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for Climate Change Adaptation 

 
 
 

Abstract 
Non-stationary climate data are often encountered in dealing with natural hazards, climate 
change and disaster reduction.  With drought, for instance, it is common to encounter such 
non-stationary data sets (time series).  The objectives of this work are to formulate a rational 
data-driven approach that can consider non-stationary and time series on multiple random 
variables that can have generalized underlying probability distributions and dependence 
structures.  The methodology proposed seeks to divide up the data into non-overlapping 
segments, each of which is treated as stationary with some underlying probability and 
dependence structure, while the long time series yields multiple such segments that are 
mutually independent.  The Greedy Copula Segmentation (GCS) algorithm developed 
employs best-fit probability distributions and copula functions after data-driven time series 
segmentation.  Validation of the proposed methodology is demonstrated using a benchmark 
problem as well as a single-site realistic drought example.  The proposed GCS approach 
has potential use in climate change adaptation (CCA) and disaster risk reduction (DRR) for 
any climate-related hazards involving non-stationary time series data. 
 
Keywords: time series segmentation; greedy algorithm; non-stationary stochastic process 
 
 
1. Introduction 
 
Droughts, characterized by water shortages or a lack of precipitation and dry weather, can 
occur in virtually all climatic zones and can cause severe damage to the ecology and 
economy of regions where they occur (Mishra and Singh 2010; Yoo et al., 2013; Carrao et 
al. 2016; Schwalm et al. 2017; Singh et al. 2021).  Droughts can have slow onsets and they 
can be frequent as well as long-lasting.  Lee et al., 2020’s review of the international disaster 
database indicates that over 3,000 floods and droughts occurred globally from 2001 to 2018, 
accounting for nearly 45% of disasters stemming from natural hazards.  One chronic 
drought-prone state in India—Gujarat—has experienced drought almost every year for the 
last 35 years (Bandyopadhyay et al. 2020).  Lee et al. (2020) point out that floods and 
droughts caused more severe damage in the period from 2001 to 2018 than over the entire 
20th century.  Secondary damage to the economy arising due to droughts can also be 
considerable.  Worldwide, 83% of agricultural loss and damage between 2006 and 2016 
were attributed to droughts; these losses amounted to over 29 billion USD (Walz et al. 
2020).  The Sendai Framework for Disaster Risk Reduction (SFDRR) has emphasized 
global disaster risk strategies that consider innovations in science and technology, but there 
still has not been sufficient progress in risk reduction in several sectors due to gaps in the 
connection of science, technology, policymaking, and climate change with evolving 
humankind and living patterns and societies (Djalante and Lassa 2019; Ishiwatari and Surjan 
2019; Saja et al. 2019; Ishiwatari and Surjan 2019; Izumi et al. 2019; Matsuoka and Rocha 
2021; Patel et al. 2021; Uchiyama et al. 2021; Wilkins et al. 2021).  With droughts, 
especially, their unique and non-stationary characteristics make risk reduction endeavors 
quite challenging.  An improved understanding and statistical/numerical modelling of drought 
patterns is vital for sustainable development in many parts of the world. 
 
Climate data such as precipitation, wind speed, etc. make up a fundamental source of 
information for the risk assessment of any civil infrastructure system. Often, the climate 
parameter is represented as a stationary stochastic process, which then implies that the risk 
assessment makes use of all the available historical data in prediction. Temporal patterns 
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that include extreme climate events such as droughts, floods, storms, etc. can be quite 
variable due to inherent non-stationary characteristics and as an outcome of human-induced 
climate change (Lee and Ouarda, 2010; Sheffield et al., 2012; Dai, 2013; Garcia Galiano et 
al., 2015; Li et al., 2015; Cid et al., 2016; Van Loon et al., 2016; Ouarda and Charron, 2018; 
Liu, S. et al., 2019; Slater et al., 2020).  Such changing patterns highlight the possible 
incompatibility of traditional stationary assumptions, especially when dealing with climate 
change adaptation (CCA). 
 
Two branches of methods have been studied during the last decades to incorporate non-
stationarity in risk assessments: 1) partitioning the time series into segments where 
stationary models are used to explain each segment; and 2) modelling non-stationary 
behaviour by introducing explanatory variables using smooth functions.  The first option 
involves change-point detection based on Bayesian inference, hypothesis testing, and 
hidden Markov models, all of which seek to uncover break points in the time series data (see 
Reeves et al., 2007; Esling and Agon, 2012; Polunchenko and Tartakovsky, 2012; 
Aminikhanghahi and Cook, 2017; Truong et al., 2020 for a comprehensive survey). Such 
time series segmentation algorithms suffer from high computational demand especially for 
long time series, since finding appropriate break points is a combinatorial optimization 
problem that requires evaluations whose number thus grows exponentially with the number 
of observations.  Some segmentation algorithms, as a result, are inefficient for optimizing 
CCA that requires planning for futures on the scale of decades based on collected hourly to 
monthly climate data.  
 
The Generalized Additive Model for Location, Scale, and Shape (GAMLSS) proposed by 
Rigby and Stasinopoulos (2005) has received significant attention and falls under the 
second class of methods (Wang et al. 2015, Jehanzaib et al. 2020, Jehanzaib et al. 2021).  
GAMLSS has been successfully applied for analyses in hydrology applications due to its 
great flexibility in addressing non-stationary characteristics.  GAMLSS can, however, predict 
response variable trends, only when the explanatory variables can be predicted 
independently.  Climate variables are often inter-dependent; this makes it hard to identify 
governing explanatory variables using GAMLSS that can then be used to arrive at optimized 
CCA efforts. 
 
