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An unmanned aircraft system (UAS) can use a heterogeneous stereo vision system to detect
and localize other aircraft which may pose a threat. The error in the triangulated location
may be large, however, because of the short baseline between the two cameras mounted on
the host aircraft. One way to address this issue is to use multiple host aircraft, each with a
heterogeneous stereo vision system, in order to increase the stereo vision baseline. In this letter,
we suggest a heterogeneous stereo vision optimal placement (HSOP) algorithm that solves a
mixed-integer nonlinear programming problem to determine optimal positions for multiple
airborne heterogeneous stereo vision systems in order to minimize the localization error for
multiple threats. After introducing camera models for the ‘“peripheral-central vision system,”
we formulate an optimization problem that supports counter-UAS applications. To assess the
algorithm’s performance, the simulated localization error of the HSOP algorithm is compared
with that of another placement algorithm that considers only threat coverage. The results
indicate that the HSOP algorithm effectively reduces the threat localization error.

I. Introduction

A wide variety of beneficial uses for unmanned aircraft systems (UAS) have been demonstrated, but interest in
counter-UAS (C-UAS) systems has also been growing, in part because of the costly “asymmetric threat” drones have
demonstrated in incidents like the 2019 shutdown of London’s Gatwick airport [1]. C-UAS technologies use a variety
of sensors such as radar, lidar, cameras, acoustic sensors, and RF sensors. Among these sensors, cameras are especially
common because of their low size, weight, power and cost (SWaP-C) and the emergence of very effective computer
vision algorithms. Among 323 C-UAS products in the world that are capable of detecting threat aircraft, 113 systems
use cameras for detection [2]. For similar reasons, cameras are also common sensors for small UAS (sUAS).

Reference [3] describes development of a “peripheral-central vision (PCV) system” to detect, localize and classify
airborne threats using heterogeneous stereo vision. This system uses two types of low-cost cameras to characterize
a threat: a wide field-of-view (FOV) “peripheral vision” camera and a narrow FOV “central vision” camera capable
of pan-tilt (PT) operation. The peripheral vision camera (e.g., an omnidirectional camera) offers continuous visual
coverage of the environment for threat detection, although with relatively low and non-uniform resolution. The central
vision camera complements the peripheral vision camera by providing a high-resolution image when cued to observe
a threat. The pair of cameras affords the opportunity to use stereo vision for estimating the 3D position of the threat.
However, the PCV system is mounted on a single host aircraft, so the camera baseline (the distance between the two
cameras) is limited. A short camera baseline generates a large localization error for distant threats. One way to address
this issue is to add more host aircraft, each with its own PCV system, in order to extend the effective camera baseline.
While a longer baseline can decrease localization error, this is not guaranteed. If the encounter geometry is degenerate,
for example, the localization error may still be large. It is therefore of interest to determine optimal positions for
additional host aircraft to minimize threat localization error for C-UAS applications.

The focus of this note is a heterogeneous stereo-vision optimal placement (HSOP) algorithm which minimizes the
error incurred when localizing a threat aircraft using multiple mobile PCV systems. We begin by introducing models
for the peripheral and central vision cameras in a PCV system. Each type of camera has a different FOV and detectable
range. The peripheral vision camera has low image resolution that is nonuniform over its FOV so the localization error
using this camera is comparatively larger than that obtained using a central vision camera. Because the peripheral
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vision camera has a large FOV, however, it can image multiple threat aircraft simultaneously. Conversely, the central
vision camera can provide better localization accuracy, but the narrow FOV makes it less likely to image multiple
threats at once. The HSOP algorithm determines the minimum number of PCV-equipped aircraft required to localize a
given number of threat aircraft as well as the optimal locations for those host aircraft and the specific camera (peripheral
or central) that each should employ to minimize the cumulative localization error. The algorithm inputs are the number
of threats and a preliminary estimate of their position and velocity. It is assumed that sufficiently many host aircraft
are available to accurately localize all threats.

Currently, the HSOP algorithm allocates exactly two cameras to each threat, though it is possible to further reduce
localization error using additional camera imagery. The current formulation also weights each threat equally in the
cumulative optimization process. One could easily modify the algorithm to place higher priority on threats that pose a
greater risk based on some appropriate metric. While we have assumed each host includes a PCV system, the HSOP
algorithm can be used for optimal placement of other mobile, vision-based sensing systems.

