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Abstract— This study presents our recent findings on the
classification of mean pressure gradient using angular chest
movements in aortic stenosis (AS) patients. Currently, the
severity of aortic stenosis is measured using ultra-sound
echocardiography, which is an expensive technology. The
proposed framework motivates the use of low-cost wearable
sensors, and is based on feature extraction from gyroscopic
readings. The feature space consists of the cardiac timing
intervals as well as heart rate variability (HRV) parameters to
determine the severity of disease. State-of-the-art machine
learning (ML) methods are employed to classify the severity
levels into mild, moderate, and severe. The best performance is
achieved by the Light Gradient-Boosted Machine (Light GBM)
with an Fl-score of 94.29% and an accuracy of 94.44%.
Additionally, game theory-based analyses are employed to
examine the top features along with their average impacts on the
severity level. It is demonstrated that the isovolumetric
contraction time (IVCT) and isovolumetric relaxation time
(IVRT) are the most representative features for AS severity.

Clinical Relevance— The proposed framework could be an
appropriate low-cost alternative to ultra-sound
echocardiography, which is a costly method.

1. INTRODUCTION

Cardiovascular diseases (CVD) have remained the leading
cause of death at the global level for the past 20 years [1].
Valvular heart diseases (VHD) are among the most prevalent
CVDs, accounting for up to 20% of all surgical procedures in
the United States [2]. A highly common VHD in developed
countries, aortic stenosis (AS), is defined as the narrowing of
the aortic valve opening [3]. Severe aortic stenosis is
associated with a progressive cardiac remodeling, e.g.,
hypertrophy, which ultimately leads to heart failure and death,
unless the valve is replaced [4]. Therefore, a precise
assessment of the severity of stenosis allows for patient
management and risk stratification. Echocardiography is the
main method to grade AS severity. Mean pressure gradient
(MPQG) is one of the echocardiography parameters that are
concordant with the severity level of the disease, and is
defined as the difference in blood pressure between the left
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ventricle and the aorta [4]. Yet, echocardiography monitoring
is expensive and limited to use in the clinic. On the other hand,
wearable sensor technologies, such as electrocardiography
(ECQG), offer non-invasive and low-cost measurements of
biological signals. Cardio-mechanical signals, representing
the linear and angular chest movements induced by the heart
activity, can be measured using micro-electromechanical
system  (MEMS) accelerometers and  gyroscopes,
respectively. The linear and the angular vibrations are called
seismo-cardiography (SCG) and gyro-cardiography (GCG)
signals, respectively. These modalities have been used for
diagnosing various types of CVD in the literature [5], [6].

Our research group has previously conducted studies on the
detection of CVDs using SCG and GCG signals. For instance
in [7], general heart rate abnormality was discussed through
the morphological changes occurring in cardio-mechanical
signals, where an accuracy of 99.5% was reported.
Additionally, we employed SCG/GCG signals to diagnose
aortic stenosis using time-frequency characteristics of the
signals, where a random forest classifier predicted the
existence of AS by 97.43% of accuracy [8]. Furthermore,
adopting continuous wavelet transform and deep learning
algorithms, a classification framework was proposed for AS
detection based on multi-dimensional SCG and GCG signals,
which was capable of diagnosing AS with 98.00% of F1-score
[9]. Furthermore, patients were classified 96.00% correctly
through the SCG/GCG signals acquired from their chest
movements into three types of CVD, with which they had
been diagnosed.

In this study, we propose a wearable sensor-based method
for classifying the severity of aortic stenosis. This method
involves chest angular movements recorded by gyroscopes as
well as heart rate variability (HRV) parameters calculated
from peak-to-peak intervals of the GCG signal. As mentioned
earlier, the measurement of the mean pressure gradient
(MPG) across the aortic valve provides significant
information about the severity of aortic stenosis [4]. On the
other hand, cardiac timing intervals and HRV parameters
have been shown to change with abnormalities in the cardiac
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Fig. 1. Signal processing, feature extraction, and classification flow graph proposed in this work.

activity [10]. Hence, this paper targets a meaningful
connection between MPG readings from echocardiography
and the extracted features from GCG. To the best of our
knowledge, this is the first study addressing the classification
of severity level in AS through machine learning (ML)
methodologies.

The rest of the paper is organized as follows. In Section II,
we describe the experimental protocols, the data acquisition
procedure, the feature extraction methods, and the predictive
models. Experimental results are presented and discussed in
Section III, while the paper is concluded in Section IV.

II. METHODOLOGY

A. Experimental Setup and Data Acquisition

This study includes thirty-two AS patients (sixteen males
and sixteen females). The average (standard deviation) age of
the patients is 84.18 (9.61) years, where eleven, twelve, and
nine patients are respectively diagnosed with mild (MPG < 30
mm Hg), moderate (30 < MPG < 50 mm Hg), and severe AS
(MPG > 50 mm Hg), respectively.

