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Use of Dynamic Pose to Enhance Passive Visual Tracking

Dennis J. Marquis* and Craig A. Woolsey"
Virginia Tech, Blacksburg, Virginia 24061

Passive visual tracking performance has drastically improved in recent years, thanks to
advances in hardware and algorithms, but scenarios in which small mobile threats are indistin-
guishable from complex backgrounds remain challenging. There is an opportunity to explore
whether the maneuverability of a multirotor can be leveraged in order to strategically influence
perspective, an approach that can complement existing computer vision strategies. This paper
describes an algorithm to determine candidate perspectives and plan host motion that will
produce and maintain these perspectives, in order to improve threat detection. A baseline
problem abstraction of tracking a mobile sphere is presented with appropriate assumptions,
to validate the methodology.

I. Introduction

RONE based, passive intruder detection and tracking is valuable because it is discreet, lightweight, and highly

maneuverable. Specifically, electro-optical (EO) tracking, also known as visual tracking, has been used increasingly
for situational awareness due to its low cost and continuously improving algorithms, including feature extraction
and blob analysis algorithms [1]. However, commercial off-the-shelf (COTS) vision-based systems capable of
achieving high detection rates often suffer from a large number of false positives, making them unreliable in some
environments [2]. Efforts to improve visual tracking include the addition of skyline extraction algorithms [3], background
subtraction algorithms, or even use of trained classifiers [4], but these methods can still often fail to discriminate small
threats in complex scenes. A relatively unexplored possibility is to complement existing strategies by leveraging the
maneuverability of a drone in order to influence the background perspective.

Theory about motion planning with respect to a moving threat has been developed for other applications. LaValle et
al. presented a control law to maintain visibility of threats [5], using a Boolean concept of visibility. However, the focus
is on two-dimensional planning when the view can be obstructed by obstacles. Cancemi et al. broadened the concept
of visibility to a stochastic model [6], but this formulation emphasizes the issue of obstacles, similar to an art gallery
problem. Potentially most promising in the context of aerial robotic vision is the use of model predictive control (MPC)
with quadrotors [7], which reduces complexity of the planning problem by iteratively minimizing a cost function over a
limited time horizon. MPC algorithms have been implemented with drones to support aerial videography [8] [9], with
cost functions that consider properties such as size of target, viewing angle of target, and target position within the
image plane.

The research described here explores whether the maneuverability of an aircraft can be exploited to produce and
maintain perspectives that will improve visual threat detection and tracking. The objectives are twofold: develop a
strategy to predict optimal host-threat-background perspectives and develop a control law capable of enforcing these
perspectives. We consider an abstracted problem which isolates the general prediction and control challenges from
problem-specific issues of computer vision within a particular scene. The remainder of this paper is organized as follows.
Section II establishes the host, threat, and background assumptions that will be used when applying the proposed
strategy. Section III details the methodology of the threat tracking strategy. Section IV presents some scenarios that
highlight how the algorithm might behave under various initial conditions and tuning parameters. Finally, Section V
provides some concluding remarks and opportunities for future work.

I1. Problem Formulation and Assumptions
Detecting and tracking a moving threat in an arbitrary environment is a complex task, whose performance is
dependent on choice of detection and tracking algorithms, choice of hardware and sensors, visual and geometric
characteristics of the background with respect to the threat, and dynamics of the threat, among other variables. Although
a long-term objective is to develop and implement a complete solution in a field experiment or photo-realistic simulation,
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this paper presents a general strategy, for an abstracted problem, that is agnostic to the underlying computer vision
algorithms. This strategy is formulated to address the following simplified task: 3D tracking of a constant velocity
black sphere against an arbitrary grayscale background by controlling the motion of a remote visual sensor. Relevant
assumptions are detailed below and summarized in Table 1.

A. Host Assumptions

Consider a multirotor host with a mounted gimballed camera. This host has sole responsibility for tracking the
threat. (This formulation will not consider how a network of hosts should coordinate to collectively optimize coverage
of the threat.) The host is able to perfectly self-localize, so its position and orientation will always be known in a 3D
world coordinate frame; there is no uncertainty stemming from imperfect GPS or IMU readings. In addition to live
video feed from the camera, the host has knowledge of the range to its threat and background. If using solely passive
methods, this range estimate could come from monocular ranging techniques [10], stereo vision techniques [11], or
acoustic techniques [12]. If allowing for active technologies, camera data could be supplemented with radar [13] to
obtain range. Use of an off-board sensor such as ground-based radar to obtain range is also viable. The camera can
freely translate its perspective due to the multirotor’s vertical and lateral mobility. Camera attitude in all three axes is
controlled by the multirotor and gimbal attitude controllers in such a way that the camera remains level, so that only its
pitch and yaw attitude vary. Considering translational camera motion in 3 dimensions and rotational motion about 2
axes yields 5 total degrees of freedom. Finally, the camera is assumed to be a pinhole camera with fixed focal length, so
lens distortion effects and zoom will not be considered.

B. Threat Assumptions

The threat is a solid black sphere moving at constant velocity. Its color is a property that is known to the host. The
sphere exhibits Lambertian reflectance, so both its geometry and visual characteristics are invariant when viewed from
different perspectives. The constant velocity implies that the threat is both non-cooperative and non-antagonistic, so
it will not moditfy its trajectory in an attempt to defeat the tracking algorithm. Furthermore, assume the threat has
already been detected and resides in the center of the image plane of the camera by means of a visual-servoing strategy.
Since the host knows the range to the threat and its location in the camera’s image plane, it effectively knows the 3D
world coordinates of the threat as well. Although the particular tracking algorithm is not specified, assume a traditional
combination of corner detector, optical flow algorithm, and Kalman filter with a constant velocity model, an approach
that has been validated by Kang et al [14].

C. Background Assumptions

The host continuously tracks the threat against a grayscale background. Justification for the use of grayscale will be
discussed in Section III. This background occupies the entire image plane and objects in the background are assumed to
be the same distance from the host (i.e. no variability in depth of background). The background is defined to be at
a range that is substantially larger than the range from the host to the threat, in order to assume that the background
is invariant to translation of the host aircraft position for small time scales. There are no additional obstacles in the
environment that could occlude the threat or disrupt the motion of the host or threat.

II1. Proposed Methodology

A. Quantifying Visibility

The first step towards producing an optimal perspective is to use a metric to identify candidate locations in the
background, relative to the host position, that provide greatest contrast between the threat and the background so that the
threat is more visible. Intuitively, the threat will stand out more clearly against a simpler background with a distinct
color. Visibility and background complexity are extremely contextual properties, so there is no universal metric that can
be applied. One approach is to consider “image discriminability,” defined as the visibility of the difference between a
pair of images, which arguably quantifies object detectability [15]. For threat detection, the images considered would be
an image of the unobstructed background and a nearly identical image with the threat present. Attempts to model image
discriminability by a human observer include the HDR-VDP-2 metric [16], which applies to a generic scene, as well
as the Spatial Standard Observer (SSO) metric [17], which applies specifically to aircraft. For automated detection
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Table 1 Host, Threat, and Background Assumptions

#  Assumption

1 Single host

2 Perfect host self-localization

3 Host has knowledge of finite threat and background ranges
4 5 DOF camera motion (no roll)

5  Pinhole camera model

6  Single threat

7  Constant velocity threat motion

8  Threat is solid black sphere that exhibits Lambertian reflectance (host knows this)
9  Threat has been detected and is centered in image plane
10 Grayscale background with no depth variability

11 Range to background is much larger than range to threat
12 No obstacles (no occlusion, no collision risk)

O O

D,

(a) Image of three spheres in gradi- (b) Sobel edge detection is applied to (c) Canny edge detection is applied
ent background. The spheres become the image. Only the uppermost por- to the image. More edges are found
progressively more occluded. tion of the bottom sphere is detected. than with Sobel edge detection.

Fig. 1 Relationship between pixel intensity and detection success

using computer vision techniques, a summary of approximately 50 candidate metrics is provided by Peters et al. [18].
In general, the applicability of each metric varies based on how camera frames are processed and which detection
algorithm is used.

The problem of selecting the perfect metric can be circumvented by allowing the control strategy to accept any scalar
metric. