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1. Introduction

Gale and Shapley’s concept of stability [7] has been widely
studied in theory and applied in the practice of two-sided match-
ing markets. In the classical model, we are given as input a bi-
partite graph G(V, E) whose nodes represent the agents, together
with a collection {>yx}xcy, Where for x € V, >, is a strict pref-
erence order imposed by agent x on her neighbors in G. The pair
(G, >) is called a preference system, and we represent the two sides
of the bipartition of G by M (the set of men) and W (the set of
women). We use the convention that y >, y’ means that x prefers
y to y’. A matching of G is stable in (G, >) if it has no blocking
edge, i.e., a pair of agents preferring each other to their partners
in the matching, where being unmatched is less preferable than
being matched to any of the partners in an agent’s list.

In some contexts, however, we wish to relax stability. For in-
stance, in school choice applications, we may accept some degree
of instability if doing so leads to a substantial improvement in the
quality of the matching for the students. One option is therefore
to apply algorithms like Top Trading Cycle (see Abdulkadiroglu and
Sonmez [1]) or relax the stability condition to legality (Ehlers and
Morrill [5], see also Faenza and Zhang [6]). However, these re-
laxations do not control the number of blocking edges that are
introduced.

A different approach is taken by Biré et al. [4], who study the
problem of computing a matching of maximum cardinality that
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has the smallest number of blocking edges (MMSBP). This formu-
lation leads unfortunately to strong intractability results: Hamada
et al. [9] showed that the problem is NP-hard to approximate bet-
ter than a factor n'=% for each § € (0,1), where n is the size of
one side of the agents, even when all preference lists have length
at most 3. Another related concept, introduced by Askalidis et al.,
is that of a socially stable matching [2], in which some blocking
edges are allowed. This models a common situation in large mar-
kets where many agents do not know each other (or each other’s
preferences), so they may not be aware that they form a blocking
edge. Finding a largest socially stable matching is also NP-Hard,
but approximable within a factor of 3/2 [2].

These results from the literature seem to suggest that relaxing
stability while keeping some control on the blocking edges leads
to models that are computationally intractable. In this paper, we
show this does not have to be the case: we propose computation-
ally tractable problems that relax stability while at the same time
restricting the cost incurred by the presence of blocking edges. We
take the point of view of a central planner who chooses the output
matching @ so as to maximize the revenue produced by edges in
/4, minus the cost incurred by edges blocking . In the following,
for a matching w in a graph G(V, E), we let B, be the edges of
G blocking . The first natural problem to consider is the follow-
ing General Unstable Matching problem. As is customary,
for a set S we let p(S) =) ,.sp(e).

Given: A preference system (G(V,E),>), p,c:E— Z.
Find: A matching u of G maximizing p(u) — c(B,).

(Note that we are allowing both p and c to have negative values
here.) This problem is however already NP-Hard when p(e) = «,
c(e) = B for every e, since each instance of MMSBP can be for-
mulated as an instance of the General Unstable Matching
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problem by letting o > 8 > 0. We therefore investigate simplified
variations.

We assume first that there is unique nonnegative weight p(e)
associated with each edge e, representing both the revenue ob-
tained if e € u and the cost incurred if e blocks w. Hence, the
value of a matching p is f(u) :=p(u) — p(Bp).

Within this framework, we consider three different problems.
First, we restrict the image of p to {0,1}, so as to obtain the
Binary Unstable Matching problem. It includes the special
case in which p(e) =1 for alle € E.

Given: A preference system (G(V,E),>) and a function p : E —
{0, 1}.
Find: A matching u of (G(V, E), >) maximizing f(u).

In our second problem, we interpret p(e) as reflecting the “im-
portance” of edge e in the endpoints’ preference lists. Formally, we
say that p: E — Zs is preference-concordant if, for each xy,xy’ €
E, y >x ¥ whenever p(xy) > p(xy’) (in Section 2.2 we argue that
this property cannot be assumed without loss of generality). The
Preference Concordant Unstable Matching problem is
thus defined as follows.

Given: A preference system (G(V, E),>) and a preference-concor-
dant function p : E — Zxy.
Find: A matching u of (G(V, E), >) maximizing f(u).

Theorem 1 collects our first two results.

Theorem 1.The Binary Unstable Matching and Prefer-
ence Concordant problems can be solved in polynomial time.

In light of these results, it is tempting to relax the assumptions
on the function p. We show, however, that even a mild relax-
ation of the Binary Unstable Matching problem leads to a
problem that is hard to approximate. Consider the following B -
Binary Unstable Matching problem.

Given: A preference system (G(V,E),>), 8 €(0,1) and a function

p:E—{B,1}
Find: A matching u of (G(V, E), >) maximizing f(u).

Theorem 2.The B-Binary Unstable Matching problem is
APX-Hard.

Finally, we consider an alternative way of restricting the Gen-
eral Unstable Matching problem, where each edge satisfies
either c(e) = +o0, p(e) >0, or p(e) = —oo,c(e) > 0. Edges of G
can therefore be partitioned into “blue” - that can be part of the
output matching w, but are not allowed to block it - and “red”
- that can block w@ at a cost, but cannot be part of it. We call
it therefore the Red-Blue Unstable Matching problem and
define it using only the weight function p.

