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Greedy Copula Segmentation of Multivariate Non-Stationary Time Series
for Climate Change Adaptation

Abstract

Non-stationary climate data are often encountered in dealing with natural hazards, climate
change and disaster reduction. With drought, for instance, it is common to encounter such
non-stationary data sets (time series). The objectives of this work are to formulate a rational
data-driven approach that can consider non-stationary and time series on multiple random
variables that can have generalized underlying probability distributions and dependence
structures. The methodology proposed seeks to divide up the data into non-overlapping
segments, each of which is treated as stationary with some underlying probability and
dependence structure, while the long time series yields mu'tiple such segments that are
mutually independent. The Greedy Copula Segmentation GCS) algorithm developed
employs best-fit probability distributions and copula functior. ~fter data-driven time series
segmentation. Validation of the proposed methodology is de mor.strated using a benchmark
problem as well as a single-site realistic drought examp.e. The proposed GCS approach
has potential use in climate change adaptation (CCA) c.nl “'saster risk reduction (DRR) for
any climate-related hazards involving non-stationary time series data.

Keywords: time series segmentation; greedy algorithn, non-stationary stochastic process

1. Introduction

Droughts, characterized by water shortay. s or a lack of precipitation and dry weather, can
occur in virtually all climatic zones and can cause severe damage to the ecology and
economy of regions where they occ''~ (i.'ishra and Singh 2010; Yoo et al., 2013; Carrao et
al. 2016; Schwalm et al. 2017; Sin¢h at al. 2021). Droughts can have slow onsets and they
can be frequent as well as long-I~.oiny. Lee et al., 2020’s review of the international disaster
database indicates that over 3,1 floods and droughts occurred globally from 2001 to 2018,
accounting for nearly 45% o. disasters stemming from natural hazards. One chronic
drought-prone state in India— “ujarat—has experienced drought almost every year for the
last 35 years (Bandyopadh,~ et al. 2020). Lee et al. (2020) point out that floods and
droughts caused more < eve, = damage in the period from 2001 to 2018 than over the entire
20th century. Secondary Jdamage to the economy arising due to droughts can also be
considerable. Worldwid¢ , 83% of agricultural loss and damage between 2006 and 2016
were attributed to droughts; these losses amounted to over 29 billion USD (Walz et al.
2020). The Sendai Framework for Disaster Risk Reduction (SFDRR) has emphasized
global disaster risk strategies that consider innovations in science and technology, but there
still has not been sufficient progress in risk reduction in several sectors due to gaps in the
connection of science, technology, policymaking, and climate change with evolving
humankind and living patterns and societies (Djalante and Lassa 2019; Ishiwatari and Surjan
2019; Saja et al. 2019; Ishiwatari and Surjan 2019; Izumi et al. 2019; Matsuoka and Rocha
2021; Patel et al. 2021; Uchiyama et al. 2021; Wilkins et al. 2021). With droughts,
especially, their unique and non-stationary characteristics make risk reduction endeavors
quite challenging. An improved understanding and statistical/numerical modelling of drought
patterns is vital for sustainable development in many parts of the world.

Climate data such as precipitation, wind speed, etc. make up a fundamental source of
information for the risk assessment of any civil infrastructure system. Often, the climate
parameter is represented as a stationary stochastic process, which then implies that the risk
assessment makes use of all the available historical data in prediction. Temporal patterns



that include extreme climate events such as droughts, floods, storms, etc. can be quite
variable due to inherent non-stationary characteristics and as an outcome of human-induced
climate change (Lee and Ouarda, 2010; Sheffield et al., 2012; Dai, 2013; Garcia Galiano et
al., 2015; Li et al., 2015; Cid et al., 2016; Van Loon et al., 2016; Ouarda and Charron, 2018;
Liu, S. et al.,, 2019; Slater et al.,, 2020). Such changing patterns highlight the possible
incompatibility of traditional stationary assumptions, especially when dealing with climate
change adaptation (CCA).

Two branches of methods have been studied during the last decades to incorporate non-
stationarity in risk assessments: 1) partitioning the time series into segments where
stationary models are used to explain each segment; and 2) modelling non-stationary
behaviour by introducing explanatory variables using smooth functions. The first option
involves change-point detection based on Bayesian inference, hypothesis testing, and
hidden Markov models, all of which seek to uncover break points in the time series data (see
Reeves et al., 2007; Esling and Agon, 2012; Polunche ko and Tartakovsky, 2012;
Aminikhanghahi and Cook, 2017; Truong et al., 2020 for a co.orehensive survey). Such
time series segmentation algorithms suffer from high comp itau»nal demand especially for
long time series, since finding appropriate break points is = combinatorial optimization
problem that requires evaluations whose number thus ar»ws exponentially with the number
of observations. Some segmentation algorithms, as ¢ result, are inefficient for optimizing
CCA that requires planning for futures on the scale 7 J'lacades based on collected hourly to
monthly climate data.

