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Honolulu, HI, 96822, USA 

2
 Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Naples, Italy 

3
 Institute of Marine Science, University of Alaska, Fairbanks, 120 O’Neill, Fairbanks, AK,

 

99775-7220, USA  

 

‡ These authors made equal contributions 

† Current address: Institute of Pathology, Klinikum Chemnitz gGmbH, 09111 Chemnitz, Germany 

* Corresponding author VR: vittoria.roncalli@szn.it 

 

Running title: Acclimatization in a Planktonic Crustacean  

 

Keywords: Gulf of Alaska, zooplankton, transcriptomics, diapause, “The Blob”, Neocalanus 

flemingeri 

  

https://doi.org/10.1111/mec.16354


 2 

Abstract 

How individual organisms adapt to non-optimal conditions through physiological acclimatization is 

central to predicting the consequences of unusual abiotic and biotic conditions such as those 

produced by marine heat waves. The Northeast Pacific, including the Gulf of Alaska experienced an 

extreme warming event (2014-2016, “The Blob”) that affected all trophic levels leading to large-

scale changes in the community. The marine copepod Neocalanus flemingeri is one key member of 

the subarctic Pacific pelagic ecosystem. During the spring phytoplankton bloom this copepod builds 

substantial lipid stores as it prepares for its non-feeding adult phase. A three-year comparison of 

gene expression profiles of copepods collected in Prince William Sound in the Gulf of Alaska 

between 2015 and 2017 included two high-temperature years (2015 and 2016) and one year with 

very low phytoplankton abundances (2016). The largest differences in gene expression were 

between high and low chlorophyll years, and not between warm and cool years. The observed gene 

expression patterns were indicative of physiological acclimatization. The predominant signal in 

2016 was the down-regulation of genes involved in glycolysis and its incoming pathways, 

consistent with the modulation of metabolic rates in response to prolonged low food conditions. 

Despite the down-regulation of genes involved in metabolism, there was no evidence of 

suppression of protein synthesis based on gene expression or behavioral activity. Genes involved in 

muscle function were up-regulated, and the copepods were actively swimming and responsive to 

stimuli at collection. However, genes involved in fatty acid metabolism were down-regulated in 

2016, suggesting reduced lipid accumulation.   
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1. Introduction 

Marine heat waves have devastating effects on ecosystems leading to major die-offs of 

foundation species and ecological regime shifts that persist beyond the warm period (Arimitsu et 

al., 2021; Smale et al., 2019; Suryan et al., 2021). As marine heat waves (MHWs) increase in 

frequency and amplitude (Oliver et al. 2018), it becomes increasingly important to understand their 

impact on both individual organisms and entire biological communities. While anomalously warm 

temperatures may lead to high mortality in species living near their thermal limit (Smale et al., 

2019), many observed ecosystem responses cannot be explained by differences in temperature. 

Predicting community responses and establishing causal effects and linkages among the multiple 

and cascading changes during MHWs are more difficult (Oliver et al., 2021; Suryan et al., 2021). 

The large warm temperature anomaly (the “Blob”) that started in the North Pacific during the fall of 

2013 exceeded historical variability in sea-surface temperatures recorded in the Gulf of Alaska 

(Litzow et al., 2020).  It had devastating effects on fisheries and wildlife along the entire Gulf of 

Alaska, Bering Sea and even the southern California Current System (Peterson, Robert, & Bond, 

2015). The weather-induced environmental changes cascaded through the entire food web with 

reports of low primary productivity, unusual harmful algal blooms, warm-water copepod species 

invading the sub-arctic, low larval fish recruitment and high mortality in salmon, sea birds, whales 

and sea lions (Auth, Daly, Brodeur, & Fisher, 2018; Gomez-Ocampo, Gaxiola-Castro, Durazo, & 

Beier, 2018; Nielsen et al., 2021; Piatt et al., 2020; Rogers, Wilson, Duffy‐Anderson, Kimmel, & 

Lamb, 2021; Suryan et al., 2021; Zhu et al., 2017). However, an analysis of abundance data of the 

pelagic community collected over a 20-year period in the Gulf of Alaska underscored the difficulty 

of understanding causal effects. While the study failed to identify significant correlations between 

sea-surface temperature (SST) and changes at the lower trophic levels (Litzow et al. 2020), an 

ecosystem-wide analysis not only detected shifts in the lower trophic levels, but concluded the 

community had not returned to pre-Blob conditions by 2018 (Arimitsu et al., 2021). These studies 

focused on abundances alone and provide no information on how organisms were responding 
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physiologically to environmental conditions that, in addition to temperature included many more 

factors including some hidden ones. An alternate approach is to query the organism as to their state 

of “health.” 

The study of organism-environment interactions in physiological ecology aims to establish 

adaptive capacity and niche breadth by elucidating how an organism adjusts its physiology to 

abiotic and biotic environmental stressors. A framework is emerging in this field that links known 

physiological responses to environmental stressors and the effect of acclimatization on Darwinian 

fitness (Sokolova, 2013). This requires studying organisms in the field, while applying knowledge 

gained from experimental studies on model species. For example, the cellular stress response (CSR) 

is a universal response among organisms that provides immediate protection against stress-induced 

macromolecular damage (Kültz, 2020). Well-studied physiologically, the CSR involves a minimal 

stress proteome (conserved proteins) whose expression is altered in response to the stress in order to 

repair and prevent damage, activate cell cycle checkpoint and reallocate energy (Gasch, 2003; 

Kültz, 2005). In contrast, organisms experiencing persistent non-optimal but non-lethal conditions 

will acclimatize by adjusting their physiology to maintain cellular homeostasis (Kültz, 2005, 2020). 

Physiological plasticity allows an organism to adjust to non-optimal conditions, however, at the 

expense of a decrease in fitness, i.e., lower reproductive success (Sokolova, 2013). Thus, 

acclimatization is typically energy-limited and affects both metabolism and innate immunity 

(Oomen, Hutchings, & Miller, 2017; Sokolova, 2013). However, homeostatic responses are also 

species-and stressor-specific (Kültz, 2005, 2020), and could offer an opportunity to elucidate causal 

linkages between the physiological response and the source of organismal stress. Physiological state 

and acclimatization have been characterized using high-throughput sequencing of mRNA (RNA-

Seq) under experimental conditions in non-model organisms (Oomen et al., 2017). Building on 

such experimental studies, we examined physiological acclimatization in a key member of the 

subarctic Pacific plankton, the copepod Neocalanus flemingeri over a three-year period between 
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2015 and 2017. We used RNA-Seq to obtain gene expression profiles for individuals collected in 

the spring from their natural environment under contrasting conditions.   

Our collection site, Prince William Sound (PWS) is a large fjord system that is inhabited by 

populations of lipid-rich copepods that diapause in the deep trenches of the sound (Cooney, 1986; 

Halverson, Bélanger, & Gay III, 2013; Kline Jr, 1999). In the spring, these small planktonic 

crustaceans are found in the upper 100 m where they feed on the spring phytoplankton bloom, 

accumulating lipids prior to entering diapause starting in late May (Cooney, 1986; Cooney, Coyle, 

Stockmar, & Stark, 2001; Coyle & Pinchuk, 2003, 2005; McKinstry & Campbell, 2018). 

Zooplankton biomass in the spring is typically dominated by three members of the genus 

Neocalanus, N. flemingeri, N. plumchrus and N. cristatus (Cooney, 1986; Cooney et al., 2001). N. 

flemingeri, the focus of this study is a filter feeder that consumes a wide range of single celled 

autotrophs and heterotrophs with a preferred food size greater than 20 µm (Dagg, Strom, & Liu, 

2009; Liu, Dagg, Napp, & Sato, 2008). This species has non-feeding adults and depends on the 

spring phytoplankton bloom to store enough resources ("capital") to fuel both diapause and 

reproduction (Lenz & Roncalli, 2019; Roncalli, Cieslak, Hopcroft, & Lenz, 2020).   

In the spring, chlorophyll a levels integrated between the surface and a depth of 50 meters 

can reach 100-200 mg per m
2
 with major contributions from the copepod’s preferred food size, 

large phytoplankton cells (> 20 µm) (McKinstry & Campbell, 2018; Strom, Olson, Macri, & 

Mordy, 2006). However, in 2016, at the peak of the Blob and the highest recorded surface 

temperatures, integrated chlorophyll a abundances were unusually low in PWS (McKinstry & 

Campbell, 2018; Strom et al., 2006), consistent with food-limited conditions (Liu & Hopcroft, 

2006). N. flemingeri pre-adults (copepodite stage CV) were collected in early May in 2015, 2016 

and 2017 during the annual spring oceanographic cruises of a long-term monitoring program 

(Coyle, Hermann, & Hopcroft, 2019; Sousa, Coyle, Barry, Weingartner, & Hopcroft, 2016). Using 

a comparative approach, we examined gene expression profiles to better understand physiological 

acclimatization under environmental conditions with different water temperatures, salinities and 
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spring chlorophyll a concentrations. Gene expression analysis was used to identify which biological 

processes, if any, were differentially regulated in individuals collected in the spring in three 

different years. The final goal was to examine phenotypic plasticity during a critical phase in the 

copepod’s development, preparation for diapause, under contrasting environmental conditions.   

 

2. Material and Methods 

2.1 Sampling strategy and environmental data 

Neocalanus flemingeri pre-adults (copepodite stage V, CV) were collected during the May 

annual spring cruise of the Seward Line Long-term Observation Program (LTOP) 

(http://www.sfos.uaf.edu/sewardline/) from two stations in Prince William Sound (PWS) (Figure 1; 

PWS2: Lat 60° 32.1′, Long 147° 48.2′; PWSA: Lat  60° 49.3′, Long 147° 24′ ) during 2015 (May 

7
th

) , 2016 (May 1
st
) and 2017 (May 3-4). Figure 1 also shows two additional PWS stations with 

environmental data (PWS1 and PWS3, see below) and two offshore Gulf of Alaska stations (GAK9 

and GAK14). The latter were included in a previous transcriptomic study (Roncalli, Cieslak, 

Germano, Hopcroft, & Lenz, 2019). Zooplankton were collected using a QuadNet CalVET net 

towed vertically from 100 m depth to surface. Two of the four nets of the QuadNet had a mesh size 

of 150 µm and the others a mesh size of 53µm. For the transcriptomics samples, collections from 

the 53 µm mesh nets were removed prior to washing down the net and immediately diluted.  N. 

flemingeri CVs were rapidly sorted under the microscope, preserved within 1hr of the tow into 

RNAlater Stabilization Reagent (QIAGEN) and frozen.  

Environmental data collected as part of the spring collections 

(http://www.sfos.uaf.edu/sewardline/) were downloaded and analyzed for temperature, salinity, 

chlorophyll a and zooplankton abundances in western Prince William Sound (Hopcroft & Clarke-

Hopcroft, 2019a, 2019b, 2019c) as summarized in Supplementary Table S1. Briefly, temperatures, 

measured using an SBE 911 + CTD, were averaged for the upper 50 meters for each year and then 

averaged across stations (PWS1, PWS2, PWS3, PWSA; Fig. 1). Size fractionated chlorophyll a 

http://www.sfos.uaf.edu/sewardline/
http://www.sfos.uaf.edu/sewardline/
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concentrations from discrete depths (0 – 50 m) were integrated and averaged across stations. 

Average N. flemingeri abundances (individuals per m
3
) and biomass (g wet-weight m

3
), and total 

zooplankton biomass were extracted from the QuadNet (150 µm mesh nets) zooplankton data for 

Prince William Sound.  