The note is organized as follows. Section II reviews work related to this investigation. Section III describes the
camera models used for triangulation-based localization. Section IV introduces the HSOP algorithm. Analysis of the
algorithm’s performance is detailed in Section V. Concluding remarks and a brief description of ongoing work are
presented in Section VI.

II. Related work

Two aircraft, each equipped with a PCV system, can localize a threat using triangulation, provided the threat
is viewable by both aircraft. Here, we review prior work concerning optimal placement of mobile sensors such as
camera-equipped drones.

The optimal drone placement problem has enjoyed considerable attention within the larger context of wireless
sensor networks (WSNs). Many of these studies have addressed ground target coverage problems using multiple
camera-mounted drones. Various approaches include the geometric algorithm [4], the brainstorm algorithm [5], the
moth search algorithm [6], the bare bones fireworks algorithm [7], and so on. These camera-mounted drone placement
algorithms address the ground target coverage problem using a perspective camera model. Other studies [8—11] have
considered optimal placement of camera-mounted drones with the aim of minimizing total energy consumption while
maximizing target coverage. Again, these efforts considered a perspective camera model, rather than an omnidirectional
or heterogeneous stereo vision setup.

The studies above focused on ensuring ground target coverage, rather than minimizing localization error, and
adopted a relatively simple camera model. Other studies on optimal placement have emphasized target observation
using a variety of visual sensors. References [12—14] propose algorithms that find optimal positions for ground-based
mobile cameras to maximize the aggregate observability of objects’ motion in a confined area. These papers adopt a
pinhole camera model. Other work has addressed the problem of placing multiple cameras for 3D reconstruction [15—
17] and 3D motion capture [18]. These papers focus on minimizing depth estimation error, but the applications involve
indoor operation where the objects being images are a short distance away. A number of papers have provided detailed
analyses of triangulation-based localization error [19-21], illustrating how this error is affected by both the location
of sensors and the line-of-sight (LOS) pointing angles from the sensors to a target. These results were then used
to develop optimal sensor placement algorithms to minimize the target localization error using ground-based robots.
Reference [22] discusses triangulation-based localization accuracy using two omnidirectional cameras to estimate the
optimal positions.

A few studies have considered optimal placement of cameras with different fields of view. Reference [23] defines
various types of camera models to solve an area coverage problem. Similarly, reference [24] addresses a target coverage
problem using perspective cameras with different FOVs. Reference [25] describes the use of omnidirectional and
perspective cameras to cover an area with the minimum number of cameras.

While a number of studies have considered optimal drone/camera placement to cover an area, or to minimize the
depth estimation error, none have addressed the localization of threat aircraft using multiple aircraft equipped with
heterogeneous camera systems.

III. Camera models and triangulation-based localization
We assume the host aircraft is equipped with the PCV system described in [3]. The system includes two cameras: a
peripheral vision camera and a central vision camera. The peripheral vision camera comprises two 180°-FOV fisheye



Downloaded by VIRGINIA TECH on March 1, 2022 | http://arc.aiaa.org | DOI: 10.2514/6.2021-2393

lenses to provide a large FOV. The central vision camera has a 53° FOV and is capable of pan-tilt operation. Table 1
shows the specifications for the two cameras. Although we consider a specific camera setup in order to describe
numerical and experimental results, the analysis described here can be easily extended to a large class of cameras.

Table 1 System parameters

Parameter Peripheral camera  Central camera
Focal length (mm) 1.0 4.8
Sensor size (mm) 3.3x3.3 4.8x3.6
Pixel size (um) 2.19x2.19 3.75 x3.75
Resolution (px) 1504 x 1504 1280 x 960

A. Peripheral vision camera model

For the peripheral vision camera model, we use a fisheye lens model available in the OpenCV library [26, 27]
which accounts for the refraction of light rays passing through the lens, an effect called lens distortion. As an example,
Figure 1 illustrates how objects at the edge of the image are highly distorted so that they appear smaller than if they
appeared at the center of the image.