The Generalized Additive Model for Location, >/.ele, and Shape (GAMLSS) proposed by
Rigby and Stasinopoulos (2005) has recei e. c.gnificant attention and falls under the
second class of methods (Wang et al. 207 %, J~hanzaib et al. 2020, Jehanzaib et al. 2021).
GAMLSS has been successfully applic 1 frr analyses in hydrology applications due to its
great flexibility in addressing non-stationai - characteristics. GAMLSS can, however, predict
response variable trends, only w™en the explanatory variables can be predicted
independently. Climate variables 27> o0.°en inter-dependent; this makes it hard to identify
governing explanatory variables usiic, ¢ AMLSS that can then be used to arrive at optimized
CCA efforts.

Recently, Hallac et al. (201> proposed Greedy Gaussian segmentation (GGS) that
addresses noted challenges in: time series segmentation by identifying optimal break points
using a -greedy” but appr~xin.>~.ce approach. This method lightens the computation demand
involved in segmentatio ' to vhere evaluations required are reduced to varying linearly with
the number of obser auuns. Moreover, underlying assumptions with GGS and the
associated formulation :re better suited to CCA compared to what results with other
segmentation methods. GGS assumes non-repeatability of segments unlike ergodic hidden
Markov models (Rydén et al. 1998; Nystrup et al. 2017); this means that model parameters
for each segment are unrelated to parameters in other segments. Considering that we are
dealing with climate conditions that are widely acknowledged to be changing, the non-
repeatability assumption is justified. Also, GGS formulates the time series partitioning
problem based on the maximum log-likelihood of the data. Since we are assuming piecewise
stationarity and wish to project future patterns based on recent observations, a maximum
log-likelihood based approach is most appropriate for our problem. One drawback of GGS is
its Gaussian assumption, which is not always appropriate for climate-related problems
where variables often follow non-Gaussian distributions (Zelenhasic and Salvai, 1987;
Mathier et al., 1992; Yue et al., 1999; Shiau and Shen 2001; Yue 2001; De Michele and
Salvadori 2003; Hao and Singh 2013; Mazdiyasni et al. 2019).

We, therefore, extend the applicability and generality of GGS by replacing the multivariate
Gaussian distribution assumption with a multivariate copula choice. We refer to our
approach as the greedy copula segmentation (GCS) algorithm. The use of multivariate



copulas can help to represent many complex multivariate dependence structures both by
employing various options for marginal distributions and by selecting different copula
families (Saklar, 1959; Salvadori, 2004; Salvadori and De Michele, 2004; Nelsen, 2006;
Genest and Favre, 2007, Jehanzaib et al. 2021). Moreover, most common marginal
distribution parameters can be empirically obtained from data using maximum likelihood
estimation (MLE). The copula family parameter can also be non-parametrically estimated
using the empirical Kendall’s rank correlation coefficient, tau (Genest et al. 2011, Manuel et
al. 2018). For these reasons, we propose the use of a more versatile GCS approach, while
not losing advantages of the mathematical tractability of GGS.

GCS considers the non-stationary characteristics of the underlying climate process by
defining sub-segments that are each stationary but mutually independent. Near-future
patterns are reasonably assumed to be most similar to the most recent sub-segments.
Consequently, a model derived from such recent data might be expected to lead to better
predictions than what we get with the traditional approach bat uses the entire historical
sample. For civil infrastructure systems, we can effectively adop. an adaptation policy based
on the proposed GCS approach. A 5- to 10-year cycle of cli nat. data that possibly involves
policy amendment (CCA) usually starts by updating the ~itv Zpecific hazard data. Then,
derivative policies are updated accordingly. The projec ed 1'sk assessment is best suited
only for a near-future period because, after this perioc. the policy will need to be amended
with any newly discovered information/data. We der.c.>suate how to employ such new data
along with all the available historical data to update .~mr.oral hazard patterns and derivative
policies. Again, in light of the most recent climate cliange trends, dated data are unlikely to
contain meaningful information for near-future urr jactions. In fact, the use of old data can
cause a model to exhibit greater bias and unc 1. 'ir.y due to heterogeneity in the data due to
non-stationary character. By using the ~.~p.<ed GCS-identified optimal data, we rely on
only informative recent data to update p ilici :s. In other words, GCS-CCA discards outdated
data to improve prediction performance. 1. works more discriminately to detect and account
for short-term climate abnormalities.

In this study, we make the followir, contributions: 1) we derive an extension of Greedy
Gaussian Segmentation (Hallac <. a1, 2019) for use with non-Gaussian climate data and
any generalized copula model* =, we demonstrate our GCS method’s possible use in plans
for optimal climate change ada,tation; and 3) we present realistic experiments that illustrate
how a near-future pattern of ¢ “treme climate events can be optimally predicted using the
proposed approach. The o>ivctives of this work are to formulate a rational data-driven
approach (GCS) that can ‘onsider non-stationary and time series on multiple random
variables that can ha.= yeneralized underlying probability distributions and dependence
structures. The propose 1 GCS approach has potential use in climate change adaptation
(CCA) and disaster risk reduction (DRR) for any climate-related hazards involving non-
stationary time series data.