2.2 RNA extraction, gene library preparation and RNA-Seq  

Total RNA was extracted from individual CVs from the two stations (PWSA, PWS2) 

collected in 2015, 2016 and 2017 using QIAGEN RNeasy Plus Mini Kit (catalog # 74134) in 

combination with a Qiashredder column (catalog # 79654) following the instructions of the 

manufacturer and stored at -80ºC. Total RNA concentration and quality were checked using an 

Agilent Model 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, USA). Individuals 

with the highest quality and RNA yields (n=22 [2015: 6, 2016: 6 and 2017: 10]) were selected for 

RNA-Seq and shipped on dry ice to the University of Georgia Genomics Facility (dna.uga.edu). 

Extractions, gene library preparation and sequencing were completed in two batches with 2015 and 

2016 samples in the first one; 2017 samples in the second. For each batch, double-stranded cDNA 

libraries were prepared from total RNA extracted using the Kapa Stranded mRNA-Seq kit 

(KK8420) following manufacturer’s instructions. After enrichment of mRNA with oligo-dT beads 

samples were fragmented and reverse transcribed into double-stranded complementary DNA. Each 

sample was tagged with an indexed adapter and paired end sequenced (2015, 2016: PE150 bp; 

2017: PE75 bp) using an Illumina NextSeq 500 instrument using High-Output Flow Cell. After 

quality assessment (FASTQC v1.0.0), any remaining Illumina adapters were removed and the first 

9 bp were trimmed from each read using Trimmomatic (v. 0.36). Additionally, reads with low 

quality (“Phred” score < 30, matched pairs) and length < 50 bp were removed from each library. 

Each library resulted in 7 to 15 million high-quality reads per sample with an average of 9 million 

across all samples. The 2015 and 2016 RNA-Seq data (read length 150bp) were shortened to a final 

length of 75 bp prior to mapping to reduce methodological bias. 

2.3 Expression profiling and t-SNE clustering analysis 
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Expression level was quantified, for each individual, by mapping each quality-filtered 

library against an existing N. flemingeri CV reference transcriptome (Roncalli et al., 2019) using 

kallisto software (default settings; v.0.43.1) (Bray, Pimentel, Melsted, & Pachter, 2016). For the 

counts generated by the kallisto mapping, relative expression levels were normalized by the TMM 

method (trimmed means of M values) followed by the RPKM method (reads per kilobase of 

transcript length per million reads) using EdgeR (Mortazavi, Williams, McCue, Schaeffer, & Wold, 

2008; Robinson, McCarthy, & Smyth, 2010).   

The dimensionality reduction method, t-distributed Stochastic Neighbor Embedding (t-SNE) 

(van der Maaten & Hinton, 2008) was applied to the relative expression data for the full set of 

transcripts (n=51,743) of all 22 individuals. Specifically, t-SNE was applied to the log2 transform of 

the relative expression data after adding a pseudo-count of 1 to the RPKM value for each transcript 

(i.e. Log2[RPKM+1]) using the algorithm implemented in the R package Rtsne (v.0.13) (Krijthe, 

2015). After testing several values for the controlling parameters, a perplexity parameter of 6 and a 

maximum number of iterations of 50,000 were settled upon, and the algorithm was run multiple 

times to ensure that the output was representative (Cieslak, Castelfranco, Roncalli, Lenz, & 

Hartline, 2020; van der Maaten, 2014; van der Maaten & Hinton, 2008).  

2.4 Identification of differentially expressed genes (DEGs) among years 

A generalized linear model (GLM) was used to identify interannual differences using the 

BioConductor package EdgeR (R v. 3.12.1) (Robinson et al., 2010). RNA-Seq libraries (n=22) with 

their relative transcript abundances from kallisto mapping were filtered to remove transcripts with 

very low expression levels (< 1 count per million) from all samples. As implemented by EdgeR, 

RNA-Seq libraries were normalized using the TMM method and checked for batch effects using 

limma (BioConductor v. 3.14, limma package version 3.50.0, and R v. 4.1.1) (Ritchie et al., 2015). 

After removal of low expression transcripts and TMM normalization, we tested the remaining 

38,227 transcripts for differential gene expression across years using generalized linear model 

(GLM). This analysis was followed by three pairwise likelihood ratio tests: 1) 2015 vs 2016; 2) 
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2015 vs 2017 and 3) 2016 vs 2017. All p-values were adjusted using the Benjamini-Hochberg 

correction for false discovery rate (significance: p-value <0.05). 

2.5 Functional annotation and enrichment analysis  

Functional annotations of the DEGs were obtained by searching the N. flemingeri reference 

transcriptome that had been annotated against SwissProt, Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) databases (Roncalli et al., 2019). Enrichment 

analysis on all DEGs identified by the GLM analysis was performed to identify the biological 

processes (GO) that were significantly over-represented among years. DEGs were compared against 

the 24,356 transcripts with GO terms in the reference transcriptome using the R-package topGO (v. 

2.88.0) that employs a Fisher exact test with a Benjamini-Hochberg correction (p-value < 0.05; 

using the default algorithm weight01) (Alexa & Rahnenfuhrer, 2010). 

