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I. Introduction

I N DECEMBER 2018, a small unmanned aerial system (UAS)
was observed at Gatwick airport in the United Kingdom, and this

caused a major disruption at the airport. After this “drone chaos,”
Gatwick airport spent 6 million dollars to install a counter-UAS
(C-UAS) system [1]. With the rapid proliferation of small UAS, the
risk of accidents caused by small UAS is also growing [2]. Given this
concern, research on C-UAS technology has immediate relevance.
These systems use a variety of sensors such as electro-optical/
infrared (EO/IR) cameras, RADAR, and acoustic sensors, and the
data from these sensors are fused to detect and track a given threat [3].
According to [1], there are 323 commercial UAS detection systems in
the world, and half of them use combined sensor systems.
Omnidirectional–directional combined sensor systems such as

radar–camera systems [4], dual-camera systems [5–10], and lidar–
camera systems [11,12] are common types of combined sensor
systems. In our previous work [13], an air-based peripheral–central
vision (PCV) system to detect and characterize airborne threats was
developed. The PCV system is a heterogeneous stereo vision system
comprising an omnidirectional peripheral vision camera and a
directional central vision camera capable of pan-tilt-zoom (PTZ)
operation. The peripheral vision camera provides continuous visual
coverage of the environment for threat detection, although with
relatively low and nonuniform resolution. The central vision camera
complements the peripheral vision camera by providing a high-
resolution imagewhen cued to observe a threat. An extended version
of this concept is discussed in [14], where the authors develop a
decentralized multitarget state estimation scheme to allocate a num-
ber of remote central vision sensors. In the system described in [15],
the pair of cameras affords the opportunity to use stereo vision for
estimating the 3D position of the threat while the high-resolution
image of the central vision camera allows monocular vision-based
estimation of the threat aircraft attitude. Thus, one may obtain both
the position and the attitude of the threat aircraft using the PCV
system. However, in [13], only a single threat has been assumed, and
this assumption may not be reasonable for an urban environment or
more crowded areas in which multiple objects may exist in the air.
Here, we consider an environment with multiple small UAS

threats. The omnidirectional sensor is able to observe all these threats

at once using its large field-of-view (FOV). The directional sensor
then slews to observeeach threat to obtaindetailed data (e.g., position,
velocity, aircraft classification). A threat that is rapidly approaching
may need to be observed as soon as possible. However, all of these
threats keep moving and changing their state. To keep the threat data
updated, the directional sensor needs to keepmaneuvering to observe
each threat according to a particular “threat schedule” determined by
a risk analysis based on the state of threats such as the approach speed
and distance to the threat.
Threat scheduling algorithms are commonly used with phased

array radars. The phased array radar is capable of tracking multiple
threats at the same time, but the operating cost is high because of
power requirements. Threat scheduling algorithms have therefore
been studied for efficient radar resource management, where the
sensor focuses on those threats that pose the greatest risk. Miranda
et al. defined detailed criteria for prioritizing threats using fuzzy logic
[16–18], an approach thatwas also used byDing andMoo [19].Other
studies have proposed optimal threat scheduling algorithms for
multiple PTZ cameras to minimize the uncertainty of threat data
using information theory [20–23]. Other closely related research
efforts have focused on fusing data frommultiple sensors, both active
and passive, to schedule and track multiple threats [10,24,25]. The
Drone Net program [10,24] is especially relevant for combining
all-sky and perspective camera imagery, among other ground-based
sensors. Khosla et al. [4] proposed a novel threat scheduling algo-
rithm for a radar-cued camera system. They prioritized threats based
on time elapsed from the initial detection, FOVof the camera, and the
slew angle required for the PTZ camera to image a given threat.
The threat scheduling algorithms mentioned above prioritize the

risk posed by each threat over other concerns. These scheduling
algorithms are especially appropriate for ground-based sensing
systems, which are less limited by size, weight, power, and cost
(SWaP-C) and which generally have a long sensing range. Schedul-
ing algorithms for these systems do not need to consider the time
taken for a secondary directional sensor to move toward threats
(e.g., panning/tilting time for a PTZ camera), because the threats
can be detected from a long stand-off distance. (For example, the
sensing range of the ground-based radar considered in [26,27] ismore
than 3 km.) On the other hand, if the sensing range of the omnidi-
rectional sensor is short (e.g., the sensing range of the PCV system for
1-m-size threat is 100m [13]), the time that it takes for the directional
sensor to maneuver and image a particular threat is crucial because
one of the threats may harm the host system even before it is observed
by directional sensor.
Time-efficient observation involves minimizing the observation

time, that is, the total time required to observe all of the given threats
using a directional sensor. Nevas and Proença [28] and Del Bimbo
and Pernici [29] proposed PTZ camera scheduling algorithms that
use Markov random fields (MRFs) and the traveling salesman prob-
lem (TSP) to minimize time to observe all targets. These two algo-
rithms minimize the time to observe given threats; however, the risk
posed by the threats is not considered for scheduling. For threat
scheduling, both the slewing time required by the directional sensor
and the risk posed by a given threat should be considered in deter-
mining the imaging order. If a threat that is near the current FOVof the
directional sensor poses a relatively small risk, for example, the
imaging and characterization of this threat might be postponed while
the sensor images a higher priority threat. If it is possible to image this
lower risk threat without significantly delaying acquisition of the
higher risk threat, however, then doing so would be more time-
efficient. A suitably designed scheduling algorithm should enable
the system to observe all of the threats faster and/or more often.
We present a modified TSP formulation to schedule the imaging of

multiple threats using a directional, narrow FOV imaging sensor
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together with a fixed, wide FOV sensor. The target application is a
passive, airborne sensing system to detect and track small UAS. The
scheduling method weighs the risk posed by each threat against the
time required to image the threat according to a criterion determined
by the user. The performance of the proposed algorithm is studied
using simulations where the relative priority between risk and time-
liness is varied from one extreme to the other. The paper is organized
as follows. Section II reviews themotivating application: an airborne,
heterogeneous stereo vision system that can be used to detect and
track small UAS. Section III introduces a method for assigning a risk
value to each detected threat. Section IV presents the modified TSP
whose solution is an “optimal tour” by which the directional sensor
may service every threat. The complete threat scheduling algorithm
design is described in Sec. V. Section VI describes the scheduling
process and the simulation setup and the results are discussed in
Sec. VII. Concluding remarks and a brief description of ongoing
work are presented in Sec. VIII.

II. Peripheral–Central Vision System

In this paper, the threat aircraft position and attitude are assumed to
be obtained from a PCV camera systemmounted on a host UAS, as in
Fig. 1. This camera system comprises an omnidirectional camera and
a PTZ camera with a narrow FOV [13], along with the computer
vision algorithms needed to detect and characterize other small UAS
that may pose a threat. The omnidirectional camera provides con-
tinuous coverage of the environment, but with relatively low and
nonuniform resolution. The PTZ camera complements the peripheral
vision camera by providing a high resolution image when cued to
observe a given threat. The higher resolution PTZ camera image
allows classification and attitude estimation [15] of a threat aircraft,
while the two cameras together enable stereo ranging of objects
within the PTZ camera’s FOV [13].
The primary advantage of an airborne small UAS sensing system

over a ground-based system is its ability to maneuver to improve
detection and characterization performance. Other potential benefits
include the ability to pursue or evade threats. In addressing the
optimal threat scheduling problem considered here, we make the

simplifying assumption that a single host aircraft hovers in one place.
However, the overall system capability could be improved by
allowing multiple, maneuvering host aircraft to coordinate detection
and tracking.
Figure 2 illustrates the operation of the sensing system. At the left,

the peripheral vision system initially detects a threat in order to cue
the PTZ camera for further characterization. To accomplish this, the
omnidirectional camera image must first be undistorted, using
knowledge of the camera optics, and then stabilized to compensate
for camera motion. Optical flow is used to detect threats in the
undistorted, stabilized imagery. Once the threat bearing angle is
converted from the omnicam frame to the PTZ camera frame, the
gimbal adjusts the PTZ camera’s attitude to image the threat. The
higher resolution image of the central vision camera enables threat
classification using a deep neural network (DNN), and the threat
attitude can be estimated using a method such as the one presented in
[15]. The pair of images together (one from the omnicam and the
other from the PTZ camera) enables stereo ranging to determine
the threat position, although the accuracy of this estimate depends
on the separation (baseline) between the two cameras [13].
For the system described in [13], the Insta360 Air is used as the

omnidirectional camera; the two fisheye lenses provide 360°
coverage in both azimuth and elevation. An omnicam with greater
resolution, such as the all-sky camera mentioned in [10], could
decrease threat localization error; the Insta360Airwas selected based
on SWaP-C and compatibility with commonly used hardware and
software. The PTZ camera system comprises a GigE DFK Z12G445
color zoom camera from The Imaging Source and an HDAir Infinity
MR S2 gimbal. The two cameras communicate through ROS,
installed on an onboard NVIDIATX2, which runs all of the system
algorithms, such as detection and cueing.
The system architecture described here helps to motivate the

problem of detecting and tracking small UAS within a region. Note
that the focus is on sensing for counter-UAS applications; the task of
removing threats is beyond the scope of this paper.

III. Risk Assignment

The definition of the risk posed by a threatmay differ depending on
the purpose of the sensing system. Defining threat and risk are
essential steps in developing C-UAS systems [1,3,30–32]. For exam-
ple, if the purpose of the sensing system is just to detect and avoid
other aircraft, the minimum time to collision might be an appropriate
definition of risk. However, if a sensing system supports counter-
UAS to protect a region from overflight by hostile drones, then
additional parameters should be considered (e.g., speed, heading,
performance capability). Other threat scheduling studies mentioned
above [4,16–19] thus have different definitions of risk.
In this paper, the risk posed by a given threat is related to its

likelihood of colliding with the host aircraft. The resulting problem
formulation emphasizes protecting a point in space, i.e., the host
location, rather than a region, but it could easily be extended to the
latter case with some simple modifications to the risk measuresFig. 1 Peripheral–central vision (PCV) system setup.

Fig. 2 Peripheral–central vision (PCV) system flow chart.
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defined below. To simplify this initial problem formulation, wemake
the following assumptions:
1) A single host system hovers in place and is tasked to detect and

track airborne threats within its sensing range.
2) An algorithm predicts the future path of each detected threat

using data provided by the host (e.g., [15,33–38]).
Further, with a focus on counter-UAS applications, we suppose

that each threat is a small UAS with corresponding limits on size,
speed, and maneuverability.
Given the assumptions above, we define a set of parameters to

characterize the risk posed by each threat. Each of these risk param-
eter values is normalized to a value between 0 and 1, as in [4], and a
weighted summation serves as the final measure of risk for the given
threat.

A. Risk Parameters

1. Range to the Threat

A threat that is closer to the host is considered higher risk. The
range to a threat from the host system at time step k is

dtk � krhk − rtkk (1)

where rhk is the host system position and rtk is the threat position at

time step k. The range is normalized using the maximum detectable
range dmax of the sensing system. The value of dmax depends on this
system architecture. For the system described in [13], dmax ≈ 100 m.
The normalized risk parameter corresponding to the range to the
threat at time step k is

�Dk � max

�
0; 1 −

dtk
dmax

�
(2)

The parameter is minimum when the threat is at the limits of the
detectable range and increases with proximity to the host system. If
the focus is on protecting a region, rather than a single point, one
could instead compute the distance between the threat and the set
defining that region. A spherical “protection region” centered at the
hostwould be a trivial extension; amoregeneral geometrywould also
be straightforward, though computation time would increase.

2. Current Approach Speed

The faster a threat is approaching, the higher the risk that it poses.
The threat’s approach speed at time step k can be estimated using a
simple finite difference of the distance from the host to the threat over
the past two time steps, where the time step Δt corresponds, for
example, to the camera frame rate:

Vt
k �

1

Δt
�dtk − dtk−1� (3)

The estimate (3) is simple to compute, but it is sensitive to error in
the distance measure. The estimate could be improved by using a
discrete time filter.
Note that the current approach speedVt

k is positivewhen the threat is
closing on the host. The value is normalized using an estimate of the
maximum approach speed (Vmax) of the threat. Because we have
assumed that the host is hovering in place, the value of Vmax is simply
themaximumspeedof the threat;moregenerally, onewould correct for
the host’s motion. For a threat that has not been classified, one might
choose a sufficiently conservative value forVmax. The normalized risk
parameter corresponding to the threat’s approach speed at time stepk is

�Vt
k � max

�
0;

Vt
k

Vmax

�
(4)

3. Predicted Approach Speed

The predicted path of a threat can be estimated using path pre-
diction algorithms based, for example, on point mass models for

threat motion [15,33–39]. The Kalman filter [40–42] and its variants
are especially useful for model-based path prediction. Figure 3 shows
an aircraft flying away from the host system (Vt < 0). However, the
predicted path of the aircraft (blue line) implies that the aircraft will
change its heading and possibly approach the host system in the
future. Even if a threat does not seem risky now, the threat may
become riskier if the threat changes its heading. Therefore, the future
maneuver of the threat is an important factor to consider for risk value
estimation.
In [33–39], the aircraft is modeled as a point mass. Its position n

time steps in the future can be estimated as

rpk�n � rtk � �nΔt�vtk �
�nΔt�2

2
at
k (5)

where rtk, v
t
k, and a

t
k are the position, velocity, and acceleration of the

threat aircraft, respectively, at time step k.While the current approach
speed Vt

k is computed based on the threat position history over the

past few time steps (3), the predicted approach speed at some time n
steps in the future is computed at time step k using the predicted
position:

Vp
k � −

1

nΔt
�dpk�n − dpk � (6)

where dpi � krhi − rpi k. One may pick a worst-case value of the time

stepn, using knowledge or assumptions about the speed and agility of
a given threat aircraft. A fixed-wing threat, for example, has a limited
turn rate for a given speed and this limit can be used to compute the
time required to establish a collision course.
Although it is possible to predict a future closing rate for the threat,

this prediction relies on a path prediction that will generally be in
error. To reduce the likelihood that a high path prediction error will
artificially inflate the risk, the predicted approach speed is discounted
based on the current path prediction error. In [15], an averaged
distance error at time step k between the n-step threat position history
and the predicted position history over the same time horizon is
computed as follows:

epk � 1

n

Xk
i�k−n

krti − rpi k (7)

See Fig. 4. Using epk to characterize the path prediction error over the
recent past and normalizing by a worst-case prediction error (epmax)
gives

�epk � min

�
epk
epmax

; 1

�
(8)

Considering ep as a measure of the deviation between the threat
position history and the predicted position history, one may choose a

conservative value for epmax such as the true maximum (absolute)

value of epk over the given time history. In this case, �epk represents a

scaling of the prediction error that will fall within the range from 0 to
1, with 1 indicating that the prediction error is so high that the
predicted approach speed is unusable as a measure of risk. Scaling

the (normalized) predicted approach speed by the factor 1 − �epk gives
the following risk parameter:

Fig. 3 Current and predicted approach speed.
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�Vp
k � max

�
0;

Vp
k

Vmax

�1 − �epk �
�

(9)

4. New Threat Value

If a new threat is observed by the omnidirectional sensor and has
not yet been imaged by the directional sensor, this threat may be
assigned a high priority in order to obtain the more detailed informa-
tion required to assess the risk that it poses. Accordingly, we define a
parameter cnt called the new threat value. If a new threat is detected,
then the parameter value for this threat is cnt � 1; otherwise, cnt � 0.

cnt ∈ f0; 1g (10)

B. Total Risk

After estimating the risk parameters defined in Sec. III.A, these
parameters are combined as a weighted sum into a single risk value
for each known threat at time step k:

RVk � cnt � �1 − cnt��WD
�Dk �WVt �Vt

k �WVp �Vp
k � (11)

Here, theweights are defined such thatWD �WVt �WVp � 1. Note
thatRV � 1when cnt � 1, reflecting the immediate prioritization of
previously unobserved threats; the addition or removal of threats
detected by the omnidirectional sensor is managed by a separate
module that is not discussed here. Note that RVk ∈ �0; 1�.
The weight parameters can be determined depending on the user’s

intention. If one wants to place twice the importance on the current
approach speed as other parameters, for example, then one may
choose WVt � 0.5 and WD � WVp � 0.25. Figure 5 shows how
the risk value varies with the risk parameter weights for two example
sets of risk parameter values for a given threat. Each axis represents
a weight, and the risk values are represented by the color map on

the triangular portion of the plane WD �WVt �WVp � 1. For

this example, dmax � 100 m, Vmax � 59 m∕s, and epmax � 40m.
Figure 5a corresponds to a threat that is approaching slowly

( �Vt � 0.2) from nearby ( �D � 0.5) andwith a fast predicted approach

speed based on an accurately predicted path ( �Vp � 0.59). For this

threat, the larger WVt is, the smaller the risk value is because �Vt is
smaller than other parameters. For the example in Fig. 5b, the threat is

approaching faster ( �Vt � 0.5) but from a more distant location

( �D � 0) and with a fast predicted approach speed that is based on

an inaccurate path prediction ( �Vp � 0.17). Note that �Vp is much
smaller than in the previous example because of the high prediction
error, even though Vp is the same for both cases. These examples
illustrate how the risk parameter weights determinewhich parameters
will dominate the computed risk value for a given threat. These
weights can bemodified depending on the threat scheduling scenario.

IV. Modified Traveling Salesman Problem

The threats can be scheduled for the directional sensor based on the
risk values computed in the previous section. The directional sensor
then reorients in order to observe the threats, starting from the highest
priority threat and proceeding to the lowest. As mentioned in Sec. I,
both the risk posed by the threats and the need to image the threats
expeditiously should be considered in determining the order in which
the threats should be imaged by the higher resolution directional sensor.
Figure 6 shows a planar example of a directional sensor maneuver.

The triangles depict the FOV of the sensor. In Fig. 6a, threats are
prioritized only based on the risk values (T1–T2–T3); the sensor
begins with threat 1 and then moves on to threats 2 and 3. However,
the observation can be done in a faster way (T1–T3–T2), as shown in
Fig. 6b. In this way, threat observation can be conducted in a time-
efficient way, so that more threats can be observed in the same time
period, and the threat data can be updated more often.
The TSP involves finding the shortest path for a salesman who

wants to visit each city in a finite set exactly once. A conventional
TSP formulation can be used to determine the fastest way to image all

Fig. 4 Computing the position prediction error ep.