To demonstrate steps in the algorithms for GCS and GCS-CCA, an example analysis on a
benchmark data set is first presented in Section 2. A real-world application for drought risk
assessment follows in Section 3. Discussions and conclusions follow at the end.

2. Methodology

2.1 Greedy Copula Segmentation

Assume we have bivariate climate data, available as time series data, as shown in Figure 1.

Without loss of generality, assume that the time series are given at discrete data index
values as shown.
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Figure 1. A realization of synthetic bivariate benchmark data “ ne series: 3 separate data
segments generated using 3 different parameter setting. are highlighted.

In the synthetic data selected for this example, we have **«, Zumate-related variables that
follow gamma and lognormal distributions, respectivel *. Teir dependence structure is
assumed to be represented by a Clayton copula. A tctal o1 1,000 samples were generated
with 3 different parameter settings to embed non-sta*.u. ar, character in the data. We have 5
parameters to define the two variables in each o1 the 3 subsets—they include a copula
parameter, a; parameters describing the shape, a, #.1d sale, b, for the gamma variable; and
the mean, u, and standard deviation, g, for the i1c ghormal variable. Note that the mean and
variance of the gamma variable are ab and al *, .~~pectively.

For the data, the first 300 samples a: » s, nthetically generated using 0, = (a,a,b, i, 0) =
(1,10,0.5,2,0.5), the next 300 samples use - = (10,40,0.25,3,0.5), and the final 400 samples
are from 05 =(50,100,0.15,4,0.5) . . or the gamma-distributed variables, the different
parameter settings are equivalent *u =ewing different mean values of 5, 10, and 15, and
variances of 2.5, 2.5, and 2.25. Figur : 7. shows copulas according to the different parameter
setting selections. As is clear from ~igure 1, the generated time series are non-stationary;
the values of both variables a:e +~en to get higher with time (increasing data index value).
As such, this synthetic bivariat2 climate benchmark data set could represent changing
extreme climate events — s'ich ..s storms, floods, droughts, etc. — that get more frequent and

severe with time.
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Figure 2. Copulas for the synthetic benchmark data generation
using 04, 0,, and 05 (left to right).

From the above, one might expect that near-future patterns are most likely to be similar to
the last 400 samples. The earlier 600 samples are likely to be deemed outdated and would
increase uncertainty in any near-future prediction. Our goal is to find and uncover the last
stationary sub-segment from the data. To achieve this goal, we iterate the greedy



segmentation approach until no further segmentation on the last segment offers any
advantage.

2.1.1 Iteration 1

The GCS algorithm starts with the benchmark data that can be denoted as
X =[x, ...,xLOOO]T, where x; = (x; (i), x,(i)). Also, x;(i) and x, (i) represent the ith index
values of the first and the second variable, respectively. Note that x; represents a 2-

dimensional vector containing these ith index values of both variables and X represents the
entire bivariate data set.

We consider the data as a segment and, thus, the number of current segments K = 1; by
splitting the data into more segments, the value of K will be changed. In every GCS iteration,
we will consider a new breakpoint that then divides one of the current segments into two
sub-segments. In the first iteration, we have 999 possible . aw breakpoints denoted as
b1\2,ba\3, -, bogov1,000, Where the location of a breakpoint is .. ic.ted by the subscript. For

instance, by\x+1 is @ breakpoint that divides the data into two =ut-segments X; = [x,, e X T
and X, = [Xp41, ...,xLOOO]T. Figure 3 shows an example w th b .44, Where k = 500.
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Figure 3. Exari.nle ;,ub-segments generated by breakpoint, bsoo\s01-

Next, we compare tw " svenr rios: 1) where X represents independent bivariate samples from
a multivariate copula Cg Yased on all the data; and 2) where X; and X, represent separate
bivariate samples fro~ two different copulas, Co and Coy » respectively. For both

scenarios, we assume that the same Clayton copula family and Gamma and lognormal
marginal distributions, although different distribution and copula parameters apply in the two
scenarios. Scenario 1 leads to fixed model parameters, while Scenario 2 considers that the
model parameters change when one considers data before and after the breakpoint, by j41-

Using maximum likelihood, we will evaluate and maximize the following objective function:
Wer = PO + (%) — w0, (1

where Y (+) is a function computed based on the regularized maximum log-likelihood of the
available data with regard to the predefined copula family and marginal distributions.