Recently, Hallac et al. (2019) proposed Greedy Gaussian segmentation (GGS) that 
addresses noted challenges in time series segmentation by identifying optimal break points 
using a ―greedy‖ but approximate approach.  This method lightens the computation demand 
involved in segmentation to where evaluations required are reduced to varying linearly with 
the number of observations.  Moreover, underlying assumptions with GGS and the 
associated formulation are better suited to CCA compared to what results with other 
segmentation methods.  GGS assumes non-repeatability of segments unlike ergodic hidden 
Markov models (Rydén et al. 1998; Nystrup et al. 2017); this means that model parameters 
for each segment are unrelated to parameters in other segments.  Considering that we are 
dealing with climate conditions that are widely acknowledged to be changing, the non-
repeatability assumption is justified. Also, GGS formulates the time series partitioning 
problem based on the maximum log-likelihood of the data. Since we are assuming piecewise 
stationarity and wish to project future patterns based on recent observations, a maximum 
log-likelihood based approach is most appropriate for our problem. One drawback of GGS is 
its Gaussian assumption, which is not always appropriate for climate-related problems 
where variables often follow non-Gaussian distributions (Zelenhasic and Salvai, 1987; 
Mathier et al., 1992; Yue et al., 1999; Shiau and Shen 2001; Yue 2001; De Michele and 
Salvadori 2003; Hao and Singh 2013; Mazdiyasni et al. 2019). 
 
We, therefore, extend the applicability and generality of GGS by replacing the multivariate 
Gaussian distribution assumption with a multivariate copula choice.  We refer to our 
approach as the greedy copula segmentation (GCS) algorithm. The use of multivariate 
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copulas can help to represent many complex multivariate dependence structures both by 
employing various options for marginal distributions and by selecting different copula 
families (Saklar, 1959; Salvadori, 2004; Salvadori and De Michele, 2004; Nelsen, 2006; 
Genest and Favre, 2007, Jehanzaib et al. 2021). Moreover, most common marginal 
distribution parameters can be empirically obtained from data using maximum likelihood 
estimation (MLE). The copula family parameter can also be non-parametrically estimated 
using the empirical Kendall’s rank correlation coefficient, tau (Genest et al. 2011, Manuel et 
al.  2018).  For these reasons, we propose the use of a more versatile GCS approach, while 
not losing advantages of the mathematical tractability of GGS. 
 
GCS considers the non-stationary characteristics of the underlying climate process by 
defining sub-segments that are each stationary but mutually independent.  Near-future 
patterns are reasonably assumed to be most similar to the most recent sub-segments.  
Consequently, a model derived from such recent data might be expected to lead to better 
predictions than what we get with the traditional approach that uses the entire historical 
sample.  For civil infrastructure systems, we can effectively adopt an adaptation policy based 
on the proposed GCS approach.  A 5- to 10-year cycle of climate data that possibly involves 
policy amendment (CCA) usually starts by updating the site-specific hazard data.  Then, 
derivative policies are updated accordingly.  The projected risk assessment is best suited 
only for a near-future period because, after this period, the policy will need to be amended 
with any newly discovered information/data.  We demonstrate how to employ such new data 
along with all the available historical data to update temporal hazard patterns and derivative 
policies.  Again, in light of the most recent climate change trends, dated data are unlikely to 
contain meaningful information for near-future projections.  In fact, the use of old data can 
cause a model to exhibit greater bias and uncertainty due to heterogeneity in the data due to 
non-stationary character.  By using the proposed GCS-identified optimal data, we rely on 
only informative recent data to update policies.  In other words, GCS-CCA discards outdated 
data to improve prediction performance.  It works more discriminately to detect and account 
for short-term climate abnormalities.  
 
In this study, we make the following contributions: 1) we derive an extension of Greedy 
Gaussian Segmentation (Hallac et al., 2019) for use with non-Gaussian climate data and 
any generalized copula model; 2) we demonstrate our GCS method’s possible use in plans 
for optimal climate change adaptation; and 3) we present realistic experiments that illustrate 
how a near-future pattern of extreme climate events can be optimally predicted using the 
proposed approach.  The objectives of this work are to formulate a rational data-driven 
approach (GCS) that can consider non-stationary and time series on multiple random 
variables that can have generalized underlying probability distributions and dependence 
structures.  The proposed GCS approach has potential use in climate change adaptation 
(CCA) and disaster risk reduction (DRR) for any climate-related hazards involving non-
stationary time series data. 
 
To demonstrate steps in the algorithms for GCS and GCS-CCA, an example analysis on a 
benchmark data set is first presented in Section 2.  A real-world application for drought risk 
assessment follows in Section 3.  Discussions and conclusions follow at the end. 
 
 
2. Methodology 
 
2.1 Greedy Copula Segmentation 
 
Assume we have bivariate climate data, available as time series data, as shown in Figure 1.  
Without loss of generality, assume that the time series are given at discrete data index 
values as shown. 
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Figure 1. A realization of synthetic bivariate benchmark data time series: 3 separate data 

segments generated using 3 different parameter settings are highlighted. 
In the synthetic data selected for this example, we have two climate-related variables that 
follow gamma and lognormal distributions, respectively. Their dependence structure is 
assumed to be represented by a Clayton copula. A total of 1,000 samples were generated 
with 3 different parameter settings to embed non-stationary character in the data. We have 5 
parameters to define the two variables in each of the 3 subsets—they include a copula 
parameter,  ; parameters describing the shape,  , and scale,  , for the gamma variable; and 
the mean,  , and standard deviation,  , for the lognormal variable. Note that the mean and 
variance of the gamma variable are    and    , respectively. 
  
For the data, the first 300 samples are synthetically generated using    (         )  
(              ), the next 300 samples use    (                ), and the final 400 samples 
are from    (                 ) . For the gamma-distributed variables, the different 
parameter settings are equivalent to setting different mean values of 5, 10, and 15, and 
variances of 2.5, 2.5, and 2.25. Figure 2 shows copulas according to the different parameter 
setting selections. As is clear from Figure 1, the generated time series are non-stationary; 
the values of both variables are seen to get higher with time (increasing data index value). 
As such, this synthetic bivariate climate benchmark data set could represent changing 
extreme climate events – such as storms, floods, droughts, etc. – that get more frequent and 
severe with time. 
 

 
Figure 2. Copulas for the synthetic benchmark data generation  

using      , and    (left to right).   
 
