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We introduce and study weighted bipartite matching problems under strict preferences where blocking 
edges can be paid for, thus imposing costs rather than constraints as in classical models. We focus on the 
setting in which the weight of an edge represents the benefit from including it in the matching and/or 
the cost if it is a blocking edge. We show that this setting encompasses interesting special cases that 
remain polynomially-solvable, although it becomes APX-hard even in a quite restricted case.
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1. Introduction

Gale and Shapley’s concept of stability [7] has been widely 
studied in theory and applied in the practice of two-sided match-

ing markets. In the classical model, we are given as input a bi-
partite graph G(V , E) whose nodes represent the agents, together 
with a collection {>x}x∈V , where for x ∈ V , >x is a strict pref-
erence order imposed by agent x on her neighbors in G . The pair 
(G, >) is called a preference system, and we represent the two sides 
of the bipartition of G by M (the set of men) and W (the set of 
women). We use the convention that y >x y′ means that x prefers 
y to y′ . A matching of G is stable in (G, >) if it has no blocking 
edge, i.e., a pair of agents preferring each other to their partners 
in the matching, where being unmatched is less preferable than 
being matched to any of the partners in an agent’s list.

In some contexts, however, we wish to relax stability. For in-
stance, in school choice applications, we may accept some degree 
of instability if doing so leads to a substantial improvement in the 
quality of the matching for the students. One option is therefore 
to apply algorithms like Top Trading Cycle (see Abdulkadiroğlu and 
Sönmez [1]) or relax the stability condition to legality (Ehlers and 
Morrill [5], see also Faenza and Zhang [6]). However, these re-
laxations do not control the number of blocking edges that are 
introduced.

A different approach is taken by Biró et al. [4], who study the 
problem of computing a matching of maximum cardinality that 
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has the smallest number of blocking edges (MMSBP). This formu-

lation leads unfortunately to strong intractability results: Hamada 
et al. [9] showed that the problem is NP-hard to approximate bet-
ter than a factor n1−δ for each δ ∈ (0, 1), where n is the size of 
one side of the agents, even when all preference lists have length 
at most 3. Another related concept, introduced by Askalidis et al., 
is that of a socially stable matching [2], in which some blocking 
edges are allowed. This models a common situation in large mar-

kets where many agents do not know each other (or each other’s 
preferences), so they may not be aware that they form a blocking 
edge. Finding a largest socially stable matching is also NP-Hard, 
but approximable within a factor of 3/2 [2].

These results from the literature seem to suggest that relaxing 
stability while keeping some control on the blocking edges leads 
to models that are computationally intractable. In this paper, we 
show this does not have to be the case: we propose computation-

ally tractable problems that relax stability while at the same time 
restricting the cost incurred by the presence of blocking edges. We 
take the point of view of a central planner who chooses the output 
matching µ so as to maximize the revenue produced by edges in 
µ, minus the cost incurred by edges blocking µ. In the following, 
for a matching µ in a graph G(V , E), we let Bµ be the edges of 
G blocking µ. The first natural problem to consider is the follow-

ing General Unstable Matching problem. As is customary, 
for a set S we let p(S) :=

∑

e∈S p(e).

Given: A preference system (G(V , E), >), p, c : E → Z.

Find: A matching µ of G maximizing p(µ) − c(Bµ).

(Note that we are allowing both p and c to have negative values 
here.) This problem is however already NP-Hard when p(e) = α, 
c(e) = β for every e, since each instance of MMSBP can be for-
mulated as an instance of the General Unstable Matching
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problem by letting α ≫ β > 0. We therefore investigate simplified 
variations.

We assume first that there is unique nonnegative weight p(e)

associated with each edge e, representing both the revenue ob-
tained if e ∈ µ and the cost incurred if e blocks µ. Hence, the 
value of a matching µ is f (µ) := p(µ) − p(Bµ).

Within this framework, we consider three different problems. 
First, we restrict the image of p to {0, 1}, so as to obtain the
Binary Unstable Matching problem. It includes the special 
case in which p(e) = 1 for all e ∈ E .

Given: A preference system (G(V , E), >) and a function p : E →

{0, 1}.
Find: A matching µ of (G(V , E), >) maximizing f (µ).

In our second problem, we interpret p(e) as reflecting the “im-

portance” of edge e in the endpoints’ preference lists. Formally, we 
say that p : E → Z≥0 is preference-concordant if, for each xy, xy′ ∈

E , y >x y′ whenever p(xy) > p(xy′) (in Section 2.2 we argue that 
this property cannot be assumed without loss of generality). The
Preference Concordant Unstable Matching problem is 
thus defined as follows.

Given: A preference system (G(V , E), >) and a preference-concor-
dant function p : E → Z≥0 .

Find: A matching µ of (G(V , E), >) maximizing f (µ).

Theorem 1 collects our first two results.

Theorem 1. The Binary Unstable Matching and Prefer-

ence Concordant problems can be solved in polynomial time.

In light of these results, it is tempting to relax the assumptions 
on the function p. We show, however, that even a mild relax-
ation of the Binary Unstable Matching problem leads to a 
problem that is hard to approximate. Consider the following β-

Binary Unstable Matching problem.

Given: A preference system (G(V , E), >), β ∈ (0, 1) and a function 
p : E → {β, 1}.
Find: A matching µ of (G(V , E), >) maximizing f (µ).

Theorem 2. The β-Binary Unstable Matching problem is
APX-Hard.

Finally, we consider an alternative way of restricting the Gen-
eral Unstable Matching problem, where each edge satisfies 
either c(e) = +∞, p(e) ≥ 0, or p(e) = −∞, c(e) ≥ 0. Edges of G
can therefore be partitioned into “blue” – that can be part of the 
output matching µ, but are not allowed to block it – and “red” 
– that can block µ at a cost, but cannot be part of it. We call 
it therefore the Red-Blue Unstable Matching problem and 
define it using only the weight function p.

Given: A preference system (G(V , E), >), a function p : E → Z≥0

and a set F ⊆ E (“red edges”).
Find: A stable matching µ of (G(V , E \ F ), >) maximizing f (µ).