Note that ¥ (X), first, employs MLE model parameters, 0, based on the assigned data, X.
The MLE method allows estimation of the marginal distribution parameters and the copula
family parameters; MATLAB provides functions named fitdist and copulafit that
accomplish this task. The regularized maximum log-likelihood function is obtained as
follows:
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YX) = Z(IOg Ca(Fl(xl(i)lavb)sz(xZ(i)l.uv 0')) + log f1(x1 (D) a, b) + log f>(x2 (D |1, 0)) (2)
i=1 1
2 _ —

where n is the length of the input bivariate time series, X; ¢, = 2 C“(ul_Fl(x;z’s:;‘Z_Fz(xz“w))
is the copula probability density function; u; = F;(x4|a, b) and u, = F,(x3|u, 0) are marginal
cumulative distribution functions; f; (x;|a, b) and f,(x,|u, o) are marginal probability density
functions; s; and s, are marginal sample standard deviations. To avoid overfitting, marginal
variance regularization is applied and 4 = 0 is the regularization parameter. The order of
magnitude of the marginal variances, together with A, influences the role of regularization,
which is discussed in Section 2.3.

Note that Wy\,1, as defined, is the regularized maximum log likelihood difference between
the likelihood function based on data sub-segments divided <. the breakpoint, b4+, and
the likelihood function based on the entire unsegmented d:ta . et. We calculate Wy, for
every possible breakpoint and then select an optimal break ;2.2 0y -4, as follows:

ki= argkmax Yok, (3)

and we also ensure that Wy:\x:,1 > 0. If every W rmicne a negative value, it means that

further segmentation has no advantage. In this casr, the greedy algorithm stops the
segmentation search and we go to the Return stage

Figure 4 shows 999 ¥ values computed wi'1 .. — 100. The maximum W value occurs for
k = 600. Based on this result, we divide u ¢ J7ta set into sub-segments at the breakpoint,
beoo\eo1- These resulting sub-segments *re shown in Figure 5.

1000 T T T T T T T
O max (k=600)

J\f
Pl
Y A —— /r‘”J I I 1 1 | 1
0 100 20" 200 400 500 600 700 800 900 1000
k

Figure 4. Calculated objt ctive function ¥ for the benchmark data at the first iteration.

] " A

X]_ X2

Figure 5. Sub-segments generated by the first identified breakpoint, bys\k:4+1 = bsoo\601-



2.1.2 Iteration 2

After the previous (first) iteration, what we have are new segmented data sets, X; =

[X1, ., Xg00l" @Nd X, = [X601, ...,xljooo]T. Thus, the number of current segments, K = 2, and
the number of new breakpoints possible is now 998. Again, we compute W for every possible
breakpoint and ultimately select a new optimal breakpoint, by:\x;+1. We reject the new

breakpoint and terminate the greedy algorithm if all ¥ values have a negative value. An
additional termination condition is invoked in Iteration 2 and beyond, if the identified optimal
breakpoint is not from the current last sub-segment. This is because our goal with the
greedy search algorithm is to find and use only the last stationary sub-segment to be
representative of the most likely series for the near future. Therefore, if further segmentation
cannot be continued on the current last sub-segment, we terminate the search. On the other
hand, if there is a breakpoint, by:\x;+1, Within the last sub-se gment (in Iteration 2, the last

segment = X,) and Wy:\x;4+1 > 0, we accept this new breakpon.: and continue the iteration
with the new segmented data sets, X; = [Xy,..,Xe00]", X2 = [X601, ...,xk;]T , and X3 =
[xkzﬂ, ---:Xl,OOO]T- Otherwise, the algorithm moves to whiit we refer to as the Return stage.

2.1.3 Iteration 3+

We repeat the procedure above until any one of th’, te, mination conditions: 1) all ¥ < 0; 2)
k* does not match an index number in the last «.ur -segment. After we terminate this iterative
greedy search, the algorithm moves to the fin7!.” 2turn stage.

2.1.4 Return

As final output, the algorithm returns *he <urrent last segment as the identified optimal data
sub-segment. We denote this data «&" a> X,,;. Note that X,,,,; < X.

Figure 6 shows calculated 9¢3 ' values for the benchmark data set at Iteration 2. The
maximum value occurs at k = 210 on the first segment. This means that we have reached
the second termination condiu>n. We stop the iterations and send the current last sub-

segment X, = [Xg01, ) ¥ 1 00. |T to the Return stage. As a result, the identified optimal data

T
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Figure 6. Calculated objective function ¥ for the benchmark data at the second iteration.

The GCS algorithm can be generalized to any d-dimensional multivariate data set, X =
[Xq, .., xy]T € RV, x; = (1 (D), ..., x4(i)). Let f;(x;]6;) be the probability density function and
u; = F;(x;]6;) be the cumulative distribution function for variable, x;. Multivariate copulas can
be denoted as Cg = C,(u4, ..., uy), where 0 = (a, 64, ...,0,). The regularized maximum log-
likelihood function for multivariate data, X, is given as:
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A
YX) = Z logc, (uq, ..., up) + z logfj(xj|9 ) ~5a 2 (4)
i=1 j=15j
Figure 7 shows the general GCS algorlthm flowchart based on the preceding discussion.

Greedy Copula Segmentation
p

Input X =[xXq,..,Xy]T € RV*d
Initialize number of segmentK =1,X; =X, ky=1,andk; =N
, * K=K+1
Forj=1,... K e
- |
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For lc = Ij_,, ...,kj-* } kg =k* kgy =N,
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k

Return Kth segment: W
Xopt = Xk J

Figure 7. Greedy Copula Seome ~tation (GCS) algorithm flowchart.