From the above, one might expect that near-future patterns are most likely to be similar to 
the last 400 samples. The earlier 600 samples are likely to be deemed outdated and would 
increase uncertainty in any near-future prediction. Our goal is to find and uncover the last 
stationary sub-segment from the data. To achieve this goal, we iterate the greedy 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



segmentation approach until no further segmentation on the last segment offers any 
advantage. 
 
2.1.1 Iteration 1 
 
The GCS algorithm starts with the benchmark data that can be denoted as 
  [           ]

 , where    (  ( )   ( )).  Also,   ( ) and   ( ) represent the  th index 
values of the first and the second variable, respectively. Note that    represents a 2-
dimensional vector containing these  th index values of both variables and   represents the 
entire bivariate data set. 
 
We consider the data as a segment and, thus, the number of current segments    ; by 
splitting the data into more segments, the value of   will be changed. In every GCS iteration, 
we will consider a new breakpoint that then divides one of the current segments into two 
sub-segments. In the first iteration, we have 999 possible new breakpoints denoted as 
                      , where the location of a breakpoint is indicated by the subscript. For 
instance,        is a breakpoint that divides the data into two sub-segments    [       ]  
and    [             ]

 . Figure 3 shows an example with       , where      . 
 

 
Figure 3. Example sub-segments generated by breakpoint,         . 

Next, we compare two scenarios: 1) where   represents independent bivariate samples from 
a multivariate copula    based on all the data; and 2) where    and    represent separate 
bivariate samples from two different copulas,   ( )  and   ( ) , respectively. For both 
scenarios, we assume that the same Clayton copula family and Gamma and lognormal 
marginal distributions, although different distribution and copula parameters apply in the two 
scenarios. Scenario 1 leads to fixed model parameters, while Scenario 2 considers that the 
model parameters change when one considers data before and after the breakpoint,       . 
Using maximum likelihood, we will evaluate and maximize the following objective function: 
         (  )   (  )   ( )  (1) 

where  ( ) is a function computed based on the regularized maximum log-likelihood of the 
available data with regard to the predefined copula family and marginal distributions.  
 
Note that  ( ), first, employs MLE model parameters,  , based on the assigned data,  . 
The MLE method allows estimation of the marginal distribution parameters and the copula 
family parameters; MATLAB provides functions named fitdist and copulafit that 
accomplish this task. The regularized maximum log-likelihood function is obtained as 
follows: 
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 ( )   ∑(     (  (  ( )    )   (  ( )    ))       (  ( )    )       (  ( )    ))

 

   

 
 

  
    

   

(2) 

where   is the length of the input bivariate time series,  ;    
    (     (      )      (      ))

      
 

is the copula probability density function;      (      ) and      (      ) are marginal 
cumulative distribution functions;   (      ) and   (      ) are marginal probability density 
functions;    and    are marginal sample standard deviations. To avoid overfitting, marginal 
variance regularization is applied and     is the regularization parameter. The order of 
magnitude of the marginal variances, together with  , influences the role of regularization, 
which is discussed in Section 2.3. 
 
Note that       , as defined, is the regularized maximum log-likelihood difference between 
the likelihood function based on data sub-segments divided at the breakpoint,       , and 
the likelihood function based on the entire unsegmented data set. We calculate        for 
every possible breakpoint and then select an optimal breakpoint          as follows: 

           
 

        (3) 

and we also ensure that             . If every   returns a negative value, it means that 
further segmentation has no advantage. In this case, the greedy algorithm stops the 
segmentation search and we go to the Return stage. 
 
Figure 4 shows 999   values computed with      . The maximum   value occurs for 
     .  Based on this result, we divide the data set into sub-segments at the breakpoint, 
        . These resulting sub-segments are shown in Figure 5. 
 

 
Figure 4. Calculated objective function   for the benchmark data at the first iteration. 

 
Figure 5. Sub-segments generated by the first identified breakpoint,                    . 
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2.1.2 Iteration 2 
 
After the previous (first) iteration, what we have are new segmented data sets,    
[         ]

  and    [             ]
 . Thus, the number of current segments,    , and 

the number of new breakpoints possible is now    . Again, we compute   for every possible 
breakpoint and ultimately select a new optimal breakpoint,           . We reject the new 
breakpoint and terminate the greedy algorithm if all   values have a negative value. An 
additional termination condition is invoked in Iteration 2 and beyond, if the identified optimal 
breakpoint is not from the current last sub-segment. This is because our goal with the 
greedy search algorithm is to find and use only the last stationary sub-segment to be 
representative of the most likely series for the near future. Therefore, if further segmentation 
cannot be continued on the current last sub-segment, we terminate the search. On the other 
hand, if there is a breakpoint,           , within the last sub-segment (in Iteration 2, the last 
segment    ) and             , we accept this new breakpoint and continue the iteration 
with the new segmented data sets,    [         ] ,    [           ]

 , and    
[               ]

 .  Otherwise, the algorithm moves to what we refer to as the Return stage. 
 
2.1.3 Iteration 3+ 
 
We repeat the procedure above until any one of the termination conditions: 1) all    ; 2) 
   does not match an index number in the last sub-segment. After we terminate this iterative 
greedy search, the algorithm moves to the final Return stage. 
 
 
2.1.4 Return 
 
As final output, the algorithm returns the current last segment as the identified optimal data 
sub-segment. We denote this data set as     . Note that       .  
 
Figure 6 shows calculated 998   values for the benchmark data set at Iteration 2. The 
maximum value occurs at       on the first segment. This means that we have reached 
the second termination condition. We stop the iterations and send the current last sub-
segment    [             ]

  to the Return stage. As a result, the identified optimal data 
set,          [             ]

 . 
 

 
Figure 6. Calculated objective function   for the benchmark data at the second iteration. 

 
The GCS algorithm can be generalized to any  -dimensional multivariate data set,   
[       ]

          (  ( )     ( )). Let   (     ) be the probability density function and 
     (     ) be the cumulative distribution function for variable,   . Multivariate copulas can 
be denoted as      (       ), where   (         ). The regularized maximum log-
likelihood function for multivariate data,  , is given as: 
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 ( )   ∑(     (       )  ∑     (     )

 

   

)

 

   

 
 

∑   
  

   

  (4) 

Figure 7 shows the general GCS algorithm flowchart based on the preceding discussion. 
 