Based on enrichment results, genes annotated with specific GO terms and KEGG enzymatic 

pathways were investigated in greater detail. Briefly, the annotated N. flemingeri reference 

transcriptome was searched for transcripts annotated with selected enriched GO terms (e.g., 

digestion [GO:0007586], muscle contraction [GO:0006936)]) and for GO terms at a higher level of 

ontology (e.g. fatty acid (FA) biosynthetic process [GO:0006631]). In addition, we searched for 

transcripts annotated to the GO term cellular response to stress [GO:0033554].  Similarly, the 

reference transcriptome was searched for transcripts annotated with the KEGG enzyme commission 

numbers (EC) involved in metabolic pathways (glycolysis, glycolysis incoming pathways, 

tricarboxylic acid cycle) that were related to enriched processes, using the fruit fly Drosophila 

melanogaster as the reference organism. The DEGs were then searched for transcripts that resulted 

from these searches.  Relative expression of these transcripts is shown in heatmaps as z-scores 

calculated from the log-transformed expression levels (Log2[RPKM+1]). These searches often 

identified multiple transcripts with the same annotation (EC = enzyme commission number); we 

have included the relative expression of all of these transcripts in the heatmaps if e-values were ≤ 

10
-20

. 
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3. Results 

3.1 Ecological context: Interannual conditions in Prince William Sound 

 The three study years represented contrasting environmental conditions in Prince William 

Sound in terms of water temperatures, chlorophyll a (an indicator for phytoplankton) availability 

and N. flemingeri abundances (Figure 2). The first two years, 2015 and 2016 were years of warm 

conditions with average temperatures in the upper 50 m reaching 6.3 and 6.5ºC, respectively 

(Figure 2A). The following year (2017) was much cooler with temperatures averaging 5.5ºC. 

Average salinities showed the inverse pattern being highest in 2017 (Figure 2A). Chlorophyll a of 

small and large cells of phytoplankton differed among years (Figure 2B). The interannual variation 

of large-cell chlorophyll a was particularly pronounced and exceeded two orders of magnitude 

between 2015 and 2016, with intermediate, but low, levels for both large and small cells in 2017. 

Despite these large differences in chlorophyll a, total zooplankton biomass was similar across years 

(Figure 2C). It showed a slight trend of increasing biomass between 2015 and 2017, but this trend 

was small compared with observed variability among stations. In contrast, the relative contribution 

of N. flemingeri to total biomass in PWS differed greatly ranging from >20% in 2016 to less than 

1% in 2017, and this was reflected in the abundance data, which ranged between 6 ind m
-3

 (2017) 

and nearly 100 ind m
-3

 (2016; Figures 2C, 2D). In summary, conditions in 2016 were characterized 

by the warmest temperatures, the highest N. flemingeri abundances and the lowest chlorophyll a 

concentrations compared with the other two flanking years. While temperature and salinity in 2017 

had returned to pre-Blob conditions and average chlorophyll a was slightly higher, N. flemingeri 

abundances in 2017 were very low and contributed little biomass to the zooplankton community.  

3.2 Transcriptional phenotypes varied among years 

The t-SNE analysis, which is based on the relative expression of all genes (n=51,743) 

aggregated the CV expression profiles into distinct transcriptional phenotypes. The 2015 and 2016 

individuals separated into two groups in the t-SNE plot (Figure 3). The expression profiles of the 
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2017 individuals were more variable as shown in the plot with eight individuals clearly separated 

from both the 2015 and 2016 individuals and the remaining two individuals, collected at station 

PWS2, clustering with the 2016 individuals (Figure 3).  

3.3 Large interannual differences in gene expression between 2015 and 2016 

Large interannual transcriptional differences among years were confirmed in the statistical 

analysis, which identified 6,327 differentially expressed genes (DEGs) across the three years 

(Supplementary Figure S1). The largest number of DEGs was found between the 2015 and 2016 

individuals based on a posteriori pair-wise comparisons (> 4,000 DEGs, Supplementary Table S2). 

Gene expression differences were characterized by the over-representation of genes annotated to 

metabolic and multicellular organismal processes and muscle contraction (Table 1). Among the 

DEGs, seven GO terms were enriched and related to carbohydrate (n=3) and fatty acid (n=1) 

metabolism, muscle development and function (n=2) and digestion (n=1). The large difference in 

expression between 2015 and 2016 was confirmed by a weighted gene network correlation analysis 

(WGCNA), which identified a set of more than 1,000 DEGs correlated with large-cell and total 

chlorophyll a concentrations (Supplementary Figure S2, Table S3).  

3.4 Metabolic processes: drivers of transcriptional differences among years 

3.4.1 Glycolysis and “incoming” metabolic pathways were down-regulated during 2016 

Overall, transcripts annotated to metabolic pathways involved in exergonic (energy-

producing) processes defined gene expression differences among years. Sixty-four percent (93 out 

of 146) of genes in the reference transcriptome annotated as enzymes involved in the glycolysis 

pathway were differentially regulated across the years. The expression pattern was consistent across 

all glycolytic enzymes (hexokinase, glucosephosphate isomerase, phosphofructokinase, fructose-

bisphosphate aldolase, triosephosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase, 

phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase) with DEGs 

significantly down-regulated in 2016 compared with both 2015 and 2017 individuals (Figure 4). In 

2017, the relative expression of these genes differed between the two stations with overall lower 
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expression in PWS2 individuals then PWSA. This is consistent with the t-SNE results (Figure 3) 

that placed two individuals from PWS2 close to the 2016 individuals.  

Carbon substrates enter glycolysis through additional metabolic pathways that feed 

intermediate compounds into glycolysis (“incoming” pathways; Figure 5). The initial steps of 

glycolysis are supported by enzymes associated with glycogen and galactose metabolism, followed 

by glycosaminoglycan and nucleotide sugar metabolism related enzymes that contribute to the 

intermediate phases. In N. flemingeri, nearly 45% (36 out of 82) of the genes in the reference 

transcriptome annotated to enzymes involved in these “incoming” metabolic pathways were 

differentially expressed among the three years. Overall, relative expression of DEGs involved in 

these metabolic pathways was significantly lower during 2016 compared with 2015 and 2017 

individuals (Figure 5). In 2017, the relative expression of the genes annotated to glycogenolysis 

differed between the two stations with consistently higher expression in PWSA individuals then 

PWS2. A number of these DEGs (13/36) were among the genes positively correlated with 

chlorophyll a by WGCNA (Supplementary Figure S2).  