2.2 Climate Change Adaptation with the L 2nchmark Data

We are interested in attempting a ciiric *2 change adaptation strategy using GCS assuming
that the bivariate data in Figure 1 (~scribe climate parameters of interest. Suppose the
benchmark data set, X, represe: ts a 100 year-long set of observations with 10 records per
year. Let us first consider a ¢tuauon where only the first 40 year-long set (400 samples)
represent the base data. The ‘racitional approach would develop the base joint copula, Cg(o)

using all the base data, buu ~ ¢ optimal approach will use the GCS-identified optimal data
only for near-future proj:cticns. Then, such a derived joint distribution will be used for any
risk assessment until (he ..ew data are obtained, or the existing data set from 40 years is
updated. Suppose this di: tribution is updated in increments corresponding to 10-year cycles.
Again, the traditional approach would use all of the now 50 year-long set (500 samples) to
obtain a new updated version of the joint copula, C@m)’ but our optimal approach will again

use the GCS-identified optimal data only. The procedure can be repeated every 10 years
and two different joint copulas can be developed based on the two different approaches
(traditional vs. GCS).

To highlight the comparative prediction performance of the two approaches, we compute
log-likelihoods for m update cycles, each of 10-year Iength as follows:
Nm

LLtmd(m)—1og1_[c@tmdm(xl> LLopt(m)—log]_[ceo,,tm ). ©

Two different Jomt copulas Copraq m @Nd Coppe m» A€ derlved using the base data and the

same number of new 10-year data updates, x;,i = 1, ..., n,,, is applied to calculate the log-
likelihood in Equation 5. As such, the calculated log-likelihoods are fair performance
measures to allow comparisons between traditional and GCS approaches. The copula and



corresponding approach that yields a higher likelihood when the new data are included is
more accurate than the alternative. In other words, the traditional and GCS approaches
offer models based on the base data that are then used to assess how well they perform
against different lengths of update cycle data increments; relative comparison is possible
using Equation 5.

A general formulation can be defined using t4s. (the base period) and t.,. (the period

covered in each update cycle). At cycle m, the traditional approach uses all the data
collected from the beginning until t;4. +m - t, to update the distribution, whereas GCS-

CCA uses X,,;, for the corresponding distribution. Note that each ¢.,.-long data update can

be used to evaluate predictive performance. Figure 8 shows a diagram summarizing the two
different approaches with the formulation as presented.

Traditional Approach

I .

Y “h

| LLU aw 1'0) = log n?=01 Celru(! D(xi)

Base Dist. cg,,, ,NEW N, data

IS | ) =T o 00

Updated Dist. cg,,,,, newn, data

tba..';s: +mx t(‘yc

Y

toye LLeraa(m) =108 [T} Coyyq n (Xi)

—
Updated Dist. €g,,,4 ev b, data

Optimal Approach
X

opty tfy_‘f y | Lant(O) =log n?£1 COUprio(xi)

« A

Base Dist. Coypo NEW Mg data

toe

- -
Updated Dist. cg,,,, , New 1, data

™ LLope(m) = 108 TT2 Co e, (%0)

Y

| LLope(1) = 10g[T}2, co,,, , (X;)

U, ate ' Dist. coppt_, new n,, data

Figure 8. Traditiona! an.' uptimal GCS approaches for climate change adaptation.

The predictive perfor, ancz is evaluated 6 times since we choose, each time, the first 400
samples as the base dat: and add 100 new samples in each update cycle. To allow overall
predictive performance comparisons between the traditional CCA and GCS-CCA, we
compute the mean predictive log-likelihood difference ratio, M, over all the update cycles:

15 LLyy, (i) — LLprgq (i)

l)— trad\l
M(%) = = opt x 100.
0 6; o]

We repeat this entire procedure 10 times by synthetically generating (using random
sampling) a new benchmark data set each time. Figure 9 shows the mean and min-max
error bars of M(%) with different regularization parameter choices, A. We can easily confirm
that GCS-CCA outperforms traditional CCA for sufficiently large parameters, 4, that range
between 5 and 100. One can also directly evaluate the influence of A; for lower values of A,
GCS-CCA performs better than traditional CCA. However, a lower-valued regularization
parameter implies more overfitting and then its performance is not better than that with
traditional CCA. Higher-valued regularization parameter levels restrict segmentation and



then GCS-CCA is basically the same as traditional CCA. It is only for intermediate-valued A
values where GCS-CCA with associated segmentation is seen to be superior.

250

mean of M

200 - /l_{ 1 min-max errorbars

-100 -

10° 10? g
A

Figure 9. Calculated mean of predictive log-likelihc ©d a fference ratio, M,

over all update cycles with different choices for re yu:anzation parameter, A.