Fig.1 Lens distortion of a fisheye lens

Computer vision based detection algorithms require that the detected object appear in the image with some minimum
number of associated pixels. For example, optical flow requires at least 25 px (5 px wide X 5 px high) to detect a
moving object in the image. However, the pixel size of the object on the image can differ depending on the line of sight
(LOS) angle to the object. An object of interest that occupies 25 px at the center of the image would occupy fewer
pixels at the edge of the image, and hence be undetectable using optical flow. The pixel size of a threat aircraft on the
fisheye camera image should be larger than the minimum number of pixels that the detection algorithm requires for a
detection. Following is a model for the distortion of a light ray that enters the fisheye lens with line of sight (LOS)
angle 6 relative to the camera boresight, as shown in Figure 2(a):

04 = 0(1 + k16% + ka0* + k30° + k40%) (1)

The parameters k; for i € {1,2,3,4} are the lens distortion coefficients obtained through a camera calibration
process [26, 27]. The (distorted) light ray is then projected onto the image pixel coordinates u# and v:
04 0

u= a and V= b 2)
tan 6 tan 6
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where a and b represent the pixel coordinates if the incoming light ray were not distorted by the lens. These equations
illustrate how a larger LOS angle results in smaller pixel sizes for objects near the edge of the image. Figure 2(b) shows
the relative pixel size of an object in the image versus the LOS angle. At the lens center, there is no distortion, so the
relative pixel size is 100%; the relative pixel size decreases to 0% at a 90° LOS angle.
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Fig. 2 Fisheye lens distortion

The pixel size of an object increases when the object moves closer to the camera. We define the detectable region
for a given camera with respect to an object of given size and location relative to the camera boresight. The pixel width
of an object represented in the image can be estimated as:

_ [PWyPba

Oy = ————— 3
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where W, is the width of the actual object (the “threat”), fP is the focal length of the peripheral vision camera, yP is the
horizontal resolution (in px) of the peripheral vision camera, d; is the distance to the object, and WY is the (physical)
width of the peripheral vision camera’s sensor. The same equation can be used for the pixel height of the object. The
pixel width and height should be larger than the minimum number of pixels required by the detection algorithm.
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(a) Detectable region of the peripheral vision camera (red arrows: bore- (b) Detectable region of the central vision camera (red arrow: boresight
sight of two fisheye lenses) of lens)

Fig.3 Detectable region of two cameras



Downloaded by VIRGINIA TECH on March 1, 2022 | http://arc.aiaa.org | DOI: 10.2514/6.2021-2393

Figure 3(a) shows regions in which objects of different size can be detected by the peripheral vision camera using
optical flow. (A qualitatively similar figure would result for any fisheye camera; the specific bounding curves depend
on the given camera parameters.) As the peripheral vision camera has two fisheye cameras, there are two boresight
directions, which are indicated as arrows in the figure. The plot illustrates the detectable region for an object that is at
least as large as indicated in the legend. The figure illustrates the role of object size and LOS angle in the detectability
of an object.

B. Central vision camera model

The central vision camera is a perspective camera. The lens distortion is small and the projection error can be
corrected through camera calibration. The pixel size of an object at a given distance therefore remains constant
throughout the camera’s FOV, in contrast to the peripheral vision camera. We adopt a pinhole camera model for the
central vision camera. As shown in Figure 4, the pinhole camera model assumes no lens distortion, so the pixel width
of an object is proportional to its size:

C C
ac= LT o)
S
where f° is the focal length of the central vision camera, y¢ is the horizontal resolution of the central vision camera,
W¢ is the width of the central vision camera sensor. The threat pixel height can be computed in the same way. The
pixel width and height of an object must be larger than the minimum number of pixels needed by the central vision
detection algorithm.
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Fig.4 The central vision camera model geometry

Because the central vision camera provides a high resolution image, the pixel size of an imaged object may be
sufficient to enable classification using a deep neural network algorithm such as YOLO [28, 29]. We assume that
YOLO is used for central vision detection as described in [3]. Earlier work indicates that YOLO requires at least 900 px
(30 px wide x 30 px high) to detect a threat aircraft, so the threat pixel width and height should be larger than 30 px.
The detectable region of the central vision camera when YOLO is used for detection is illustrated in Figure 3(b). Also,
because the FOV of the central vision camera is limited, the bearing angle between the camera boresight and the object
should be no more than half the central vision camera’s FOV angle.

