (Morrill 2016) and EADAM
with consent (Kesten 2010). Let us, therefore, intro-
duce them next.

1.1. Legal Assighments

Legality gives an alternative interpretation of fairness
in an attempt to eliminate the tension between stabili-
ty and efficiency. The stability condition prohibits, in
the assignment chosen, the existence of a
student—school pair that prefer each other to their as-
signed partners. Such pairs are called blocking pairs.
Therefore, stability makes sure that no student is

harmed, and thus, no student has the justification to
take legal action against the public school system.
However, Morrill (2016) observes that legal standing,
as interpreted by the U.S. Supreme Court, is not exact-
ly the same as prohibiting blocking pairs. Specifically,
in order for a student to have legal standing, not only
must the student be harmed (i.e., forming a blocking
pair with a school), this harm also must be redressable.
That is, there must be an assignment that is accepted
as feasible under which the student is assigned to the
school.

With this interpretation, an institution is safe from
legal actions if the set £ of assignments that are con-
sidered feasible has the property that if a
student-school pair blocks an assignment from L,
then this pair is not matched in any assignment from
L (internal stability). On the other hand, in order to jus-
tify the exclusion of an assignment M from the set £,
there must be a pair that blocks M and is matched in
some assignment from L (external stability). Following
Morrill (2016), we call a set £ with those properties le-
gal. Note that every legal set contains the set of stable
assignments. We illustrate this concept with an
example.

Example 1.1. Here and throughout the paper, one
side of the bipartition is called students and the other
is called schools. In this example, we also assume that
each school can admit at most one student. Consider
the instance with preference lists.

studentl: A B C school A: 2 3 1
student22 B A schoolB: 1 2
student3: A C schoolC: 3 1

We list all five maximal matchings. Note that it is
sufficient to consider only maximal matchings be-
cause if a matching is not maximal, it cannot be in a le-
gal set. We also list the blocking pairs each matching
admits. In this instance, M; is the only stable match-
ing.

#  maximal matching blocking pairs

M; 1B,24,3C 0
M, 1A,2B,3C 3A
M; 1B,3A 2A
M, 1C,2B,3A 1B
Ms 1C,2A 1B,2B,3C

We now construct a digraph with each maximal
matching as a vertex. We add an arc (M,M’) if and
only if matching M blocks matching M’, where we say
a matching M blocks M’ if M contains an edge that is
a blocking pair for M'.
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By the definition of legality, we claim that, in this
instance, the set £ = {M;, M,} (circled) is a legal set be-
cause it satisfies both internal and external stability.
This is because M; and M, do not block each other,
and all other matchings are blocked by at least one of
M; and M,. Although M, is not stable, the harm re-
sulting from blocking pair (3, A) is not redressable giv-
en that student 3 is not matched to school A in any
matching from the set £. Moreover, every student is
weakly better off in M, compared with in M;. <

From the example, one can see that relaxing stabili-
ty to legality allows us to extend the set of feasible
assignments while maintaining a certain level of fair-
ness. As we show in Section 8, the increase in the size
of the feasible set can be very significant. Morrill
(2016) observes that, in the present setting, legality co-
incides with the concept of von Neumann—Morgenstern
(vNM) stability (Von Neumann and Morgenstern
1953) in game theory under an appropriate definition
of dominance. This is investigated in the one-to-one
case by Wako (2010). (We defer a more detailed dis-
cussion of von Neumann-Morgenstern stability and
of the work of Wako (2010) to Section 1.4). Morrill
(2016) also shows that every one-to-many instance has
a unique legal set £. Moreover, assignments in £ form
a lattice under the classic dominance relation. By stan-
dard arguments, this implies the existence of a
student-optimal legal assignment, which Morrill
(2016) shows is Pareto efficient for students and can be
found using Kesten’s (2010) EADAM.

1.2. EADAM with Consent

Recall that EADAM stands for efficiency adjusted de-
ferred acceptance mechanism. As the name implies, it
aims at regaining the efficiency lost because of stabili-
ty constraints. EADAM again achieves efficiency im-
provement without creating legal concerns, and it
does so by obtaining students’ consent to allow for
certain blocking pairs. More specifically, starting from
the student-optimal stable assignment, EADAM itera-
tively asks for certain students’ consent to allow the
removal of certain schools from their preference lists
and then reruns Gale-Shapley’s algorithm. This

removes the possibility that certain student-school
pairs act as blocking pairs. We defer a detailed de-
scription of the algorithm to Section 7 and illustrate
here a number of properties (shown in Kesten 2010,
Tang and Yu 2014) that make EADAM attractive for
school choice.

If a student is asked to give consent, whether the
student consents, the student’s assignment does not
change, and thus, no student has the incentive not to
consent, and no student is harmed under EADAM.
Moreover, EADAM outputs an assignment that is con-
strained efficient. That is, this assignment does not vio-
late any nonconsenting students’ priorities (i.e., no
nonconsenting student is part of a blocking pair), but
any other assignment that is weakly preferred by all
students does. When all students consent, the output
is therefore Pareto efficient.

Although EADAM is not strategy-proof (i.e., a stu-
dent can misstate the student’s preference list in order
to be assigned to a better school), Kesten (2010) re-
marks that violation of strategy-proofness does not
necessarily imply easy manipulability in practice (see,
e.g., Roth and Peranson 1999) as agents usually do not
have complete information about the preferences of
other agents in the market and are, thus, unlikely to
engage in potentially profitable strategic behaviors
(Roth and Rothblum 1999). Kesten (2010) also proves
that any mechanism that improves over the student-
optimal stable mechanism either violates some non-
consenting students’ priority or is not strategy-proof.

Although both EADAM and legal assignments are
further analyzed and extended by several authors
(see, e.g., Kloosterman and Troyan 2016, Afacan et al.
2017, Dur et al. 2019, Ehlers and Morrill 2020, Tang
and Zhang 2021), our knowledge of those two con-
cepts is far from complete. In particular, the knowl-
edge that legal assignments form a lattice gives little
information on how to exploit it for algorithmic pur-
poses, for example, how to find the legal assignment
that maximizes some linear profit function.” More-
over, little is known on how to exploit the structure of
legal assignments to obtain the output of EADAM
when not all students consent because the assignment
output by the algorithm may not be legal.

1.3. Our Contribution

Our first contribution addresses the structure of legal
assignments. We prove in Section 3 that the set of le-
gal assignments coincides with the set of stable assign-
ments in a subinstance of the original one. That is, we
can describe the set of legal assignments exactly as a
set of stable assignments in a subinstance. The proof
we present in Section 3 builds on results by Morrill
(2016). However, a self-contained, not much harder
proof that only relies on classic concepts from the the-
ory of stable assignment is also possible, and it is
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presented in E-companion EC.3. This latter proof
studies the fixed points of a certain function defined
in Morrill (2016), but our approach greatly simplifies
the overall treatment. In particular, Morrill (2016)
proves many properties of legal assignments from
scratch and shows that the concept of legal assign-
ments is well defined through its connection with
EADAM. In our proof, we first show that legal as-
signments are stable in a subinstance. Afterward,
all structural properties shown in Morrill (2016) fol-
low immediately. We defer a more detailed com-
parison between those proofs to E-companion EC.3.
We also show, by building on our approach and on
results by Ehlers and Morrill (2020), that legal as-
signments coincide with the set of stable assign-
ments in a subinstance for the more general case in
which school preferences are represented by substi-
tutable choice functions that satisfy the law of aggre-
gate demand. We defer details to Section 3 and the E-
companion.

As our second contribution, in Section 6, we show
how to obtain the aforementioned subinstance in time
linear in the number of edges of the input. Hence, in
order to solve an optimization problem over the set of
legal assignments (e.g., to find the already mentioned
school optimal or other assignments of interest, such
as the egalitarian, profit-optimal, minimum regret), one
can resort to the broad literature on algorithms devel-
oped for the same problem on the set of stable assign-
ments (see, e.g., Manlove 2013 for a collection of those
results). Because the worst-case running time of those
algorithms is at least linear in the number of edges,
the complexity of the related problems over the set of
legal assignments does not exceed their complexity
over the set of stable assignments. To achieve this sec-
ond contribution, we rely on the concept of meta-
rotations (Bansal et al. 2007) and develop a symmetric
pair of algorithms in Section 5, which we name
student-rotate-remove and school-rotate-remove, that,
respectively, find the school-optimal and student-
optimal legal assignments.

Our third contribution is a fast algorithm for EA-
DAM with consent. Algorithmic results imply that,
when all students consent, EADAM can be imple-
mented as to run with the same time complexity as
that of Gale-Shapley’s, which is linear in the number
of edges of the input. However, when only some stu-
dents consent, the output of EADAM may no longer
be legal. We show in Section 7 how to modify school-
rotate-remove to produce the output of EADAM, again
within the same time bound as Gale-Shapley. Hence,
for two-sided matching markets, if one were to switch
from the currently widely used deferred acceptance
mechanism to EADAM, the computational time re-
quired to obtain a solution would not significantly in-
crease. Computational tests on random instances

performed in Section 7.4 confirm that our algorithms
run significantly faster in practice.

As our last contribution, we show that, when relax-
ing stability to legality, we can greatly increase the
number of feasible matchings. We show one-to-one
instances that have only one stable matching but ex-
ponentially many (in the number of agents) legal
matchings. This is achieved by an exploration of the
connection between Latin marriages introduced by
Benjamin et al. (1995) and legal matchings. We defer
the details to Section 8.

Our algorithm implementations for (1) finding stu-
dent- and school-optimal legal assignments and ob-
taining the legal subinstance and (2) EADAM with
consent can be found online.*

1.4 Literature Review

There is a vast amount of literature on mechanism de-
sign for the school choice problem, balancing the
focus among strategy-proofness, efficiency, and stabil-
ity. From a theoretical perspective, Ergin (2002) shows
that, under certain acyclicity conditions on the priority
structure, the student-optimal stable assignment is
also Pareto efficient for the students. Kesten (2010) in-
terprets these cycles as sets of interrupting pairs (see
Section 7.1 for a formal definition) and proposes EA-
DAM, which improves efficiency by obtaining stu-
dents’ consent to waive their priorities.

Extending upon Kesten’s (2010) framework, many
researchers offer new perspectives. Tang and Yu
(2014) propose a simplified version of EADAM, which
repeatedly runs Gale-Shapley’s algorithm after fixing
the assignments of underdemanded schools. Bando
(2014) shows an algorithm that iteratively runs
Gale-Shapley’s algorithm after fixing the assignments
of the set of last proposers. Bando (2014) also shows
that, when restricting to the one-to-one setting, his al-
gorithm finds the student-optimal matching in the
vNM stable set. The vNM stable set is a concept pro-
posed by Von Neumann and Morgenstern (1953) for
cooperative games. The definition of vNM stable set
requires an irreflexive dominance relation among out-
comes in the set.

For the stable assignment problem, the definition of
legal assignments in Morrill (2016) corresponds to a
vNM stable set under the dominance relation dom,
where assignment M; dom M, if M; blocks M,. Under
this dominance relation, results from Ehlers (2007) and
Wako (2010) show existence and uniqueness of the
vNM stable set in the one-to-one setting. Morrill (2016)
further proves the existence and uniqueness results in
the one-to-many setting as well as the fact that the vINM
stable set has a lattice structure. Morrill (2016) is super-
seded by Ehlers and Morrill (2020), in which the concept
of legality and the aforementioned results are general-
ized to the setting in which schools’ preferences are
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specified by substitutable choice functions that satisfy
the law of aggregate demand. To the best of our under-
standing, results from Ehlers and Morrill (2020) do not
have any implication in the stable assignment setting
other than those that already follow from Morrill (2016)
mentioned earlier. Interestingly, Ehlers and Morrill
(2020) also investigate a different dominance relation
dom’ (which they call “vNM-blocks”) and observe that
dom and dom’ lead to different vINM stable sets.

Wako (2010) presents an algorithm that finds the
man- and woman-optimal matchings in the vINM sta-
ble set (under the dominance relation dom defined ear-
lier) in the one-to-one case and shows that the vINM
stable set coincides with the set of stable matchings in
another instance. When restricted to the one-to-one
case, our algorithms from Section 5 essentially project
to that of Wako (2010) as Wako (2010) also obtains, for
example, the woman-optimal legal matching by starting
from the woman-optimal stable matching and iterative-
ly finding rotations and eliminating edges. However,
our approach is different because, unlike Wako (2010),
we show that legal assignments are stable assignments
in a subinstance before and independently of the algo-
rithm for finding them. Even when restricted to the
one-to-one case, this allows for a more direct derivation
and, we believe, a more intuitive understanding of the
algorithm and a simpler and shorter proof overall.
Moreover, as Wako (2010) points out, his results have
neither structural nor algorithmic implications for the
vNM stable set in the one-to-many setting, and he actu-
ally poses as an open question to construct an algorithm
to produce such assignments.

Our results answer this open question and allow us
to also characterize legal assignments in the more gen-
eral setting of Ehlers and Morrill (2020). We remark
that, although there is a standard reduction from one-
to-many instances to one-to-one instances (Gusfield
and Irving 1989, Roth and Sotomayor 1992) such that
the set of stable assignments of the former and the set
of stable matchings of the latter correspond, this one-
to-one mapping fails for the set of legal assignments
(see Example EC.2.1). So we need to directly tackle the
one-to-many setting.

2. Basics

We introduce here basic notions and facts. We point
readers to the book by Gusfield and Irving (1989) for a
more comprehensive introduction on stable marriage
and stable assignment problems.

For neN, we denote by [n] the set {1,...,n}. All
(di)graphs in this paper are simple. All paths and
cycles in the (di)graphs are, therefore, uniquely de-
termined by the sequence of nodes they traverse
and are denoted using this sequence, for example,

ag,bo,a1,b1, -+-. The edge connecting two nodes 4, b in
an undirected graph is denoted by ab. For a graph G,
we denote by V(G) and E(G) its sets of vertices and
edges, respectively. For v € V(G), we let deg.(v) de-
note the degree of v (i.e., the number of adjacent ver-
tices of v) in G. For a graph G(V, E) and FCE, we
denote by G[F] := G(V,F). A singleton of a graph is a
node of degree zero. For sets S,5’, SAS’ denotes their
symmetric difference. A sink of a digraph is a node
of outdegree zero.

An instance of the stable assignment problem is a tri-
ple (G, <,q) with G =(AUB,E), where G is a bipar-
tite graph with bipartition (A, B), < denotes the set
{<o}veaus With <, being a strict ordering of the neigh-

bors of v in G, and q = {gs }pe € N® denotes the maxi-
mum number of vertices in A that can be assigned to
each b € B. The number g, is called the quota of b. Ele-
ments of A are referred to as students, and elements
of B are referred to as schools. For x,y,y’ € AU B with
xy,xy’ € E, we say x strictly prefers y to y’ if y > ./,
and we say that x (weakly) prefers y to ' and write
y=y" if y> .y or y=y'. For all xy € E, we assume
y > 0. That is, the fact that ab is an edge in E means
that a prefers to be assigned to b than to be unassigned
and b prefers to accept a than to accept fewer than g,
students. When q is the vector all of ones, we speak of
an instance of the stable marriage problem and denote
it by (G, <). In this case, elements of A are referred to
as men and elements of B are referred to as women.

An assignment M for an instance (G, <, q) is a collec-
tion of edges of G such that at most one edge of M is
incident to a for each a € A; at most g, edges of M are
incident to b for each b€ B. For x € A|UB, we write
M(x) ={y : xy € M}. When M(x) = {y}, we often think
of M(x) as an element instead of a set and write M(x)
= y. For abe E and an assignment M, we call ab a
blocking pair for M if student a prefers school b to the
student’s currently assigned school (i.e., b >, M(a)) and
school b either has empty seats (i.e., |[M(b)| < qp) or it
prefers student a to someone who is currently occupy-
ing a seat at school b (i.e., a>, a’ for some a’ € M(b)). In
this case, we say that ab blocks M, and similarly, we say
that M’ blocks M for every assignment M’ containing
edge ab.” An assignment is stable if it is not blocked by
any edge of G.

We let M(G,q) be the set of all assignments of
(G, <,q) and let S(G, <, q) be the set of all stable as-
signments of (G, <,q). For a subgraph G’ of G, we
denote by (G’, <,q) the stable assignment instance
whose preference lists are those induced by < on
G’, and quotas are those obtained by restricting q to
nodes in G’. We say that a student—school pair (4, b)
is a stable pair if there exists a stable matching M €
S(G, <,q) in which student a is assigned to school
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b. In such cases, we also say that a is a stable partner
of b.

Every instance has at least one stable assignment.
Algorithms proposed by Gale and Shapley (1962) out-
put special stable assignments. The following theorem
collects results from Gale and Shapley (1962) and
Gusfield and Irving (1989).

Theorem 2.1. The student-proposing Gale—Shapley’s algo-
rithm outputs a stable assignment M, that is optimal for
the students: for any stable assignment M € S(G, <,q),
every student a prefers My to M (i.e., Mo(a) >, M(a)). Sim-
ilarly, the school-proposing Gale—Shapley’s algorithm out-
puts a stable assignment M, that is optimal for the schools.
Moreover, M, is student-pessimal: for any stable assign-
ment M€ S(G, <,q), every student a prefers M to M,
(ie., M(a) =, M.(a)).

3. Legal Assignments Are Stable
Assignments in Disguise

For an instance (G, <,q) of the stable assignment
problem and a set of assignments M’ C M(G, q), de-
fine Z(M’) as the set of assignments that are blocked
by some assignment from M’. We say a set of assign-
ments M’ has the legal property if no assignment from
M’ is blocked by any assignment from M’ (internal
stability), and every assignment not in M’ is blocked
by some assignment from M’ (external stability).
These two requirements can be summarized as a
fixed-point condition: Z(M') = M(G,q) \ M'. In this
case, we say that (M’,Z(M")) is a legal partition of
M(G,q).

We devote this section to the proof of the following
theorem.

Theorem 3.1. Let (G, <, q) be an instance of the stable as-
signment problem. There exists a unique set of assignments
L € M(G, q) that has the legal property. This set coincides
with the set of stable assignments in (G, <,q), where G
is a subgraph of G induced by all and only edges that are in
some assignment from L. That is,

E(GL) = U{M :Me S(GL, < ,q)} = U{MME [,}

As observed in Gusfield and Irving (1989) and Roth
and Sotomayor (1992), there is a one-to-one corre-
spondence between stable assignments in (G, <,q)
and stable matchings in a reduced stable marriage in-
stance (Hg, <g) (for a detailed description of the re-
duction, see E-companion EC.1). One could think of
proving Theorem 3.1 by showing the (simpler) results
for the instance (Hg, <¢) and then deducing the set of
legal assignments of (G, <,q) from the set of legal
matchings of (Hg, <g). Unfortunately, the bijection be-
tween stable assignments and stable matchings does

not extend to the legal setting; see E-companion EC.2
for an example.

The proof of Theorem 3.1 presented in this section
relies on the following result by Morrill (2016).

Theorem 3.2. Let (G, <, q) be an instance of the stable as-
signment problem. There exists a unique set of assignments
L € M(G, q) that satisfies the legal property.

As the proof of Theorem 3.2 from Morrill (2016) is
somehow involved, in E-companion EC.3, we present
an alternative proof of Theorem 3.1 not relying on
Theorem 3.2.

For a stable assignment instance (G, <,q), we de-
note by £L(G, <,q) S M(G, <,q) the unique set of as-
signments that satisfies the legal property. Moreover,
we call £(G, <,q) the set of legal assignments of in-
stance (G, <, q). We say that an edge ¢ € E(G) is legal if
it is contained in some assignment from £(G, <,q)
and is illegal otherwise.

For the rest of the section, we fix a stable assign-
ment instance (G, <,q) with G=(AUB,E) and let
M = M(G, q) be the set of assignments, £ := £(G, <,q)
be the set of legal assignments, 7 := M \ £ be the set
of illegal assignments, E := U{M : M € L} be the set of
legal edges, and Gy, := G[E] be the subgraph with the
illegal edges removed. The next lemmas show that il-
legal edges can be removed from G without modify-
ing the set of legal assignments.

Lemma 3.1. Let e be an illegal edge. Removing the edge e
from the instance does not change the set of legal assign-
ments. That is, L = L(G, <,q), where G := G[E \ {e}].

Proof. Let M°:={M e M:e€M} be the set of as-
signments that contain the illegal edge e and let M :=
M(G, q) be the set of all assignments of the instance
(G, <,q). Note that M = M\ M. Moreover, all legal
assignments are assignments of the instance (G, <,q)
because e is an illegal edge: £ < M. Hence, (£, M\ £)
is a partition of M. We show next that it is also a legal
partition. To see this, first note that any two as-
signments M;,M; € L do not block each other
because L is the set of legal assignments of the
original instance. Next, consider any assignment
M’ € M\ L. Then, M’ is an illegal assignment in the
original instance and must be blocked by some as-
signment in £. Thus, together with the uniqueness
of the legal partition given by Theorem 3.2, we
conclude that £(G, <,q)=£L. O

Lemma 3.2. The set of legal assignments does not change
after removing all illegal edges. That is, L = L(G, <, q).

Proof. Let e;,e5, -+ ,ex be an ordering of the illegal
edges, and for i=1,2, .-k, let G':=G[E\{ey, ez, -
,eif] be a sequence of subgraphs obtained after
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successively removing illegal edges. Observe that
G* = G;. By Lemma 3.1, we have £(G!, <,q) = £, and
thus, by definition of illegal edges, edges ey, ---, ¢ re-
main illegal in instance (G', <, q). Therefore, applying
Lemma 3.1 again to (G!, <, q), we have £(G?, <,q) =
L(G!, <,q) = L. Tterating the process, we can con-
clude that L(Gp, <,q)=L(Gr, <,q= LG, <,
qQ=...=L. O

Lemma 3.3. Once all illegal edges have been removed, the
set of stable assignments coincides with the set of legal as-
signments: S(Gr, <,q) = L(GL, <,q).

Proof. The direction S(G, <,q) € £(GL, <,q) is clear
because a stable assignment is not blocked by any other
assignment. For the other direction, let M € £(G., <, q)
be a legal assignment of the instance (G;, <, q). Then,
M is not blocked by any assignment in £(G, <,q) be-
cause of internal stability. Because every edge in E(Gt)
appears in at least one assignment in £(G, <,q), M
admits no blocking pair in Gy and, thus, is stable in the
instance (G, <, q). This concludes the proof. [

Proof of Theorem 3.1. This follows immediately from
Theorem 3.2 and Lemmas 3.2 and 3.3. O

The approach developed in this section can be ex-
tended to the more general setting studied in Ehlers
and Morrill (2020), in which schools’ preferences are
represented by certain choice functions. In particular,
Theorem 3.1 also holds in this setting. We defer the
details to E-companion EC 4.

We show that legal assignments are stable assign-
ments in G;. Because there might be an exponential
number of legal assignments, one cannot expect to
construct G, efficiently by explicitly listing all the legal
assignments. Instead, the main tool we use is an effi-
cient mechanism in identifying legal and illegal edges,
which is developed in Section 5.

Before we introduce this algorithm, we need some
more properties of stable assignments.

4. The Structure of Stable Assignments

In this section, we recall known results on structural
properties of stable assignments and their algorithmic
consequences. Throughout the section, we fix a stable
assignment instance (G, <,q) with G = (AUB, E). Giv-
en two assignments M,M’ e M(G,q), we say M
(weakly) dominates M’ and write M > M’ if every
student a prefers M to M’: M(a)>, M’'(a), Va e A. If,
moreover, M # M’, we say that M strictly domi-
nates M’ and write M > M’. An assignment M€
M(G, q) is said to be Pareto efficient (for students)
if there is no other assignment M’ € M(G, q) such

that M’ dominates M. The following fact is well
known (see, e.g., Gusfield and Irving 1989).

Theorem 4.1. The set of stable assignments S(G, <,q)
endowed with the dominance relation > forms a distributive
lattice. In particular, there exist stable assignments My and
M, such that My > M > M, for all stable assignment M €
S(G, <,q) (it is possible that My = M). My and M, are
called the student- and school-optimal stable assignments,
respectively.

Note that the student-optimal (respectively, school-
optimal) stable assignment coincides with the one out-
put by Gale-Shapley’s algorithm with students
(schools) proposing as described in Theorem 2.1.
Hence, the notation describing those assignments
coincide.

Next, we introduce the concept of rotations in the
one-to-many setting. Informally speaking, a rota-
tion exposed in a stable assignment M is a certain
M-alternating cycle C such that MAC is again a sta-
ble assignment. C has the property that every agent
from one side of the bipartition prefers M to MAC,
and every agent from the other side prefers MAC to
M. We can interpret a rotation as a cycle of un-
matches and rematches with one side getting better
and the other side getting worse. Hence, rotations
provide a mechanism to generate one stable assign-
ment from another, moving along the distributive
lattice formed by the set of stable assignments.

Because of the different role played by the two sides
of the bipartition, we distinguish between school- and
student-rotations. In the following, we present them
jointly by choosing X to be one side of the bipartition
and Y the other.® We extend the quota vector q to stu-
dents by letting g, = 1 for each studenta € A.

For a stable assignment M € S(G, <,q) and agent
x € X, let sp(x) be the first agent y ¢ M(x) on x’s prefer-
ence list such that y prefers x to one of y’s partners
(ie., x> ,x" for some x” € M(y)). If y := sp(x) exists, we
must have that x prefers all of x’s partners over agent
y (e, y >y for all y € M(x)) because M is stable. If,
moreover, |[M(y)| = g,, define nexty(x) to be the least
preferred partner of agent y among all current partners
of y. That is, nexty(x) € M(y), and for all x" € M(y),
x' 2 ynexty(x). If, otherwise, |[M(y)| < gy, then define
nextp(x) = 0.

Given distinct xp,..., %1 € X and yop,..., -1 €Y, a
cycle vo,x0,y1,%1,- ., Yr—1,%r-1,Y0 of G is an X-rotation
exposed in M if sp(x;) = yir1 and nextp(x;) = x4 for all
i=0,...,r—1 (here and later, indices are taken modu-
lo 7). Note that x;y; e M foralli=0,...,r—1. Let Dx be
the digraph with vertices XUYU{0}, and arcs (x, y)
and (y,x’) if and only if sy(x) =y and nextp(x) = x’.
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We call D the X-rotation digraph (of M) and denote by
A(Dx) the set of arcs of Dy. If sp(x) does not exist for
some agent x € X, then x is a sink in Dx. Thus, note
that sinks in Dy are either agents in X or (). One easily
observes that X-rotations exposed in M are in one-to-
one correspondence with directed cycles in Dx.

Let p :=vyo,x0, ***,Yr-1,%,—1 be an X-rotation exposed
in M. The elimination of p maps stable assignment M
to the assignment M’ := M/p, where M’(x) = M(x) for
every agent x who is not in the rotation (i.e.,, x € X\ p)
and M’(x;) = (M(x;) \ {y:}) U{yi+1} for i=0,1, - ,r—1.
Note that the mapping is well defined because it is
easy to check that M’ is an assignment.

An X-rotation (digraph) is called a student or school
rotation (digraph), respectively, when X is the set of
students or schools. When it is clear whether we are
referring to students or schools, we drop the prefix.
See Example 5.1 for an illustration of rotations and ro-
tation digraphs in the context of our algorithm.

The following lemmas (Bansal et al. 2007) extend
classic results on rotations in the one-to-one setting to
our one-to-many setting. They show that the set of sta-
ble assignments is complete and closed under the
elimination of exposed rotations.

Lemma 4.1. Let M € S(G, <,q) be a stable assignment, p
be an X-rotation exposed in M, and M’ = M/ p be the assign-
ment obtained after eliminating p from M. Then, M’ is sta-
ble in (G, <,q) (ie, M €S(G, <,q)). Moreover, M
strictly dominates M’ (i.e., M > M’) if X is the set of stu-
dents and M is strictly dominated by M’ (i.e., M’ > M) if
X is the set of schools. If there is no X-rotation exposed in
M, M is the Y-optimal stable assignment. In addition, every
stable assignment can be generated by a sequence of
X-rotation eliminations, starting from the X-optimal stable
assignment, and every such sequence contains the same set
of X-rotations.

Lemma 4.2. xy € E is a stable pair if and only if (i) either x
is assigned to y in the Y-optimal stable assignment or (ii)
for some X-rotation yo,Xo,Y1,%X1, -+ ,Yr—1,Xr—1 exposed in
some stable assignment, we have x = x; and y = y; for some
ie{0,...,r—1}

We refer to Baiou and Balinski (2004) for further re-
sults on the stable assignment model.

For an instance (G, <,q), we denote by R(G, <,q)
the set of student rotations exposed in some of its sta-
ble assignments and by SR(G, <, q) the set of school
rotations exposed in some of its stable assignments.

Lemma 4.3. We have: |R(G, <,q)|=|SR(G, <,q)|.
There is a bijection o:R(G, <,q) = SR(G, <,q) be-
tween the set of student rotations and the set of school rota-
tions such that, for each stable assignment M € S(G, <,q)
and student rotation p € R(G, <,q) exposed in M, we
have M = (M/p)/o(p).

5. Algorithms for Student- and
School-Optimal Legal Assignments

Algorithm 5.1 (X-Rotate-Remove to Find the Y-Opti-
mal Legal Assignment)
Require: (G(AUB,E), <,q)
1. Find the Y-optimal stable assignment My of
(G, <,q) via Gale-Shapley’s algorithm.
2. Let GY:= G and M := My.
3.Set i = 0 and let D° to be the X-rotation digraph of
M°in (G, <,q).
4. while D’ still has an arc, do
5. Find (i) arcs (¥,y),(y,x) € A(D), where x is a
sink in D or (ii) a cycle Cof D',
6. if (i) is found, then

7. Define G*! from G’ by removing x'y, and set
MH—l = M-,
8. elseif (ii) is found, then
9. Let p' be the corresponding X-rotation. Set
Mi+1 — Mi/pi, and Gi+1 — Gi_
10. endif

11. Seti=i+1 and let D' be the X-rotation digraph
of M'in (G, <, q).

12. end while

13. Output M.

Because of Theorems 3.1 and 4.1, the concepts of
student- and school-optimal legal assignments are
well defined. In this section, we show efficient routines
for finding them. Throughout the section, we again fix
a stable assignment instance (G, <,q) with
G =(AUB,E). We denote by M and M~ the student-
and school-optimal legal assignments, respectively.

Suppose first that we want to find the student-optimal
legal assignment. The basic idea of the algorithm is the fol-
lowing: at each iteration, a legal assignment M and a set of
edges identified as illegal are taken as input, and one of
the following three cases happens: either (i) the set of edges
identified as illegal is expanded, (ii) a legal assignment M’
that strictly dominates M (i.e., M’ > M) is produced, or (i)
M is certified as the student-optimal legal assignment. If
we are in case (i), then we can safely remove the newly
found illegal edge (because of Lemma 3.1) and proceed to
the next iteration. If we are in case (ii), we replace M with
M’, and proceed to the next iteration. If we are in case (iii),
we halt the algorithm and output the current assignment.

In order to distinguish between cases (i), (ii), and
(iii), we rely on properties of the rotation digraph. In
the following, X can again be either the set of students
or the set of schools. The proof of the following lemma
uses some of the tools developed in the proof of Theo-
rem 3.1 given in the E-companion and, thus, is de-
ferred to E-companion EC.5.

Lemma 5.1. Let M € S(G, <, q) be a stable assignment. If
x € XU{0} is a sink in the X-rotation digraph Dx of M
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and (X', y),(y,x) € A(Dx) for some x’ € X and y € Y, then
x'y is an illegal edge.

Hence, if the algorithm finds a sink fulfilling the
properties of Lemma 5.1 in the school-rotation di-
graph, we are in case (i). If the school-rotation digraph
has a directed cycle, eliminating the corresponding
school rotation from M brings us to case (ii).” Finally, if
Dg has no arc, we conclude that we are in case (iii).
The initial iteration starts with the set of identified ille-
gal edges being empty and M being the student-
optimal stable assignment. The algorithm that finds
the school-optimal legal assignment proceeds similarly
with a legal assignment M’ that is dominated by M
(i.e., M > M’) generated in case (ii).

A formal description of our algorithm is given in
Algorithm 5.1. Its correctness is shown in the proof of
Theorem 5.1. We illustrate the algorithm in Example 5.1.

Example 5.1. We apply student- and school-rotate-
remove to the following instance with six students
and three schools, in which each school has a quota of
two. In this and all following examples, when it is
clear to whose preference list we are referring, the
subscript in > is dropped.

a1:>53>b1 bi:ar >[aq]>[az]>as > a2 > as
az: by >[by|> by by a3 >[az]> ag >[a1]> as > as
a:;:bg>>b2 b [as]> a1 >[as]> a2 >as > as
a4:>b2>b3
a5:>b2>b1
a6:b1>>b2

The student- and school-optimal stable assignments
coincide and are given by {aiby, axby, asby, asby,
asbs, agbs} (squared entries). This is the M? for both
algorithms.

Student-Rotate-Remove

On ay’s preference list, by is the first school after
MO(a;). In addition, by prefers a; to as, who is bs’s least
preferred student among M°(bs). Thus, syp(a1) =bs
and nextyp(a1) =as. After working out spp(-) and
nextyp(-) of all the students, we have the rotation di-
graph D" for the first iteration of student-rotate-remove.

@ @

ay /lb—gl as

Here, we find a case (i) with x’ =4y, y = b3, and x =
as. So we set M! =M°, remove x'y =aib; from the

instance, and update the rotation digraph D' for the

next iteration.

(" @ @ ©

Now, we have a case (i) with the corresponding
student rotation p! = by,a1,b1,a;. Eliminating p' from
Ml, we have ]\/I2 =M1/p1 = {a1b1,a2b2,a3b2, a4b1,a5b3,
agbs}. In the next iteration, the rotation digraph D?
only contains sinks. Thus, the algorithm terminates and
outputs M? as the school-optimal legal assignment.

2 b, | ;

School-Rotate-Remove

The first student on b;’s preference list that prefers b,
to the student’s assigned school under M° is a,. Thus,
syo(b1) =a, and mextyp(br) =b,. After working out
syo(+) and nextyp(-) of all the schools, we have the rota-
tion digraph D for the first iteration.

Here, we find a case (i) with x’ = by, y = a,, and x =
by. So we set M! = M, remove x'y = ayb; from the in-
stance, and update the rotation digraph D' for the next
iteration.

Now, we have a case (ii) with the corresponding school
rotation p' = a4, bs,a3,b;. Eliminating p! from M', we
have ]VI2 = Ml/pl = {albz,azbz,a3b3,ﬂ4b1, Ll5b3, a6b1}. In
the next iteration, the rotation digraph D* only contains
sinks. Thus, the algorithm terminates and outputs
M? as the student-optimal legal assignment. [

5.1. Correctness of Algorithm 5.1
Using the lattice structure of the legal assignments,
we can deduce the correctness of Algorithm 5.1.

Theorem 5.1. Algorithm 5.1 finds the Y-optimal legal
assignment.

Proof. We focus on the statement with Y being the set
of students; the other follows analogously. We first
show, by induction on the iteration i of the algorithm,
that M’ € S(G, <,q) and L(G', <,q) = L. This is obvi-
ous for i = 0. Assume the claim is true for i —1 > 0 and
consider iteration i. If the condition at step 6 is satis-
fied, M’ = M'™! is unchanged, and the edge removed
from G is illegal by Lemma 5.1. Hence, M’ =
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M1eSG, <,q €8(G, <,q) and L(G, <,q)=
L(G"1, <,q) =L by induction and Lemma 3.1. If,
conversely, the condition at step 8 is satisfied, then
p"! is a school rotation exposed in M""!, and M’ =
M1/pl € S(G'1, <, q) by induction and Lemma 4.1.
Moreover, because G'=G'™!, we have S(G/, <,q) =
S(G1, <,q)and L(G!, <,q) = L(G"}, <,q) = L.

In order to conclude the proof, observe that, at the end
of the algorithm, the school-rotation digraph—call it
D*—only has sinks. We first claim that the assignment out-
put—call it M*—strictly dominates every assignment in
M(G*,q), where G is the graph at the end of the algo-
rithm. Assume by contradiction that there is M€
M(G*,q) and a student a such that b := M(a) >, M*(a).
Then, sp-(b) exists by definition, contradicting the fact that
bis a sink in D" (it is possible that sy (b) # a as there may
be other nodes that precede a in U’s list and have the re-
quired property, but it is a contradiction regardless).
By what we proved earlier, we know that £ = L(G",
<,q) S M(G*,q). By Theorems 3.1 and 4.1, legal assign-
ments form a lattice with respect to the partial order >.
Hence, M" is the student-optimal legal assignment. [

Note that the previous theorem in particular implies
that the output of Algorithm 5.1 is unique regardless
of how we choose between steps 6 and 8 at each itera-
tion when multiple possibilities are present.

5.2. Time Complexity

A straightforward implementation of Algorithm 5.1
requires the construction of a rotation digraph at each
iteration. However, this is computationally expensive.
Instead of obtaining the complete rotation digraph at
each iteration, we only locally build and update a di-
rected path of the rotation digraph until a cycle or a
sink is found. Together with suitable data structures,
we can achieve the time complexity of O(|E|).

Theorem 5.2. Algorithm 5.1 can be implemented so as to
run in time O(|E|).

The full details of our implementation and the proof of
Theorem 52 are included in E-companion EC.6.1 and
EC6.2.

6. An O(|E|) Algorithm for Computing G,
Throughout this section, we fix an instance (G, <, q)
with G = (AU B, E) and abbreviate the set of stable as-
signments as S := S(G, <, q). We start with a prelimi-
nary fact. Recall that we denote by R(G, <,q) and
SR(G, <,q) the set of student and school rotations ex-
posed in some stable assignment of (G, <, q), respec-
tively. Let G. be the subgraph of G that includes
all and only edges in some legal assignments in
L(G, <,q) as defined in Theorem 3.1.

Lemma 6.1. Let e be an illegal edge of (G, <,q) and let
= G[E\ {e}]. Deleting edge e does not remove any

element from either the set of student rotations or the
set of school rotations: R(G, < q)CR(G <,q) and
SR(G, < q)CSR(G <,q).

Proof. Fix a stable assignment Me€S. Because
S CS(G <,q), M is also a stable assignment of (G

<,q). First, consider any student rotation p € R(G, <,q)
exposed in M. We want to show that p is also exposed in
Min (G, <, q). Assume p = by, a9, b1,a1, -+, br-1,8,-1. By
Lemma 4.2, edges a;b;;1 and a;1b;q for all i=0,1, ---
,#—1 are stable and, therefore, legal. Hence, all such
edges are in E(G), implying that b1 =sp(a;) and
nexty(a;) = a1 hold in (G, <, q) as well. Thus, p is ex-
posed in M in (G, <,q) and as desired. Therefore, p €
R(G, <,q) and R(G, <,q) CR(G, <,q). A similar ar-
gument shows SR(G, <,q) CSR(G, <,q). O

Theorem 6.1. The subgraph Gy, can be found in time O(|E|).

Proof. By Theorem 3.1 and Lemma 4.2, E(Gy) is given
by all and only edges in the student-optimal legal as-
signment ME, plus all pairs a;b;4; for some student ro-
tation p =by,ap,...,a € R(GL, <,q). By Lemma 4.1,
there exists exactly one set R; of student rotations
whose elimination leads from M5 to the student-
optimal stable assignment My; one set R, leading from
M, to the school-optimal stable assignment M, and
one set R3 leading from M, to the school-optimal legal
assignment Mf By Lemma 4.1, R1 U R2 U R3 is the set
of all rotations R(Gr, <,q) of (G, <,q). We argue
that R3 is computed during the execution of student-
rotate-remove. Indeed, throughout the algorithm, a se-
quence of rotations is found and eliminated, leading
from M, to ME. Each of these is exposed in some stable
assignment in an instance that contains all legal
edges. Hence, by repeated application of Lemma
6.1, those rotations form set R3. They can be com-
puted in time O(|E|) by Theorem 5.2. By Lemma 4.1
and repeated applications of Lemma 6.1, R, coin-
cides with the set R(G, <,q), which can be comput-
ed in time O(|E|) by classical algorithms; see, for ex-
ample, Gusfield and Irving (1989). School-rotate-
remove computes in time O(|E|), again by Theorem
5.2, the set of school rotations SR; whose sequen-
tial elimination starting from M, leads to M§. By
Lemma 4.3, the set Ry can be obtained from SR;
via the bijection o. Consider a student rotation
p =bo,a9,b1,a1, -+ ,a,-1 € R1. Because its correspond-
ing school rotation o(p) € SRy can be obtained sim-
ply as ag,bi1,a1, -+ ,a,-1,bp, computing R; from SRy
takes time O(|E|). This concludes the proof. O

7. An O(|E|) Algorithm for EADAM

with Consent
In this section, we first formally introduce EADAM
with consent (Kesten 2010). Then, in Section 7.2, we
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show that a fast implementation of EADAM can be
achieved by a suitable modification of our school-
rotate-remove algorithm. The proof relies on a simpli-
fied and outcome-equivalent version of EADAM in-
troduced by Tang and Yu (2014). Thus, we defer the
proof as well as a formal introduction of simplified
EADAM to E-companion EC.7. Together with Theo-
rem 5.2, this implies the following.

Theorem 7.1. EADAM with consent on a stable assign-
ment instance (G(AUB,E), <,q) can be implemented as
to run in time O(|E|).

We also compare our algorithm with previous ver-
sions of EADAM through computational experiments. In
Section 7.4, the theoretical advantage of student-rotate-
remove is verified computationally on random instances.

7.1. Kesten’s EADAM

Algorithm 7.1 (Kesten’'s EADAM)
Require: (G(AUB,E), <,q), consenting
ACA
1:LetG'=G,i=0.
2: Run student-proposing Gale-Shapley’s algorithm
on (G!, <, q) to obtain assignment M'.
3: while there is a consenting interrupter, do
4:  Identify the maximum k’ such that there exists a
consenting interrupter at step k’.
5:  Let E/ be the set of all interrupting pairs ab at
step k’ such that a is consenting.
6: Define G'*! from G’ by removing edges in E’. Set
i=i+1
7:  Run student-proposing Gale-Shapley’s algo-
rithm on (G/, <, q) to obtain assignment M.
8: end while
9: Output M.

students

Recall that Gale-Shapley’s algorithm (with students
proposing) is executed in successive steps. During
each step, every student who is currently unmatched
applies to the first school in the sutdent’s preference
list to which the student has not yet applie, and gets
either temporarily accepted or rejected. A student a is
called an interrupter (for school b at step k') if a is tem-
porarily accepted by school b at some step k <k’, a is
rejected by school b at step k', and there exists a
student that is rejected by school b during steps
kk+1, .-,k —=1. In such case, we also call ab an
interrupting pair (at step k’). Informally speaking, an
interrupter is a student who, by applying to school b,
interrupts a desirable assignment between school b
and another student at no gain to the student’s self.
Removing such interruptions is crucial in neutralizing
their adverse effects on the outcome. Demonstration
of these concepts can be found in Example 7.1.

Kesten's EADAM takes as input an instance (G, <, q)
with G=(AUB,E) and a set A CA of students that

we call consenting. Each iteration of EADAM starts
by running Gale-Shapley’s algorithm from scratch. It
then removes from the graph certain interrupting pairs
involving consenting interrupters. The algorithm ter-
minates when there are no interrupting pairs whose
corresponding interrupters are consenting students.

Details of Kesten's algorithm can be found in Algo-
rithm 7.1 and an illustration of the algorithm can be
found later in Example 7.1.

The following theorem collects some results from
Kesten (2010) and Tang and Yu (2014), demonstrat-
ing the transparency of the consenting incentives
and some attractive properties of EADAM’s output.
Recall that an assignment M is constrained efficient
if it does not violate any nonconsenting students’
priorities,® but any other assignment M’ that domi-
nated M does.

Theorem 7.2. Under Kesten’s EADAM,

1. The assignment of a student does not change whether
the student consents or not. That is, for any student a € A
and any set of consenting students A C A, if M and M’ are
the outputs of EADAM on inputs {(G, <,q),A \ {a}} and
{(G, <,q),A}, respectively, then M(a) = M’ (a).

2. The output is Pareto efficient when all students consent
and is constrained efficient otherwise.

Example 7.1. Each school in this example has a quota
of one. The preference lists are given as follows. All
students are consenting except for a;.

ag: b1>b2>l’]3>b4 l’Jli ag > ap > dy > 4z
a: b1>b2>l’]3>b4 Z’J22 ap > a3 > a1 > a4
as: b3>b2>b4>b1 b3: a; > aqg > daz > dap
ay: b3>b1>b2>b4 b41 asz > a1 > dy > dy

Gale-Shapley’s Algorithm. The student-proposing Gale—
Shapley’s algorithm outputs the assignment M’ =
{a1b3,a2b,a3b4,a4b1}. Steps of the algorithm are given
as follows:

step by b, b3 by
1 X, az %, a4
2 K, a3
3 ar, ¥
4 ¥%,04
5 a2, %
6 as

lteration 1. From the steps of Gale-Shapley’s algo-
rithm, one can identify all interrupting pairs. For in-
stance, a, proposes to b, at step 1. This causes a; to be
rejected by b,. However, a, is later rejected by b, at
step 4. Thus, by definition, a,b, is an interrupting pair
at step 4.
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In total, there are three interrupting pairs,
azby, axb1,a4b3 from the last step to the first. The last in-
terrupting pair of a consenting interrupter is a,b;
given that a3 is not a consenting student. Thus, k' = 4.
Because there is only one interrupting pair at step
k' =4, EADAM simply removes ayb; from the in-
stance. On the new instance, EADAM reruns
Gale-Shapley’s algorithm, and the resulting assign-
ment is ]\/I1 = {albl,azbz, a3b4,a4b3}.

Iteration 2. One can check that there are no interrupting
pairs and, thus, no consenting interrupters. Hence, EA-
DAM terminates and outputs assignment M.

Note that, using tools developed in previous sec-
tions, one can show that a,b;, the first edge that is re-
moved by EADAM, is actually a legal edge, and the
assignment output of EADAM, M, is not a legal
assignment. <

7.2. School-Rotate-Remove with Consent

Algorithm 7.2. (School-Rotate-Remove with Consent)
Require: (G(AUB,E), <,q), consenting students
ACA
1: Find the student-optimal stable assignment M, of
(G, <, q) via Gale-Shapley’s algorithm.
2:Let G° := G and MY := M,.
3:Set i = 0 and let D to be the school-rotation di-
graph of M’ in (G°, <, q).
4: while D' still has an arc, do
5:  Find (i) arcs (V’,a) and (a,b) € A(D'), where b is a
sink in D’ or (ii) a cycle C'of D',
6: if (i) is found, then

7: Define G'*! from G' by removing ab’ and set
Mi+1 = M.
8: ifa¢ A, then
9: Remove from G™*! edges a’l’ for all a’ such
thata>pa’.
10: end if
11:  else if (ii) is found, then
12: Let p’ be the corresponding school rotation.
Set M1 = M /p' and G'*! = G'.
13: endif

14: Seti=1i+1 and let D' be the school-rotation di-
graph of M'in (G/, <, q).

15: end while

16: Output M'.

Morrill (2016) shows that, when all students con-
sent, the output of EADAM is the student-optimal le-
gal assignment. Hence, school-rotate-remove can be
employed to find this assignment in time O(|E|) (see
Theorem 5.2). However, as Example 7.1 shows, when
only some students consent, EADAM may output
an assignment that is not legal. We show in this sec-
tion how to suitably modify school-rotate-remove in
order to obtain the assignment output of EADAM for

any given set of consenting students without sacrific-
ing the running time.

In school-rotate-remove, the key idea is to reroute arcs
that point to students who are assigned to sinks in the ro-
tation digraph. This allows us to identify school rotations
in the underlying legalized instance (G, <, q). Assume,
for example, that (¥',a),(a,b) € A(Dg), and b is a sink.
Upon such rerouting, a’s priority might be violated. In
particular, if b" successfully participates in a school rota-
tion after the rerouting, then ab’ is a blocking pair for the
new assignment. Hence, under the EADAM framework,
if a is not consenting, we can no longer freely reroute
arcs pointing to 4. In fact, in order to respect a’s priority
(ie., to avoid ab’ becoming a blocking pair), b* cannot be
assigned to any student a’ such that a4 >} a’. This means
that the arc coming out of b’ cannot be rerouted to any
other student, essentially making b’ a sink.

A detailed description of our algorithm is presented
in Algorithm 7.2. Throughout the rest of the section, we
call school rotations simply rotations. As in Algorithm
5.1, when both cases (i) and (ii) are present at step 5 of
some iteration, we are free to choose between steps 6
and 11. These choices do not affect the final assignment
output. We formalize this statement in Theorem EC.7.1.
A step-by-step application of our algorithm on the in-
stance from Example 7.1 is outlined in Example 7.2.

Example 7.2. Consider the instance given in Example
7.1. From the student-optimal stable assignment
MO := {a1b3,a:b5,a3b4,a4b1}, we can construct the rota-
tion digraph as follows. Note that, in this graph and
in the following, some isolated nodes are not
included.

OpoiOnc.Onunl)

Iteration 1. Because b, is a sink, we remove edge a3b,
as in step 7 in the hope of rerouting the arc coming
out of b,. However, because a3 is not consenting, we
have to additionally remove edges a1b, and asb, as in
step 9. This completely removes the possibilities of re-
routing, essentially making b, a sink as seen in the ro-
tation digraph of the updated instance.

()= )—fmh(e)

Iteration 2. Now, b, is a sink. Because its assigned stu-
dent a, is consenting, the algorithm simply removes
edge ayb; in step 7, resulting in the following updated
rotation digraph.
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Iteration 3. We can now eliminate the rotation (i.e.,
trading schools between a; and a4) and update the as-
signment to be {a1b1,a,b2,a3b4,a4b3}. After the assign-
ment update, the new rotation digraph only contains
sinks, and thus, the algorithm terminates.

This final assignment coincides with the assignment
output of EADAM. <

In our rotation-based algorithm, the students from
whom we seek consent are those who are assigned to
schools corresponding to sinks, and thus, they are not
in any directed cycles in the current and subsequent
rotation digraphs. Therefore, there is a clear separa-
tion between the students from whom we ask for con-
sent and those participating in Pareto-improvement
cycles (i.e., school rotations). This is consistent with
the result in Theorem 7.2, part 1, that students have
no incentive to not consent.

The proof of the following statement can be found
in E-companion EC.7.

Theorem 7.3. For any given input, the outputs of Algo-
rithms 7.2 and 7.1 coincide.

We remark that the proof of Theorem 7.3 is different
(and quite harder) than the proof of Theorem 5.1. In-
deed, for the latter, we can build on the fact that legal
assignments form a lattice although in the former, we
do not have such a well-behaved structural result at
our disposal. Hence, a careful analysis of the algo-
rithms is needed.

7.3. Fast Implementation of School-Rotate-
Remove with Consent

The fast implementation is a modification of that of

Algorithm 5.1. Therefore, we defer the proof of Lem-

ma 7.1 to E-companion EC.6.4. An example demon-

strating the implementation can also be found in

E-companion EC.6.3.

Lemma 7.1. Algorithm 7.2 can be implemented so as to
run in time O(|E|).

Proof of Theorem 7.1. This follows immediately from
Theorem 7.3 and Lemma 7.1. O

7.4. Computational Experiments

Because Gale-Shapley’s algorithm on stable assignment
instances can be implemented to run in time O(| E|) (see
Gusfield and Irving 1989, Manlove 2013), the original
EADAM (Kesten 2010) runs in time O(|E[*) because it
runs Gale-Shapley’s routine at most |E| times. A simpli-
fied version of EADAM (Tang and Yu 2014), for which
the details are presented in the e-companion, runs in
time O(|E||V|) because it runs Gale-Shapley’s routine
at most | V| times. We remark that, although mechanism
design rather than computational complexity, is the

primary interest of Kesten’s (2010) paper, computation-
al efficiency is nevertheless crucial in putting the mech-
anism into practice, especially for large markets, such as
the New York school system. In fact, Tang and Yu
(2014) mention computational tractability as one of their
contributions.

One major advantage of our school-rotate-remove
with consent is that, instead of repeatedly running
Gale-Shapley’s algorithm, we update the assignment
locally using the structural results (lattice structure
and rotations) of stable assignments. Our algorithm
runs in time O(|E|) as shown in Lemma 7.1.

To further demonstrate the computational advan-
tage of our algorithm, we randomly generated in-
stances of varying sizes and recorded the running
time of all three algorithms. The running time of
Gale-Shapley’s algorithm is also recorded as a bench-
mark. The number of students in our instances ranges
from 500 to 30,000, and the corresponding number of
schools ranges from 5 to 300. For each instance size,
100 instances (G, <, q) are obtained by randomly gen-
erating < and q. For each student g, the preference list
<, is defined by a random permutation of B. The pref-
erence lists of schools are similarly defined. The quota
of each school is randomly selected between 50 and
150 uniformly. Note that, in this set of simulations,
students and schools have complete preference rank-
ing of the opposite side. That is, in all instances, G is a
complete bipartite graph. We also conduct another set
of simulations (details later) with incomplete prefer-
ence lists. We tested scenarios in which each student
is randomly determined to be consenting with proba-
bility 10%, 30%, 50%, 80%, and 100%. The experiments
were carried out on a computing node with one core
and 4 GB RAM.

A visual representation of the running times of
different algorithms can be found in Figure 2. The
shaded areas are 95% confidence intervals of each al-
gorithm for given instance sizes. Our algorithm per-
forms significantly faster than the simplified EADAM
(Tang and Yu 2014) and dramatically faster than the
original EADAM (Kesten 2010) with the differences
being especially pronounced when all students
consent.

The New York City school district has approximate-
ly 90,000 students applying to 700 public high school
programs every year, and students can list up to 12
schools in their application (Narita 2016). We further
conducted computational experiments whose instance
sizes are similar to those of New York City. We com-
pared our algorithm with simplified EADAM on
random instances generated similarly as previously
described. However, in this set of simulations, we
fix instance size with |A|=90,000 and |B|=700.
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Moreover, the quota of each school is selected uni-
formly at random from integers between [0.5 X u] and
[1.5X ul, where u= [%]. In generating < , for every
student a, <, is obtained by truncating the random
permutation such that only the top 12 schools are
listed; for every school b, < is obtained by restricting
the random permutation to students who have b in
their preference lists. Graph G can be deduced from
the preference lists. Results of our experiments are
summarized in Figure 1. The difference in computa-
tional time is noticeably different from all levels of
consenting percentages. In particular, when all stu-
dents consent, school-rotate-remove takes approxi-
mately three minutes, whereas simplified EADAM takes,
on average, four hours, and its run time has a much higher
variance.

8. Legal Matchings and Latin Marriages
In this section, we restrict to one-to-one instances. For
an instance (G, <) of the stable marriage problem, let
S(G, <) and L(G, <) denote the set of stable and legal
matchings, respectively. In addition, we call (G, <)
the legalized instance of (G, <), where G is the sub-
graph of G defined as in Theorem 3.1. We say an in-
stance (G, <) is legal if G, = G.

An n X n matrix is a Latin square if each row and col-
umn are a permutation of numbers 1,2, ---,n. Given
an instance (G, <) of the stable marriage problem with
complete lists, we call the position of a in the prefer-
ence list of b the rank of a in b’s list. Following the
work of Benjamin et al. (1995), we say an instance
(G, <) with |A| =|B| =n is Latin if there exists a Latin
square Q with n rows indexed by elements of A and n
columns indexed by elements of B such that, for each
row a and column b, Q(a, b) is the rank of b in a’s list,
and n+1-Q(a,b) is the rank of a in b’s list. We call
such Q the Latin ranking matrix. See Example 8.1 for an
example of a Latin ranking matrix and its associated
stable marriage instance. In this section, we prove the
following.

Theorem 8.1. Let (G, <) be a Latin instance. Then, Gy =
G and there exists an instance (G', <) with an additional

man a and an additional woman b such that |S(G’, <’)| =
land L(G, <) ={MU{ab}: M € 8§(G, <)}

Benjamin et al. (1995) construct, for each even n, a
Latin instance (G, <) with n men and n women such
that |S(G, <)| = w(2"), and in the man-optimal stable
matching, each man is given his favorite partner.
Hence, Theorem 8.1 implies that, for each odd n, there
is an instance (G’, <’) with n men and n women such
that |S(G’, <’)|=1 and |£L(G’, <')| = w(2")—that is, it
has one stable matching but exponentially many legal

matchings. Moreover, proofs of our construction for
(G’, <’) shows that the man-optimal legal matching in
L(G’, <’) assigns to each man from G his favorite part-
ner, and the stable matching in S(G’, <’) assigns to
each man from G his second least favorite partner (see
Lemma 8.2). Note that, up to a different constant
in the basis, the asymptotic ratio between the quanti-
ties |£(G, <)| and |S(G, <)| cannot be increased as it
has been recently shown that there exists an absolute
constant ¢ > 1 such that every instance of the stable
marriage problem with 7 men and #n women has O(c")
stable matchings (Karlin et al. 2018).

We believe that future investigations of the relation-
ship between Latin instances and legal matchings may
provide further advancement on a question by Knuth
(1976). In his seminal work, Knuth (1976) asks for a
characterization of instances that maximize |S(G, <)|
for each value of |[A| =|B| = n € N. Although an asymp-
totic upper bound follows from the work cited here
(Karlin et al. 2018), the characterization of these instan-
ces is unsolved even for reasonable small sizes. Note
that, for each n €N, there is always a legal instance
achieving the maximum, and as for any instance (G, <),
we have |S(Gy, <)|=|L£(G, <)| >|S(G, <)

The following theorem (Benjamin et al. 1995) gives
a necessary and sufficient condition for a matching to
be stable in a Latin instance.

Theorem 8.2. Let M be a matching of the instance defined
by a Latin ranking matrix Q. M is stable if and only if there
do not exist row a and column b such that Q(M(b),b) >

Qla,b) > Q(a, M(a)) or QM(b),b) < Q(a, b) < Qla, M(a)).

The following lemma shows that every Latin in-
stance is legal.

Lemma 8.1. Let (G, <) be a Latin instance. Then, G;, = G.

Proof. Assume Q is the Latin ranking matrix of in-
stance (G, <) and Qe€Z™". For i€[n], let M =
{ab : Q(a,b) = i}. By definition of Latin squares, M’ is a
matching. By construction, for any row 2 and column
b, Q(M(b),b) = i = Q(a, M(a)). Therefore, M’ must be
stable and, thus, legal because of Theorem 8.2. Be-
cause Use[;yM’' = E(G), by Theorem 3.1, G, =G. O

As we show next, the set of stable matchings of a
Latin instance can be “masked” into the set of legal
matchings of an auxiliary instance with only one more
man and one more woman such that the auxiliary in-
stance has only one stable matching. The construction
is as follows: given a Latin instance (G(AUB,E), <),
construct an auxiliary instance (G'(A’UB’,E’), <),
where A’ = AU{a}, B’ =BU{b},E’ = A’ X B/, and <’ is
defined as follows: _

i. Every a € A ranks b in the last position, and </

restricted to B is exactly <,.
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Figure 1. (Color online) Comparing Simplified EADAM (sEADAM) and School-Rotate-Remove with Consent (SchRR) on Ran-
dom Instances Whose Sizes Are Similar to Those of the New York City School System
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Notes. Run times of Gale-Shapley’s algorithm (GS) are included as a benchmark. Run time of Kesten’s original algorithm is not included because
most instances fail to finish within 24 hours. Each line represents one instance. Box plots and averages of run times are included for each algo-

rithm. (a) All students consent. (b) Eighty percent of students consent. (c) Fifty percent of students consent (d) Thirty percent of students consent.
(e) Ten percent of students consent.

ii. @ has an arbitrary ranking of B’ as long as b is the
least preferred.
ili. Every b € B ranks 7 in the second place, and <, re-

Example 8.1. Consider the following Latin ranking matrix
Q and the associated instance (G, <).

stricted to A is exactly <. gz b?f’ bi
iv. b has an arbitrary ranking of A" as long as a is m
ranked first. a2 1 3
An example of our construction can be found in Ex- 23 3 L2
ample 8.1. 4 3 2
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Figure 2. Comparing EADAM, Simplified EADAM, and School-Rotate-Remove with Consent in the One-to-Many Setting on
Random Instances of Varying Sizes
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ay: b1>b2>b3>b4 b1:a4>a3>a2>a1
a2:b2>b1>b4>b3 b2:a3>a4>a1>a2
as: b3>b4>b1>b2 bg:a2>a1>a4>a3
as: b4>b3>b2>b1 b4:a1>a2>a3>a4

Consider the matching M = {a1b1,a,b3,a3b5,a4b4},
which corresponds to the boxed cells in the Latin
ranking matrix. M is not stable because, as one can

check, azb; is a blocking pair. Equivalently, we can apply
Theorem 8.2 on the Latin ranking matrix with a = a3,b =
by and conclude that M is not stable. In particular, we
have Q(M(b),b) =1 < Q(a,b) =3 < Q(a, M(a)) = 4.

One can check that (G, <) has 10 stable matchings.
Now consider the auxiliary instance (G’, <’). Note
that its preference lists are exactly those given in
Example EC.6.1 with as=4 and bs=0. (G, <).
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The auxiliary instance has only one stable matching,
which is {a1b4, aybs, asba, asby, ab}, but its legalized in-
stance (G}, <) has 10 stable matchings. <

Before concluding the proof of Theorem 8.1, we first
show the following facts.

Lemma 8.2. Given a Latin instance (G, <) with G =
(AUB,E), define (G', <) as before. Then, |S(G’, <')| =1,
and each man from A is given his second least favorite partner
(with respect to <’) in the unique stable matching of (G’, <’).

Proof. Let M € S(G’, <’) be a stable matching in the
auxiliary instance. We first show M(b) =a. Assume by
contradiction that M(b) =a for some a € A. Let b be a’s
least preferred partner in B. Then, b >/b = M(a) by con-
struction. By the symmetric nature of Latin instances, a
must be b’s most preferred partner in A, which means
a>;M(b). But, then, ab is a blocking pair of M, contra-
dicting stability. Next, we want to show every woman in
B is matched to her most preferred man. Assume by con-
tradiction that the claim is not true for some b € B. Then,
a >} M(b). Because b > ~ b by construction, ab blocks M,
Wthh again contradicts stability. Hence, S(G’, <’) con-
tains exactly one stable matching, namely, the one in
which every woman is matched to her most preferred
man according to <’. That is, every man a € A is given
his second least favorite partner with respect to <’. O

Lemma 8.3. Let (G, <) and (G’, <) be as before with G =
(AUB,E) and G =(A’"UB',E’). Then, L(G, <')=
{MU{ab} : M € §(G, <)}.

Proof. Let M, be the only stable matching of (G’, <’).
Because every woman in B’ is matched to her most
preferred man in A" as shown in the proof of Lemma
8.2, My is also the woman-optimal legal matching
of £(G’, <’). In addition, because b is the least pre-
ferred woman of every man by construction of G’, b
is a sink in the woman-rotation digraph of M, and re-
mains a sink throughout the execution of woman-rotate-
remove. Thus, 7 is matched to b in the man-optimal legal
matching of £(G’, <’). Hence, abeM for all Me
L(G’, <) and according to Theorem 3.1, all edges in E :
={ab:ae€ A} U{ab:be B} (ie, edges that are adjacent
to exactly one of @ and b) are illegal. By Lemma 3.1,
we have L(G, <)=L (G'[E'\E], <')= {MU{ab}:
Me L(G, <)}, where the last equality is because
E\E =E(G)U{ab}. Finally, by Lemma 8.1, we have
L(G, <)=8(G, <) and, thus, £(G/, <')= {MU{ab}:
MeS(G, <)}. O

Proof of Theorem 8.1. This is immediately implied by
Lemmas 8.1-8.3. O
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Endnotes

! Priorities are preferences with ties as schools usually rank stu-
dents based on categorical information, such as demographics, test
scores, etc.

2In some literature, Gale-Shapley’s algorithm is referred to as de-
ferred acceptance. In this paper, we stick to Gale-Shapley.

% Indeed, even though Birkhoff’s (1937) representation theorem im-
plies that there is a bijection between the elements of a distributive
lattice and the closed sets of an associated poset, it is not clear how
to use this information algorithmically. A typical example are
strongly stable matchings, which have been known for a long time to
form a distributive lattice (Manlove 2002), but only recently was
this structure exploited for algorithmic purposes (Kunysz et al.
2016). See Faenza and Zhang (2020) for sufficient conditions on
algorithmic exploitation of Birkhoff’s (1937) theorem.

#(1) See https://github.com/xz2569/Legal Assignments.
https:// github.com /xz2569 /FastEADAM.

5 This notion of an assignment blocking another assignment is not
standard and is adopted from Morrill (2016).

81t is worth noticing that the definition of both student and school
rotations can be simplified but in different ways. However, in order
to keep the treatment compact, we give a unique presentation
encompassing both.

(2) See

7 1If D has both a sink and a directed cycle, the algorithm is free to
choose between the two cases.

8 A student a’s priority is violated at assignment M if there is a
school b such that ab is a blocking pair of M.
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