Fig. 5 Risk value versus risk parameter weights for two examples (dmax � 100 m, Vmax � 59 m∕s, epmax � 40 m).
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threats. In this problem formulation, each threat is treated as a node
(or “city”). To determine the optimum tour which visits all n nodes,
we first define the cost to slew from threat i to threat j, cij. Assuming

that the sensormoves between threats at a constant rate, and dwells on
each threat for the same amount of time, the TSP solution minimizes
the total cost of servicing all threats. For the fastest path of the
salesman, an integer linear programming problem is formulated as
below [43,44]. Here, a binary variable xij represents whether the

camera proceeds from threat i to threat j: if so, then xij � 1; other-

wise, xij � 0. Given a subset S of all the nodes, we seek a TSP tour

(i.e., values of xij) that satisfies the following:

Minimize
Xn
i�1

Xn
i≠j;j�1

cijxij (12)

s:t: xij ∈ f0; 1g; i; j ∈ f1; : : : ; ng (13)

Xn
i�1;i≠j

xij � 1; i ∈ f1; : : : ; ng (14)

Xn
j�1;j≠i

xij � 1; j ∈ f1; : : : ; ng (15)

X
i∈S

X
j∈S

xij ≤ jSj − 1; ∀ S⊊f1; : : : ; ng; 2 ≤ jSj ≤ n − 2

(16)

where jSj represents the number of elements (nodal indices) in the
subset S. Constraints (14) and (15) ensure that only one path proceeds
from each node. Constraint (16) prevents the formation of subtour, i.e.,
a tour that does not service every threat. For the conventional TSP
formulation, the Euclidean distance between nodes i and j defines the
cost cij. In this paper, the TSP formulation is modified to emphasize

both the speed with which threats are serviced and the prioritization of
higher risk threats. The position of each threat is represented as the line
of sight to that threat; thus the angular distanceωij between threat i and
threat j is used for cij rather than the Euclidean distance; see Fig. 7.

ωij �
2sin−1

�������������������������������������������������������������������������������������
sin2�Δθij∕2� � cos θi cos θjsin

2�Δψ ij∕2�
q

π
(17)

where Δθij and Δψ ij are the absolute difference of elevation and

azimuth angles between threat i and j. Note that the angular distance

is normalized with π as in Sec. III because the maximum angular

distance is π. If multiple threats are located with a dense distribution

and more than two threats are within the directional sensor’s FOV, the

threats might be observed simultaneously. In this case, a clustering

method with a cluster size constraint determined by the sensor FOV

can be used. In this case, the algorithm could proceedwith each cluster

treated as a single threat, located at the centroid of the cluster, and

taking themaximumvalue ofRV of the threats contained in the cluster.

This strategy would require that implementation issues (e.g., camera

focus) be resolved so that all threats within the cluster can be charac-

terized from the resulting image(s).
In modifying the TSP to account for both observation time and

threat risk,RV should be included in cij along with the slewing time,

as characterized by ωij. As shown in Fig. 6b, if RV is similar for

threats 2 and 3, then threat 3 can be observed along the way from

threat 1 to threat 2. On the other hand, if RV for threat 3 is low

(e.g., 0.1), threat 3 should be ignored because it is much more urgent

to image threat 2. Accordingly, we define

cij � ωij�1 −WRV� � kjWRVRVj (18)

Fig. 7 Angular distance between two threats.

Fig. 6 Directional sensor maneuver examples.
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where the integer kj ∈ f1; : : : ; ng represents the prioritization of

threat j. A smaller value indicates higher priority; for example, if
threat 3 has the highest priority, then k3 � 1. The parameter
WRV ∈ �0; 1� balances the importance of imaging threats that pose
a high risk against the need to image all of the threats as quickly as
possible. The greater the value of WRV , the more heavily the risk
value RV is weighted in determining the optimum tour.
Given values for the risk parameters associated with each threat

and the user-defined weights, the TSP solver computes the cost of
each possible tour through the threats and selects the one for which
the total cost is minimum. Figure 8 shows a planar example of the
modified TSP. There are four threats, each with a unique azimuthal
position ψ . The thick blue line represents the current boresight of the
directional sensor, i.e., the starting orientation for the tour of the four
threats. (Although a planar example is overly simplistic, it serves as a
helpful illustration.) The tables in Fig. 8 show the cost for 3 of the 24
possible tours. The table at the top shows the cost computation
when the threat order is T3–T4–T1–T2, which services the threats
in descending order of risk. To compute the cost cc3 to reorient the
directional sensor from its initial orientation to threat T3, the
algorithm sets k3 � 1 with ωc3 � 0.833 � 30°∕180°. In this case,

cc3 � 0.833 × �1 − 0.5� � 1 × 0.5 × 0.9 � 0.866

In a similar way, the cost of each leg of the tour is computed up to

c12 � 0.444 × �1 − 0.5� � 4 × 0.5 × 0.1 � 0.422

The total cost of the tour is given below the top-most table: 3.472. If
the threat order is changed to T4–T3–T2–T1, as shown in the table in
themiddle, the total cost decreases to 3.433. The reason is that the risk
values of T4 and T3 are similar, so observing T4 along the way to T3
is more time-efficient. But because T2 is not an urgent threat
(RV � 0.1), imaging this threat could be postponed, given that T1
poses a higher risk (RV � 0.6). If we change the order as in the table
at the bottom (T4–T3–T1–T2), the cost decreases further to 3.405.
For these examples, WRV � 0.5. If one wishes to emphasize obser-
vation time efficiency more heavily than risk, one might choose
WRV � 0.3. In this case, the total cost of the tour in the middle table
becomes 2.7269, whereas the cost of the tour at the bottom becomes
2.8877. In this case, the optimization algorithm indicates that T2
should be observed earlier than T1, despite the lower risk that T2
poses. Thus, the parameter WRV adjusts the balance of priority
between risk and time efficiency. In the next section, the detailed
threat scheduling algorithm design is described using the modified
TSP solution and the risk value estimation.

V. Threat Scheduling Algorithm Design

Based on the risk value estimation and the modified TSP solution
introduced in previous sections, the threat scheduling algorithm can
now be presented. The algorithm runs in a continuous loop that
resembles the observe-orient-decide-act (OODA) cycle attributed
by Schechtman [45] to Col. J. R. Boyd. Figure 9 shows the threat
scheduling flow chart for the PCV system. The peripheral vision
camera provides continuous visual coverage, providing continuous
bearing data (i.e., line-of-sight angles) for all detected threats. In the
initial observation cycle, detailed threat data such as position,
velocity, and the predicted path are not available because the central
vision camera has not yet imaged the threats. To initialize the process,
the central vision camera scans all threats as quickly as possible,
following the tour provided by the conventional TSP solution
(with WRV � 0).
Once the initial observation cycle is over, risk parameters can be

computed for each threat. Although all threats have now been
imaged, the next tour has not been optimized. All of these threats
are declared “unobserved” and added to the “unobserved threat list.”
Next, the modified TSP is solved for all threats in the unobserved
threat list. Once the threat schedule is determined, the central vision
camera starts to slew to the first threat in the prioritized list. Once this
threat is detected by the central vision camera, the state (position,
velocity, etc.) is estimated, the risk parameter values are updated, and
the threat is moved to the “observed threat list” from the unobserved
threat list. In practice, the central vision camera may be unable to
acquire the threat for some reason, so the central vision camera is
commanded to move to the next threat after an observation time limit
to. Each time a threat is observed by the central vision camera, the
modified TSP is solved for the unobserved threats again. Thus, any
new threat that appears in the omnidirectional camera image will be
immediately serviced by the directional camera. Once every threat
has been observed, so that the unobserved threat list is empty, all
threats contained in the observed threat list are moved to the unob-
served threat list. This process runs as a continuous loop. In the
following section, the threat scheduling algorithm is implemented
in a simulation to assess the performance.