C. Triangulation-based localization and error

In previous work [3], we described a heterogeneous stereo vision algorithm for threat aircraft localization using
the two cameras described in the preceding subsections. Once a threat aircraft is detected in a camera image, a
three-dimensional vector is defined that points toward the threat aircraft in the camera-fixed reference frame. If two of
these “threat vectors” are obtained simultaneously from two cameras at different, known locations, we may use them
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to triangulate the threat’s position in the global reference frame (denoted “g”):

Fije X T

Fijg = Tp/e Mﬁ/p o)
iy < |

where 7 /p and i Jc are the threat vectors in the peripheral vision camera-fixed reference frame (denoted “p”) and in the
central vision camera-fixed reference frame (denoted “c”), respectively, and where 7/, and 7. represent the positions
of the optical centers of the peripheral and central vision cameras, respectively, in the global frame. (All vectors in (5)
are assumed to be expressed in the global frame.) Figure 5 shows the geometry of heterogeneous stereo vision-based
threat localization.

Global reference frame

Peripheral vision Central vision
camera-fixed reference frame camera-fixed reference frame

Fig. 5 Geometry of threat position estimation

The threat localization accuracy differs depending on the camera location and the threat distance. If the threat
is close, the localization error will decrease; if the distance between the two cameras (the baseline) is too small, the
localization error will increase. Reference [19] gives an expression for this triangulation-based localization error:

_ sl o
sin @

where 6, is the magnitude of the error in the threat location 7/, and 6 is the intersection angle between the threat
vectors from the two cameras:
o Fypc

ool 17

See Figure 5. Equation (6) implies that localization error is minimum when the distance from the cameras to the threat
is small and when the threat vectors intersect at a right angle.

IV. Optimal placement algorithm for multiple heterogeneous stereo vision systems

Considering the two camera models discussed in the previous section, this section describes a heterogeneous
stereo-vision optimal placement (HSOP) algorithm. The algorithm determines the optimal positions for two or more
host aircraft, each equipped with a PCV system, as well as the type of camera to be used, in order to cover the current
position (given) and final position (predicted over a given time horizon) of one or more threat aircraft, minimizing the
cumulative localization error. The host aircraft are assumed to take the computed positions and to hover there, imaging
the threat aircraft over the given time horizon, after which the optimal host positions are updated by re-applying the
HSOP algorithm. The host aircraft continue tracking the threat aircraft until they are no longer a threat. Note that the
focus of this note is the placement of sensors for optimal localization — the “fix” portion of the “find, fix, finish” chain
in a counter-UAS strategy.
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The output of the HSOP algorithm can thus be considered as a waypoint generation scheme for host aircraft. Motion
of the host aircraft can degrade the performance of camera-based threat detection algorithms. While there are ways to
compensate for ownship motion, such as physical or software image stabilization [3], observing and tracking a threat
from a static position produces higher quality imagery which improves detection and localization performance.

This section presents the HSOP algorithm in detail. The algorithm requires the initial state (position and velocity)
for each threat aircraft. While this requirement may seem circular, the initial threat state might be obtained (with lower
accuracy) using a single PCV-equipped host that serves as a counter-UAS sentry in a given region, as described in
[3]. The optimization problem is formulated under additional simplifying assumptions outlined below, though each of
these can be relaxed with some effort:

e All host and threat aircraft fly at the same altitude.

e The number of available host aircraft is sufficient to cover all threat aircraft.

 The threat aircraft follow a straight path at constant speed (i.e., they are non-cooperative, but non-antagonistic).

* The path traveled by a threat aircraft during the observation time horizon is contained within the detectable range

of the imaging sensors.

* Host aircraft can instantly attain waypoints indicated by the HSOP algorithm (i.e., the physical placement of host

aircraft occurs much faster than the optical motion of threat aircraft).

* The host aircraft can communicate with sufficient speed and volume to cooperatively localize threats.

e All PCV systems are identical; see Table 1.

A. Initial feasibility check

Given initial states for each threat aircraft in a given set 7', two host aircraft 4; are assigned to each threat aircraft
tj € T to enable triangulation. In this way, a host-threat pair s comprising the threat and the two assigned host aircraft
is generated for each threat aircraft. As an example, suppose there are two threat aircraft and three host aircraft. We
first assign the nearest unassigned host to each given threat as an “initial observer” and label that host accordingly:
(h1,t1) and (hy, ;). We then complete the pairs by assigning a second host aircraft to each threat. A host-threat pair
set (or just pair set) S comprises one host-threat pair for each threat aircraft. For the given example, one possible pair
setis S = {(t1, hy, ha), (t2, ho, h1)}. In this case, only the two host aircraft (41, hy) are used to observe both of the two
threat aircraft. Given three available host aircraft for the two detected threats, there are three more possible pair sets:
{(t1, h1, ha), (t2, ha, h3)}, {(t1, b1, h3), (22, ho, h1)}, {(f1, b, h3), (22, B, hs) )

If the number of host and threat aircraft is large, the number of possible pair sets scales as (N, — 1), where Ny,
is the number of the host aircraft and N, is the number of threat aircraft. To ameliorate this scaling issue, we use a
backtracking approach to exclude infeasible pair sets. Algorithm 1 below presents pseudo-code for generating pair sets.
Algorithm 2 then culls this set by excluding infeasible pair sets.

Algorithm 1: Generate-Pair-Sets(t;, Ny, SP)
1 tmpSet = {};
2 for i to N, do
// hy: 1initial observer of ¢;
3 if h; # hy then
4 | tmpSet.insert({z;, ks, hi})

5 SP < Generate-Combinations(tmpSet,SP);
6 return SP;

In Algorithm 1, SP indicates the set of pair sets, Generate-Combinations is a combination generation function
that can be implemented using, for example, the nchoosek function in MATLAB. This function makes combinations
of sets in SP and pairs in tmpSet and adds the resulting sets to SP.

Next, the feasibility of pair sets in SP is determined. An infeasible pair set is one that includes host-threat
pairs which are physically impossible. Consider Figure 6(a), for example, where circles and triangles illustrate the
detectable regions of peripheral and central vision cameras,respectively; recall Figures 3(a) and 3(b). (Dashed lines
indicate cameras that are not used for localization.) For the given configuration, the pair set {(zy, i1, h2), (t2, h2, h1)}
is infeasible because images from at least two host aircraft are needed to triangulate each threat and #; and ¢, cannot be
covered by 4 and &, simultaneously. On the other hand, the pair set {(¢1, i1, h3), (t2, h2, h1)} depicted in Figure 6(b)



Downloaded by VIRGINIA TECH on March 1, 2022 | http://arc.aiaa.org | DOI: 10.2514/6.2021-2393

(a) Infeasible host-threat pair set (b) Feasible host-threat pair set

Fig. 6 Examples of infeasible and feasible host-threat pair sets

is feasible.

A simple initial screen for feasibility involves checking whether the assigned threats can be placed within the
detectable region of a candidate host’s peripheral or central vision camera. In the example of Figure 6(a), two threat
aircraft are assigned to A; and hj, but the distance between two threats is large so that the detectable region of a
peripheral vision camera cannot cover both threats at once. In this case, at least four hosts are required to cover each
threat from two perspectives. On the other hand, the two threats in Figure 6(b) are closer, which enables %; to cover
both threats simultaneously; only three hosts are required to cover each threat from two perspectives. In the example
of Figure 6, the threat aircraft are static. For a moving threat 7;, the assigned host aircraft must be able to cover the path
connecting the current threat position X;, to the predicted position after some specified time 7:

X=Xy + TV, (7)
where V,, is the threat velocity vector. Rather than require continuous coverage, however, we adopt a simpler strategy
and add the final threat position to the pair s as if it is another threat aircraft to be included in the optimization process.
(Given an initial threat pairing s; = (¢, i1, hp), for example, we define an augmented threat pairing s{ = (1, tf,hi, hy),
where ¢ denotes the location of threat 7 after time 7 has elapsed.)

For each host £;, a set Thi is defined which contains all assigned threats, at both their initial and predicted final
positions. The algorithm checks if all threat positions in 7" can be placed inside the detectable range of the peripheral
vision camera (e.g. using the inpolygon function in MATLAB). If this is possible for all 4; in the pair set, the pair
set is declared feasible. For a feasible pair set, the camera type of each host in the pair set is next determined. If the
threats assigned to /; can all be contained within the detectable region of the central vision camera, then this camera
type is chosen for h;. If they cannot, then the peripheral vision camera is chosen. Even if a host aircraft’s peripheral
vision camera can cover all assigned threats, it may also be possible to cover one of these threats using the central
vision camera, as shown in Figure 6. In this case, because of its greater resolution, the central vision camera is used to
observe the threat. If multiple threats can be covered by the central vision camera, then the closest threat is observed
by the central vision camera. Pseudo-code for this process is given in Algorithm 2. This initial feasibility check speeds
the backtracking process described in the following section.