3.4.2 Tricarboxylic acid cycle (TCA) was down-regulated in 2016 

Twenty-four percent (6 of 25 genes) of the genes in the reference transcriptome involved in 

the tricarboxylic acid cycle showed significant interannual differences. DEGs included the enzymes 

citrate synthase, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, and fumarate 

hydratase. In general, gene expression was lower in 2016 compared with the 2015 and 2017 

individuals (Figure 6).  

Noticeably absent from the DEGs were genes involved in ß-oxidation, an alternative 

pathway into the TCA cycle via Acetyl-CoA. None of the genes encoding the four core enzymes 

involved in ß-oxidation (acyl-CoA dehydrogenase, enoyl-CoA hydratase, hydroxy acyl-CoA 

dehydrogenase, ketoacyl-CoA thiolase) were differentially expressed among the years (data not 

shown).  

3.4.3 Fatty acid metabolism was down-regulated during 2016 and 2017 
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Entry into diapause requires lipid accumulation to support the diapause phase and fuel 

reproduction. Fatty acid biosynthesis, parent GO term of the enriched fatty acid elongation process 

(GO:0034626), included 43 DEGs (Roncalli et al. Dryad publication). The general expression 

pattern of these genes was down-regulation in 2016 individuals compared with both 2015 and 2017 

(Figure 7). Among the transcripts, 14 were annotated as fatty acid (FA) elongases (ELOV4 & 

ELOV6). These were down-regulated in 2016 in comparison with 2015 with most of them having 

intermediate expression in 2017 (Figure 7). Among the other DEGs involved in lipid accumulation 

there were several reductases, desaturases and fatty acyl coA synthase. These genes were more 

highly expressed in 2015 individuals than in 2016. However, compared with the ELOVs, the 

expression of these transcripts was more variable across stations in 2015 and 2017. Lastly, several 

fatty acid binding proteins, transporters associated with FA biosynthesis, were differentially 

expressed with low expression in 2016 compared with higher but variable expression in 2015 and 

2017 individuals (Figure 7). Many of the DEGs involved in fatty acid metabolism were also among 

the genes that were positively correlated with chlorophyll a by WGCNA (Supplementary Figure 

S2). 

3.5 Expression patterns were inconsistent with a cellular or thermal stress response 

In 2015, offshore Gulf of Alaska individuals (“Gulf”, Figure 8A) showed high expression of 

genes involved in the cellular stress response (Roncalli et al., 2019). However, in the comparison 

across the three years within PWS, only a small number of DEGs were annotated to response to 

stress. Relative expression of antioxidant defense biomarkers, such as superoxide dismutase (SOD), 

catalases, glutathione S-transferases (GST), and metallothioneins were low in all years, in contrast 

to their relative expression in individuals collected offshore in the Gulf of Alaska during 2015 

(Figure 8A). Heat shock proteins (HSPs) are molecular chaperones that stabilize proteins during 

thermal stress and are typically up-regulated during thermal stress (Feder & Hofmann, 1999; 

Hofmann & Todgham, 2010). Of the 6,327 DEGs (GLM), we found five heat shock proteins 

(HSPs) with only two genes up-regulated for N. flemingeri collected during the warmest year 
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(2016) compared with the other two years. These two HSPs, annotated as a constitutive HSP70 

(Hsc 70-4, blast E-value=0) and a small HSP27, showed a 2-fold difference in expression between 

2016 and 2015. The remaining HSPs, annotated as HSP82 and HSP83 (two transcripts) were more 

highly expressed in 2017 compared with 2015 individuals, but not compared with 2016.  

3.6 Genes annotated to digestion and muscle contraction were differentially expressed 

Digestion was enriched with a total of 52 DEGs annotated with this GO term. Differences in 

expression included 24 DEGs annotated as chymotrypsins and trypsins that were more highly 

expressed in 2015 than in 2016 individuals (Figure 8B). Previously published data for “Gulf” 

individuals show that these 24 DEGs were also down-regulated in offshore N. flemingeri in 2015 in 

comparison with PWS. A smaller set of 14 DEGs were more highly expressed in 2016 and 2017, as 

well as offshore individuals than in PWS 2015 individuals.  

Two processes involved in muscle function were overrepresented among the DEGs (Table 

1). Seventy-five percent of the DEGs (n=63) were annotated as myosins and were highly expressed 

in 2016 compared with 2015 and 2017 individuals (Table 1, Figure 8C). Annotation of these 

myosins suggest involvement in muscle function including development and locomotor activity. A 

smaller number of DEGs (n=16), mostly annotated as troponins, were mostly up-regulated in 2017 

individuals (Figure 8C). The expression of these genes were highly variable in offshore “Gulf” 

individuals. As with the incoming pathways to glycolysis and fatty acid metabolism, a number of 

DEGs involved in digestion (46/52) and muscle function (55/63) were identified by WGCNA as 

correlated with chlorophyll a concentrations (Supplementary Figure S2). 

 

4. Discussion 

4.1 Overview 

The serendipitous timing of this study has produced an environmental RNA-Seq dataset for 

Neocalanus flemingeri that spans three critical years. It coincided with two years of high sea-

surface temperatures followed by a cooler year marking the end of the “Blob” (Peterson, Bond, & 
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Robert, 2016; Suryan et al., 2021). Large-scale effects on ecosystems were reported throughout the 

Northeast Pacific, and included mass mortality events, low recruitment for some species and 

community regime shifts in the Gulf of Alaska (Arimitsu et al., 2021; Piatt et al., 2020; Suryan et 

al., 2021). However, the complexity of the response cannot be explained by direct effects of 

temperature alone: species abundances at the lower trophic levels of the pelagic community could 

not be simply linked with sea-surface temperature (Litzow et al., 2020). We also found that the 

largest number of differentially expressed genes in N. flemingeri were not correlated with 

temperature but with chlorophyll a levels. Furthermore, expression differences of genes regulating 

energetic metabolism suggest responses to food availability. Thus, while both temperature and food 

are drivers of copepod growth, development and fecundity (Batchelder et al., 2013; Campbell, 

Wagner, Teegarden, Boudreau, & Durbin, 2001; Liu & Hopcroft, 2006), the large difference in 

gene expression between 2015 and 2016 individuals was more likely to be related to chlorophyll a 

than temperature. 