Given: A preference system (G(V, E), >), a function p: E — Zxg
and a set F C E (“red edges”).
Find: A stable matching u of (G(V, E \ F), >) maximizing f(u).

Theorem 3. The Red-Blue Unstable Matchingproblem can be
solved in polynomial time.

We prove Theorems 1, 2, and 3 in Sections 2, 3, and 4, respec-
tively. Throughout the paper, we rely on the following notation:
for matchings w, S of a graph G(V, E), we let BZ :=SNB, and
V(S) be the set of nodes matched by S. For v € V, we let u(v)
be the partner of v in u (or ¢ if it does not exist) and say that v
prefers S to u if S(v) >, w(v). For n € N, we write [n]:={1,...,n}
and [n]o = [n] U {0}. As usual, & denotes the symmetric difference
operator and §(v) the neighborhood of a node v.
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2. When spending does not help
2.1. The Binary Unstable Matching problem

We start with a lemma that relates the size of a matching to
the number of edges blocking it.

Lemma 4. Let 1, S be matchings of (G(V, E), >), with S stable. Then
ARSI

Proof. For matchings ', u” of G and x € V, we define vote(x, i/,
w'"y =1 (resp. —1) if x prefers u' to pu” (resp. u” to u’), and 0
otherwise. Let vote(e, u’, u”) := vote(m, ', 1) + vote(w, i, ;')
for e = mw € E. We moreover define vote(i', ") := 3",y vote(v,
W, ", It is known (see [10, Section 1.1]) that vote(S, u) > 0.
Hence, by decomposing vote(S, ;) along the partition of V given
by (V(S), V() \ V(S), V\ (V(S) UV (w))), we have:

0 < Z vote(v, S, )+ Z vote(v, S, )
veV(S) veV(u\V(S)
=3 ecs Vote(e,S,1u) ==2|u\S|
+ Z vote(v, S, )
veV\(V(S)uV(w))
=0
< Y ecs vote(e, S, i) — 2(|uu| — |S]),

where last inequality holds since |\ S| > |u| —|S].

Since vote(e, S, u) € {0, £2} for all e € S, there must be at least
|| — |S| edges from S such that vote(e, S, ) = 2. All those are
edges of S that block u. O

Lemma 4 implies that, when p(e) =1 for all e € E, it is optimal
to output a(ny) stable matching, as the weight gained by increas-
ing the size of the matching is offset by the blocking edges that
are introduced. As shown next, Lemma 4 also reveals that an opti-
mal strategy for the Binary Unstable Matching problem is
to not pay for any edge e with p(e) =1 and to not include in the
matching any edge e with p(e) =0.

Lemma 5. Let Z be an instance of the Binary Unstable Match-
ing problem and E1 := {e € E : p(e) = 1}. Then any stable matching of
G(V, Eq) is an optimal solution to Z.

Proof. Let Eq:=E \ E; and, for a set F C Eg, let Gr:=G(V,E1 U
F). Let i be a matching of G. Set F(u) := i NEp and let S’ be a
stable matching of Gr(,,. Then:

fu)y=p) —pBu) = [LNE1]—|B,NE]
= |l = [F(u)| — [Bu ME(GFu)l
<Ju(—F| +1S'| = Juf
<|S'NEq|
=p(S), (1)

where the chain of (in)equalities from the second row onwards
follow respectively: by definition of F(u) and F(u) N B, = 0;
by applying Lemma 4 to graph Gp(,) and matchings p, S’; since
S'NEg C F(u); and by definition of p. Observing that no edge of
F(1) U Eq blocks S’, we deduce:

p(§") =p(S) = p(Bs NEo) = p(S") — p(Bs) = f(S).
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my wy
ma wa
ms - ws

Fig. 1. Let p(e) =1 for all edges e except the dashed edge f for which p(f) =
B €(0,1). wy and my prefer each other to their other neighbors. Suppose w;
prefers my to ms3, and m3 prefers w to ws. Let u* = {mywq, mywy, m3ws}. Then
By ={maw1} and f(u*) = p(u*) — p(By+) =3 —1=2. u* is the unique opti-
mal solution, since every other matching p satisfies f(u) <2. When g € {0, 1}, u*
is still optimal (e.g., by continuity), but Lemma 4 and Lemma 5 imply it is not the
unique optimal solution.

The previous chain of equalities, together with (1), implies that
there is an optimal solution to Z in the form of a stable match-
ing of Gp, for some F C Eg. Let now Sy be a stable matching of
G(V,E1) = Gy and S be a stable matching of G, F C Eg. Note
that, for S € {Sy, Sk}, we have |Vs| =2f(S), where Vs:={veV:
E1N8(v)N S @)

Hence, in order to conclude the proof, it suffices to show that
|[Vsp| <|Vs,|. Suppose by contradiction this is not the case, and
let G':=(V,(E1NSF) ® (E; N Sy)). There must exist a connected
component of G’ with strictly more nodes from Vs, than from
Vs,. Since each node from V has degree at most 2 in G, this
connected component is a path P =vg, vq,..., V¢, t odd, with vg,
vy matched by Eq N Sr and exposed by E1 N Sy, while the edges
of P alternate between E1 N Sr and E1 N Sy. Since E1 N Sy = Sy,
vo and v, are unmatched in Sy. Hence, vo and v, prefer Sg to Sy.
If vy also prefers Sr to Sy, then vovq blocks Sy, contradicting the
fact that Sy is not blocked by any edge of E;{. Hence v prefers
Sy to Sg. Since, by construction, Sg is also not blocked by any
edge from Eq, we can iterate and deduce that v; prefers Sg to Sy
for i even and Sy to Sp for i odd. Thus, v, prefers Sy to Sf, a
contradiction. O