Algorithm 2: Feasibility-Check(Ny, 7, SP)

1 for¢; in T do
SP « Generate-Pair-Sets(t;, Ny, SP);
for each pair set S from SP do
if S is feasible then
‘ Determine-Camera-Type(S)
else
| SP.erase(S)

IS I Y

8 return SP;
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B. Backtracking process to remove infeasible branches

As mentioned in the previous section, the possible number of pair sets is (N, — 1)™. It is expedient to remove all
remaining host-threat pair sets that are infeasible before formulating and solving the optimal placement problem. A
backtracking approach is used to complete the culling of infeasible pair sets. Backtracking is a constructive algorithm
for generating feasible solutions. The process can be visualized as a tree structure in which candidate solutions are
the branches that remain after pruning infeasible branches that do not satisfy constraints. Figure 7 shows an example
of the backtracking process when there are three threat aircraft (¢1, 72, t3) and four host aircraft (hy, hy, h3, ha). Each
column shows possible host-threat pairs for each threat aircraft, starting with threat #; at the left. In this case, there are
27 possible combinations for pair sets. Infeasible pair sets are removed through the backtracking process. First, the
feasibility check is conducted only for pair combinations of #; and #,. There are 9 possible combinations involving #
and 1, pairs. If one of those combinations is infeasible, the combination is excluded (pruned). In Figure 7, for example,
the combination {(z, 1, h2), (t2, ha, h1)} is declared infeasible because of the threats #; and ¢, are too distant, as in
Figure 6(a). Downstream combinations involving threat #3 are generated only for feasible host-threat pairings.

\:’ : Possible pairs for each threat
_— 1 Pruned branch

[ Grrts )
L (6, hy, 1) jﬁwhz/hs/) b (ta b )
> (t2, by, hy) t3h57h)
¢ (L b ™ (t3, hs, hy) -— Feasible pair set
= (t1, hy, h3) (to b Tis) e (Lsrts, 1)
™~ (ty, hy, hy) (t3, h3, hy) — Feasible pair set
X () | T (bt
(t1, hy, hy) (tp b3
~ (g Ty)

Fig. 7 Example of backtracking process

C. Optimization problem statement

Once feasible pair sets are chosen from the backtracking process described in the previous section, the optimization
problem is solved for each pair set S. Recall that a host-threat pair s consists of a threat aircraft and two assigned host
aircraft and that a pair set S contains a complete set of host-threat pairs, i.e., one and only one pair for each threat.
The aim is to minimize the localization error (the sum squared error between the ground truth threat position vector
and the estimated threat position vector) of all threat aircraft in a pair set S. The camera type of the host aircraft &; is
distinguished in the formulation using a binary value c . If the camera type to be used by host #; is the peripheral vision
camera, then cg’ = 1; if the camera type to be used is the central vision camera, cp' = 0. As described in Section III.C,
the intersection angle 9” of two threat vectors should be close to 90° to minimize the triangulation- based localization
error and the distance d " to the threat from the host aircraft should be small. Also, the pixel width (ap " and «, t’) of
the threat aircraft in the perlpheral and central vision imagery of host /; should be larger than the minimum number of
pixels (yp and y.) required by the peripheral and central vision detection algorithms to ensure detection. To simplify
analysis, we assume the width and height of all threat aircraft are equal and that all aircraft operate at the same altitude.
In this case, we may consider only the threat pixel width in the formulation. Finally, the optimization problem to find
the set X}, of host position vectors which minimizes the localization error of all threat aircraft is formulated below.
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where w?i is the FOV angle of the central vision camera for host #;, wgi is the azimuth angle between h; and f;,
and Ry is a safety distance between host and threat aircraft to prevent collisions. (We assume that collisions between
hosts and maneuvering threats are prevented by an over-riding collision avoidance protocol. The objective function (8)
determines the host locations that maximize the pixels in the image that correspond to the threat aircraft and minimize
the error in (6). Constraint (9) ensures the minimum number of “threat pixels” for detection. Constraint (10) ensures
that the threat is within the FOV of the central vision camera, if that camera is to be used. The minimum distance
between the host aircraft and the threat aircraft is constrained to be larger than the safety distance Ry in (11). The
optimization problem defined above is solved using the interior-point method for each feasible pair set. An example
pair set is illustrated in Figure 8.