 

Figure 7. Greedy Copula Segmentation (GCS) algorithm flowchart. 

 
2.2 Climate Change Adaptation with the Benchmark Data 
 
We are interested in attempting a climate change adaptation strategy using GCS assuming 
that the bivariate data in Figure 1 describe climate parameters of interest. Suppose the 
benchmark data set,  , represents a 100 year-long set of observations with 10 records per 
year. Let us first consider a situation where only the first 40 year-long set (400 samples) 
represent the base data. The traditional approach would develop the base joint copula,   ( ) 
using all the base data, but our optimal approach will use the GCS-identified optimal data 
only for near-future projections. Then, such a derived joint distribution will be used for any 
risk assessment until the new data are obtained, or the existing data set from 40 years is 
updated. Suppose this distribution is updated in increments corresponding to 10-year cycles. 
Again, the traditional approach would use all of the now 50 year-long set (500 samples) to 
obtain a new updated version of the joint copula,   ( ), but our optimal approach will again 
use the GCS-identified optimal data only. The procedure can be repeated every 10 years 
and two different joint copulas can be developed based on the two different approaches 
(traditional vs. GCS). 
 
To highlight the comparative prediction performance of the two approaches, we compute 
log-likelihoods for   update cycles, each of 10-year length as follows: 
 
      ( )     ∏        (  )

  

   

      ( )     ∏       (  )

  

   

  (5) 

Two different joint copulas,          and          are derived using the base data and the 
same number of new 10-year data updates,            , is applied to calculate the log-
likelihood in Equation 5. As such, the calculated log-likelihoods are fair performance 
measures to allow comparisons between traditional and GCS approaches. The copula and 
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corresponding approach that yields a higher likelihood when the new data are included is 
more accurate than the alternative.  In other words, the traditional and GCS approaches 
offer models based on the base data that are then used to assess how well they perform 
against different lengths of update cycle data increments; relative comparison is possible 
using Equation 5. 
 
A general formulation can be defined using       (the base period) and      (the period 
covered in each update cycle). At cycle  , the traditional approach uses all the data 
collected from the beginning until              to update the distribution, whereas GCS-
CCA uses       for the corresponding distribution. Note that each     -long data update can 
be used to evaluate predictive performance. Figure 8 shows a diagram summarizing the two 
different approaches with the formulation as presented. 
 

 
Figure 8. Traditional and optimal GCS approaches for climate change adaptation. 

The predictive performance is evaluated 6 times since we choose, each time, the first 400 
samples as the base data and add 100 new samples in each update cycle.  To allow overall 
predictive performance comparisons between the traditional CCA and GCS-CCA, we 
compute the mean predictive log-likelihood difference ratio,  , over all the update cycles: 
 

 ( )  
 

 
∑
     ( )        ( )

       ( ) 
     

 

   

 

 
We repeat this entire procedure 10 times by synthetically generating (using random 
sampling) a new benchmark data set each time.  Figure 9 shows the mean and min-max 
error bars of  ( ) with different regularization parameter choices,  .  We can easily confirm 
that GCS-CCA outperforms traditional CCA for sufficiently large parameters,  , that range 
between 5 and 100.  One can also directly evaluate the influence of  ; for lower values of  , 
GCS-CCA performs better than traditional CCA.  However, a lower-valued regularization 
parameter implies more overfitting and then its performance is not better than that with 
traditional CCA.  Higher-valued regularization parameter levels restrict segmentation and 
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then GCS-CCA is basically the same as traditional CCA.  It is only for intermediate-valued   
values where GCS-CCA with associated segmentation is seen to be superior. 
 

 
Figure 9. Calculated mean of predictive log-likelihood difference ratio,  ,  

over all update cycles with different choices for regularization parameter,  . 
 
2.3 Regularization Parameter Selection 
 
GCS-CCA leads to more accurate prediction than traditional CCA if we can select the proper 
regularization parameter,  . Its value can be chosen by trial and error, using prior 
knowledge, or using a principled method, such as Bayesian or Akaike information criterion or 
cross validation (Hallac et al., 2019). In general, one needs a sufficiently high value for   
because this parameter directly influences the extent of segmentation that results. Too high 
a value for    results in no segmentation, which is then equivalent to traditional CCA; on the 
other hand, a low value for   leads to overfitting, which means that GCS will select a very 
short recent sub-segment as the optimal data. Then, the joint distribution of the underlying 
variables is overly fitted to this small amount of data.  As we can see from Equation 4, the 
order of magnitude of the marginal variances, together with  , influences the role of 
regularization.  In Figure 9, we systematically evaluate the role of   in assessing model 
quality.  Results indicate that GCS-CCA’s effectiveness is hurt by overfitting and inferior 
performance when   values are low.  Also, the results with traditional CCA are virtually the 
same as GCS-CCA when   values are too high.  Overall predictive performance of GCS-
CCA is an improvement over traditional CCA over a considerably wide range of   values 
from 5 to 100.  This latter finding suggests too a lower sensitivity of   on the benchmark 
data; if some moderate amount of regularization is imposed with GCS-CCA, superior 
performance over traditional CCA is assured.  
 
 
3. Experiments with Drought Patterns in CCA 
 
Several hydroclimate variables – e.g., precipitation, air temperature, soil moisture, etc. – 
simultaneously affect drought scenarios. Indices or scores derived from univariate and 
multivariate drought indicators that are in turn based on individual or multiple hydroclimate 
variables have been developed to characterize and quantify drought conditions. Such scores 
are included in a drought index, and drought index time series can then be used to describe 
the input data for drought severity-duration-frequency (SDF) analysis. 
 
For an experiment involving real data analysis and application of GCS-CCA, we collected 
climate data – representing monthly total precipitation and a monthly average of daily 
average temperature data – from the Global Historical Climatology Network-Monthly 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



(GHCN-M) Version 3 dataset (Lawrimore et al., 2011). Various types of drought indices were 
calculated using open-source software originally developed by National Integrated Drought 
Information System (NIDIS), National Centers for Environmental Information (NCEI), and 
National Oceanic and Atmospheric Administration (NOAA) (Adams, 2017). The collected 
climate variables and calculated drought indices cover the geospatial extent: latitude 
24.5625 ~ 49.354168 (degrees north), longitude -124.6875 ~ -67.020836 (degrees east), 
and raster dimensions, (latitude, longitude, time) = (38, 87, 1466). One grid cell near the 
Austin, Texas area was selected for a regional case study. Figure 10 shows the area 
covered by the selected grid cell. 
 

 

Figure 10. Selected site in the Austin, Texas area. 
 

Among various drought indices, the Standardized Precipitation Evapotranspiration Index 
utilizing a Gamma distribution with a 3-month scale (SPEI_G3), developed by Vincente-
Serrano et al., 2010 was selected to serve as an indicator of drought events. This selection 
is justified because studies have shown that SPEI performs better in drought assessments 
under a global warming trend by combining the multi-scalar character with the capacity of 
involvement of temperature effects on droughts (Hao and Singh, 2015; Tan et al., 2015; 
Homdee at al., 2016). Detailed information about SPEI and its calculation can be found in 
the studies by Vincente-Serrano et al., 2010; Begueria et al., 2014; Hameed et al., 2018.  
 
Figure 11 shows the calculated SPEI_G3 time series, denoted by  , that is obtained for the 
period, December 1896 to February 2017. The Thornthwaite equation is used to derive 
potential evapotranspiration (PET) from air temperature data. 
 

 
Figure 11. Calculated standardized precipitation evapotranspiration index utilizing Gamma 

distribution and 3-month scale (SPEI_G3) time series. 
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This study describes the entire procedure that starts with preparing a bivariate drought 
pattern time series and proceeds to a final predictive performance evaluation. We provide a 
step-by-step guide that can be used for not only several types of drought events but also for 
other extreme climate events and applications that have a similar problem setting and data 
structure. 
 
3.1 Bivariate Drought Pattern Time Series 
 
To apply GCS, first, we extract drought events from the selected drought index time series 
using a predefined truncation level. The overall concept of how we define a drought event 
and its associated duration,   , and severity,    is illustrated in Figure 12. In this study, 
drought duration and severity are selected for the analysis since they have been widely used 
for drought severity-duration-frequency (SDF) analysis. A similar concept can be applied to 
other climate data time series. 
 

 
Figure 12. A concept diagram showing definitions of drought event duration, severity, and 

equivalent intensity, along with indications of a pre-crossing and a post-crossing. 
 
Our definition is a modified version of the Yevjevich (1967) theory of run model. We define 
the start and end of a drought event by interpolating pre-crossing and post-crossing data 
points given the data. In this manner, for any drought event,  , the drought duration,    – 
defined as the time difference between the start and end – is real-valued. Then, the absolute 
value of the integral area between drought index time series and the selected horizontal 
truncation level from the start to the end of the event is defined as the drought severity,   . 
An equivalent drought index value,   , associated with drought event,  , is easily calculated. 
Mathematically,        ⁄ , which is sometimes referred to as drought intensity (Cavus and 
Aksoy, 2020). This drought index when considered at a constant level over the duration of 
the event leads to an area-based severity that is equivalent to the observed value,   , for the 
same event.  This is clear too from Figure 12. To be clear, we refer to    as an equivalent 
intensity. 
 
Suppose we extract   drought events from the given drought index time series. Then, the 
input data,   [       ]      , where    (     ) . Each data point can now be 
considered as data obtained at the start of corresponding drought event. We can now apply 
GCS-CCA to the input drought data. 
 
Vincente-Serrano et al., 2010 defined various ranges of SPEI values as associated with 
different intensities of droughts: light drought (-0.5 to -0.99), moderate drought (-1.0 to -
1.49), severe drought (-1.5 to -1.99), and extreme drought (-2.0  ). In the present study, a 
truncation SPEI level of -0.5 is selected so as to include even the mildest drought conditions 
in our assessment. Accordingly, a total of 143 drought events with associated duration and 
severity (or equivalent intensity) are extracted from the SPEI_G3 time series.  
 
Figure 13 shows the duration, severity, and equivalent intensity values considering all the 
drought events extracted over the period of measurements (1896-2017) in the selected 
Austin, Texas region. Average and standard deviation values are shown for the data and are 
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also shown using a 5-year moving window. The moving average and standard deviation 
variation clearly indicate non-stationary characteristics in the drought pattern. Figure 14 
shows scatter plots of the collected data, showing two of the drought-related variables at a 
time. Based on similar assumptions in past studies, exponential and gamma distributions are 
selected as marginal probability distributions for duration and severity, respectively.  The 
Gumbel copula family is selected to model the pairwise dependence structure for these two 
variables (Zelenhasic and Salvai,1987; Hao and Singh, 2013). 
 

 
Figure 13. Duration, severity, and equivalent intensity values from 143 extracted  

drought events, using a -0.5 truncation level with the SPEI_G3 data. 

 
Figure 14. Pairwise scatter plots showing duration, severity, and equivalent intensity  

for all the drought events in the data set. 

We begin by considering only the initial 20-year data as base data and then include 10-year 
increments as update cycles in projections to be used in possible climate change adaptation, 
where the GCS-CCA approach seeks to optimize justified use of only the most recent data. 
The overall input data covers about 120 years (December 1896 to February 2017) and, thus, 
there are 10 predictive performance evaluations of GCS-CCA versus a traditional that 
ignores non-stationary trends. 
 