Finally, we observe that Lemma 5 is not true even if p(e) =1
for all edges e, except one edge f with p(f) =g € (0,1). Indeed,
Fig. 1 shows an instance of the f-Binary Unstable Match-
ing problem for which the (unique) optimal solution is blocked
by an edge e with p(e) = 1. This gives an intuition as to why the
B-Binary Unstable Matching is substantially harder than
the Binary Unstable Matching problem.

2.2. The Preference-Concordant Unstable Matching
problem

Let (G,>) be a preference system with V(G) = {my, wq,
my, wa} and E(G) = {mjw}i j=1,2. Let p(mywyq) =6, p(mywy) =
p(mawq) =5, p(mywy) = 1. Under the unique > that makes p
preference-concordant, the optimal matching is {miwi, myw;}.
If instead wy >, wi and wy >pm, wo, the optimal matching is
{m1wy, mywq}. Hence, preference-concordancy cannot be assumed
without loss of generality.

Algorithm 1 for the Preference-Concordant Unstable
Matching problem iteratively finds a stable matching in the sub-
graph with edges of maximum weight and removes matched nodes
from the graph. We show next that the union of all matchings con-
structed by the algorithm gives an optimal solution.

Lemma 6. For every instance Z, Algorithm 1 outputs an optimal
Preference-Concordant Unstable MatchingonZ.
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Algorithm 1

Require: An instance Z of the Preference-Concordant Unstable Match-
ing problem: a preference system (G(V,E),>), and a preference-concordant
function p: E — Z=o.

Ensure: An optimal solution to Z.

1: Let S=40.

2: while G has still an edge do

3:  Let p* be the maximum weight of an edge of G and G’ the subgraph of G

that includes all and only the edges e with p(e) = p*.

4:  Let S be a stable matching of G'.
5: Set S=SUS.

6: Set V=V\V().

7: end while

8: Output S.

Proof.

Claim 7. S is a stable matching of (G, >).

Proof of claim. S is clearly a matching of G. Assume that S is not
stable and let mw be an edge blocking it, i.e., w >y S(m) and
m >, S(w). Let i be the iteration of Algorithm 1, in which the first
among m and w is matched, i.e,, m, w are both unmatched at the
beginning of iteration i. Then, without loss of generality mS(m) €
S where S is a stable matching in the graph G’ constructed at
iteration i. As mS(m) is an edge of maximum weight at iteration
i and m, w are both unmatched at the beginning of iteration i, it
must be that p(mS(m)) > p(mw). Also, w >,; S(m) yields through
preference-concordancy that p(mw) > p(mS(m)). Then p(mw) =
p(mS(m)), thus mw appears in graph G’ of iteration i and blocks
S as well, a contradiction. O

Fix a matching p of G. We will show that f(u) < f(S).
Consider the graph G, (V,E,) :=G(V,S ® u) and let C be the
set of its non-singleton connected components. For U C V, let
AU) :=pp)) — p(BfL(U)) — p(S(U)), where for F C E, we let
F(U):={uveF:u,veU}. We argue that A(U) <0 for all U €C,
where, to simplify matters, we denote by U both a member of C
and its node set. Then, using Claim 7 we have Bs = ¢ and con-
clude:

f) = f£(S)

p(i) = p(By) — p(S)
p(1) — p(By) — p(S)
Y vec(@(U)) — p(B3,(U)) — p(S(U)))

ZUGC A(U)
0.

IA

Suppose by contradiction that A(U) > 0 for some U € C, and
take a minimum counterexample, i.e., an instance Z and match-
ings S, u that violate the statement, so that the underlying graph
G has a minimum number of nodes. Define Emax :={e € E,(U):
p(e) = p(f) forall f e E, (U)} and Gmax := G(U, Emax)- If Gmax
is a cycle, then it has an even number of edges and A(U) =
p(nU)) — P(B,i(U)) —p(SU)) < p(u(U)) — p(S(U)) =0, a con-
tradiction. Otherwise, since Gpax contains at least one edge and
every node in U has degree at most 2 in G, (and hence in Gmax),
we deduce that Gy« is a path P =vq, vq,..., V;.

Claim 8. P N B3, .

Proof of claim. Suppose vovi € S, as the other case is handled
similarly. First observe that v;v;y; belongs to S for i even and to
u for i odd. As vg is an endpoint of P, then either vq is exposed
in w, or p(voS(vo)) > p(vou(vp)). In the latter case, by definition
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of preference-concordancy, S(vo) >y, (4(vo). Hence, in both cases,
vo prefers S to .

Suppose there is an index j such that both v; and v prefer
the same matching between S and u, and let j be the smallest
such index. If j is odd, since vq prefers S to u, then vj and v q
prefer p to S. We argued above that v;vj,q € w. Hence, vjvjq
blocks S, a contradiction to Claim 7. If conversely j is even, then
vjand vjyq prefer S to w, and v;vj1 € S. Hence, we have found
the required edge.

Assume then that nodes of P alternatively prefer S to ; and u
to S. If t is odd (resp. even), then vi_qv; € S (resp. u), while v,
prefers p to S (resp. S to ). In both cases, we contradict the fact
that v; is an endpoint of P. O

Using Claim 8, let mw € P N BZ. Let U’ (and possibly U”) be
the connected components of the subgraph of G, induced by U \
{m, w}. We have:

0 < A(U)
=AU+ AU") = 2p(mw) + p(mu(m)) + p(u(w)w)
<AU)+AU"),

where the equality follows since mw € BISL and the last inequality
because mw € Epax (note that U” or e € {mu(m), w(w)w} may
not exist, in which case we set A(U”) =0 or p(e) =0). In particu-
lar, we can assume w.l.o.g. that A(U’) > 0.

Let V' =V \ {m, w} and consider the subinstance Z' of Z on
G’, the subgraph of G induced by V’. Let S’ := S\ {mw}, i :=
w\ {mu@m), p(wyw}. Clearly, n’ is a matching of G'. It is easy
to verify that there is an execution of Algorithm 1 that, on in-
put Z’, outputs S’. For U C V’/, let now A’(:) be defined as A(.),
but for instance Z' and matchings S’, ' instead of instance Z
and matchings S, /. Observe that U’ is a connected component of
G'(V',S"@®u), and A'(U") = AU’) > 0, contradicting the choice
of 7 as a minimum counterexample. Hence, A(U) <0. O

3. When spending gets hard

It will be convenient to work with an equivalent version of the
B-Binary Unstable Matching defined as follows:

Given: A preference system (G(V,E),>) and a function p: E —
{a, B} where o > 8 > 0.
Find: A matching p of (G(V, E), >) maximizing f(u).

Theorem 9. The f-Binary Unstable Matching problem is NP-
hard for any o > B > 0 such that « > 4p, even if preference lists are of
length at most 3.

We show Theorem 9 through a reduction from the special case
of SAT used for MMSBP [4]. Unlike MMSBP, whose input is un-
weighted, we need to assign weights o or g to edges so that
the B-Binary Unstable Matching instance has an optimal
matching that is perfect and blocked by no edge of weight c.

For a Boolean formula 5 in CNF and a truth assignment h, t(h)
is the number of clauses of B satisfied by h and t(3) the maximum
value of t(h) over all truth assignments. Let MAX (2,2) -E3-SAT
[3] denote the NP-hard problem of finding a truth assignment h
such that t(h) = t(B), where each clause in 5 has exactly 3 literals
and each variable occurs exactly twice as a non-negated literal and
twice as a negated literal.

Let vi,...,vy—1 and cq,...,c, be the set of variables and
clauses of an instance 5 of MAX (2,2) -E3-SAT respectively, i.e.,
each clause has exactly three literals, and literals v; and v; appears
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Table 1
Preference lists and pricing of instance Z.
o B o
Xei+1:  Yei+1  C(X6i+1)  Yeit2
Xei+2:  Yei+2  C(X6i+2)  V6it3
X6i+3:  Yei+a  C(X6i+3)  V6it3
Xei+a:  Yei+s  C(X6i+4)  V6ita
X6i+5 - Y6i+5 Y6i+6
X6i+6 - Y6i+1 Y6i+6
B o o
Yei+1:  X6i+6 X6i+1
Yei+2: X6i+1 X6i+2
V6i+3 * X6i+3 X6i+2
V6i+4: X6i+4 X6i+3
Y6i+5:  X6i+5 X6i+4
Y6i+6 X6i+5 X6i+6
B B o
e oW
nooow g
oW g
ul: wl z;
5 ) §
ué. Wé zj
AN S S
cé. : p%. X(Cé) qj
cjl: p{ x(lcj) qj
B Y
Wé : ué pé
wi u; p;
o o o
zj: uj uj ul
qj: < c c?

exactly twice. We form an instance Z of the f-Binary Unsta-
ble Matching problem from 5 by introducing 6 men and 6
women per variable in B plus 7 men and 7 women per clause,
as follows. The set of menin Z is PUUUXUQ:

P:= {pj» cjelkl,se[3]}), U:= {uj- 1 jelkl, se[3]),
X :={xpitr:i€[n—1]Jo,r€[6]}, and Q :={q;: j € [k]}.

The set of women is CUW UY U Z (to be consistent with [4],
in this section W represents a subset of women):

C:= {cj- cjelk]l,se 3]}, W= {wj cjelk],se[3]},
Y :={yeirr:ic[n—1]Jo,r€[6]}, and Z :={zj : j € [k]}.

We also make use of the subsets X; := {xgj;+ : 1 € [6]},
e - el 2 3
Yi:={yeitr:r€[6]}, Pj:= {p]w pj, pj},

eyl 2 .3 g2
Uj._{uj,uj,uj},C]._{cj,cj,

C?}, W;:= {w}, W?, W?},
defined for the appropriate indices i, j. The preference lists and the
weights of the edges are given in Table 1.

In the preference list of a man xg;4r € X, i € [n] and r € {1, 2},
the symbol c(xsi+r) denotes the woman cj- € C such that the r-th
occurrence of variable v; appears at position s of clause c;. Simi-
larly, c(xgi4r) for r € {3, 4} denotes the woman cj. € C such that the
(r — 2)-th occurrence of v; appears at position s of c;. Accordingly,
x(ci) denotes the unique man in the preference list of cj.. Let us

start with an observation that follows immediately from «, g > 0.

Observation 10. Every optimal solution for Z is a maximal matching.



Y. Faenza, I. Mourtos, M. Samaris et al.

Two important features regarding the weights of the edges in
our construction are summarized next.

Observation 11. If an edge mw blocks a matching ju and neither m nor
w is single in  then p(mw) = B, asmw € X x Cormw € U x W or
MW = X6i15Y6i+5 O MW = Xgi+6Y6i+1 for somei € [n].

Observation 12. For i € [n], the only perfect matchings of X; x Y; are
Ti := {X6i+eY6iree=1

,,,,,

Observe that = J_; T; U {p}c},p?c?,pjw.,ujwj, uiw?,
u?zj, qjc§ : j € [k]} is a perfect matching of Z that contains 5n + 2k
edges of weight « and is blocked by no edge of weight « (by Ob-
servation 11). Combined with « > 48, those observations imply

the following two results.

3.3 1wl 1212
J

Lemma 13. An optimal matching for Z contains no edge from X x C.

Proof. Let u be an optimal matching and suppose, by contradic-
tion, that there exists an edge x6i+gcj? € uN (X x C) for appropriate
indices i, ¢, a, j. Consider the matching

W=\ ((Xi X Yi) U {xgigec§} UST)UT; U ST,

where, St = {clq;} and S~ ={u(gj)q;} if ¢§ >q; p(q;), and St =
S~ = ¢ otherwise. ' is clearly a matching. We show f(u') >
f (), obtaining the required contradiction.

We claim p(u' N (X x Y;)) — p(uN(X; x Y;)) > o. Observe that
W N (X; x Yy)=T; and p(T;) =5« + B. Note that p' N (X; x Y;)
contains at most 4 edges of weight «, since Xg;;¢ is not matched
via an edge of weight o, and both Xg;i+5, Xsi+6 are adjacent via
an edge of weight o to ygi+ only. Since xeiHC? € 1/, we have
p(u N (X; x Yy)) <4a + B. The claim follows.

We now claim that p(u'\ (Xj x Y;)) — p(u\ (X; x Y;)) > —B. If
ST =0, no edge of weight « is removed from pu \ (X; x Y;). Else,
1(q;j)q;j is removed and cj’.qj is added, and both have weight «.
Hence, the contribution of edges of weight & to p(u' \ (X; x Y;))
and to p(u \ (X; x Y;)) is the same. The only edge of weight 8 that
is removed when moving from w to ' is XGH_gC‘jl-, and the claim
follows.

We next argue that p(B,/) — p(By) < 3B. Let e be an edge
blocking w/, but not blocking w. e must then be incident to a
node that has changed partner between w and w'. If e is incident
to X; UY;, then e € {X6i13¢(Xgi+3), X6i+aC(X6i+4), X6i+6Y6i+1}. We
prove that e must be incident to X; U Yj, thus showing the claim.
Suppose by contradiction it is not, then e € {p‘]’.c‘;, qjcj?} Ué(gj U
S(n(g)). Ife= pjfc‘j'., then e also blocks w, for p? has not changed
partner. By construction, e # q jc‘}. If e is incident to q; but not to
c‘}., then it again also blocks . Last, note that e cannot be incident
to wu(q;), since q; is the least favorite partner of . (q;).

Summing up, we obtain f(u) — f(w) = p(u) — p(u) —
p(By) +p(By)>a—p—3B>0,as required. O

Lemma 14. An optimal matching for Z contains exactly 5n + 2k edges
of weight .

Proof. Observe that a matching can contain up to 5 edges of
weight o from X; x Y;,i € [n], since each of Xgi+5 and xgi1s has
exactly one incident edge of weight o, whose other endpoint is in
both cases yeit6; this provides up to 5n edges of weight o from
in X x Y. Any other edge of weight « is incident to a node from
{zj, 4} jen, vielding up to k such edges from Q x C and k more
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from U x Z (i defined above attains all these maxima). Consider
an optimal matching w that contains less than 5n + 2k edges of
weight o.

If w contains less than 5 edges of weight o from X; x Y; for
some i € [n], it may not contain edges of weight g from X; x C
(Lemma 13). Define the matching ©' := u \ (X; x Y;) U T;. Then
p(e N (X; x Yi)) < 4o + 2B, while p(u’' N T;) =5a + B. As in the
proof of Lemma 13, at most 3 edges of weight 8 block w’ but not
/L. This leads to the contradiction f(u') — f(u) > 5o+ B8 —38) —
(4o +2B)=a —48>0.

If ;o contains less than k edges of weight o from Q x C, there
exists j € [k] such that q; is single in . As p is maximal by Ob-
servation 10, all c;., r € [3], are matched in . Since p contains no
edge in X x C (Lemma 13), u(cg) = p;. for each r € [3]. The match-
ing ' :=pu\ {p?c?} u {qjc?} leaves p? single, introducing at most
three edges blocking ' but not wu, i.e., p?w?, p?c? and x(cif)c?, all
of weight 8. Then, f(u') — f(u) >a —38 —B >0, a contradiction.

If w contains less than k edges of weight o from U x Z,
zj is single in u for some j e [k]. As p is maximal by Ob-
servation 10, /L(ug) = W; for each r € [3]. The matching u' :=
n\ {u?w?} U {u?zj} leaves w? single, thus introducing two edges

blocking 4’ but not u, ie., uiw?

again f(u) — f(u) >0. O

and p?w?, both of weight B;

Lemma 15. There is an optimal matching in Z that is perfect and induces
a perfect matching in X; x Y; Vi € [n].

Lemma 15 is proved similarly to Lemma 13, hence we omit the
details. We can now present the reduction.

Proof of Theorem 9. Let f(Z) denote the maximum value of f(u)
taken over all matchings n of Z. We claim that f(Z) = 5na +
3kB+2ka +t(B)B where we recall that t(B) is the maximum value
of t(h), taken over all truth assignments h of the instance B of
MAX (2,2)-E3-SAT. Let h be a truth assignment of 3 such that
t(h) =t(B). We create a perfect matching w in Z as in the reduc-
tion of (3,3) -MMSBP [4]. For each variable v; € V, if v; is true
under h, add the edges in T; to u, otherwise add the edges in F; to
/. In both cases, it is easy to check that there is exactly one edge
from X; x Y; blocking u, respectively Xgi+6V6i+1 O X6i+5Y6i+5-
Hence, p(u N (Xi x Y;)) — p(Bp N (X; x Yj)) =50 + B — B = 5a.
Now let j e [k]. If ¢ contains a literal that is true under h,
let s € {1,2,3} denote the position of ¢; in which this literal oc-
curs, otherwise set s = 1. Add the edges p?c?,u?ws 1<t#s<
3),qjcj.,p§Wj. and uj.,zj to . The total weight of these edges is

2a + 5. Moreover, uj.wj. is a blocking edge and p(uj.wj.) = B. Now

if ¢; is not satisfied under h, then man x(c}.) is assigned to his
last-choice partner, by construction of p. Hence x(c})c} is also a
blocking edge and p(x(c})c}) = B. Since u is perfect, using Ob-
servation 11 one can check that, together with the n + k blocking
edges in X x Y and U x W identified already, these are all the
blocking edges of w in Z. Hence f(Z) > f(u) =n(5a) + k(2o +
58— B)— (k—t(B))B = 5na + 2ka + 3k +t(B)B. Conversely, let
be an optimal matching for Z. We can assume by Lemma 15 that
0 is perfect and that it induces a perfect matching of X; x Y;j, for
every i € [n]. By Observation 12, this matching is either F; or T;.
Also, as there is no single agent in i, by Observation 11 the edges
blocking w are in X x C or in U x W or of the form Xgit5Y6it5
and xgi+6Y6i+1 and are all of weight g.

We form a truth assignment h in B through w as follows. For
each i € [n], if w N (X; x Yi) = T;, we set v; to be true under h;
otherwise, i.e., if N (X; x Y;) = F;, we set v; to be false. It also
holds that |B,|=n+k+ (k —t(h)) (n edges of X x Y, k edges of
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U x W and k — t(h) of X x C), hence f(un) <5no +npg + 2ka +
5kB — (n+k+ (k—t(B)))B = 5nce + 2ka + 3kB + t(1B) B. Given also
our earlier inequality, it follows that f(u) = 5no 4+ 2ko + 3kB +
t(B)B. Hence, an optimal solution to Z is found if and only if MAX
(2,2) -E3-SAT is solved to optimality, and the thesis follows. O

The hardness of approximation for MAX (2,2)-E3-SAT [3],
combined with the above, leads to the following, whose proof fol-
lows that of [4, Theorem 7].

Corollary 16. For every pair of constants «, 8 with o > 48 > 0, the
B-Binary Unstable Matching problemis APX-Hard.

Given Corollary 16, it is natural to look for an algorithm whose
approximation ratio depends on « and B. A relevant idea is to
examine the proximity of a maximum weight stable matching
(MWSM) to an optimal solution.

Lemma 17.If 1’ is an optimal matching for an instance of the B-
Binary Unstable Matching problem where the image of p is
{B, o}, and ( is an MWSM, then Cf(—‘;/)) <2 % -1

Proof. Let |u| =k. Every edge from w is of weight at least 8 hence
f(u) = kB. 1t is well-known that every stable matching is max-
imal and every maximal matching is of cardinality at least half
that of a maximum matching. Thus, u’ satisfies |'| < 2k as such
a matching cannot have more edges than a maximum matching.
Then, Lemma 4 yields that at least || — k edges block u'. Ob-
serve that f(u') is maximized if every edge that belongs to w’ is
of weight o and every edge that blocks w’ is of weight B. This
implies that

f) < iwle = (u' =B =W —B) +kp
<2k(ax — B) + kB =2ko — kpB.

o

It follows that £U4) < Zke—kb. _ 5. z

fao =~ Fp -1

O

A small example shows that this bound is tight.

Example 1. Let M = {m{,my} and W = {w1, wy}, where m; prefers
wy to wq, wy prefers my to my, my wishes to be matched only to
wy and wy only to my. Let also mywy and mpw, be of weight
o and mywy be of weight 8. The only stable matching is u© =
{miw>} and has value f(u) = B. The optimal 8-Binary Unsta-
ble Matching is p' = {mywq,myws} and has value f(u') =
2a — B as mqwsy is a blocking edge. Then L) o a1,

) B

4. The Red-Blue Unstable Matching problem

Recall that the goal of the Red-Blue Unstable Matching
problem is to find a matching w that is stable in the subgraph
induced only by the “blue edges” E \ F and maximizes the sum
of the weight of edges in © minus the sum of the weight of “red
edges” F blocking (. We use classical concepts and facts related to
rotations and the associated poset, referring the reader to [8] for a
more extensive presentation.

Consider an instance Z of the Red-Blue Unstable Match-
ing problem and let G’ := G(V,E \ F), R be the set of rotations
of (G, >), and po its man-optimal stable matching. A rotation p
is an ordered set of edges (mowo,...,mr—_1wr_1) that, if exposed
(i.e., identified) at some stable matching p and then eliminated
by shifting clockwise the men in p, yields another stable matching
denoted as uAp; ie, uAp:=pu\{mjw;,i€[r—1Jp}U{mjwiyq,i €
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[r—1]p}, indices taken modulo r. For each stable matching u, there
is exactly one set of rotations R’ = {p1,..., ¢} € R whose suc-
cessive elimination from the man-optimal matching yields u, i.e.,
= oAR := ((uoAp1) ... Apy). The rotation poset (R, >) is de-
fined as follows: for p, p’ € R, we have p > p’ if and only if, for
any R’ such that poAR’ is a stable matching and p’ € R/, we have
p € R’. The following holds.

Theorem 18. [11, Theorem 4.1] There is a bijection between the set of
stable matchings of (G’, >) and the closed sets of (R, >), mapping each
closed set R’ of (R, >) to the stable matching 1o AR'.

We now extend weights to rotations [12]. For p = (mgwp,
come_ywi_y), let p(p) = Y120 p(miwii1) — p(miwy). Then, if
I = woAR’, we have p(u) = p(ug) + p(R’). Let R :={p e R:
p(p) >0} and R~ := R\ R*. We recall that when eliminating a ro-
tation p exposed at p, every man (resp. woman) either obtains in
Ap aless preferred (resp. more preferred) partner, or (s)he does
not change partner. We can then associate certain rotations to each
red edge.

Observation 19. letme M,w € W ande =mw € F.

e There is at most one p*(e) = (mgwo,...,M_1Wr_1) € R such
that w = w; and mj_q >, m >,, m; forsomei € [r — 1]o.

e Thereisno p = (mowo, ..., Mr_1Wr_1) € R such that w = w; and
mj >y M >y, Mj_q for somei e [r — 1].

e There is at most one p~(e) = (moWo,...,M—1W;—1) € R such
that m =m; and w; >, W > Wit for somei € [r — 1]p.

e Thereisno p = (mowo, ..., Mr_1Wr_1) € R such that m = m; and
Wiyl >m W >y Wi for somei € [r — 1]p.

The next labeling is an adaptation to our case of one frequently
used for popular matching problems (see, e.g., [10]). We attach to
mw € F with me M and w € W a label given by an ordered pair
(Um, Lw), defined as follows:

o If wo(m) >, w, then set ¢, = —, else set £, = +;
o If wo(w) >y m, then set ¢,, = —, else set £,, = +.

We next write e = (+, +) (or e is (+, +)) to mean that the label
associated to e as above is (4, +) (and similarly for other labels).

We now have all the necessary ingredients to sketch the idea of
our algorithm. g is blocked by all and only (+, +) edges. Recall
that, when we eliminate an exposed rotation, no man improves
his partner and no woman worsen her partner. Hence, as we iter-
atively eliminate exposed rotations starting from o, some (4, +)
edges will be “deactivated”, i.e., they become (+, —) and do not
block the current matching, while certain (—, +) edges will be “ac-
tivated”, i.e., they become (4, +) and block the current matching.
Thus, we need to find a stable matching w in (G, >) - or equiv-
alently, by Theorem 18, a closed set of rotations from (R, >) - so
that p(u) minus the sum of p(e) for all “activated” edges e plus
the sum of p(e) for all “deactivated” edges e is maximized. We
compute such a matching by solving a minimum cut problem in a
digraph (similarly to the classical algorithm for computing a stable
matching of maximum weight [12], the main difference being the
presence of edges between two nodes corresponding to rotations
in our digraph).

We now employ the ideas above to partition F.

Fo (resp. Fq) is the set of edges e € F with e = (+, +) and such
that p*(e) does not exist (resp. exists).

Fo (resp. F3) is the set of edges e € F with e = (—, +) and such
that both pT(e) and p~(e) exist (resp. p does not exist,
while p~ exists);
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Fig. 2. On the left: A (rotation) poset. On the right: An example of the multidigraph D(U, K) (edges from Kg+, Kg- and those that are implied by transitivity of > are
omitted). Full edges have infinite capacity, while each of the dashed edges has capacity p(e) for some e € E. Here Fq = {e1, e2} with pT(e1) = pT(e2) = p2; F2 = {e3.e4)
with pT(e3) = pT(eq) = p3, p~(e3) = p4, p~(es) = ps; F3 = {es} with p~(es) = ps. The cut {s, p3, ps, ps} of capacity 1 corresponds to the closed set {p1, p2, p4}.