51 = (t4,t1, hy, hy)

S . {51152} 52 = (tz, t%, hll h3)

Fig.8 Geometry of a pair set

The HSOP algorithm is given in Algorithm 3. To minimize the number of host aircraft involved, the HSOP
algorithm initially generates pair sets using only initial observers (N, < N;). If there exists no feasible pair set in SP,
the algorithm adds host aircraft until a feasible pair set is found. (Note that the maximum number of hosts N}, required
to image NV, threats is 2/V;.) Once a feasible set is found, the optimization problem is solved using the pair set. If the
cost J of the resulting placement set X}, is smaller than the minimum cost seen so far, and if X}, is determined to satisfy
all constraints (9)-(12) using the Constraints-Check function, then the optimal placement set X, and cost J* are
updated accordingly. The resulting X indicates the optimal locations for the minimum number of host aircraft which
cover the current and final positions of all threat aircraft and which also minimize the cumulative threat localization
error, including current and final threat positions. In the next iteration, final threat state estimates are taken as initial
states and the HSOP algorithm computes the new optimal positions for the host aircraft.

V. Results
Because of the logistical challenges associated with multi-host, multi-threat detection and localization experiments,
simulations were used to assess the performance of the HSOP algorithm. In these simulations, the HSOP algorithm
is used to compute host aircraft positions corresponding to randomly generated threat states (positions and velocities).
The localization error for each threat aircraft position is then estimated. (The localization error is the sum squared
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Algorithm 3: HSOP algorithm(Ny,7T)

1 SP={}
2 while X; is empty do

3 SP « Feasibility-Check(MN:,, T, SP),

4 if SP is not empty then

5 for each pair set S in SP do

6 [ X}, J] < Solve-Problem(S);

7 if Constraints-Check(X},) & J < J* then
8 L X; — Xn;

9 J—J;
10 else

u L Ny «— Np+ 1

12 return X ;;

error between the ground truth threat position and the estimated threat position.) The simulation parameters are shown
in Table 2. To simulate the localization error, we superimpose zero-mean Gaussian noise to the threat image in the
horizontal and vertical directions with a 30 px standard deviation for the peripheral vision camera and a 3 px standard
deviation for the central vision camera. (This empirically tuned synthetic error closely matches the error seen in
experimental measurements.) The localization error is then estimated using the noise-corrupted threat vectors. This
process is repeated 10,000 times for each simulation and the localization error is averaged. We concluded that 10,000
data points are enough to assess the localization error with the assumed standard deviation because a similar averaged
error is obtained using 1000 data points. References [4—11] provide host aircraft placement algorithms for threat
coverage, but localization error of threats is not considered in determining host placement. To illustrate how well the
HSOP algorithm reduces localization error compared with algorithms that consider only threat coverage, we compare
the HSOP algorithm with such a “coverage only (CO)” approach obtained by eliminating the localization cost from the
HSOP algorithm and using the same constraints (9)-(12).

Table 2 Simulation parameters

Parameter Value
Threat speed (m/s) 0-5
Prediction horizon (sec) 10
Rg (m) 20
¥p (PX) 5
Ye (pX) 30
v ) 53

Figure 9 shows results of the CO approach and the HSOP algorithm in a sample simulation using two static threat
aircraft. In the CO approach, shown in Figure 9(a), the algorithm successfully covers the two threat aircraft using
two host aircraft, but this algorithm does not consider the localization error that results when the hosts triangulate the
position of the threats. The HSOP algorithm, whose results are shown in Figure 9(b), simultaneously covers the threat
aircraft, with a minimum distance to the threats, and maximizes the intersection angles of the threat vectors from the
host aircraft to the two threats.