VI. Simulation Setup

In this section, a simulation is conducted to assess the performance
of the suggested threat scheduling algorithm. For simplicity, we
assume that the altitudes of all threats and the PCV system are the
same so that wemay considermotion in a horizontal plane. The threat
scheduling process using the PCV system (Fig. 9) is depicted in
the simulation, and the simulation parameters are shown in Table 1.

Fig. 8 Candidate tours for a modified TSP example.
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Themaximum detectable range of the PCV system is dmax � 100 m.
All threats are assumed to be small UAS, and the typical racing drone

speed of 59 m∕s [46] is taken asVmax. We chose 40 m for epmax based

on actual small UAS flight data [47]. To apply the sameweight for �D
and �Vt for threat scheduling,WD andWVt are defined as 0.4, and we

used 0.2 forWVp to emphasize �D and �Vt more than �Vp.
Figure 10 shows an example of the simulation. The simulation first

generates threats with random data (position, speed, and attitude)
with the simulation parameters shown in Table 1 as in Fig. 10a, and
threats do the steady turning flight and randomly change their roll
angles during the simulation. In the figure, the PCV system is located
at the origin and the threats have been detected by the peripheral
vision camera. The only data obtained from the peripheral vision
camera are the line of sight to each threat, so the risk parameters for
the threats are not available in the first cycle. Based on the
bearing data, the conventional TSP solution (WRV � 0) is adopted
to quickly image all the threats; this initial threat schedule is
2-3-5-1-4. The boresight of the central vision camera (depicted by
a thick blue line) starts to move based on the schedule. (We assume
simple dynamics for the camera gimbal, as one would obtain using a
proportional-derivative servo controller.) Once a threat is observed
(Fig. 10b), the position, velocity, and predicted path (red lines) of the
threat are estimated. Note that the position of each threat is updated to
the estimated value in Fig. 10b. Having quickly acquired initial
data concerning the threats, the risk parameter values are computed

using the approach presented in Sec. III and a new threat schedule
(4-1-5-2-3) based on the modified TSP solution (withWRV � 0.5) is
then determined; see Fig. 10c. In this example, threat #4 has the
highest risk value (it is approaching the PCV system from nearby),
and it is designated by the TSP solver as the highest priority threat.
Threat #1 is designated as the second priority, because it is quite close
to threat #4. After observing threat #1, the directional sensor is
steered to threat #5, which has the second-highest risk value (0.27).
Threat #2 follows because threat #3 has a zero risk value.

VII. Discussion of Results

The weight parameter WRV determines the balance between risk
and time-efficiency in prioritizing observations. Figure 11 shows the
modified TSP solutions for different values of WRV in the threat
scheduling simulation. For the left figure WRV � 0 and the threat
schedule (2-4-1-5-3) minimizes the scanning time. This approach
enables fast threat scanning but gives no special priority to threats that
may pose a high risk. For the right figureWRV � 1 and the schedule
(5-2-4-3-1) considers only the risk posed by each threat, as in other
studies [4,16,19], without considering the time required to service the
threats.
To assess the performance of the modified TSP algorithm for

multiple threat scheduling, simulations were conducted using the
parameters shown in Table 1. The purpose of these simulations is to
compare the performance between purely risk-based scheduling
(WRV � 1), as in [16–19]; purely time-based scheduling (WRV � 0),
as in [29]; and the proposed method for balancing these two
concerns (0 < WRV < 1).
In each of these simulations, eight threats were placed randomly

within the scene and they maneuvered through the omnicam FOV
over a period of 5 minutes. Two simulations were run at each of 50
values of WRV ranging from 0 to 1. For each simulation, three
performance measures were computed: a measure of the risk
value prioritization, the total number of threats observed during a
simulation, and the differential entropy, which is discussed a bit later.
The risk value prioritization was measured by summing the risk
values RV for the four highest priority threats each time the unob-
served list was refreshed and averaging all of these outcomes over the
simulation. The resulting value ranges from 0 to 1, with values closer
to 1 indicating that threats posing the greatest risk have been
prioritized. Because 100 simulations were performed at each value

Table 1 Simulation parameters

Parameter Value

Simulation time 5 min
Threat initial range 80–100 m
Threat roll angle 0–10°
Threat heading angle 0–360°
Gimbal maximum angular speed 40°∕s
Number of threats 8
dmax 100 m

Vmax 59 m∕s
epmax 40 m

WD,WVt 0.4

WVp 0.2

Fig. 9 Threat scheduling flow chart for the PCV system.
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ofWRV , 100 values were obtained for each of these three measures.

These 100 values were then averaged. The results for risk value

prioritization and the number of threats observed are shown inFig. 12.

(The trends in these figures were similar to those obtained using 30

and 70 simulations, so 100 simulations are sufficient to understand

the qualitative variation in system performance.)

Figure 12a shows the summed risk value for the four threats that are

assigned the highest priority by the algorithm. A higher value

indicates that the algorithm has prioritized threats that pose a greater

risk. When WRV � 0, only the observation time is considered for

scheduling, so summed risk value of the top four threats is lowest.