F4 is the set F\ U} F;.

With respect to the intuitive description given above, e € Fy is
(+, +) and never “deactivated”, e € Fy is (+, +) and “deactivated”
if and only if we eliminate p*(e), e € F» (resp. e € F3) is (—, +)
and “activated” if and only if we eliminate p~(e) but not p*(e)
(resp., we eliminate p~(e)), while no edge of F4 is ever “activated”.
This is formalized in the next lemma.

Lemma 20. Let i« be a stable matching of (G', >) and let ;u = o AR’
for some R” C R. Then:

0. All edges of Fo block ;

1. Anedge e € Fq blocks w ifand only if p*(e) ¢ R’;

2. An edge e € Fy blocks w if and only if {p*(e),p ()} N R =
{p~ (@}

An edge e € F3 blocks (u if and only if p~(e) € R';

No edge of F4 blocks jt.

3.
4.

Proof. We show only 0., as the remainder follows similarly. Let e =
mw € Fy. By definition of Fo, w >, o(m) and m >, uo(w). By
definition of g, (to(m) >m (m). On the other hand, since p*(e)
does not exist, we have m >, u(w), hence e blocks u. O

We next construct a capacitated multidigraph D(T, K) with T =
RU{s,t} and K the disjoint union of sets:

Ko :={(p, p")}p,p'cR with p=p’» €ach with capacity +o0;
Ky :={(pT(e), t)}ecF,, each with capacity p(e);
Ky :={(p*(e), p~(e))}eeF,, each with capacity p(e);
K3 :={(s, p~(e)}ecF;, €ach with capacity p(e);

Kg+ :=={(p, )} per+, €ach with capacity p(p);

Kg- :={(s, p)} per-, each with capacity —p(p).

Let w be the vector of capacities defined above. Note that w >
0 and within each of K1, K3, K3, multiple copies of an arc may be
present, see Fig. 2.

Algorithm 2 clearly runs in polynomial time, and next lemma
shows that it solves the Red-Blue Unstable Matching prob-
lem. As it is customary, for S C T, we define §*(S) to be the set of
arcs outgoing from nodes in S in D.

Lemma 21. Let S be an s — t cut of D(T, K) of finite capacity w.r.t. w.
Then R\ S is a closed set of (R, >). Moreover, w(87(S)) = p(uo) —
p(Fo) + p(RT) — f() where u := o A(R \ S). Conversely, for every
closed set R' of (R, >), S:={s}U(R\ R)isans —t cut.

Proof. Let S be an s —t cut with finite capacity, and let p > p’ €
R. As the arc (p, p’) has infinite capacity, we have that p’ € (R\
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Algorithm 2

Require: An instance Z of the Red-Blue Unstable Matching problem: a
preference system (G(V, E), >), a function p: E — Z-¢ and a set F C E.

Ensure: An optimal solution to Z.

1: Compute the man-optimal stable matching o from (G(V,E\ F), >), the set R
of rotations, and its corresponding poset (R, >), see e.g. [8].

2: Label the edges of F, build the partition (Fo,..., F4) of F and the digraph
D(T, K) with edge capacities w computed as above.

3: Find a minimum s —t cut $* in D(T, K).

4: output jt = pA(R\ S*).

S) implies p € (R\ S), showing that R\ S is closed. Hence, & =
MoA(R\ S) is a stable matching. Conversely, since the only arcs
with infinite capacity are (p, p’) with p > p’ € R, we deduce that,
if R’ is closed, then {s}U(R\R’) is an s —t cut of finite capacity. By
Theorem 18, this argument defines a bijection between s —t cuts
S of finite capacity in D(T, K) and stable matchings of (G, >). For
an s —t cut S of finite capacity, we have:

w(dT(S))=plecFr:pT(e)eS)
(1)
+plecFy:pT(e)eS, p () eR\S)
@)
+pleeF3:p (e)eR\S)
€)
+p(RTNS)—p(R™\YS).

(2)

Let us be the matching associated to S via the bijection defined
above. By Lemma 20, an edge e € F blocks us if and only if it
belongs to Fo U (1) U (2) U (3). We deduce:

f(w)

p(u) —p(Bu)

p(o) + p(R\ S) — w(8T(S))
+p(RtNS)—p(R™NS)— p(Fo)
p(o) — w(dH(S)) — p(Fo)
+p(RTNS)+p(R\S)—p(R™\S),

()

where the second equality follows by the discussion above, (2) and
p(i) = p(iLo) + p(R\ S). Rearranging and observing (x) = p(R* N
S) + p(RT\ S) = p(R") concludes the proof. O

It is not hard to see how to modify the construction above to
solve the Red-Blue Unstable Matching when the nonneg-
ativity assumption on p is dropped: we need to replace each of
K1, K2, K3 with two sets, depending on the sign of p(e), and mod-
ify Algorithm 2 and Lemma 21 appropriately.
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