Theorem 3. TheRed-Blue Unstable Matching problem can be 
solved in polynomial time.

We prove Theorems 1, 2, and 3 in Sections 2, 3, and 4, respec-
tively. Throughout the paper, we rely on the following notation: 
for matchings µ, S of a graph G(V , E), we let B S

µ := S ∩ Bµ and 
V (S) be the set of nodes matched by S . For v ∈ V , we let µ(v)

be the partner of v in µ (or ∅ if it does not exist) and say that v
prefers S to µ if S(v) >v µ(v). For n ∈ N , we write [n] := {1, . . . , n}

and [n]0 = [n] ∪ {0}. As usual, ⊕ denotes the symmetric difference 
operator and δ(v) the neighborhood of a node v .

2. When spending does not help

2.1. The Binary Unstable Matching problem

We start with a lemma that relates the size of a matching to 
the number of edges blocking it.

Lemma 4. Let µ, S be matchings of (G(V , E), >), with S stable. Then 
|B S

µ| ≥ |µ| − |S|.

Proof. For matchings µ′, µ′′ of G and x ∈ V , we define vote(x, µ′,

µ′′) = 1 (resp. −1) if x prefers µ′ to µ′′ (resp. µ′′ to µ′), and 0
otherwise. Let vote(e, µ′, µ′′) := vote(m, µ′, µ′′) + vote(w, µ′, µ′′)

for e =mw ∈ E . We moreover define vote(µ′, µ′′) :=
∑

v∈V vote(v,

µ′, µ′′). It is known (see [10, Section 1.1]) that vote(S, µ) ≥ 0. 
Hence, by decomposing vote(S, µ) along the partition of V given 
by (V (S), V (µ) \ V (S), V \ (V (S) ∪ V (µ))), we have:

0 ≤
∑

v∈V (S)

vote(v, S,µ)

︸ ︷︷ ︸

=
∑

e∈S vote(e,S,µ)

+
∑

v∈V (µ)\V (S)

vote(v, S,µ)

︸ ︷︷ ︸

=−2|µ\S|

+
∑

v∈V \(V (S)∪V (µ))

vote(v, S,µ)

︸ ︷︷ ︸

=0

≤
∑

e∈S vote(e, S,µ) − 2(|µ| − |S|),

where last inequality holds since |µ \ S| ≥ |µ| − |S|.

Since vote(e, S, µ) ∈ {0, ±2} for all e ∈ S , there must be at least 
|µ| − |S| edges from S such that vote(e, S, µ) = 2. All those are 
edges of S that block µ. 2

Lemma 4 implies that, when p(e) = 1 for all e ∈ E , it is optimal 
to output a(ny) stable matching, as the weight gained by increas-
ing the size of the matching is offset by the blocking edges that 
are introduced. As shown next, Lemma 4 also reveals that an opti-
mal strategy for the Binary Unstable Matching problem is 
to not pay for any edge e with p(e) = 1 and to not include in the 
matching any edge e with p(e) = 0.

Lemma 5. Let I be an instance of the Binary Unstable Match-
ing problem and E1 := {e ∈ E : p(e) = 1}. Then any stable matching of 
G(V , E1) is an optimal solution to I .

Proof. Let E0 := E \ E1 and, for a set F ⊆ E0 , let G F := G(V , E1 ∪

F ). Let µ be a matching of G . Set F (µ) := µ ∩ E0 and let S ′ be a 
stable matching of G F (µ) . Then:

f (µ) = p(µ) − p(Bµ) = |µ ∩ E1| − |Bµ ∩ E1|

= |µ| − |F (µ)| − |Bµ ∩ E(G F (µ))|

≤✚✚|µ| − |F (µ)| + |S ′| −✚✚|µ|

≤ |S ′ ∩ E1|

= p(S ′), (1)

where the chain of (in)equalities from the second row onwards 
follow respectively: by definition of F (µ) and F (µ) ∩ Bµ = ∅; 
by applying Lemma 4 to graph G F (µ) and matchings µ, S ′; since 
S ′ ∩ E0 ⊆ F (µ); and by definition of p. Observing that no edge of 
F (µ) ∪ E1 blocks S ′ , we deduce:

p(S ′) = p(S ′) − p(B S ′ ∩ E0) = p(S ′) − p(B S ′) = f (S ′).
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Fig. 1. Let p(e) = 1 for all edges e except the dashed edge f for which p( f ) =
β ∈ (0, 1). w1 and m2 prefer each other to their other neighbors. Suppose w2

prefers m2 to m3 , and m3 prefers w2 to w3 . Let µ∗ = {m1w1, m2w2, m3w3}. Then 
Bµ∗ = {m2w1} and f (µ∗) = p(µ∗) − p(Bµ∗ ) = 3 − 1 = 2. µ∗ is the unique opti-
mal solution, since every other matching µ satisfies f (µ) < 2. When β ∈ {0, 1}, µ∗

is still optimal (e.g., by continuity), but Lemma 4 and Lemma 5 imply it is not the 
unique optimal solution.

The previous chain of equalities, together with (1), implies that 
there is an optimal solution to I in the form of a stable match-

ing of G F , for some F ⊆ E0 . Let now S∅ be a stable matching of 
G(V , E1) = G∅ and S F be a stable matching of G F , F ⊆ E0 . Note 
that, for S ∈ {S∅, S F }, we have |V S | = 2 f (S), where V S := {v ∈ V :

E1 ∩ δ(v) ∩ S 6= ∅}.

Hence, in order to conclude the proof, it suffices to show that 
|V S F

| ≤ |V S∅
|. Suppose by contradiction this is not the case, and 

let G ′ := (V , (E1 ∩ S F ) ⊕ (E1 ∩ S∅)). There must exist a connected 
component of G ′ with strictly more nodes from V S F

than from 
V S∅

. Since each node from V has degree at most 2 in G ′ , this 
connected component is a path P = v0, v1, . . . , vt , t odd, with v0 , 
vt matched by E1 ∩ S F and exposed by E1 ∩ S∅ , while the edges 
of P alternate between E1 ∩ S F and E1 ∩ S∅ . Since E1 ∩ S∅ = S∅ , 
v0 and vt are unmatched in S∅ . Hence, v0 and vt prefer S F to S∅ . 
If v1 also prefers S F to S∅ , then v0v1 blocks S∅ , contradicting the 
fact that S∅ is not blocked by any edge of E1 . Hence v1 prefers 
S∅ to S F . Since, by construction, S F is also not blocked by any 
edge from E1 , we can iterate and deduce that v i prefers S F to S∅

for i even and S∅ to S F for i odd. Thus, vt prefers S∅ to S F , a 
contradiction. 2

Finally, we observe that Lemma 5 is not true even if p(e) = 1

for all edges e, except one edge f with p( f ) = β ∈ (0, 1). Indeed, 
Fig. 1 shows an instance of the β-Binary Unstable Match-
ing problem for which the (unique) optimal solution is blocked 
by an edge e with p(e) = 1. This gives an intuition as to why the 
β-Binary Unstable Matching is substantially harder than 
the Binary Unstable Matching problem.

2.2. The Preference-Concordant Unstable Matching
problem

Let (G, >) be a preference system with V (G) = {m1, w1 , 
m2, w2} and E(G) = {miw j}i, j=1,2 . Let p(m1w1) = 6, p(m1w2) =
p(m2w1) = 5, p(m2w2) = 1. Under the unique > that makes p
preference-concordant, the optimal matching is {m1w1 , m2w2}. 
If instead w2 >m1 w1 and w1 >m2 w2 , the optimal matching is 
{m1w2, m2w1}. Hence, preference-concordancy cannot be assumed 
without loss of generality.

Algorithm 1 for the Preference-Concordant Unstable 
Matching problem iteratively finds a stable matching in the sub-
graph with edges of maximum weight and removes matched nodes 
from the graph. We show next that the union of all matchings con-
structed by the algorithm gives an optimal solution.

Lemma 6. For every instance I , Algorithm 1 outputs an optimal

Preference-Concordant Unstable Matching on I .

Algorithm 1
Require: An instance I of the Preference-Concordant Unstable Match-

ing problem: a preference system (G(V , E), >), and a preference-concordant 
function p : E → Z≥0 .

Ensure: An optimal solution to I .

1: Let S = ∅.

2: while G has still an edge do

3: Let p∗ be the maximum weight of an edge of G and G ′ the subgraph of G
that includes all and only the edges e with p(e) = p∗ .

4: Let S be a stable matching of G ′ .

5: Set S = S ∪ S .

6: Set V = V \ V (S).

7: end while

8: Output S .

Proof.

Claim 7. S is a stable matching of (G, >).

Proof of claim. S is clearly a matching of G . Assume that S is not 
stable and let mw be an edge blocking it, i.e., w >m S(m) and 
m >w S(w). Let i be the iteration of Algorithm 1, in which the first 
among m and w is matched, i.e., m, w are both unmatched at the 
beginning of iteration i. Then, without loss of generality mS(m) ∈
S where S is a stable matching in the graph G ′ constructed at 
iteration i. As mS(m) is an edge of maximum weight at iteration 
i and m, w are both unmatched at the beginning of iteration i, it 
must be that p(mS(m)) ≥ p(mw). Also, w >m S(m) yields through 
preference-concordancy that p(mw) ≥ p(mS(m)). Then p(mw) =
p(mS(m)), thus mw appears in graph G ′ of iteration i and blocks 
S as well, a contradiction. 2

Fix a matching µ of G . We will show that f (µ) ≤ f (S). 
Consider the graph Gµ(V , Eµ) := G(V , S ⊕ µ) and let C be the 
set of its non-singleton connected components. For U ⊆ V , let 
1(U ) := p(µ(U )) − p(B S

µ(U )) − p(S(U )), where for F ⊆ E , we let 
F (U ) := {uv ∈ F : u, v ∈ U }. We argue that 1(U ) ≤ 0 for all U ∈ C , 
where, to simplify matters, we denote by U both a member of C
and its node set. Then, using Claim 7 we have B S = ∅ and con-
clude:

f (µ) − f (S) = p(µ) − p(Bµ) − p(S)

≤ p(µ) − p(B S
µ) − p(S)

=
∑

U∈C(p(µ(U )) − p(B S
µ(U )) − p(S(U )))

=
∑

U∈C 1(U )

≤ 0.

Suppose by contradiction that 1(U ) > 0 for some U ∈ C , and 
take a minimum counterexample, i.e., an instance I and match-

ings S , µ that violate the statement, so that the underlying graph 
G has a minimum number of nodes. Define Emax := {e ∈ Eµ(U ) :
p(e) ≥ p( f ) for all f ∈ Eµ(U )} and Gmax := G(U , Emax ). If Gmax

is a cycle, then it has an even number of edges and 1(U ) =
p(µ(U )) − p(B S

µ(U )) − p(S(U )) ≤ p(µ(U )) − p(S(U )) = 0, a con-
tradiction. Otherwise, since Gmax contains at least one edge and 
every node in U has degree at most 2 in Gµ (and hence in Gmax ), 
we deduce that Gmax is a path P = v0, v1, . . . , vt .

Claim 8. P ∩ B S
µ 6= ∅.

Proof of claim. Suppose v0v1 ∈ S , as the other case is handled 
similarly. First observe that v i v i+1 belongs to S for i even and to 
µ for i odd. As v0 is an endpoint of P , then either v0 is exposed 
in µ, or p(v0S(v0)) > p(v0µ(v0)). In the latter case, by definition 
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of preference-concordancy, S(v0) >v0 µ(v0). Hence, in both cases, 
v0 prefers S to µ.

Suppose there is an index j such that both v j and v j+1 prefer 
the same matching between S and µ, and let j be the smallest 
such index. If j is odd, since v0 prefers S to µ, then v j and v j+1

prefer µ to S . We argued above that v jv j+1 ∈ µ. Hence, v jv j+1

blocks S , a contradiction to Claim 7. If conversely j is even, then 
v j and v j+1 prefer S to µ, and v jv j+1 ∈ S . Hence, we have found 
the required edge.