After an initial jump, the summed risk value increases almost linearly
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with WRV as WRV increases from 0 toward 1. Figure 12 shows the
total number of threats observed by the central vision camera during
the 5-minute interval. In contrast with Fig. 12a, the total number of
threats observed is largest when WRV is close to 0 and decreases
almost linearly with decreasing values ofWRV , with a sharp drop-off
atWRV � 1. For low values ofWRV , each of the 8 threats is imaged
between 14 and 15 times, on average, over the 5-minute interval. For
this particular set of simulations, choosing WRV � 0.8 rather than
WRV � 1 would ensure that each threat is observed one additional
time, on average, over the 5-minute periodwith a negligible change in
the risk measure.
If the central vision camera can observe more threats, the threat

data can be updated more often, so the uncertainty in estimates of
threat motion can be decreased. To see the trends of the 2 × 2
covariance matrix Σ for the estimated threat position, we computed
the differential entropy

H � 1

2
log��2πe�2jΣj� (19)

where jΣj represents the determinant. High differential entropy rep-
resents large uncertainty. Figure 13 shows the mean differential
entropy of all the estimated threat positions versusWRV . The differ-
ential entropy increases with WRV and rises sharply near WRV � 1,
illustrating how the tradeoff between faster (more frequent) imaging
and risk-prioritized imaging affects overall estimate uncertainty.
Although the y-axis scale in Fig. 13 seems small, the results indicate
that the value of jΣj decreases by 10% as WRV drops from 1 to
about 0.6.

As shown in these figures, low values of WRV help the central
vision camera to move more efficiently so that the central vision

camera captures more threats in the same period of time, and the

measurement uncertainty of threat data decreases. On the other hand,
high values ofWRV prioritize high-risk threats to be observed sooner,

at some cost to the threat imaging efficiency. Simulation results for

the proposed algorithm suggest that relaxing the priority on risk,

e.g., by choosing WRV between 0.6 and 0.8, can provide better
situation awareness. By servicing threats more quickly, one may

obtain more accurate overall assessment of the risk that they pose.

VIII. Conclusions

In this paper, a novel multiple-threat scheduling algorithm using

a modified TSP solution for omnidirectional–directional sensor

systems is presented. Although various threat scheduling algo-
rithms have been suggested in previous studies, the tradeoff

between the risk posed by threats and the speed at which threats

are imaged has not been considered. Amobile sensing system, such
as the PCV systemmentioned here, has a limited range and a limited

response speed, so reacting to threats quickly and judiciously is

important. To efficiently schedule threats detected by the omnidi-

rectional sensor, a modified TSP algorithm is introduced, and the
suggested algorithm is implemented in simulations. The simulation

results show that the modified TSP algorithm is capable of priori-

tizing the threats by considering both the time efficiency and the risk
values, which existing threat scheduling algorithms do not do. The

results also show that the measurement uncertainty of threat data

can be decreased by updating the threat data more often. One

concern is the algorithm’s computational complexity. Although a
clustering approach can be used in a dense threat environment to

decrease the number of threats and speed up the algorithm, if the

number of threat clusters is large (of order 10), the computation time
would increase unmanageably because the TSP computation time

increases exponentially with the number of nodes. Thus, the pro-

posed strategy is most appropriate for scenarios where the threat

count remains low. Ongoing efforts aim to relax some of the
assumptions mentioned in Sec. III, such as the assumption that

there is only a single host and this host hovers in one place. It is

expected that these extensionswould expand the system’s range and

accuracy as well as helping to manage larger numbers of threats.

Acknowledgment

The authors gratefully acknowledge the support of the Center for
Unmanned Aircraft Systems, a National Science Foundation (NSF)

Industry/University Cooperative Research Center (I/UCRC) under

NSF Grant No. CNS-1650465.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 WRV

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

 R
V

 p
rio

rit
iz

at
io

n 
(t

op
 4

 th
re

at
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 WRV

104

106

108

110

112

114

116

118

 T
ot

al
 n

um
be

r 
of

 th
re

at
s 

ob
se

rv
ed

a) Summed risk values for the top 4 threats vs WRV b) Number of threats observed vs WRV

Fig. 12 Risk prioritization and observation speed versusWRV .

0 0.2 0.4 0.6 0.8 1

 WRV

3.7

3.71

3.72

3.73

3.74

3.75

3.76

 D
iff

er
en

tia
l E

nt
ro

py

Fig. 13 Differential entropy versusWRV .

Article in Advance / TECHNICAL NOTES 9

D
ow

nl
oa

de
d 

by
 C

ra
ig

 W
oo

lse
y 

on
 Ju

ne
 3

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

10
87

1 



References

[1] Michel, A. H.,Counter-Drone Systems, 2nd ed., Center for the Study of
the Drone at Bard College, Annandale-on-Hudson, NY, 2019, pp. 1–13,

https://dronecenter.bard.edu/files/2019/12/CSD-CUAS-2nd-Edition-

Web.pdf.
[2] Anonymous, “Administrator’s Fact Book,” Federal Aviation Administra-

tion TR SAND2015-6365 606150, Albuquerque, NM, 2019, https://

www.faa.gov/news/media/2019_Administrators_Fact_Book.pdf.
[3] Birch, G. C., Griffin, J. C., and Erdman, M. K., “UAS Detection,

Classification, and Neutralization: Market Survey 2015,” Sandia

National Lab., 2015.

https://doi.org/10.2172/1222445
[4] Khosla, D., Huber, D. J., and Chen, Y., “Automated Scheduling of

Radar-Cued Camera System for Optimizing Visual Inspection and

Detection of Radar Targets,” 2017 IEEE International Symposium on

Technologies for Homeland Security (HST), IEEE, New York, April

2017, pp. 1–5.

https://doi.org/10.1109/THS.2017.7943476
[5] Chen, C. H., Yao, Y., Page, D., Abidi, B., Koschan, A., and Abidi, M.,

“Heterogeneous Fusion ofOmnidirectional andPTZCameras forMulti-

ple Object Tracking,” IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 18, No. 8, 2008, pp. 1052–1063.

https://doi.org/10.1109/TCSVT.2008.928223
[6] Yu, M. S., Wu, H., and Lin, H. Y., “AVisual Surveillance System for

Mobile Robot Using Omnidirectional and PTZ Cameras,” SICE Annual

Conference 2010, IEEE, New York, Aug. 2010, pp. 37–42.
[7] Baris, I., andBastanlar, Y., “Classification andTracking of Traffic Scene

Objects with Hybrid Camera Systems,” 2017 IEEE 20th International

Conference on Intelligent Transportation Systems (ITSC), IEEE,

New York, Oct. 2017, pp. 1–6.

https://doi.org/10.1109/ITSC.2017.8317588
[8] Eynard, D., Vasseur, P., Demonceaux, C., and Frémont, V., “UAV