Figure 15 shows results summarized in terms of the mean predictive log-likelihood 
difference ratio,  , over the update cycles considered.  As before,   is defined as follows: 
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We can easily verify that GCS-CCA outperforms traditional CCA for sufficiently large   
values that range from 110 to 180.  This finding suggests that GCS-identified optimal data 
sub-segments explain near-future drought patterns better than when all of the historical 
observed data are used.  Figure 15 shows that lower values   lead to overfitting while higher 
values makes GCS-CCA essentially equivalent to traditional CCA.  Pre-processing of the 
data and applying an appropriate regularization parameter is recommended for such 
analyses. 
 

 
Figure 15. Calculated mean of predictive log-likelihood difference ratio, M, over all update 

cycles for the drought data with different choices for regularization parameter,  . 
 

 
All the computations were executed in MATLAB on a 64-bit Microsoft desktop computer with 
6 Intel i7-9750H CPUs at 2.60 GHz and 32 GB of RAM.  Figure 16 compares CPU times for 
10 predictive performance evaluations using the traditional CCA and the proposed GCS-
CCA for the drought patterns data and with different   (regularization) values.  Because 
GCS-CCA requires additional computation using the greedy segmentation algorithm, which 
attempts to select the optimal segments out of a combinatorically large pool, Figure 16 
shows that GCS-CCA requires a greater amount of CPU time than traditional CCA.  
Nevertheless, GCS-CCA is still a fairly light computational exercise easily undertaken on a 
common desktop computer that was used in the experiments and, while also considering all 
of the update cycles, it allows easy and efficient prediction of drought patterns over a 
window covering the next 10 years.  We can see the role of the regularization parameter 
again; CPU time is less when   is higher because increased regularization restricts the 
segmentation and requires less computation. 
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Figure 16. CPU time for climate change adaptation with the drought patterns data and 
different   values: traditional approach (left) and Greedy Copula Segmentation (right) 

 
 
4. Discussion 
 
Patterns in extreme climate time series will continue to change due to inherent non-
stationary characteristics as well as constantly changing anthropogenic influences.  Figures 
9 and 15 have clearly shown what can be learned by considering climate as a piecewise 
stationary process in decision-making for near-future prediction.  Accurate data-driven 
prediction provides objective information to policymakers to aid in addressing disaster risk 
reduction (DRR) and climate change adaptation (CCA).  A quantitative assessment of socio-
economic damage mitigation strategies based on GCS application can aid in CCA policy 
amendments; such strategies will depend on collaboration with domain experts from various 
disciplines including civil and environmental engineering, geosciences, public affairs, 
management, and economics. 
 
We have offered a validation of the proposed GCS-CCA methodology, highlighting its 
advantages in the context of single-site drought events.  GCS-CCA can easily be extended 
to apply to other types of disasters that are characterized by multiple climate variables.  
Since GCS-CCA is formulated to work with multivariate data, analysis for multiple sites 
and/or for greater spatial coverage can readily be undertaken.  By utilizing multivariate 
copulas, GCS offers the mathematical tractability to enable its use in general multivariate 
non-stationary time series.  Human-induced variables that influence disaster risks can as 
well be incorporated along with climate-related variables for comprehensive near-future DRR 
and CCA. 
 
One limitation of the proposed GCS-CCA methodology is the need for pre-processing of the 
data.  The selection of regularization parameters in the assessment has been briefly 
discussed in Section 2.3.  This selection choice will introduce more complexity when a high-
dimensional space of variables must be considered.  In addition, some basic domain 
knowledge is required to establish appropriate marginal distributions and copula families for 
the variables.  If these are not available or otherwise known, model selection using criteria 
such as AIC, BIC, or cross-validation is unavoidable.  To allow even more generalized 
formulation, non-parametric kernel density functions and non-parametric copula dependence 
structures may also be employed.  Such options and decisions would then be model-free; 
however, interpretation of results should be done with care since nonparametric approaches 
can lead to greater error in extreme values when input data are insufficient. 
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5. Conclusions 
 
In this work, we have extended the Greedy Gaussian segmentation (GGS) algorithm 
developed by Hallac (2019) by allowing multivariate Gaussian distributions in the copula 
definition; we refer to this extended approach as greedy copula segmentation (GCS). Our 
extension is well-suited for use with climate data since many climate-related variables are 
non-Gaussian and non-stationary. Based on the wide coverage of different dependence 
structures possible with the copula family choice, it is expected that GCS could be used in 
various applications that involve long sequences of multivariate time series data. We have 
explained GCS, iteration by iteration, so as to offer an accessible description of the greedy 
algorithm. 
 
Using a synthetic data set as well as an observed drought data set, we have shown that 
GCS can optimize future projections for possible use in climate change adaptation. Climate 
change adaptation needs to rationally consider periodic updates of the joint distribution of 
climate variables by focusing on patterns seen in extreme climate events. We introduce the 
notion of considering trends in any climate parameter as best understood by defining a 
piecewise process consisting of several stationary sub-segments to represent the data. In 
such a piecewise stationary representation, the latest (most recent) stationary sub-segment 
(whose length must be iteratively established, using maximum likelihood with regularization) 
can predict most rationally and precisely any near-future patterns in the extreme climate that 
are to be expected. The proposed GCS approach identifies the most informative data 
sampled from the latest stationary sub-segment; it iteratively evaluates the benefit of further 
segmentation on the last segment. By doing so, the algorithm greedily searches for the 
optimal last segment of input data.  
 
We show that the GCS-identified optimal data produce better predictive performance for 
possible climate change adaptation by illustrative examples using a benchmark synthetic 
data set as well as a real 120-year drought-related data set from Austin, Texas.  GCS-CCA 
shows superior predictive performance for the non-stationary benchmark problem. For the 
real-world application, we collect drought index time series data and extract the bivariate 
drought event (duration and severity) data. The GCS-CCA results suggest that the proposed 
approach can rationally uncover changing climate patterns in the time series and can 
produce accurate near-future projection for adaptation plans compared to more traditional 
approaches that seek to use long or complete historical data sets. The outlined framework 
can be easily communicated to policymakers who are non-scientific experts.  We expect that 
our model will reduce the gap between academia, researchers, and data scientists on the 
one hand and policymakers on the other.  We also expect that the GCS-CCA framework can 
help towards achieving the Sendai framework goals by offering a rational approach to risk 
reduction in the face of non-stationary climate hazards. 
 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



References 
 
Adams, J. (2017). climate_indices, an open source Python library providing reference 

implementations of commonly used climate indices. URL: 
https://github.com/monocongo/326climate%7B%5C_%7Dindices. 