Assume then that nodes of P alternatively prefer S to µ and µ
to S . If t is odd (resp. even), then vt−1vt ∈ S (resp. µ), while vt
prefers µ to S (resp. S to µ). In both cases, we contradict the fact 
that vt is an endpoint of P . 2

Using Claim 8, let mw ∈ P ∩ B S
µ . Let U ′ (and possibly U ′′) be 

the connected components of the subgraph of Gµ induced by U \

{m, w}. We have:

0 < 1(U )

= 1(U ′) + 1(U ′′) − 2p(mw) + p(mµ(m)) + p(µ(w)w)

≤ 1(U ′) + 1(U ′′),

where the equality follows since mw ∈ B S
µ and the last inequality 

because mw ∈ Emax (note that U ′′ or e ∈ {mµ(m), µ(w)w} may 
not exist, in which case we set 1(U ′′) = 0 or p(e) = 0). In particu-
lar, we can assume w.l.o.g. that 1(U ′) > 0.

Let V ′ = V \ {m, w} and consider the subinstance I ′ of I on 
G ′ , the subgraph of G induced by V ′ . Let S ′ := S \ {mw}, µ′ :=

µ \ {mµ(m), µ(w)w}. Clearly, µ′ is a matching of G ′ . It is easy 
to verify that there is an execution of Algorithm 1 that, on in-
put I ′ , outputs S ′ . For U ⊆ V ′ , let now 1′(·) be defined as 1(·), 
but for instance I ′ and matchings S ′ , µ′ instead of instance I
and matchings S , µ. Observe that U ′ is a connected component of 
G ′(V ′, S ′ ⊕ µ′), and 1′(U ′) = 1(U ′) > 0, contradicting the choice 
of I as a minimum counterexample. Hence, 1(U ) ≤ 0. 2

3. When spending gets hard

It will be convenient to work with an equivalent version of the 
β-Binary Unstable Matching defined as follows:

Given: A preference system (G(V , E), >) and a function p : E →

{α, β} where α > β > 0.

Find: A matching µ of (G(V , E), >) maximizing f (µ).

Theorem 9. The β-Binary Unstable Matching problem is NP-
hard for any α > β > 0 such that α > 4β , even if preference lists are of 
length at most 3.

We show Theorem 9 through a reduction from the special case 
of SAT used for MMSBP [4]. Unlike MMSBP, whose input is un-
weighted, we need to assign weights α or β to edges so that 
the β-Binary Unstable Matching instance has an optimal 
matching that is perfect and blocked by no edge of weight α.

For a Boolean formula B in CNF and a truth assignment h, t(h)

is the number of clauses of B satisfied by h and t(B) the maximum 
value of t(h) over all truth assignments. Let MAX (2,2)-E3-SAT
[3] denote the NP-hard problem of finding a truth assignment h
such that t(h) = t(B), where each clause in B has exactly 3 literals 
and each variable occurs exactly twice as a non-negated literal and 
twice as a negated literal.

Let v1, . . . , vn−1 and c1, . . . , ck be the set of variables and 
clauses of an instance B of MAX (2,2)-E3-SAT respectively, i.e., 
each clause has exactly three literals, and literals v i and v i appears 

Table 1

Preference lists and pricing of instance I .

α β α

x6i+1 : y6i+1 c(x6i+1) y6i+2

x6i+2 : y6i+2 c(x6i+2) y6i+3

x6i+3 : y6i+4 c(x6i+3) y6i+3

x6i+4 : y6i+5 c(x6i+4) y6i+4

x6i+5 : y6i+5 y6i+6

x6i+6 : y6i+1 y6i+6

β α α

y6i+1 : x6i+6 x6i+1

y6i+2 : x6i+1 x6i+2

y6i+3 : x6i+3 x6i+2

y6i+4 : x6i+4 x6i+3

y6i+5 : x6i+5 x6i+4

y6i+6 : x6i+5 x6i+6

β β α

p1
j : w1

j c1j
p2
j : w2

j c2j
p3
j
: w3

j
c3
j

u1
j
: w1

j
z j

u2
j
: w2

j
z j

u3
j : w3

j z j

c1j : p1
j x(c1j ) q j

c2
j
: p2

j
x(c2

j
) q j

c3
j
: p3

j
x(c3

j
) q j

w1
j : u1

j p1
j

w2
j : u2

j p2
j

w3
j
: u3

j
p3
j

α α α

z j : u1
j

u2
j

u3
j

q j : c1j c2j c3j

exactly twice. We form an instance I of the β-Binary Unsta-
ble Matching problem from B by introducing 6 men and 6
women per variable in B plus 7 men and 7 women per clause, 
as follows. The set of men in I is P ∪ U ∪ X ∪ Q :

P := {ps
j : j ∈ [k], s ∈ [3]}, U := {us

j : j ∈ [k], s ∈ [3]},

X := {x6i+r : i ∈ [n − 1]0, r ∈ [6]}, and Q := {q j : j ∈ [k]}.

The set of women is C ∪ W ∪ Y ∪ Z (to be consistent with [4], 
in this section W represents a subset of women):

C := {csj : j ∈ [k], s ∈ [3]}, W := {ws
j : j ∈ [k], s ∈ [3]},

Y := {y6i+r : i ∈ [n − 1]0, r ∈ [6]}, and Z := {z j : j ∈ [k]}.

We also make use of the subsets Xi := {x6i+r : r ∈ [6]},

Y i := {y6i+r : r ∈ [6]}, P j := {p1
j , p

2
j , p

3
j },

U j := {u1
j ,u

2
j ,u

3
j }, C j := {c1j , c

2
j , c

3
j },W j := {w1

j , w
2
j , w

3
j },

defined for the appropriate indices i, j. The preference lists and the 
weights of the edges are given in Table 1.

In the preference list of a man x6i+r ∈ X , i ∈ [n] and r ∈ {1, 2}, 
the symbol c(x6i+r) denotes the woman cs

j
∈ C such that the r-th 

occurrence of variable v i appears at position s of clause c j . Simi-

larly, c(x6i+r) for r ∈ {3, 4} denotes the woman csj ∈ C such that the 
(r − 2)-th occurrence of v i appears at position s of c j . Accordingly, 
x(cs

j
) denotes the unique man in the preference list of cs

j
. Let us 

start with an observation that follows immediately from α, β > 0.

Observation 10. Every optimal solution for I is a maximal matching.
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Two important features regarding the weights of the edges in 
our construction are summarized next.

Observation 11. If an edge mw blocks a matching µ and neither m nor 
w is single in µ then p(mw) = β , as mw ∈ X × C or mw ∈ U × W or 
mw = x6i+5 y6i+5 or mw = x6i+6 y6i+1 for some i ∈ [n].

Observation 12. For i ∈ [n], the only perfect matchings of Xi × Y i are 
T i := {x6i+ℓ y6i+ℓ}ℓ=1,...,6 and

F i := {x6i+ℓ y6i+ℓ+1}ℓ=1,...,5 ∪ {x6i+6 y6i+1}.

Observe that µ :=
⋃n

i=1 T i ∪ {p1
j
c1
j
, p2

j
c2
j
, p3

j
w3

j
, u1

j
w1

j
, u2

j
w2

j
,

u3
j
z j, q jc

3
j
: j ∈ [k]} is a perfect matching of I that contains 5n +2k

edges of weight α and is blocked by no edge of weight α (by Ob-
servation 11). Combined with α > 4β , those observations imply 
the following two results.

Lemma 13. An optimal matching for I contains no edge from X × C.

Proof. Let µ be an optimal matching and suppose, by contradic-
tion, that there exists an edge x6i+ℓc

a
j
∈ µ ∩ (X ×C) for appropriate 

indices i, ℓ, a, j. Consider the matching

µ′ := µ \ ((Xi × Y i) ∪ {x6i+ℓc
a
j} ∪ S−) ∪ T i ∪ S+,

where, S+ = {cajq j} and S− = {µ(q j)q j} if caj >q j
µ(q j), and S+ =

S− = ∅ otherwise. µ′ is clearly a matching. We show f (µ′) >
f (µ), obtaining the required contradiction.

We claim p(µ′ ∩ (Xi × Y i)) − p(µ ∩ (Xi × Y i)) ≥ α. Observe that 
µ′ ∩ (Xi × Y i) = T i and p(T i) = 5α + β . Note that µ′ ∩ (Xi × Y i)

contains at most 4 edges of weight α, since x6i+ℓ is not matched 
via an edge of weight α, and both x6i+5 , x6i+6 are adjacent via 
an edge of weight α to y6i+6 only. Since x6i+ℓc

a
j
∈ µ′ , we have 

p(µ ∩ (Xi × Y i)) ≤ 4α + β . The claim follows.

We now claim that p(µ′ \ (Xi × Y i)) − p(µ \ (Xi × Y i)) ≥ −β . If 
S+ = ∅, no edge of weight α is removed from µ \ (Xi × Y i). Else, 
µ(q j)q j is removed and ca

j
q j is added, and both have weight α. 

Hence, the contribution of edges of weight α to p(µ′ \ (Xi × Y i))

and to p(µ \ (Xi × Y i)) is the same. The only edge of weight β that 
is removed when moving from µ to µ′ is x6i+ℓc

a
j , and the claim 

follows.

We next argue that p(Bµ′ ) − p(Bµ) ≤ 3β . Let e be an edge 
blocking µ′ , but not blocking µ. e must then be incident to a 
node that has changed partner between µ and µ′ . If e is incident 
to Xi ∪ Y i , then e ∈ {x6i+3c(x6i+3), x6i+4c(x6i+4), x6i+6 y6i+1}. We 
prove that e must be incident to Xi ∪ Y i , thus showing the claim. 
Suppose by contradiction it is not, then e ∈ {pa

j
ca
j
, q jc

a
j
} ∪ δ(q j) ∪

δ(µ(q j)). If e = pa
j
ca
j
, then e also blocks µ, for pa

j
has not changed 

partner. By construction, e 6= q jc
a
j
. If e is incident to q j but not to 

caj , then it again also blocks µ. Last, note that e cannot be incident 
to µ(q j), since q j is the least favorite partner of µ(q j).

Summing up, we obtain f (µ′) − f (µ) = p(µ′) − p(µ) −
p(Bµ′ ) + p(Bµ) ≥ α − β − 3β > 0, as required. 2

Lemma 14. An optimal matching for I contains exactly 5n + 2k edges 
of weight α.

Proof. Observe that a matching can contain up to 5 edges of 
weight α from Xi × Y i, i ∈ [n], since each of x6i+5 and x6i+6 has 
exactly one incident edge of weight α, whose other endpoint is in 
both cases y6i+6; this provides up to 5n edges of weight α from 
in X × Y . Any other edge of weight α is incident to a node from 
{z j, q j} j∈[k] , yielding up to k such edges from Q × C and k more 

from U × Z (µ defined above attains all these maxima). Consider 
an optimal matching µ that contains less than 5n + 2k edges of 
weight α.

If µ contains less than 5 edges of weight α from Xi × Y i for 
some i ∈ [n], it may not contain edges of weight β from Xi × C

(Lemma 13). Define the matching µ′ := µ \ (Xi × Y i) ∪ T i . Then 
p(µ ∩ (Xi × Y i)) ≤ 4α + 2β , while p(µ′ ∩ T i) = 5α + β . As in the 
proof of Lemma 13, at most 3 edges of weight β block µ′ but not 
µ. This leads to the contradiction f (µ′) − f (µ) ≥ (5α + β − 3β) −
(4α + 2β) = α − 4β > 0.

If µ contains less than k edges of weight α from Q × C , there 
exists j ∈ [k] such that q j is single in µ. As µ is maximal by Ob-
servation 10, all cr

j
, r ∈ [3], are matched in µ. Since µ contains no 

edge in X × C (Lemma 13), µ(cr
j
) = pr

j
for each r ∈ [3]. The match-

ing µ′ := µ \ {p3
j
c3
j
} ∪ {q jc

3
j
} leaves p3

j
single, introducing at most 

three edges blocking µ′ but not µ, i.e., p3
jw

3
j , p

3
j c

3
j and x(c3j )c

3
j , all 

of weight β . Then, f (µ′) − f (µ) ≥ α −3β −β > 0, a contradiction.
If µ contains less than k edges of weight α from U × Z , 

z j is single in µ for some j ∈ [k]. As µ is maximal by Ob-
servation 10, µ(ur

j
) = wr

j
for each r ∈ [3]. The matching µ′ :=

µ \ {u3
j
w3

j
} ∪ {u3

j
z j} leaves w3

j
single, thus introducing two edges 

blocking µ′ but not µ, i.e., u3
j
w3

j
and p3

j
w3

j
, both of weight β; 

again f (µ′) − f (µ) > 0. 2

Lemma 15. There is an optimal matching in I that is perfect and induces 
a perfect matching in Xi × Y i ∀i ∈ [n].

Lemma 15 is proved similarly to Lemma 13, hence we omit the 
details. We can now present the reduction.

Proof of Theorem 9. Let f (I) denote the maximum value of f (µ)

taken over all matchings µ of I . We claim that f (I) = 5nα +

3kβ+2kα+t(B)β where we recall that t(B) is the maximum value 
of t(h), taken over all truth assignments h of the instance B of

MAX (2,2)-E3-SAT. Let h be a truth assignment of B such that 
t(h) = t(B). We create a perfect matching µ in I as in the reduc-
tion of (3,3)-MMSBP [4]. For each variable v i ∈ V , if v i is true 
under h, add the edges in T i to µ, otherwise add the edges in F i to 
µ. In both cases, it is easy to check that there is exactly one edge 
from Xi × Y i blocking µ, respectively x6i+6 y6i+1 or x6i+5 y6i+5 . 
Hence, p(µ ∩ (Xi × Y i)) − p(Bµ ∩ (Xi × Y i)) = 5α + β − β = 5α.

Now let j ∈ [k]. If c j contains a literal that is true under h, 
let s ∈ {1, 2, 3} denote the position of c j in which this literal oc-
curs, otherwise set s = 1. Add the edges pt

j
ct
j
, ut

j
wt

j
(1 ≤ t 6= s ≤

3), q jc
s
j
, ps

j
ws

j
and us

j
, z j to µ. The total weight of these edges is 

2α+5β . Moreover, us
j
ws

j
is a blocking edge and p(us

j
ws

j
) = β . Now 

if c j is not satisfied under h, then man x(c1
j
) is assigned to his 

last-choice partner, by construction of µ. Hence x(c1
j
)c1

j
is also a 

blocking edge and p(x(c1j )c
1
j ) = β . Since µ is perfect, using Ob-

servation 11 one can check that, together with the n + k blocking 
edges in X × Y and U × W identified already, these are all the 
blocking edges of µ in I . Hence f (I) ≥ f (µ) = n(5α) + k(2α +

5β −β) − (k − t(B))β = 5nα +2kα +3kβ + t(B)β . Conversely, let µ
be an optimal matching for I . We can assume by Lemma 15 that 
µ is perfect and that it induces a perfect matching of Xi × Y i , for 
every i ∈ [n]. By Observation 12, this matching is either F i or T i . 
Also, as there is no single agent in µ, by Observation 11 the edges 
blocking µ are in X × C or in U × W or of the form x6i+5 y6i+5

and x6i+6 y6i+1 and are all of weight β .
We form a truth assignment h in B through µ as follows. For 

each i ∈ [n], if µ ∩ (Xi × Y i) = T i , we set v i to be true under h; 
otherwise, i.e., if µ ∩ (Xi × Y i) = F i , we set v i to be false. It also 
holds that |Bµ| = n + k + (k − t(h)) (n edges of X × Y , k edges of 
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U × W and k − t(h) of X × C ), hence f (µ) ≤ 5nα + nβ + 2kα +

5kβ − (n + k + (k − t(B)))β = 5nα + 2kα + 3kβ + t(B)β . Given also 
our earlier inequality, it follows that f (µ) = 5nα + 2kα + 3kβ +

t(B)β . Hence, an optimal solution to I is found if and only if MAX 
(2,2)-E3-SAT is solved to optimality, and the thesis follows. 2

The hardness of approximation for MAX (2,2)-E3-SAT [3], 
combined with the above, leads to the following, whose proof fol-
lows that of [4, Theorem 7].

Corollary 16. For every pair of constants α, β with α > 4β > 0, the 
β-Binary Unstable Matching problem is APX-Hard.

Given Corollary 16, it is natural to look for an algorithm whose 
approximation ratio depends on α and β . A relevant idea is to 
examine the proximity of a maximum weight stable matching 
(MWSM) to an optimal solution.

Lemma 17. If µ′ is an optimal matching for an instance of the β-
Binary Unstable Matching problem where the image of p is 
{β, α}, and µ is an MWSM, then f (µ

′)
f (µ)

≤ 2 · α
β

− 1.

Proof. Let |µ| = k. Every edge from µ is of weight at least β hence 
f (µ) ≥ kβ . It is well-known that every stable matching is max-

imal and every maximal matching is of cardinality at least half 
that of a maximum matching. Thus, µ′ satisfies |µ′| ≤ 2k as such 
a matching cannot have more edges than a maximum matching. 
Then, Lemma 4 yields that at least |µ′| − k edges block µ′ . Ob-
serve that f (µ′) is maximized if every edge that belongs to µ′ is 
of weight α and every edge that blocks µ′ is of weight β . This 
implies that

f (µ′) ≤ |µ′|α − (|µ′| − k)β = |µ′|(α − β) + kβ

≤ 2k(α − β) + kβ = 2kα − kβ.

It follows that f (µ′)
f (µ)

≤
2kα−kβ.

kβ
= 2 · α

β
− 1. 2

A small example shows that this bound is tight.