Altitude Estimation by Mixed Stereoscopic Vision,” 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

IEEE, New York, 2010, pp. 646–651.

https://doi.org/10.1109/IROS.2010.5652254
[9] Eynard, D.,Demonceaux, C., Vasseur, P., and Fremont, V., “UAVMotion

Estimation Using Hybrid Stereoscopic Vision,” 2011 IAPR Conference

onMachine Vision Applications (MVA), Springer, Berlin, 2011, pp. 340–

343.
[10] Siewert, S. B., Andalibi, M., Bruder, S., and Rizor, S., “Slew-to-Cue

Electro-Optical and Infrared Sensor Network for Small UAS Detection,
Tracking and Identification,” AIAA SciTech 2019, AIAA Paper 2019-
2264, Jan. 2019.
https://doi.org/10.2514/6.2019-2264

[11] Hammer, M., Borgmann, B., Hebel, M., and Arens, M., “UAV Detec-
tion, Tracking, and Classification by Sensor Fusion of a 360° Lidar

System and an Alignable Classification Sensor,” SPIE Defense +

Commercial Sensing, SPIE, Bellingham, WA, May 2019.

https://doi.org/10.1117/12.2518427
[12] Hammer, M., Hebel, M., Laurenzis, M., and Arens, M., “Lidar-Based

Detection and Tracking of Small UAVs,” SPIE Security + Defence,
Oct. 2018.
https://doi.org/10.1117/12.2325702

[13] Kang, C., Chaudhry, H., Woolsey, C. A., and Kochersberger, K. B.,
“Development of a Peripheral-Central Vision System for Small UAS

Tracking,” AIAA SciTech, AIAA Paper 2019-2074, Jan. 2019.

https://doi.org/10.2514/6.2019-2074
[14] Zhang, C., and Hwang, I., “Multi-Target Identity Management with

Decentralized Optimal Sensor Scheduling,” European Journal of Con-
trol, Vol. 56, Nov. 2020, pp. 10–37.
https://doi.org/10.1016/j.ejcon.2020.01.004

[15] Kang, C., Davis, J., Woolsey, C. A., and Choi, S., “Sense and Avoid
Based on Visual Pose Estimation for Small UAS,” 2017 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),

IEEE, New York, Sept. 2017, pp. 3473–3478.

https://doi.org/10.1109/IROS.2017.8206188
[16] Miranda, S., Baker, C.,Woodbridge, K., andGriffiths, H., “Knowledge-

Based Resource Management for Multifunction Radar,” IEEE Signal

Processing Magazine, Vol. 23, No. 1, 2006, pp. 66–76.

https://doi.org/10.1109/MSP.2006.1593338
[17] Miranda, S. L., Baker, C. J., Woodbridge, K., and Griffiths, H. D.,

“Simulation Methods for Prioritizing Tasks and Sectors of Surveillance

in Phased Array Radar,” International Journal of Simulation, Vol. 5,

Nos. 1–2, 2004, pp. 18–25.
[18] Miranda, S. L. C., Baker, C. J., Woodbridge, K., and Griffiths, H.,

“Fuzzy Logic Approach for Prioritisation of Radar Tasks and Sectors
of Surveillance in Multifunction Radar,” IET Radar, Sonar and

Navigation, Vol. 1, No. 2, 2007, pp. 131–141.
https://doi.org/10.1049/iet-rsn:20050106

[19] Ding, Z., and Moo, P., “Benefits of Target Prioritization for Phased
Array Radar Resource Management,” 2017 18th International Radar

Symposium (IRS), IEEE, New York, June 2017, pp. 1–7.

https://doi.org/10.23919/IRS.2017.8008153
[20] Marques, T., Lukic, L., and Gaspar, J., “Observation Functions in an

Information Theoretic Approach for Scheduling Pan-Tilt-Zoom Cam-

eras in Multi-Target Tracking Applications,” Robot 2015: Second Ibe-

rian Robotics Conference, Springer, Berlin, Nov. 2015, pp. 503–515.

https://doi.org/10.1007/978-3-319-27149-1_39
[21] Sommerlade, E., and Reid, I., “Probabilistic Surveillance with Multiple

Active Cameras,” 2010 IEEE International Conference on Robotics and

Automation (ICRA), IEEE, New York, May 2010, pp. 440–445.
https://doi.org/10.1109/ROBOT.2010.5509736

[22] Sommerlade, E., and Reid, I., “Cooperative Surveillance of Multiple
Targets Using Mutual Information,” Workshop on Multi-Camera and

Multi-Modal Sensor Fusion Algorithms and Applications-M2SFA2

2008, Springer, Berlin, Oct. 2008.
[23] Zhang, C., and Hwang, I., “Decentralized Multi-Sensor Scheduling for

Multi-Target Tracking and Identity Management,” 2019 18th European

Control Conference (ECC), IEEE, New York, June 2019, pp. 1804–

1809.

https://doi.org/10.23919/ECC.2019.8796293
[24] Siewert, S. B., Andalibi, M., Bruder, S., and Buchholz, J. M., “Com-

parison of RADAR, Passive Optical with Acoustic, and Fused

Multi-Modal Active and Passive Sensing for UAS Traffic Management

Compliance andUrbanAirMobility Safety,”AIAASciTech 2020, AIAA

Paper 2020-1456, Jan. 2020.

https://doi.org/10.2514/6.2020-1456
[25] Loy, G., Fletcher, L., Apostoloff, N., and Zelinsky, A., “An Adaptive

Fusion Architecture for Target Tracking,” Proceedings of Fifth IEEE

International Conference on Automatic Face Gesture Recognition,

IEEE, New York, May 2002.

https://doi.org/10.1109/AFGR.2002.1004164
[26] Poitevin, P., Pelletier,M., and Lamontagne, P., “Challenges inDetecting

UAS with Radar,” 2017 International Carnahan Conference on Secu-

rity Technology (ICCST), IEEE, New York, Oct. 2017.

https://doi.org/10.1109/CCST.2017.8167852
[27] Wellig, P., Speirs, P., Schuepbach, C., Oechslin, R., Renker, M., Boe-

niger, U., and Pratisto, H., “Radar Systems and Challenges for C-UAV,”

2018 19th International Radar Symposium (IRS), IEEE, New York,

June 2018.

https://doi.org/10.23919/IRS.2018.8448071
[28] Neves, J. C., and Proença, H., “Dynamic Camera Scheduling for Visual

Surveillance in Crowded Scenes Using Markov Random Fields,” 2015

12th IEEE International Conference on Advanced Video and Signal

Based Surveillance (AVSS), IEEE, New York, Aug. 2015, pp. 1–6.

https://doi.org/10.1109/AVSS.2015.7301790
[29] Del Bimbo, A., and Pernici, F., “Towards On-Line Saccade Planning for

High-Resolution Image Sensing,” Pattern Recognition Letters, Vol. 27,
No. 15, 2006, pp. 1826–1834.
https://doi.org/10.1016/j.patrec.2006.02.014.