Environmental transcriptomics of planktonic organisms has contributed new insights into 

niche separation and led to new hypotheses to explain rapid changes in abundances (Alexander, 

Jenkins, Rynearson, & Dyhrman, 2015; Mojib, Thimma, Kumaran, Sougrat, & Irigoien, 2017). N. 

flemingeri is well-suited for environmental transcriptomics: it has a single generation per year with 

an annual phenology that is predictable and synchronized with the annual spring phytoplankton 

bloom (Cooney, 1986; Cooney et al., 2001; Coyle et al., 2019; Coyle & Pinchuk, 2003). In early 

May, N. flemingeri pre-adults (stage CV) are abundant in the upper mixed layer with peak numbers 

between the surface and 40 meters (Coyle & Pinchuk, 2005), where they feed preferentially on 

large phytoplankton cells and ciliates (Dagg et al., 2009; Liu et al., 2008). Although abundances 

varied among years, the majority (>90%) of N. flemingeri were in the stage CV in early May in 

PWS (Hopcroft & Clarke-Hopcroft, 2019c) preparing for their annual ontogenetic migration to 

depth where they molt into adults, mate and diapause (Cooney et al., 2001; Miller & Clemons, 

1988). Thus, N. flemingeri individuals collected during the three years were at a similar stage in 
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their life cycle and year-to-year differences in gene expression are likely to reflect organismal 

acclimatization to ambient environmental conditions.  

4.2 Adaptation to low food conditions 

Organisms inhabiting highly seasonal environments that include low/no food conditions 

possess physiological adaptations like diapause that enhance their ability to withstand food 

deprivation. Preparation for predictable low food periods involves storage of energy resources to 

enable survival during the non-feeding period that may last many months. A lipid accumulation 

phase is widespread among arthropods, including copepods that undergo a post-embryonic diapause 

(Baumgartner & Tarrant, 2017; Denlinger & Armbruster, 2014). The phase is synchronized to a 

period of abundant food, i.e., the spring phytoplankton bloom to ensure adequate provisioning for 

the non-feeding period. While many copepods resume feeding after diapause, N. flemingeri does 

not: adults are non-feeding, and growth and lipid accumulation for both diapause and reproduction 

are limited to approximately 1/3 of their lifespan (Lenz & Roncalli, 2019).  

A central question is what happens if food resources are in short supply during the growth 

and lipid accumulation phase. While the annual spring phytoplankton bloom characterizes the Gulf 

of Alaska, food conditions can be unpredictable at the scale of an individual copepod given spatial, 

seasonal and year-to-year variability (Mackas & Coyle, 2005; Waite & Mueter, 2013). Thus, 

encountering low food conditions is not unusual for N. flemingeri during the spring (Coyle et al., 

2019; Dagg et al., 2009; Liu & Hopcroft, 2006; Mackas & Coyle, 2005). Mackas and Coyle (2005) 

hypothesized that the copepod population in the Gulf of Alaska is comprised of winners that are 

advected into resource-rich regions like large eddies and nearshore areas, and losers that find 

themselves in nutrient poor conditions and are unlikely to survive. However, such a dichotomy fails 

to capture the complexity and temporal variability of food conditions encountered by individual 

copepods. Our results suggest that physiological acclimatization plays a significant role in the 

copepod’s adaptive capacity and resilience to non-optimal food conditions.   

4.3 Food conditions in Prince William Sound (PWS) 
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Prince William Sound is characterized by earlier phytoplankton blooms and higher 

chlorophyll a levels than oceanic regions in the Gulf of Alaska (Strom et al., 2006; Waite & 

Mueter, 2013). However, year-to-year differences in chlorophyll a are common throughout the 

region. During 2015 and 2016 early May chlorophyll a measurements were, respectively, at the 

highest and the lowest levels observed within the western PWS region between 2012 and 2017 

(Hopcroft & Clarke-Hopcroft, 2019a). During 2016 maximum chlorophyll a concentrations 

between 0 and 50 m were mostly below 0.5 µg per liter while in 2015 they exceeded 4.5 µg per 

liter. Furthermore, chlorophyll a levels of large cells, the copepod’s preferred food size (Dagg et al., 

2009), differed by two orders of magnitude. One organismal response to food deprivation is the 

down-regulation of digestive enzymes and their gene expression (Wang, Hung, & Randall, 2006), 

which has been reported in copepods (Freese, Søreide, & Niehoff, 2016; Hassett & Landry, 1990; 

Mayzaud, Roche-Mayzaud, & Razouls, 1992). Thus, not surprisingly, genes involved in digestion 

were differentially expressed in N. flemingeri under low chlorophyll a conditions. Furthermore, 

based on shipboard grazing experiments, N. flemingeri’s feeding rates would have ranged from 

maximum in PWS in 2015 to low in 2016 and 2017 at the measured chlorophyll a levels (Dagg et 

al., 2009). Biomass of another preferred food, heterotrophic ciliates and other microzooplankton 

(Dagg et al., 2009), was also very low in 2016 and 2017 in comparison with 2015 and earlier years 

(Suryan et al., 2021). Thus, food limitation would have been predicted for N. flemingeri based on 

ambient chlorophyll a concentrations and microzooplankton abundances in PWS during May 2016 

(Dagg et al., 2009; Liu et al., 2008), however, no studies have investigated the copepod’s 

physiological response to these environmental conditions. 