Aminikhanghahi, S. and Cook, D. J. (2017) A Survey of Methods for Time Series Change 
Point Detection. Knowledge and Information Systems. 51 (2), 339–367. 

Bandyopadhyay, N. et al. (2020) Drought mitigation: Critical analysis and proposal for a new 
drought policy with special reference to Gujarat (India). Progress in Disaster Science. 
5, 100049. 

Beguería, S. et al. (2014) Standardized precipitation evapotranspiration index (SPEI) 
revisited: parameter fitting, evapotranspiration models, tools, datasets and drought 
monitoring. International journal of climatology. 34 (10), 3001–3023. 

Carrão, H. et al. (2016) Mapping global patterns of drought risk: An empirical framework 
based on sub-national estimates of hazard, exposure and vulnerability. Global 
Environmental Change, 39, 108-124. 

Cavus, Y. & Aksoy, H. (2020) Critical drought severity/intensity-duration-frequency curves 
based on precipitation deficit. Journal of hydrology. 584, 124312–. 

Cid, A. et al. (2016) Long-term changes in the frequency, intensity and duration of extreme 
storm surge events in southern Europe. Climate Dynamics. 46 (5), 1503–1516. 

Dai, A. (2013) Erratum: Increasing drought under global warming in observations and 
models. Nature climate change. 3 (2), 171–171. 

De Michele, C. & Salvadori, G. (2003) A Generalized Pareto intensity-duration model of 
storm rainfall exploiting 2-Copulas. Journal of Geophysical Research: Atmospheres. 
108 (D2), 4067–n/a. 

Djalante, R. and Lassa, S. (2019) Governing complexities and its implication on the Sendai 
Framework for Disaster Risk Reduction priority 2 on governance. Progress in 
Disaster Science. 2, 100010. 

Esling, P. and Agon, C. (2012) Time-series data mining. ACM Computing Surveys. 45 (1), 
1–34. 

Garcia Galiano, S. G. et al. (2015) Assessing Nonstationary Spatial Patterns of Extreme 
Droughts from Long-Term High-Resolution Observational Dataset on a Semiarid 
Basin (Spain). Water (Basel). 7 (10), 5458–5473. 

Genest, C. & Favre, A.-C. (2007) Everything You Always Wanted to Know about Copula 
Modeling but Were Afraid to Ask. Journal of Hydrologic Engineering. 12 (4), 347–
368. 

Genest, C. et al. (2011) Estimators based on Kendall’s Tau in Multivariate Copula Models.  
Australian and New Zealand Journal of Statistics. 53 (2), 157–177. 

Hallac, D. et al. (2019) Greedy Gaussian segmentation of multivariate time series. Advances 
in data analysis and classification. 13 (3), 727–751. 

Hameed, M. et al. (2018) Apprehensive Drought Characteristics over Iraq: Results of a 
Multidecadal Spatiotemporal Assessment. Geosciences. 8 (2), 58. 

Hao, Z. & Singh, V. P. (2013) Entropy-Based Method for Bivariate Drought Analysis. Journal 
of Hydrologic Engineering. 18 (7), 780–786. 

Hao, Z. & Singh, V. P. (2015) Drought characterization from a multivariate perspective: A 
review. Journal of hydrology. 527, 668–678. 

Homdee, T. et al. (2016) A comparative performance analysis of three standardized climatic 
drought indices in the Chi River Basin, Thailand. Agriculture and Natural Resources. 
50 (3), 211-219. 

Ishiwatari, M. and Surjan, A. (2019) Good enough today is not enough tomorrow: 
Challenges of increasing investments in disaster risk reduction and climate change 
adaptation. Progress in Disaster Science. 1, 100007. 

Izumi, T. et al. (2019) Disaster risk reduction and innovations. Progress in Disaster Science. 
2, 100033. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Jehanzaib, M. et al. (2020) Investigating the impacts of climate change and human activities 
on hydrological drought using non-stationary approaches. Journal of Hydrology, 588, 
125052. 

Jehanzaib, M. et al. (2021) Reassessing the frequency and severity of meteorological 
drought considering non-stationarity and copula-based bivariate probability. Journal 
of Hydrology, 126948. 

Lawrimore, J. et al. (2011) Global Historical Climatology Network – Monthly (GHCN-M), 
Version 3. DOI: https://doi.org/doi:10.7289/V5X34VDR. 

Lee, J. et al. (2020) Water-related disasters and their health impacts: A global review. 
Progress in Disaster Science. 5, 100123. 

Lee, T. & Ouarda, T. B. M. J. (2010) Long-term prediction of precipitation and hydrologic 
extremes with nonstationary oscillation processes. Journal of Geophysical Research: 
Atmospheres. 115 (D13). 

Li, J. et al. (2015) Evaluation of Nonstationarity in Annual Maximum Flood Series and the 
Associations with Large-scale Climate Patterns and Human Activities. Water 
Resources Management. 29 (5), 1653–1668. 

Liu, S. et al. (2019) Identification of the Non-stationarity of Floods: Changing Patterns, 
Causes, and Implications. Water resources management. 33 (3), 939–953. 

Manuel, L. et al. (2018) Alternative Approaches to Develop Environmental Contours from 
Metocean Data. Journal of Ocean Engineering and Marine Energy, 4(4). 

Mathier, L. et al. (1992) The Use of Geometric and Gamma-Related Distributions for 
Frequency Analysis of Water Deficit. Stochastic Hydrology and Hydraulics: Research 
Journal. 6 (4), 239–254. 

Matsuoka, Y. & Rocha, E. G. (2021) The role of non-government stakeholders in 
implementing the Sendai Framework: A view from the voluntary commitments online 
platform. Progress in Disaster Science. 9, 100142. 

