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Abstract— This study presents a novel multi-modal
framework for fetal heart rate extraction, which incorporates
wearable seismo-cardiography (SCG), gyro-cardiography
(GCG), and electrocardiography (ECG) readings from ten
pregnant women. Firstly, a signal refinement method based on
empirical mode decomposition (EMD) is proposed to extract the
desired signal components associated with fetal heart rate
(FHR). Afterwards, two techniques are developed to fuse the
information from different modalities. The first method, named
early fusion, is intended to combine the refined signals of
different modalities through intra-modality fusion, inter-
modality fusion, and FHR estimation. The other fusion
approach, i.e., late fusion, includes FHR estimation and inter-
modality FHR fusion. FHR values are estimated and compared
with readings from a simultaneously-recorded
cardiotocography (CTG) sensor. It is demonstrated that the best
performance belongs to the late-fusion approach with 87.00% of
positive percent agreement (PPA), 6.30% of absolute percent
error (APE), and 10.55 beats-per-minute (BPM) of root-mean-
square-error (RMSE).

Clinical Relevance— The proposed framework allows for the
continuous monitoring of the health status of the fetus in
expectant women. The approach is accurate and cost-effective
due to the use of advanced signal processing techniques and low-
cost wearable sensors, respectively.

1. INTRODUCTION

Stillbirth, defined as the death of a fetus after 24 weeks of
gestational age, is a critical public health problem [1].
Statistics indicate that nearly 2.5 million stillbirths occur
globally every year, motivating the need for proactive fetal
monitoring to reduce fetal mortality [1]. An important vital
sign to monitor for the wellbeing of a fetus is the fetal heart
rate (FHR), which should fall within the range of 120-160
beats per minute (BPM) from the 24" week of gestation [2].
Techniques for continuous monitoring of FHR could help
expectant mothers be informed of the health state of the fetus,
and undergo necessary intervention procedures as soon as
FHR goes beyond the standard range, posing serious health
risks to the fetus.

Ultrasound  cardiotocography (CTG) enables the
continuous monitoring of fetal heart sound through
auscultation, and provides obstetricians with information
regarding FHR and uterine contractions [3]. CTG requires
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pregnant individuals to visit the clinic intermittently. Despite
being a non-invasive modality, CTG has not conclusively
been proven to be a safe technology as it irradiates the fetus
with ultrasound frequencies [4]. Furthermore, it is prone to
missing information due to fetal movement during monitoring
[5]. Other than CTG, FHR monitoring is carried out through
fetal electrocardiography (fECG) by placing low-noise ECG
electrodes on the abdomen of the mother [5]. Consequently, a
mixture of maternal ECG (mECG) and fECG is achieved
which is named abdominal ECG (aECG). Over the past
decade, a huge amount of research, primarily based on blind
source separation (BSS) [6], [7] and adaptive filtering [8], [9],
has been dedicated to extracting fECG imposed by noise
components with signal-to-noise ratio (SNR), occasionally as
low as -20 dB [10].

Recently, wearable seismo-cardiography (SCG) and gyro-
cardiography (GCG) have been widely employed for
wearable heart monitoring and disease detection. Our
research group has reported on the application of SCG and
GCG modalities on FHR estimation [11], where three inertial
sensors were used to measure the abdominal movements
caused by fetal heartbeats. Although the potentiality of FHR
extraction was demonstrated, the reported PPA was 75.20%
since the vibrations caused by fetal cardiac activity may not
fully transfer to the abdomen, especially from the 28% to the
37" week of gestation due to the greasy layer called vernix,
which dampens the vibrations produced by the heartbeat of
fetus [12].

In this work, a multi-modal framework is developed where
ECG and SCG/GCG modalities are employed in a fusion-
based context for FHR extraction. It is assumed that data
fusion among these modalities would enhance the appearance
of fetal heartbeat components. The proposed framework
employs off-the-shelf sensors, not necessarily designed for
low-noise measurements. 7o the best of our knowledge, this
is the first study addressing the fusion between ECG and
SCG/GCG modalities for fetal heart rate estimation. The
organization of the paper is as follows: In Section II, the
experimental setup, the pre-processing, and the FHR
extraction methodology are explained. Experimental results
are discussed in Section III, and the paper is concluded in
Section I'V.
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(®)
Fig. 1. (a) The experimental setup for data collection: an adjustable bed, the
wearable sensors, CTG machine, and band straps. (b) ECG electrodes and
IMU layout on the pregnant abdomen; X, Y, and Z show the axes for IMU
recordings.

II. METHODOLOGY

In the following sub-sections, the experimental setup,
signal processing, and sensor fusion techniques are explained
in detail.

A. Experimental Setup and Measurement Protocols

Ten normal healthy pregnant women participated in this
study and fetal heart rates were measured at the Department
of Obstetrics and Gynecology at New York University
Grossman School of Medicine (NYUGSM) after obtaining
informed consent. The patients’ experimental protocol was
approved by the Institutional Review Board (IRB) of
NYUGSM under study number 118-00564. The subjects’
average (standard deviation) gestational age was 37.11 (2.56)
weeks, with body mass index (BMI) falling within the range
of 28.914+4.46 Kg/m?. Also, the average (standard deviation)
age of the subjects was 32.8 (4.27) years old. Fig. 1 depicts
the experimental setup.

The subjects were asked to lie down on an examination
table, shown in Fig. 1 (a), for 5 minutes in a supine position.
Then, an inertial measurement unit (IMU) from Shimmer
Sensing was secured around the top part of the subject’s
abdomen using a band strap. The IMU sensor was used to
record the rotational and linear vibrations of the abdomen.
Furthermore, the electrodes of a four-lead ECG sensor were
placed along the navel-to-chest direction as demonstrated in
Fig. 1 (b). The layout of ECG electrodes (E1-E5) was
designed such that they covered as many paths (purple
arrows) on the abdomen as possible. According to Fig. 1 (b),
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Fig. 2. Fusion-based FHR extraction flow graphs: (a) Early fusion, (b) Late
fusion.

the X, Y, and Z axes correspond to the directions along right-
to-left, top-to-bottom, and dorso-ventral, respectively. All
sensors recorded the data at a sampling rate of 512 Hz. In
addition, an ultrasound CTG machine was employed to record
the ground-truth FHR. After the measurement, the recorded
data was transferred to a computer for further processing.

B. Signal Pre-processing and EMD Refinement

In order to remove the baseline wandering and motion
artifacts from the recordings, ECG and SCG/GCG signals
were filtered using a third-order zero-phase Butterworth
band-pass filter with cut-off frequencies of 0.8-40 Hz and 0.8-
25 Hz, respectively. The achieved signals are assumed to
contain components associated with fECG, mECG, and noise,
which should be separated from one another. On the other
hand, mechanical activities, i.e., SCG/GCG, are delayed
compared to electrical activities, i.e., ECG, in the heart,
provoking the need for spectral analyses rather than time-
domain methods. To this end, we designed an algorithm based
on empirical mode decomposition (EMD), coined EMD
refinement (EMDR), to keep those components that are
highly correlated with fetal cardiac activities. EMDR starts
with decomposing a signal into its intrinsic mode functions
(IMFs), the top ones of which, carrying important information
of the cardiac activity, are kept, whereas the remaining IMFs
are discarded. In this work, the first six IMFs are kept as they
comprise higher frequency components. Each IMF; is scored
by a factor of &; (i = 1,2,3,4, ...), which is defined as follows:

3N
§ = (zkfsz_NNAi[an) / (ERLIALKIR). )
fs
where A;[k] denotes the representation of i-th IMF in the
spectral domain, N shows the signal length, and f; implies the
sampling frequency of the signal. The score for each IMF is
determined based on the proportion of the information
concentrated in a specific range to the total energy of the IMF.

According to the Nyquist rate and assuming that the sample
number k = % in FFT domain corresponds to f =% Hz in

the frequency domain, 2N /f; and 3N /f; would imply 2 and
3 Hz in the frequency scale, respectively. This means that the
IMF’s are scored according to a frequency range, at which
most of the energy of fetal FHR components, 120-160 BPM,
exists. Thus, by scoring the IMF’s, they can be ranked based
on their information of fetal cardiac activity. Hence,

considering the top scores as fj (Ej > Ej +1) and their

respective IMF’s as IMF;, the refined signal X would be
reconstructed by using the top four IMF’s out of six as
follows:

®=& XIMF, +&, xIMF, + &, xIMF3+&, x IMF,. (2)

Hence, EMDR could improve the signal components at a
certain frequency range. EMDR is applied on every channel
of ECG, SCG, and GCG, turning the signals more suitable for
the multi-modal signal fusions illustrated in Fig. 2. As shown
in this figure, two fusion techniques are designed: early-
fusion (Fig. 2 (a)) and late-fusion (Fig. 2 (b)) as elucidated in
the following sections.
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D. Early-fusion FHR Estimation