4.4 Expression patterns suggest low metabolic rates, instead of dependence on stored energy 

during 2016 

Very low expression of genes involved in metabolic processes concerned with energy 

production (glycolysis and pathways feeding into glycolysis) characterized the N. flemingeri CV 

individuals in 2016. Down-regulation of metabolic genes is associated with reduced metabolic rates 
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in both vertebrates and invertebrates during prolonged periods of food deprivation (Wang et al., 

2006). The large contrast in the expression patterns of these genes between 2015 and 2016 in Prince 

William Sound is summarized diagrammatically in Figure 9. During 2017 and offshore in the Gulf 

of Alaska, expression of these genes was variable but in general intermediate between 2015 and 

2016. The down-regulation of the entire glycolysis pathway and most glycolysis in-coming 

pathways for 2016 suggests that the CVs decreased their metabolic rates to acclimatize to the 

unusually low food conditions that year.  

In the initial phases of food deprivation, organisms maintain their metabolic rate and 

homeostasis by switching to other sources of energy (Sokolova, 2013; Wang et al., 2006). The 

observed differences in gene expression are inconsistent with this type of response. Carbohydrate is 

the main fuel source and is the first that is affected during low food conditions as shown in 

starvation experiments in crustaceans and the fruit fly Drosophila melanogaster (Arrese & 

Soulages, 2010). Genes annotated to enzymes involved in glycogen metabolism were down-

regulated in 2016. A switch to lipids as an energy source, another expected response to low food 

conditions, is characterized by the up-regulation of the ß-oxidation pathway that feeds into the TCA 

cycle. This response was absent in PWS individuals, but was reported in offshore N. flemingeri CV 

individuals during 2015 (Figure 9): all genes annotated to ß-oxidation were significantly up-

regulated in comparison with PWS individuals (Roncalli et al., 2019). The low expression of genes 

involved in fatty acid catabolism via ß-oxidation suggests that the CVs in PWS did not rely on 

stored lipids to meet their energetic needs during low food conditions. However, a reduction in 

metabolism necessitates the down-regulation of other energy-requiring processes (Wang et al., 

2006). In N. flemingeri, genes involved in lipid biosynthesis and storage were down-regulated 

during 2016, which is consistent with reduced lipid accumulation and probably contributed to 

relatively low total fecundity of the females in 2016 compared with other years (Hopcroft & Lenz, 

2021; Slater, 2004). 
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5. Concluding remarks 

Marine heat waves provide opportunities to study organismal acclimatization to contrasting 

and extreme environmental conditions, such as those represented by the three-year study period in 

the Gulf of Alaska. The goal was to investigate adaptive capacity and resilience under these 

contrasting conditions by generating gene expression profiles of a key planktonic organism. Low 

food conditions are not unusual for zooplankton in general and in some species can lead to rapid 

changes in abundances. In contrast, others, like N. flemingeri are resilient, however, the basis their 

adaptive capacity during their active phase is poorly understood. Gene expression patterns observed 

in N. flemingeri were consistent with a long-term response to low food conditions during 2016 and 

to a lesser extent during 2017. In addition, gene expression profiles suggest a decrease in metabolic 

rates in combination with limited use of stored resources during low food conditions. Such a 

response to low food would contribute to the copepod’s ability to retain stored lipids, which are 

required for diapause and reproduction. However, food resources were very low during 2016, and 

whether conditions came to close to a tipping point for the survival of the local Prince William 

Sound population in this year remains an unanswered question.  

 

Data availability 

The metadata generated and analyzed during the current study are available through Alaska Ocean 

Observing System (AOOS) Research Workspace and the Biological & Chemical Oceanography 

Data Management Office (BCO-DMO) repository under the Project: Neocalanus Gulf of Alaska 

[https://www.bco-dmo.org/project/542182]. The raw RNA-Seq data for all the libraries are 

available through National Center of Biotechnology Information (NCBI; BioProject: 

PRJNA496596). A companion data publication in Dryad (doi:10.5061/dryad.kh1893273) includes 

output from the statistical analysis and the annotation file for the reference transcriptome deposited 

at NCBI (GenBank accession: GLBH0000000.1).  
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The work provides the benefit of public access to hard-to-obtain well-vetted RNA-Seq data, 

especially laying a baseline against which future changes can be measured. Methodological 

approaches used provide a model for effective application of the tools of environmental 

transcriptomics to understanding marine organisms and predicting their future courses. The study 

supports research priorities of the United Nations Decade of Ocean Science for Sustainable 

Development (2021-2030) initiative. Specifically, for the Gulf of Alaska, the study contributes to 

an understanding of resilience in zooplankton upon which this highly-productive ecosystem 

depends. It integrates with and benefits the Northern Gulf of Alaska Long Term Ecological 

Research Program. 
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Table S1. Summary of environmental data for western Prince William Sound, 2015-2017.  Data are 

publicly available (Hopcroft and Clarke-Hopcroft, 2019a, b, c).  

 

Year Sampling 

date 

Station Temperature 

(ºC) 

Chlorophyll 

a 

Zooplankton 

(QuadNet 

CalVET) 

N. flemingeri 

RNA-Seq 

2015 May 7 PWS1 X X X  

 May 7 PWS2 X X X X 

 May 8 PWS3 X X   

 May 8 PWSA X X  X 

2016 May 1 PWS1 X X X  

 May 1 PWS2 X X* X X 

 May 2 PWS3 X X   

 May 1 PWSA    X 

2017 May 4 PWS1 X X X  

 May 4 PWS2 X X X X 

 May 4 PWS3 X X X  

 May 3 PWSA X X  X 

* Chlorophyll a was measured twice at station PWS2 in 2016, the second measurement was made 

on May 2. 

 

References: 

 

Hopcroft, R. R., & Clarke-Hopcroft, C. (2019a). Prince William Sound chlorophyll-a and nutrient 

data, 2012 to 2016, Gulf Watch Alaska environmental drivers component.  (Publication no. 

10.24431/rw1k32i, version: 10.24431_rw1k32i_20199223273).  Retrieved 03/15/2021 

Hopcroft, R. R., & Clarke-Hopcroft, C. (2019b). Seward Line conductivity, temperature, and depth 

(CTD) data, 2012 to 2016, Gulf Watch Alaska environmental drivers component.  