2.3 Regularization Parameter Selection

GCS-CCA leads to more accurate prediction than tr.diticnhal CCA if we can select the proper
regularization parameter, 1. Its value can '»e chosen by trial and error, using prior
knowledge, or using a principled method, suc!. ac Zayesian or Akaike information criterion or
cross validation (Hallac et al., 2019). In g.ne.2l, one needs a sufficiently high value for A
because this parameter directly influenc=s “ne extent of segmentation that results. Too high
a value for A results in no segmentation, w"ich is then equivalent to traditional CCA; on the
other hand, a low value for A leads tu averfitting, which means that GCS will select a very
short recent sub-segment as the oru ~ar data. Then, the joint distribution of the underlying
variables is overly fitted to this smeil arhount of data. As we can see from Equation 4, the
order of magnitude of the ma gun.”l variances, together with 1, influences the role of
regularization. In Figure 9, v e cvstematically evaluate the role of 4 in assessing model
quality. Results indicate th~t ZCS-CCA’s effectiveness is hurt by overfitting and inferior
performance when A value~ are low. Also, the results with traditional CCA are virtually the
same as GCS-CCA whe., ? values are too high. Overall predictive performance of GCS-
CCA is an improverren ov:r traditional CCA over a considerably wide range of 1 values
from 5 to 100. This later finding suggests too a lower sensitivity of A on the benchmark
data; if some modere*~ amount of regularization is imposed with GCS-CCA, superior
performance over traditional CCA is assured.

3. Experiments with Drought Patterns in CCA

Several hydroclimate variables — e.g., precipitation, air temperature, soil moisture, etc. —
simultaneously affect drought scenarios. Indices or scores derived from univariate and
multivariate drought indicators that are in turn based on individual or multiple hydroclimate
variables have been developed to characterize and quantify drought conditions. Such scores
are included in a drought index, and drought index time series can then be used to describe
the input data for drought severity-duration-frequency (SDF) analysis.

For an experiment involving real data analysis and application of GCS-CCA, we collected
climate data — representing monthly total precipitation and a monthly average of daily
average temperature data — from the Global Historical Climatology Network-Monthly



(GHCN-M) Version 3 dataset (Lawrimore et al., 2011). Various types of drought indices were
calculated using open-source software originally developed by National Integrated Drought
Information System (NIDIS), National Centers for Environmental Information (NCEI), and
National Oceanic and Atmospheric Administration (NOAA) (Adams, 2017). The collected
climate variables and calculated drought indices cover the geospatial extent: latitude
24.5625 ~ 49.354168 (degrees north), longitude -124.6875 ~ -67.020836 (degrees east),
and raster dimensions, (latitude, longitude, time) = (38, 87, 1466). One grid cell near the
Austin, Texas area was selected for a regional case study. Figure 10 shows the area
covered by the selected grid cell.
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Figure 10. Selerte! site in the Austin, Texas area.

Among various drought indices u.~ Standardized Precipitation Evapotranspiration Index
utilizing a Gamma distributior w.*h a 3-month scale (SPEI_G3), developed by Vincente-
Serrano et al., 2010 was sel~ciw 1 to serve as an indicator of drought events. This selection
is justified because studies ha\ shown that SPEI performs better in drought assessments
under a global warming *~nu oy combining the multi-scalar character with the capacity of
involvement of tempera ure effects on droughts (Hao and Singh, 2015; Tan et al., 2015;
Homdee at al., 2016). Jetailed information about SPEI and its calculation can be found in
the studies by Vincente-< errano et al., 2010; Begueria et al., 2014; Hameed et al., 2018.

Figure 11 shows the calculated SPEI_G3 time series, denoted by Z, that is obtained for the
period, December 1896 to February 2017. The Thornthwaite equation is used to derive

potential evapotranspiration (PET) from air temperature data.
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Figure 11. Calculated standardized precipitation evapotranspiration index utilizing Gamma
distribution and 3-month scale (SPEI_G3) time series.



This study describes the entire procedure that starts with preparing a bivariate drought
pattern time series and proceeds to a final predictive performance evaluation. We provide a
step-by-step guide that can be used for not only several types of drought events but also for
other extreme climate events and applications that have a similar problem setting and data
structure.

3.1 Bivariate Drought Pattern Time Series

To apply GCS, first, we extract drought events from the selected drought index time series
using a predefined truncation level. The overall concept of how we define a drought event
and its associated duration, d;, and severity, s; is illustrated in Figure 12. In this study,
drought duration and severity are selected for the analysis since they have been widely used
for drought severity-duration-frequency (SDF) analysis. A similar concept can be applied to
other climate data time series.

== observation
[ start /
X end

Figure 12. A concept diagram showing definitions Jf drcught event duration, severity, and
equivalent intensity, along with indication:. ¢, ¢ pre-crossing and a post-crossing.