Angular vibrations of the chest wall were recorded using a
commercial wearable sensor node (Shimmer3 from Shimmer
sensing) secured by a band strap on the mid-sternum along the
third rib. A three-axis gyroscope records the GCG signal in
three dimensions. The X, Y, and Z axes correspond to the
shoulder-to-shoulder, head-to-toe, and dorso-ventral
directions, respectively. In this paper, the dimensional letters
X, Y, and Z appended as sub-scripts to GCG will denote the

signal from the corresponding axis, respectively.
Simultaneously, a four-lead ECG sensor was used as the
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Fig. 2. Fiducial points of the measured signals. From top to bottom:
ECG, GCGy, and GCGy.

reference to record the electrical activity in the heart. All
waveforms were recorded at a sampling rate of 256 Hz.
Immediately after, the heart rhythm and valve parameters
such as MPG were also measured by an ultrasound
echocardiography machine.

All data were collected at the cardiac care unit of the
Columbia University Medical Center (CUMC). The subjects
were seated at rest on a bed for at least five minutes. They
breathed naturally without controlling their breathing depths.
The patient experimental protocol was approved by the
Institutional Review Board of CUMC under protocol number
AAARA4104. The collected data were transferred to a
computer and processed in a Python framework. The step-by-
step flow graph of the developed framework for pre-
processing, feature extraction, and classification is illustrated
in Fig. 1.

B. Signal Pre-processing

Firstly, to remove baseline wandering and noise artifacts,
GCGyx and GCGy signals were band-pass filtered using a 4"-
order Butterworth filter over the range of 1-20 Hz, as shown
in Fig. 1. The simultaneously-recorded ECG channels were
band-pass filtered retaining the frequency components within
the range of 1-50 Hz. Subsequently, motion artifacts
associated with movements during recordings were removed
from GCG signals by applying a root-mean-square (RMS)
filter with a sliding window of 500 ms for signal
segmentation. The segment removal threshold was selected as
twice the median value of the filter. It should be mentioned
that after motion artifact removal, the remaining segments
were attached to each other only if there was no discontinuity
between the consecutive 500-ms segments. The resulting
large segments were segmented into 10-second time frames
with 80% overlap between consecutive frames. For every 10-
second frame, the R-peaks in the ECG signal were detected
by the Pan-Tompkin algorithm [11]. The GCG frames were
then annotated with I, J, K, and L points, using the R-peaks
according to the methods proposed in the literature [12]. An
example of the annotation is depicted in Fig. 2.

C. Feature Extraction

The fiducial points on GCG signals are expected to provide
valuable information about the function of the cardiovascular
system [12]. Once GCG signals were annotated, two types of
features were extracted from each frame: time-domain HRV
parameters and GCG timing intervals.
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TABLE I. PERFORMANCE EVALUATION OF THE ML TECHNIQUES USED

IN THIS WORK.
°

Classifier Accuracy Prl;gsf;l;tmancleiic/aﬂ;l F1-score
DT 58.68 73.26 55.21 52.77
RF 75.17 78.19 73.86 74.98
SVM 83.33 83.64 82.44 82.85
XGBoost 93.75 93.80 93.51 93.64
CatBoost 93.75 93.71 93.44 93.57
LightGBM 94.44 94.45 94.17 94.29

1) Time-domain HRV parameters: Time-domain HRV
parameters provide valuable information about cardiac
activity [13]. For temporal HRV parameters, a few time-
domain analyses were applied to the series of successive inter-
beat intervals (IBIs). The normal-to-normal IBI (NN) is
defined as the interval between consecutive J peaks in the
GCQG signals [14]. A few HRV features were extracted from
the NN time series, such as the average (AVNN), standard
deviation (SDNN), root-mean-square of successive
differences (RMSSD), and proportion of the number of
adjacent NN intervals whose durations differ more than 50 ms
(NN50) to the total number of NNs (pNNS50). It is worth
mentioning that SDNN, RMSSD, and pNN50 are of great
clinical importance as they allow for measuring cardiac risk,
respiratory arrhythmia, and parasympathetic nervous activity
[13], [15]. Additionally, we added the median, skewness,
kurtosis, entropy (ENN), self-entropy (SENN), and
conditional entropy (CENN) values of NNs to our designed
feature space. Due to the nonlinearity underlying the
dynamics of HRV, we also extracted the vector angular index
(VAI), the vector length index (VLI), SD1, and SD2 out of
the Poincare map - a scatter plot of NN at time ¢ in terms of
NN at time ¢+1 [16].

2) GCG timing intervals: A few timing interval parameters
describing the cardiac system were calculated for the GCG
signal. It has been demonstrated that the isovolumetric
contraction time (IVCT), isovolumetric relaxation time
(IVRT), and left ventricular ejection time (LVET) are
correlated with [ —J, L — K, and K — ], respectively [17].
Other parameters such as the intervals between each pair of
the fiducial points depicted in Fig. 2 along with their mean,
median, standard deviation, skewness, and kurtosis values
were also extracted as auxiliary features. The logic behind
such an exhaustive feature extraction is to characterize the
most relevant GCG timing intervals resulting in the highest
accuracy for determining the severity level of AS.