(Publication no. 10.24431/rw1k32m, version: 10.24431_rw1k32m_20199302345).  

Retrieved 03/15/2021, from Research Workspace 

Hopcroft, R. R., & Clarke-Hopcroft, C. (2019c). Seward Line zooplankton biomass and abundance 

data from Spring and Summer cruises aboard the Tiglax, 2012 to 2017, Gulf Watch Alaska 

environmental drivers component.  (Publication no. 10.24431/rw1k32j, version: 

10.24431_rw1k32j_201992233010).  Retrieved 03/19/2021 
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Table S2. Summary of differential gene expression analysis. Differentially expressed genes 

(DEGs) were identified using general linear model (GLM) followed by pairwise likelihood ratio 

tests (FDR; p-value ≤ 0.05) between 2015, 2016 and 2017 individuals. For each pairwise likelihood 

test, the number of total DEGs and relative expression for each year. For each paired comparison 

the number of genes that were up-regulated in a particular year is noted. 

 

 DEGs Expression is up-regulated in: 

  2015 2016 2017 

General linearized model 

(GLM) 

6,327 

  

 

Likelihood ratio test:     

2015 vs 2016 4,312 2,969 1,343  

2016 vs 2017 3,400  2,330 1,070 

2015 vs 2017 2,371 1,423  948 

 

 

 

Table S3. Environmental variable used in the weighted-gene network correlation analysis 

(WGCNA) (Figure S2). Chlorophyll a concentrations, measured for two size fractions, < 20 µm 

(Chla [sml]) and > 20 µm (Chla [lge]) at 5 depths were averaged. Total chlorophyll a (Chla [total]) 

is the sum of the large and small size fractions. Temperature and salinity were measured using a 

CTD and averaged from 0 to 100 m. Source of data: see Table S1. 
 

Variable 2015 

PWS2 

2015 

PWSA 

2016 

PWS2 

2016 

PWSA* 

2017 

PWS2 

2017 

PWSA 

Chla (lge) 1.04 2.16 0.01 0.02* 0.01 0.07 

Chla (sml) 1.29 1.14 0.24 0.48* 0.08 0.21 

Chla (total) 2.33 3.30 0.25 0.50* 0.09 0.28 

Temperature 6.05 6.44 6.38 6.45* 5.32 5.47 

Salinity 31.0 30.9 30.4 30.7* 31.8 31.7 

* No chlorophyll a, salinity or temperature measurements were available for PWSA/2016. 

Measurements listed (and used in WGCNA) were made at PWS3.  
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Figure S1. Heatmap showing patterns of gene expression in Neocalanus flemingeri CVs from 

two stations (PWS2, PWSA) in 2015, 2016 and 2017. Relative expression shown as z-scores of 

differentially expressed genes (n = 6,327). Each column indicates an individual CV aggregated by 

station and by year as shown by brackets on top. Relative expression is color coded by the 

magnitude of differential expression between expression level for each individual and mean 

expression across all individuals in log2(RPKM+1) normalized by the variance (scale bottom left). 

Genes were ordered by similarity of expression pattern as shown by the dendrogram (left). DEGs 

were identified by GLM test with p ≤ 0.05 after FDR correction. 

 

  

Z-score

PWS2 PWS2PWS2PWSA PWSA PWSA

2015 2016 2017
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Figure S2. Weighted-gene network correlation analysis (WGCNA) of differentially expressed 

genes (DEGs) among 2015, 2016 and 2017. Each color module includes sets of differentially 

expressed genes (DEGs) with similar expression patterns and their correlation coefficients based on 

different variables (year, salinity, large-cell chlorophyll a, total chlorophyll a, temperature and 

station/year). Environmental variables for the analysis: chlorophyll a, large cells (lge), small cells 

(sml) and total (µg/l average: 0-50 m), salinity (PSU) and temperature (ºC) (Table S3). Significant 

correlations for chlorophyll a, salinity and temperature (> ± 0.65) are circled. Blue module: 1351 

DEGs positively correlated with chlorophyll a. Yellow module: 358 DEGs positively correlated 

with temperature and small cell chlorophyll a, and negatively correlated with salinity. Black 

module: 217 DEGs positively correlated with salinity and negatively correlated with temperature 

and small cell and total chlorophyll a.  Lists of DEGs in each module are available in the 

companion Dryad publication. The blue module included DEGs annotated to KEGG enzymes and 

GO term of genes shown in Figures 4 (n=1), 5 (n=7), 7 (n=16) and 8 (n=57).  
 

Methods: Patterns of differential gene expression among samples were further explored using 

weighted correlation network analysis (WGCNA) (Langfelder and Horvath 2008; 2012). The 

WGCNA analysis was performed on the log-transformed (Log2[RPKM+1]) gene expression of all 

DEGs (n=6,319) identified by the generalized linear model (GLM, EdgeR, BioConductor package) 

applied to the RNA-Seq libraries after normalization by the TMM and RPKM methods and removal 

of low expression transcripts. The WGCNA analysis used an unsigned network type 

(networkType= "unsigned" and TOMType=”signed”) with a soft threshold power of 8 and 

minimum module size of 100 transcripts. The Pearson correlations between the module eigengenes 

(a weighted average of the module expression profiles) and measured environmental variables: 

chlorophyll a, salinity and temperature were computed. The results of the correlation analysis were 

visualized as a heatmap. 
 

References: Langfelder P and Horvath S, (2008) WGCNA: an R package for weighted correlation 

network analysis. BMC Bioinformatics, 9:559.  doi:10.1186/1471-2105-9-559; Langfelder, P., and 

Horvath, S. (2012). Fast R Functions for Robust Correlations and Hierarchical Clustering.  Journal 

of Statistical Software, 46(11), 1–17. https://doi.org/10.18637/jss.v046.i11 
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