In order to implement a meaningful fusion among the
modalities, we employ the spectral contents of the signal since
the nature of ECG, SCG, and GCG are different from one
another in the time domain. Furthermore, having considered
the signal refinement proposed above, the enhanced
frequency components within the range of 2-3 Hz are deemed
to contribute to a constructive effect in the spectral domain.
The time-frequency (TF) representation of each channel is
calculated by applying a Morse continuous wavelet transform
(CWT) as defined below:

p2

Ypy () = U(w)ap,wv Xexp (—w’), €))
where U(w), P?, v, and ap, characterize the unit step
function, time-bandwidth product, symmetry of the Morse
wavelet, and normalizing constants, respectively. In this
study, the values of v and P are set to 4 and 120, respectively.
Once the refined signals from each modality are transformed
into their TF representation, the values of each TF are
normalized to a zero-mean unit-variance distribution, i.e.,
~N(0,1). Then, the normalized TF’s are averaged within
their respective modalities, normalized again, and averaged
across the three modalities. Indeed, the fusion operator
generates a single TF characteristic that represents the
combined information from the three modalities with an
emphasis on the components within 2-3 Hz, which is relevant
to fetal heart activities. An inverse continuous wavelet
transform (ICWT) is then performed on the fused TF to
convert it back to time domain. Subsequently, to obtain the
FHR values, cepstrum is performed on the signal to calculate
the lag at which the time-domain signal appears to have a
higher energy. As the FHR value varies within the range of
110-180 BPM throughout the entire experiment, the desired
peak is to be detected within the corresponding lag values,
i.e., 333-545 ms. Hence, FHR is calculated as follows:

FHR (BPM) _ 60(second)

lag (second)’

“

E. Late-fusion FHR Estimation

The late-fusion flow graph is shown in Fig. 2 (b).
According to this structure, each modality undergoes a

TABLE I. RMSE OF ESTMATION BY MODALITY-ONLY AND FUSION-BASED

METHODS

Subject SCG GCG ECG Early Late
fusion fusion

1 12.07 11.69 12.65 12.37 9.52

2 16.25 17.15 15.85 16.04 14.70

3 13.10 12.01 14.22 12.01 11.30

4 12.07 11.86 11.44 12.81 9.22

5 17.31 12.34 13.64 14.16 12.54

6 8.34 11.26 10.11 9.77 7.34

7 14.62 14.20 14.91 16.43 12.65

8 12.75 12.38 12.69 12.14 10.00

9 12.74 12.54 9.85 9.42 9.68
10 10.54 10.56 10.59 9.52 8.57
Mean 12.98 12.60 12.60 12.47 10.55
+std. +2.47 +1.76 +1.96 +2.38 +2.10

(BPM)

channel fusion procedure as described above. As such, ECG,
SCG, and GCG channels are fused within their respective
modalities separately. Once the fusion at each modality is
performed, three TF representations corresponding to ECG,
SCG, and GCG are obtained. Unlike the early-fusion
technique, the TF associated with each modality is converted
back to the time domain with no data fusion at this stage.
Then, cepstrum is applied on each time-domain signal, and
FHR values are estimated from each modality separately.
Thus, three estimates of FHR are acquired through SCG,
GCQG, and ECG channels. Data fusion is then conducted on
the three FHR estimates by averaging the values. In fact, the
three modalities are assumed to introduce some amount of
error in the FHR estimate values. Yet, late-fusion is meant to
reduce the total error by moderating the FHR discordance
among the sensors. This will be further discussed in the
experimental results.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the experimental results are presented and a
comparison between the proposed techniques and those in
literature is made.

A. Performance Evaluation

In order to evaluate the performance of the proposed
methods, the signals are segmented into 10-second frames,
from each of which FHR values are estimated. The estimate
values are then compared with the ground-truth values, i.e.,
CTG readings, through three metrics called positive percent
average (PPA), i.e., the percentage of time the proposed
method generated a valid FHR within 10% of the readings
from CTG, absolute percentage error (APE), and root-mean-
square error (RMSE). Table I summarizes the RMSE results
for fusion-based and single-modality scenarios for the ten
subjects, where single-modalities include signal refinement
and channel fusion. According to Table I, late-fusion suggests
the best performance among all by 10.55£2.10 BPM of
RMSE, whereas early-fusion is reported by 12.47+2.38 BPM,
indicating superior accuracy to the single-modality scenarios
such as SCG, GCG, and ECG with 12.98+2.47, 12.60+1.76,
and 12.60+1.96 BPM, respectively, where GCG introduces
the least error. The difference in performance between early
and late fusions results from the potentially destructive effect
caused by the complex values of TF while fusing the sensors
in early-fusion. Furthermore, for subjects 5 and 9, the best
RMSE’s were achieved by the GCG modality and early-
fusion, respectively, although late-fusion performs more
robustly in other cases. Fig. 3 makes a comparison of the APE