Example 1. Let M = {m1, m2} and W = {w1, w2}, where m1 prefers 
w2 to w1 , w2 prefers m1 to m2 , m2 wishes to be matched only to 
w2 and w1 only to m1 . Let also m1w1 and m2w2 be of weight 
α and m1w2 be of weight β . The only stable matching is µ =
{m1w2} and has value f (µ) = β . The optimal β-Binary Unsta-
ble Matching is µ′ = {m1w1, m2w2} and has value f (µ′) =
2α − β as m1w2 is a blocking edge. Then, f (µ′)

f (µ)
= 2 · α

β
− 1.

4. The Red-Blue Unstable Matching problem

Recall that the goal of the Red-Blue Unstable Matching
problem is to find a matching µ that is stable in the subgraph 
induced only by the “blue edges” E \ F and maximizes the sum 
of the weight of edges in µ minus the sum of the weight of “red 
edges” F blocking µ. We use classical concepts and facts related to 
rotations and the associated poset, referring the reader to [8] for a 
more extensive presentation.

Consider an instance I of the Red-Blue Unstable Match-
ing problem and let G ′ := G(V , E \ F ), R be the set of rotations 
of (G ′, >), and µ0 its man-optimal stable matching. A rotation ρ
is an ordered set of edges (m0w0, . . . , mr−1wr−1) that, if exposed
(i.e., identified) at some stable matching µ and then eliminated

by shifting clockwise the men in ρ , yields another stable matching 
denoted as µ1ρ; i.e., µ1ρ := µ \{miw i, i ∈ [r−1]0} ∪{miw i+1, i ∈

[r−1]0}, indices taken modulo r. For each stable matching µ, there 
is exactly one set of rotations R ′ = {ρ1, . . . , ρk} ⊆ R whose suc-
cessive elimination from the man-optimal matching yields µ, i.e., 
µ = µ01R ′ := ((µ01ρ1) . . .1ρk). The rotation poset (R, º) is de-
fined as follows: for ρ, ρ ′ ∈ R , we have ρ º ρ ′ if and only if, for 
any R ′ such that µ01R ′ is a stable matching and ρ ′ ∈ R ′ , we have 
ρ ∈ R ′ . The following holds.

Theorem 18. [11, Theorem 4.1] There is a bijection between the set of 
stable matchings of (G ′, >) and the closed sets of (R, º), mapping each 
closed set R ′ of (R, º) to the stable matching µ01R ′ .

We now extend weights to rotations [12]. For ρ = (m0w0,

. . . , mr−1wr−1), let p(ρ) :=
∑r−1

i=0 p(miw i+1) − p(miw i). Then, if 
µ = µ01R ′ , we have p(µ) = p(µ0) + p(R ′). Let R+ := {ρ ∈ R :
p(ρ) ≥ 0} and R− := R \ R+ . We recall that when eliminating a ro-
tation ρ exposed at µ, every man (resp. woman) either obtains in 
µ1ρ a less preferred (resp. more preferred) partner, or (s)he does 
not change partner. We can then associate certain rotations to each 
red edge.

Observation 19. Let m ∈ M, w ∈ W and e =mw ∈ F .

• There is at most one ρ+(e) = (m0w0, . . . , mr−1wr−1) ∈ R such 
that w = w i and mi−1 >w m >w mi for some i ∈ [r − 1]0 .

• There is no ρ = (m0w0, . . . , mr−1wr−1) ∈ R such that w = w i and 
mi >w m >w mi−1 for some i ∈ [r − 1]0 .

• There is at most one ρ−(e) = (m0w0, . . . , mr−1wr−1) ∈ R such 
that m =mi and w i >m w >m w i+1 for some i ∈ [r − 1]0 .

• There is no ρ = (m0w0, . . . , mr−1wr−1) ∈ R such that m =mi and 
w i+1 >m w >m w i for some i ∈ [r − 1]0 .

The next labeling is an adaptation to our case of one frequently 
used for popular matching problems (see, e.g., [10]). We attach to 
mw ∈ F with m ∈ M and w ∈ W a label given by an ordered pair 
(ℓm, ℓw), defined as follows:

• If µ0(m) >m w , then set ℓm = −, else set ℓm = +;

• If µ0(w) >w m, then set ℓw = −, else set ℓw = +.

We next write e = (+, +) (or e is (+, +)) to mean that the label 
associated to e as above is (+, +) (and similarly for other labels).

We now have all the necessary ingredients to sketch the idea of 
our algorithm. µ0 is blocked by all and only (+, +) edges. Recall 
that, when we eliminate an exposed rotation, no man improves 
his partner and no woman worsen her partner. Hence, as we iter-
atively eliminate exposed rotations starting from µ0 , some (+, +)

edges will be “deactivated”, i.e., they become (+, −) and do not 
block the current matching, while certain (−, +) edges will be “ac-
tivated”, i.e., they become (+, +) and block the current matching. 
Thus, we need to find a stable matching µ in (G ′, >) – or equiv-
alently, by Theorem 18, a closed set of rotations from (R, º) – so 
that p(µ) minus the sum of p(e) for all “activated” edges e plus 
the sum of p(e) for all “deactivated” edges e is maximized. We 
compute such a matching by solving a minimum cut problem in a 
digraph (similarly to the classical algorithm for computing a stable 
matching of maximum weight [12], the main difference being the 
presence of edges between two nodes corresponding to rotations 
in our digraph).

We now employ the ideas above to partition F .

F0 (resp. F1) is the set of edges e ∈ F with e = (+, +) and such 
that ρ+(e) does not exist (resp. exists).

F2 (resp. F3) is the set of edges e ∈ F with e = (−, +) and such 
that both ρ+(e) and ρ−(e) exist (resp. ρ+ does not exist, 
while ρ− exists);
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Fig. 2. On the left: A (rotation) poset. On the right: An example of the multidigraph D(U , K ) (edges from KR+ , KR− and those that are implied by transitivity of º are 
omitted). Full edges have infinite capacity, while each of the dashed edges has capacity p(e) for some e ∈ E . Here F1 = {e1, e2} with ρ+(e1) = ρ+(e2) = ρ2; F2 = {e3, e4}
with ρ+(e3) = ρ+(e4) = ρ3 , ρ−(e3) = ρ4 , ρ−(e4) = ρ5; F3 = {e5} with ρ−(e5) = ρ5 . The cut {s, ρ3, ρ5, ρ6} of capacity 1 corresponds to the closed set {ρ1, ρ2, ρ4}.