Mazdiyasni, O. et al. (2019) Heat wave Intensity Duration Frequency Curve: A Multivariate 
Approach for Hazard and Attribution Analysis. Scientific reports. 9 (1), 14117–14118. 

Mishra, A. K. & Singh, V. P. (2010) A review of drought concepts. Journal of hydrology, 
391(1-2), 202-216. 

Nelsen, R. B. (2006) An Introduction to Copulas by Roger B. Nelsen. 2nd ed. 2006. New 
York, NY: Springer New York. 

Nystrup, P. et al. (2017) Long memory of financial time series and hidden Markov models 
with time‐varying parameters. Journal of Forecasting, 36(8), 989-1002. 

Ouarda, T. B. M. J. & Charron, C. (2018) Nonstationary Temperature-Duration-Frequency 
curves. Scientific Reports. 8 (1), 15493–15498. 

Patel, S.S. et al. (2021) Delivering the promise of the Sendai Framework for Disaster Risk 
Reduction in fragile and conflict-affected contexts (FCAC): A case study of the NGO 
GOAL's response to the Syria conflict. Progress in Disaster Science. 10, 100172. 

Polunchenko, A. S. and Tartakovsky, A. G. (2012) State-of-the-Art in Sequential Change-
Point Detection. Methodology and Computing in Applied Probability. 14 (3), 649–684. 

Reeves, J. et al. (2007) A Review and Comparison of Changepoint Detection Techniques for 
Climate Data. Journal of Applied Meteorology and Climatology. 46 (6), 900–915. 

Rigby, R.A. & Stasinopoulos, D.M. (2005) Generalized additive models for location, scale 
and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 
54(3), 507-554. 

Rydén, T. et al. (1998) Stylized facts of daily return series and the hidden Markov model. 
Journal of applied econometrics, 13(3), 217-244. 

Saja, A. M. A., et al. (2019) Implementing Sendai Framework priorities through risk-sensitive 
development planning – A case study from Sri Lanka. Progress in Disaster Science. 
5, 100051. 

Saklar, A (1959) Fonctions de repartition a n dimensions et leurs marges. Publications de 
l’Institut de Statistique de L’Universite de Paris 8. pp. 229-231. 

Salvadori, G. (2004) Bivariate return periods via 2-Copulas. Statistical Methodology. 1 (1-2), 
129–144. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Salvadori, G. & De Michele, C. (2004) Frequency analysis via copulas: Theoretical aspects 
and applications to hydrological events. Water Resources Research. 40 (12). 

Schwalm, C.R. et al. (2017) Global patterns of drought recovery. Nature, 548(7666), 202-
205. 

Sheffield, J. et al. (2012) Little change in global drought over the past 60 years. Nature. 491 
(7424), 435–438. 

Shiau, J.-T. & Shen, H. W. (2001) Recurrence Analysis of Hydrologic Droughts of Differing 
Severity. Journal of Water Resources Planning and Management. 127 (1), 30–40. 

Singh, C. et al. (2021) Losses and damages associated with slow-onset events: urban 
drought and water insecurity in Asia. Current Opinion in Environmental Sustainability, 
50, 72-86. 

Slater, L. J. et al. (2020) Nonstationary weather and water extremes: a review of methods for 
their detection, attribution, and management, Hydrol. Earth Syst. Sci. Discuss. 
[preprint], https://doi.org/10.5194/hess-2020-576, in review, 2020. 

Tan, C. et al. (2015) Temporal-Spatial Variation of Drought Indicated by SPI and SPEI in 
Ningxia Hui Autonomous Region, China. Atmosphere. 6 (10), 1399–1421. 

Truong, C. et al. (2020) Selective review of offline change point detection methods. Signal 
Processing. [Online] 167, 107299. 

Uchiyama, C. et al. (2021) Assessing contribution to the Sendai Framework: Case study of 
climate adaptation and disaster risk reduction projects across sectors in Asia-Pacific 
(2015–2020). Progress in Disaster Science. 12, 100195. 

Van Loon, A. F. et al. (2016) Drought in the Anthropocene. Nature geoscience. 9 (2), 89–91. 
Vicente-Serrano, S. M. et al. (2010) A Multiscalar Drought Index Sensitive to Global 

Warming: The Standardized Precipitation Evapotranspiration Index. Journal of 
climate. 23 (7), 1696–1718. 

Walz, Y et al. (2020) Monitoring progress of the Sendai Framework using a geospatial 
model: The example of people affected by agricultural droughts in Eastern Cape, 
South Africa. Progress in Disaster Science. 5, 100062. 

Wang, Y. et al. (2015) A time-dependent drought index for non-stationary precipitation 
series. Water Resources Management, 29(15), 5631-5647. 

Wilkins, A. et al. (2021) Challenges and opportunities for Sendai framework disaster loss 
reporting in the United States. Progress in Disaster Science. 10, 100167. 

Yevjevich (1967) An objective approach to definitions and investigations of continental 
hydrologic droughts. Hydrology Paper No. 23, Colorado State University, Fort 
Collins, Colorado. 

Yoo, J. et al. (2013) Bivariate drought frequency curves and confidence intervals: a case 
study using monthly rainfall generation. Stochastic Environmental Research and Risk 
Assessment. 27(1), 285–295. 

Yue, S. et al. (1999) The Gumbel mixed model for flood frequency analysis. Journal of 
hydrology (Amsterdam). 226 (1), 88–100. 

Yue, S. (2001) A bivariate gamma distribution for use in multivariate flood frequency 
analysis. Hydrological Processes. 15 (6), 1033–1045. 

Zelenhasic, E. & Salvai, A. (1987) A method of streamflow drought analysis. Water 
resources research. 23 (1), 156–168. 

 
  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 Greedy Copula Segmentation (GCS) is used to analyze non-stationary time series. 
 

 Multivariate characteristics are episodically described using copula models. 
 

 The use of GCS in plans for climate change adaptation is demonstrated. 
 

 GCS allows judicious treatment of trends in data to make near-future predictions. 
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