Our definition is a modified version of t"e ® evjevich (1967) theory of run model. We define
the start and end of a drought event by .. terpolating pre-crossing and post-crossing data
points given the data. In this manne: for any drought event, i, the drought duration, d; —
defined as the time difference betwe_." tc start and end — is real-valued. Then, the absolute
value of the integral area betweer. «ircught index time series and the selected horizontal
truncation level from the start to (nc end of the event is defined as the drought severity, s;.
An equivalent drought index vr.luc z;, associated with drought event, i, is easily calculated.
Mathematically, z; = s;/d;, which is sometimes referred to as drought intensity (Cavus and
Aksoy, 2020). This drougbht inu >x when considered at a constant level over the duration of
the event leads to an are~ ha.ed severity that is equivalent to the observed value, s;, for the
same event. This is clear tho from Figure 12. To be clear, we refer to z; as an equivalent
intensity.

Suppose we extract N drought events from the given drought index time series. Then, the
input data, X = [xy,..,xy] € R¥*? | where x; = (d;,s;) . Each data point can now be
considered as data obtained at the start of corresponding drought event. We can now apply
GCS-CCA to the input drought data.

Vincente-Serrano et al.,, 2010 defined various ranges of SPEI values as associated with
different intensities of droughts: light drought (-0.5 to -0.99), moderate drought (-1.0 to -
1.49), severe drought (-1.5 to -1.99), and extreme drought (-2.0 <). In the present study, a
truncation SPEI level of -0.5 is selected so as to include even the mildest drought conditions
in our assessment. Accordingly, a total of 143 drought events with associated duration and
severity (or equivalent intensity) are extracted from the SPEI_G3 time series.

Figure 13 shows the duration, severity, and equivalent intensity values considering all the
drought events extracted over the period of measurements (1896-2017) in the selected
Austin, Texas region. Average and standard deviation values are shown for the data and are



also shown using a 5-year moving window. The moving average and standard deviation
variation clearly indicate non-stationary characteristics in the drought pattern. Figure 14
shows scatter plots of the collected data, showing two of the drought-related variables at a
time. Based on similar assumptions in past studies, exponential and gamma distributions are
selected as marginal probability distributions for duration and severity, respectively. The
Gumbel copula family is selected to model the pairwise dependence structure for these two
variables (Zelenhasic and Salvai,1987; Hao and Singh, 2013).
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Figure 13. Duration, severity, and 2qu valent intensity values from 143 extracted
drought events, using a -0.5 v ‘ncation level with the SPEI_G3 data.
14 1 o o o
1.2
12 1 o o
o
o p }_,’-
104 ° @ o o 0 [} o
c
5 3 . P 8 . 2
£ 8 ° 4 5 5
Z 6 5 o ° 5 °
& % ° E % Ba, gu0 ° g T o
4 | = =
w w
3 |
g J
0 5 10 15 20 0 5 10 15 20 0 5 10
Duration (months) Duration (months) Severity

Figure 14. Pairwise scatter plots showing duration, severity, and equivalent intensity
for all the drought events in the data set.

We begin by considering only the initial 20-year data as base data and then include 10-year
increments as update cycles in projections to be used in possible climate change adaptation,
where the GCS-CCA approach seeks to optimize justified use of only the most recent data.
The overall input data covers about 120 years (December 1896 to February 2017) and, thus,
there are 10 predictive performance evaluations of GCS-CCA versus a traditional that
ignores non-stationary trends.

Figure 15 shows results summarized in terms of the mean predictive log-likelihood
difference ratio, M, over the update cycles considered. As before, M is defined as follows:
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We can easily verify that GCS-CCA outperforms traditional CCA for sufficiently large A
values that range from 110 to 180. This finding suggests that GCS-identified optimal data
sub-segments explain near-future drought patterns better than when all of the historical
observed data are used. Figure 15 shows that lower values A lead to overfitting while higher
values makes GCS-CCA essentially equivalent to traditional CCA. Pre-processing of the
data and applying an appropriate regularization parameter is recommended for such

analyses.
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Figure 15. Calculated mean of predictive lor.-likc!:nood difference ratio, M, over all update
cycles for the drought data with diffzrc nt (hoices for regularization parameter, A.

All the computations were executec iri MATLAB on a 64-bit Microsoft desktop computer with
6 Intel i7-9750H CPUs at 2.60 G’1. and 32 GB of RAM. Figure 16 compares CPU times for
10 predictive performance evs!uctions using the traditional CCA and the proposed GCS-
CCA for the drought patterns -data and with different 1 (regularization) values. Because
GCS-CCA requires additional . ~ mputation using the greedy segmentation algorithm, which
attempts to select the ortin.~! segments out of a combinatorically large pool, Figure 16
shows that GCS-CCA requires a greater amount of CPU time than traditional CCA.
Nevertheless, GCS-CCA 15 still a fairly light computational exercise easily undertaken on a
common desktop comput 2r that was used in the experiments and, while also considering all
of the update cycles, it allows easy and efficient prediction of drought patterns over a
window covering the next 10 years. We can see the role of the regularization parameter
again; CPU time is less when 1 is higher because increased regularization restricts the

segmentation and requires less computation.
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Figure 16. CPU time for climate change adaptation with the drought patterns data and
different A values: traditional approach (left) and Greedy C.'ula Segmentation (right)