[30] Michel, A. H., Counter-Drone Systems, Center for the Study of the
Drone at Bard College, Annandale-on-Hudson, NY, 2018, pp. 1–10,

https://dronecenter.bard.edu/files/2018/02/CSD-Counter-Drone-

Systems-Report.pdf.
[31] Tyurin, V., Martyniuk, O., Mirnenko, V., Open’ko, P., and Korenivska,

I., “General Approach to Counter Unmanned Aerial Vehicles,” 2019

IEEE 5th International Conference Actual Problems of Unmanned

Aerial Vehicles Developments (APUAVD), IEEE, NewYork, Oct. 2019,
pp. 75–78.

[32] Herrera, G. J., Dechant, J. A., Green, E. K., and Klein, E. A., “Technol-
ogy Trends in Small Unmanned Aircraft Systems (sUAS) and Counter-

UAS: A Five Year Outlook (No. IDA-P-8823, H-17-000624),” Inst. for

Defense Analyses Alexandria, 2017.
[33] Slattery, R., and Zhao, Y., “Trajectory Synthesis for Air Traffic Auto-

mation,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 2,
1997, pp. 232–238.
https://doi.org/10.2514/2.4056

[34] Vilardaga, S., andPrats,X., “Mass estimation for anAdaptiveTrajectory
Predictor Using Optimal Control,” Proceedings of the 5th International
Conference on Application and Theory of Automation in Command and

Control Systems, IEEE, New York, 2015, pp. 75–84.
https://doi.org/10.1145/1235

[35] Glover, W., and Lygeros, J., “A Multi-Aircraft Model for Conflict
Detection and Resolution Algorithm Evaluation,” HYBRIDGE TR
WP1, Deliverable D1.3, Version 1.3., 2003.

10 Article in Advance / TECHNICAL NOTES

D
ow

nl
oa

de
d 

by
 C

ra
ig

 W
oo

lse
y 

on
 Ju

ne
 3

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

10
87

1 



[36] Ayhan, S., and Samet, H., “Aircraft Trajectory Prediction made Easy
with Predictive Analytics,” Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining,
ACM, New York, Aug. 2016, pp. 21–30.
https://doi.org/10.1145/2939672.2939694

[37] Lymperopoulos, I., Lygeros, J., andLecchini,A., “ModelBasedAircraft
Trajectory Prediction During Takeoff,” AIAA Guidance, Navigation,

and Control Conference and Exhibit, AIAA Paper 2006-6098,
Aug. 2006.
https://doi.org/10.2514/6.2006-6098

[38] Zhang, J., Jie Liu, R. H., and Zhu, H., “Online Four Dimensional
Trajectory PredictionMethodBased onAircraft Intent Updating,”Aero-
space Science and Technology, Vol. 77, June 2018, pp. 774–787.
https://doi.org/10.1016/j.ast.2018.03.037

[39] Kang, C., andWoolsey, C. A., “Model-Based Path Prediction for Fixed-
Wing Unmanned Aircraft Using Pose Estimates,” Aerospace Science

and Technology, Vol. 105, Oct. 2020, Paper 106030.
https://doi.org/10.1016/j.ast.2020.106030

[40] Luo, C., McClean, S. I., Parr, G., Teacy, L., and De Nardi, R., “UAV
Position Estimation and Collision Avoidance Using the Extended Kal-
man Filter,” IEEE Transactions on Vehicular Technology, Vol. 62,
No. 6, 2013, pp. 2749–2762.
https://doi.org/10.1109/TVT.2013.2243480

[41] Prevost, C. G., Desbiens, A., and Gagnon, E., “Extended Kalman Filter
for State Estimation and Trajectory Prediction of a Moving Object
Detected by an Unmanned Aerial Vehicle,” 2007 American Control

Conference, IEEE, New York, July 2007, pp. 1805–1810.
https://doi.org/10.1109/ACC.2007.4282823

[42] Watanabe, Y., Calise, A., and Johnson, E., “Vision-Based Obstacle
Avoidance for UAVs,” AIAA Guidance, Navigation and Control

Conference and Exhibit, AIAA Paper 2007-6829, Aug. 2007.
https://doi.org/10.2514/6.2007-6829

[43] Dantzig, G., Fulkerson, R., and Johnson, S., “Solution of a Large-Scale
Traveling-Salesman Problem,” Journal of the Operations Research

Society of America, Vol. 2, No. 4, 1954, pp. 393–410.
https://doi.org/10.1287/opre.2.4.393

[44] Laporte, G., “The Traveling Salesman Problem: An Overview of Exact
and Approximate Algorithms,” European Journal of Operational

Research, Vol. 59, No. 2, 1992, pp. 231–247.
https://doi.org/10.1016/0377-2217(92)90138-Y

[45] Schechtman, G. M., “Manipulating the OODA Loop: The Overlooked
Role of Information Resource Management in Information Warfare,”
Master’s Thesis, Air Force Inst. of Technology, Wright-Patterson AFB,
OH, Dec. 1996.

[46] Sewart, T., Partridge, L., Cornwell, D., Arcas, D. A., and Wilcox, C.,
“Quick Quadcopters: Top Speed of a Racing Drone,” Physics Special
Topics, Vol. 18, No. 1, 2019, p. P1-6.
https://doi.org/10.1016/j.patrec.2006.02.014

[47] McClelland, H. G., Kang, C., Woolsey, C. A., Roberts, A. K., Buck, D.,
Cheney, T., and Warnick, K., “Small Aircraft Flight Encounters
Database for UAS Sense and Avoid,” AIAA SciTech, AIAA Paper
2017-1152, Jan. 2017.
https://doi.org/10.2514/6.2017-1152

D. Casbeer
Associate Editor

Article in Advance / TECHNICAL NOTES 11

D
ow

nl
oa

de
d 

by
 C

ra
ig

 W
oo

lse
y 

on
 Ju

ne
 3

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
I0

10
87

1 