D. Predictive Methods

Predictive models which are employed in this study consist
of decision tree (DT), random forest (RF), support vector
machine (SVM), extreme gradient boosting (XGBoost) [18],
categorical boosting (CatBoost) [19], and light gradient-
boosted machine (LightGBM) [20]. These models are
selected as they are expected to work properly with respect to
the sample space size prepared in this work. All methods
except SVM are based on decision tree. The last three

classifiers exploit the gradient boosting mechanism in order
to minimize the prediction error, although they differ in terms
of feature splitting techniques. Another reason for choosing
the above-mentioned methods is to make a comparison in
terms of their performance in the context of cardio-
mechanical signals.

According to the severity levels mentioned earlier, a three-
class dataset is provided. The dataset is trained for all the
classifiers and evaluated using a validation set. Firstly, the
dataset is split into two parts, training (80.00%) and test
(20.00%) datasets. Then, the training dataset is fed to the
predictive models, where hyperparameters are tuned in a 10-
fold cross-validation (10-CV) practice. In the end, the trained
models are evaluated against the test dataset to assess the
robustness and generalizability of the trained models on an
unseen dataset.

III. EXPERIMENTAL RESULTS

In this section, the details of the experiments are
comprehensively discussed. A total of 2,878 signal frames
were divided into two parts; 2,302 frames (equivalent to 25
subjects) were used for training, and the remaining 576
frames (equivalent to 7 subjects) constituted the test set. At
every fold of 10-CV, the model is trained on 2,072 frames,
and tested on the remaining 230 frames to optimize the hyper-
parameters. In the remainder of the paper, the performance
evaluation is reported on the unseen dataset, i.e., the test
dataset.

A. Performance Evaluation

In this section, the performance of the proposed framework
is evaluated by applying the models on the test dataset. Next,
by comparing the predicted values and the true labels, the
performance of the methods are reported using standard
metrics such as accuracy, precision, recall, and F1-score.
Table I summarizes the performance results of the predictive
models introduced in the previous section. The best
performance is reported by 94.44% accuracy, 94.29% F1-
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Fig. 3. Top features for AS severity classification and their average
impact on the class score ranked by Light GBM.
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score, 94.45% precision, and 94.17% recall for LightGBM.
The XGBoost is the runner-up predictive model that could
predict the severity level by 93.75% accuracy, 93.71% F1-
score, 93.64% precision, and 93.51% recall, quite close values
to LightGBM. As such, the proposed framework is indicated
to be sufficiently capable of classifying the severity level of
stenosis from GCG readings. As expected, gradient-based
boosting methods outperform other simpler tree-based
algorithms such as DT and RF, whereas SVM leveraging a
hinge loss could predict the severity level by 83.33%
accuracy. This indicates the superiority of state-of-the-art
tree-based methods over SVM. Furthermore, CatBoost shows
almost the same performance as XGBoost in spite of its
higher complexity in the feature splitting procedure. Having
analyzed the reported performance, it is concluded that the
proposed feature space highly correlates with the severity
level of aortic stenosis, which is a promising achievement.

B. Top Features

A significant point that discriminates the tree-based
methods from other machine learning techniques is their
interpretability in terms of performance. This means that the
top features, best representing the outcome, could be
determined using feature importance scores. The f-scores
provided by the gradient-based models consider the impacts
of the entire samples on the output. In this work, however,
we found the top features using the Shapley Additive
exPlanations (SHAP) technique, a game theory-based
approach for interpreting the output of a model in terms of the
input feature space. SHAP calculates the feature importance
in terms of the impact of every single observation on the
output [21]. Fig. 3 demonstrates the average impact of the top
20 features on the model output. As illustrated, six features
from HRV parameters and fourteen features from GCG
timing intervals constitute the top features. IVCT and IVRT
that correspond to ventricles iso-volumetrically contraction
time and the time interval between aortic valve closure and
the onset of the opening of mitral valve, respectively, hold the
highest frequencies among the top GCG intervals. Among the
top HRV features, three are listed from the Poincare
characteristic, whereas the remaining are from the typical
HRYV features calculated from NN. Considering the points
mentioned above, IVCT, IVRT, and Poincare HRV features
are the most correlated features with the severity level of AS.

IV. CONCLUSION

This paper reports on the development of a novel
framework for the classification of the severity level of aortic
stenosis. The proposed method performs based on the changes
in the pattern of angular chest movements induced by the
cardiac activity. A large feature space is provided comprising
the timing intervals between fiducial points on the GCG
signal and time-domain HRV parameters. Machine learning
techniques are used to classify the severity associated with
stenosis, among which LightGBM outperforms the other
classifiers with an F1-score of 94.29%. Furthermore, the top
features were ranked using a game theory-based method,
namely SHAP, where IVCT and IVRT suggested the top

frequencies among others. This indicates high correlations
between the aortic stenosis level and the aforementioned
features, which can be further explored in the context of risk
management for AS patients in the future.
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