4. Discussion

Patterns in extreme climate time series will contnue to change due to inherent non-
stationary characteristics as well as constantly chang.~y anthropogenic influences. Figures
9 and 15 have clearly shown what can be learred by considering climate as a piecewise
stationary process in decision-making for nea’-fiture prediction. Accurate data-driven
prediction provides objective information to ' olicyinakers to aid in addressing disaster risk
reduction (DRR) and climate change adr pteior, {CCA). A quantitative assessment of socio-
economic damage mitigation strategies h7.sed on GCS application can aid in CCA policy
amendments; such strategies will denend o. collaboration with domain experts from various
disciplines including civil and envircnmental engineering, geosciences, public affairs,
management, and economics.

We have offered a validation >f ue proposed GCS-CCA methodology, highlighting its
advantages in the context of s ngic -site drought events. GCS-CCA can easily be extended
to apply to other types of Cisa.ters that are characterized by multiple climate variables.
Since GCS-CCA is formu:~teoc to work with multivariate data, analysis for multiple sites
and/or for greater spati-u ~overage can readily be undertaken. By utilizing multivariate
copulas, GCS offers the ms.thematical tractability to enable its use in general multivariate
non-stationary time serncs. Human-induced variables that influence disaster risks can as
well be incorporated alc~g with climate-related variables for comprehensive near-future DRR
and CCA.

One limitation of the proposed GCS-CCA methodology is the need for pre-processing of the
data. The selection of regularization parameters in the assessment has been briefly
discussed in Section 2.3. This selection choice will introduce more complexity when a high-
dimensional space of variables must be considered. In addition, some basic domain
knowledge is required to establish appropriate marginal distributions and copula families for
the variables. If these are not available or otherwise known, model selection using criteria
such as AIC, BIC, or cross-validation is unavoidable. To allow even more generalized
formulation, non-parametric kernel density functions and non-parametric copula dependence
structures may also be employed. Such options and decisions would then be model-free;
however, interpretation of results should be done with care since nonparametric approaches
can lead to greater error in extreme values when input data are insufficient.



5. Conclusions

In this work, we have extended the Greedy Gaussian segmentation (GGS) algorithm
developed by Hallac (2019) by allowing multivariate Gaussian distributions in the copula
definition; we refer to this extended approach as greedy copula segmentation (GCS). Our
extension is well-suited for use with climate data since many climate-related variables are
non-Gaussian and non-stationary. Based on the wide coverage of different dependence
structures possible with the copula family choice, it is expected that GCS could be used in
various applications that involve long sequences of multivariate time series data. We have
explained GCS, iteration by iteration, so as to offer an accessible description of the greedy
algorithm.

Using a synthetic data set as well as an observed drought data set, we have shown that
GCS can optimize future projections for possible use in climate change adaptation. Climate
change adaptation needs to rationally consider periodic upd.‘tas of the joint distribution of
climate variables by focusing on patterns seen in extreme clima.> events. We introduce the
notion of considering trends in any climate parameter as pes understood by defining a
piecewise process consisting of several stationary sub-seon.zni(s to represent the data. In
such a piecewise stationary representation, the latest (m st 1 2cent) stationary sub-segment
(whose length must be iteratively established, using mcximum likelihood with regularization)
can predict most rationally and precisely any near-fut., > patterns in the extreme climate that
are to be expected. The proposed GCS approac.” ic2ntifies the most informative data
sampled from the latest stationary sub-segment; it i’era.rely evaluates the benefit of further
segmentation on the last segment. By doing sc, the algorithm greedily searches for the
optimal last segment of input data.

We show that the GCS-identified optir ial Jata produce better predictive performance for
possible climate change adaptation by . strative examples using a benchmark synthetic
data set as well as a real 120-year u.~ught-related data set from Austin, Texas. GCS-CCA
shows superior predictive performar.ce \or the non-stationary benchmark problem. For the
real-world application, we collect crcu¢ nt index time series data and extract the bivariate
drought event (duration and seve i, uata. The GCS-CCA results suggest that the proposed
approach can rationally unco'e. changing climate patterns in the time series and can
produce accurate near-future . ojection for adaptation plans compared to more traditional
approaches that seek to use . ng or complete historical data sets. The outlined framework
can be easily communicatea = policymakers who are non-scientific experts. We expect that
our model will reduce tl e gp between academia, researchers, and data scientists on the
one hand and policym.."ei- on the other. We also expect that the GCS-CCA framework can
help towards achieving t'.e Sendai framework goals by offering a rational approach to risk
reduction in the face of non-stationary climate hazards.
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Greedy Copula Segmentation (GCS) is used to analyze non-stationary time series.
Multivariate characteristics are episodically described using copula models.
The use of GCS in plans for climate change adaptation is demonstrated.

GCS allows judicious treatment of trends in data to make near-future predictions.
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