F4 is the set F \ ∪3
i=0F i .

With respect to the intuitive description given above, e ∈ F0 is 
(+, +) and never “deactivated”, e ∈ F1 is (+, +) and “deactivated” 
if and only if we eliminate ρ+(e), e ∈ F2 (resp. e ∈ F3) is (−, +)

and “activated” if and only if we eliminate ρ−(e) but not ρ+(e)

(resp., we eliminate ρ−(e)), while no edge of F4 is ever “activated”. 
This is formalized in the next lemma.

Lemma 20. Let µ be a stable matching of (G ′, >) and let µ = µ01R ′

for some R ′ ⊆ R. Then:

0. All edges of F0 block µ;

1. An edge e ∈ F1 blocks µ if and only if ρ+(e) /∈ R ′;

2. An edge e ∈ F2 blocks µ if and only if {ρ+(e), ρ−(e)} ∩ R ′ =

{ρ−(e)};

3. An edge e ∈ F3 blocks µ if and only if ρ−(e) ∈ R ′;

4. No edge of F4 blocks µ.

Proof. We show only 0., as the remainder follows similarly. Let e =
mw ∈ F0 . By definition of F0 , w >m µ0(m) and m >w µ0(w). By 
definition of µ0 , µ0(m) ≥m µ(m). On the other hand, since ρ+(e)

does not exist, we have m >w µ(w), hence e blocks µ. 2

We next construct a capacitated multidigraph D(T , K ) with T =

R ∪ {s, t} and K the disjoint union of sets:

K0 := {(ρ, ρ ′)}ρ,ρ ′∈R with ρ≻ρ ′ , each with capacity +∞;

K1 := {(ρ+(e), t)}e∈F1 , each with capacity p(e);

K2 := {(ρ+(e), ρ−(e))}e∈F2 , each with capacity p(e);

K3 := {(s, ρ−(e)}e∈F3 , each with capacity p(e);

KR+ := {(ρ, t)}ρ∈R+ , each with capacity p(ρ);

KR− := {(s, ρ)}ρ∈R− , each with capacity −p(ρ).

Let w be the vector of capacities defined above. Note that w ≥
0 and within each of K1, K2 , K3 , multiple copies of an arc may be 
present, see Fig. 2.

Algorithm 2 clearly runs in polynomial time, and next lemma 
shows that it solves the Red-Blue Unstable Matching prob-

lem. As it is customary, for S ⊆ T , we define δ+(S) to be the set of 
arcs outgoing from nodes in S in D .

Lemma 21. Let S be an s − t cut of D(T , K ) of finite capacity w.r.t. w. 
Then R \ S is a closed set of (R, º). Moreover, w(δ+(S)) = p(µ0) −
p(F0) + p(R+) − f (µ) where µ := µ01(R \ S). Conversely, for every 
closed set R ′ of (R, º), S := {s} ∪ (R \ R ′) is an s − t cut.

Proof. Let S be an s − t cut with finite capacity, and let ρ ≻ ρ ′ ∈

R . As the arc (ρ, ρ ′) has infinite capacity, we have that ρ ′ ∈ (R \

Algorithm 2
Require: An instance I of the Red-Blue Unstable Matching problem: a 

preference system (G(V , E), >), a function p : E → Z≥0 and a set F ⊆ E .

Ensure: An optimal solution to I .

1: Compute the man-optimal stable matching µ0 from (G(V , E \ F ), >), the set R
of rotations, and its corresponding poset (R, º), see e.g. [8].

2: Label the edges of F , build the partition (F0, . . . , F4) of F and the digraph 
D(T , K ) with edge capacities w computed as above.

3: Find a minimum s − t cut S∗ in D(T , K ).

4: output µ = µ01(R \ S∗).

S) implies ρ ∈ (R \ S), showing that R \ S is closed. Hence, µ =
µ01(R \ S) is a stable matching. Conversely, since the only arcs 
with infinite capacity are (ρ, ρ ′) with ρ ≻ ρ ′ ∈ R , we deduce that, 
if R ′ is closed, then {s} ∪ (R \ R ′) is an s − t cut of finite capacity. By 
Theorem 18, this argument defines a bijection between s − t cuts 
S of finite capacity in D(T , K ) and stable matchings of (G, >). For 
an s − t cut S of finite capacity, we have:

w(δ+(S)) = p(e ∈ F1 : ρ+(e) ∈ S
︸ ︷︷ ︸

(1)

)

+ p(e ∈ F2 : ρ+(e) ∈ S,ρ−(e) ∈ R \ S
︸ ︷︷ ︸

(2)

)

+ p(e ∈ F3 : ρ−(e) ∈ R \ S
︸ ︷︷ ︸

(3)

)

+ p(R+ ∩ S) − p(R− \ S). (2)

Let µS be the matching associated to S via the bijection defined 
above. By Lemma 20, an edge e ∈ F blocks µS if and only if it
belongs to F0 ∪ (1) ∪ (2) ∪ (3). We deduce:

f (µ) = p(µ) − p(Bµ)

= p(µ0) + p(R \ S) − w(δ+(S))

+ p(R+ ∩ S) − p(R− ∩ S) − p(F0)

= p(µ0) − w(δ+(S)) − p(F0)

+p(R+ ∩ S) + p(R \ S) − p(R− \ S)
︸ ︷︷ ︸

(∗)

,

where the second equality follows by the discussion above, (2) and 
p(µ) = p(µ0) + p(R \ S). Rearranging and observing (∗) = p(R+ ∩

S) + p(R+ \ S) = p(R+) concludes the proof. 2

It is not hard to see how to modify the construction above to 
solve the Red-Blue Unstable Matching when the nonneg-
ativity assumption on p is dropped: we need to replace each of 
K1, K2, K3 with two sets, depending on the sign of p(e), and mod-

ify Algorithm 2 and Lemma 21 appropriately.
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