APE of sensor-alone and fusion scenarios IUEPA of sensor-alone and fusion scenarios
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Fig. 3. Performance of the proposed method and the sensor-alone scenarios:
(a) APE, (b) PPA.
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TABLE II. COMPARISON WITH OTHER WORKS IN LITERATURE

Modality PPA (%) RMSE CI Reference
(BPM) (low,
high)
Low SNR 87.00+4.81 10.55+2.10  -1.9,-0.19 Proposed
ECG/SCG/GCG method
SCG/GCG 75.20£11.81 11.40+2.17 N/A [11]
fECG 83.40+15.40 4.80+2.00 N/A [13
PCG/fECG N/A N/A -8.84, [14]
8.24

and PPA metrics. As illustrated in Fig. 3 (a) and (b), the late-
fusion model outperforms early-fusion as well as single-
modality settings by a margin of 1.00% and 17.00% in terms
of APE and PPA, respectively. Unlike the RMSE values
mentioned in Table I, PPA=71.00% and APE= 7.30% of
early-fusion suggest better performances compared to the
single-modality scenarios. The worst performance belongs to
the SCG modality with 12.98 BPM, 7.70%, and 67.00% of
RMSE, APE, and PPA, respectively. In summary, late-fusion
offers a more robust and reliable estimation of FHR values.

B. Comparison with Other Methods

As the proposed framework leverages both abdominal ECG
and SCG/GCG modalities, where CTG provides the ground-
truth value, it is compared with the three most similar
wearable-based works in the literature. In [11], SCG/GCG are
employed to extract the FHR, where CTG is used as the
reference. In [13], FHR extraction is performed using a small
AN24 sensor from Monica Healthcare, which was used to
record fECG. Furthermore, a sensor fusion of phono-
cardiography (PCG) and fECG addresses FHR extraction in
[14], with which the proposed method is compared. These
works were selected for comparison since they leverage a
partially-similar setup to ours, i.e., inertial sensors, abdominal
ECG sensors, and a sensor fusion algorithm, respectively.
Table II reports on the performance comparison between the
proposed method and other works. As seen in Table II, the
proposed late-fusion framework outperforms the other
methods in the literature in terms of PPA by a large margin of
4.00%, whereas in terms of RMSE, it suggests weaker
performance than the fECG-based method (10.55 vs. 4.80
BPM). This weaker performance stems from using
commercial off-the-shelf ECG sensors in our setting.
Furthermore, despite employing a single-IMU setting, the
proposed method could estimate the FHR values more
accurately than the triple-IMU-based framework in [11]
(RMSE: 10.55 vs. 11.40 and PPA: 87.00% vs. 75.20%). The
fourth column of Table II represents 95% confidence interval
(CD (lower bound, higher bound) for the difference between
the reference and the estimates of FHR. This metric is only
reported for the fusion algorithm in [14]. Comparing the
proposed method and [14], it is concluded that most of the
differences between the reference and the estimates of FHR
in our method lie within a smaller range around zero, i.e., (-
1.9, -0.19), in comparison to [14], i.e., (-8.84, 8.24), implying
higher confidence by the proposed method.

IV. CONCLUSION

This study addresses the fusion of fECG and inertial
sensors to monitor FHR for the first time. The proposed
framework benefits from an EMD-based signal refinement,
which enhances fetal cardiac activity components in both
ECG and SCG/GCG readings. Furthermore, two sensor
fusion methods are designed to improve the accuracy of FHR
estimation. A PPA of §7.00% demonstrates the efficiency of
our approach for FHR extraction. Future studies include
source separation methods to cancel the maternal components
from both ECG and inertial readings. Furthermore,
channel/sub-signal scoring will be added to each modality to
select the channels/sub-signals indicating higher SNR values
within the range of 2-3 Hz. Moreover, other patterns for ECG
placement will be investigated, where some of them might
potentially contribute to high-SNR fECG components.
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