As mentioned in the previous section, the HSOP algorithm provides positions for the minimum number of host
aircraft. In this example scenario, the minimum number of host aircraft needed is 2. To see how the localization
error changes if more host aircraft are allowed, we ran the HSOP algorithm using N, = 3 and 4 and again estimated
the localization error. Figures 9(c) and 9(d) show the results of the HSOP algorithm when there are three and four
host aircraft, respectively. Note that type of camera selected from the hosts’ PCV systems changes to minimize the
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(a) Placement of two host aircraft using the CO approach (b) Placement of two host aircraft using the HSOP algorithm
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(c) Placement of three host aircraft using the HSOP algorithm (d) Placement of four host aircraft using the HSOP algorithm

Fig. 9 Simulation results for optimal host aircraft placement using two approaches for static threats. (Small
blue circles: host aircraft positions. Green x marks: threat positions. Red lines: boresight directions of
peripheral vision cameras. Large blue circles: detectable regions of peripheral vision cameras. Blue circular
sectors: detectable regions of central vision cameras.)

localization error. Also note that the intersection angles are 90°.

Figure 10 shows results of the HSOP algorithm with two mobile threat aircraft. The threats are initially detected by
two host aircraft and their future path is predicted based on the initial detection data. The HSOP algorithm successfully
covers the entire path of the threat aircraft throughout the prediction horizon and optimizes the host position to minimize
the localization error. Once the prediction time (7) has elapsed, a new final position is computed corresponding to the
updated threat position and velocity. The HSOP algorithm then generates new host positions based on the new threat
paths. Note that the camera types and the number of hosts needed change as the threats move.

To better appreciate the localization error obtained using the HSOP algorithm, the simulation is repeated 100 times
with different threat positions and various numbers of host aircraft. The localization error of all threat aircraft is
estimated in each simulation and averaged. Figure 11 shows the averaged localization error using the CO approach
and using the HSOP algorithm versus the number of host aircraft. The three subfigures show that the localization error
of the HSOP algorithm decreases with increasing numbers of host aircraft. When fewer host aircraft are available,
the peripheral vision cameras must be used to cover all of the threat aircraft, as shown in Figures 9 and 10. If more
host aircraft are available, the central vision camera is selected by the algorithm and the localization error decreases
because of the camera’s higher resolution. On the other hand, the localization error using the CO approach does not
change with the number of host aircraft since the CO approach only considers the threat coverage.
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(a) Initialization (two mobile threats are detected by two hosts.) (b) Placement of two host aircraft using the HSOP algorithm
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(c) Placement of three host aircraft using the HSOP algorithm (d) Placement of four host aircraft using the HSOP algorithm

Fig. 10 Simulation results for optimal host aircraft placement using the HSOP algorithm for mobile threats.
(Small blue circles: host aircraft positions. Green x marks: current threat positions. Red x marks: final threat
positions. Red lines: boresight directions of peripheral vision cameras. Large blue circles: detectable regions
of peripheral vision cameras. Blue circular sectors: detectable regions of central vision cameras.)

VI. Conclusions

This note suggests an algorithm for heterogeneous stereo vision system placement for airborne counter-UAS
applications, a variant on the well-studied problem of placing drones for optimal coverage of ground targets. The
algorithm ensures that host aircraft equipped with two different types of camera — an omnidirectional “peripheral
vision” camera and a perspective view ‘“central vision” camera — can cover and localize a set of threat aircraft with
minimum localization error. Simulation results illustrate that the heterogeneous stereo-vision optimal placement
(HSOP) algorithm reduces localization error. For the specific aircraft and sensing systems considered here, the HSOP
algorithm reduced the averaged localization error to less than 1 m in simulations, compared with a 9-10 m localization
error associated with a coverage-only approach.

In considering the optimal placement of drones to localize moving threats, we have assumed the host aircraft are
sufficiently fast to attain the commanded positions quickly relative to threat aircraft motion. This assumption may
be unrealistic in some scenarios. Future work might address this assumption in terms of optimal motion planning,
although the image processing quality may suffer from camera motion. Also, while simulations suggest that the
HSOP algorithm is effective, in practice, the algorithm does not always provide a globally optimum solution nor is it
guaranteed to converge. One might define a heuristic method to initialize the optimization problem in order to avoid
these issues. Another potential concern is the algorithm’s computational complexity. Although we prune infeasible
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Fig. 11 Localization error using CO and HSOP algorithm

host configurations to speed up the algorithm, if the number of host and threat aircraft is large (of order 10, for example),
the time required to compute a solution may prohibit its use for real-time operation. Ongoing work is aimed at relaxing
some of the assumptions underlying the HSOP algorithm and making it run more efficiently.
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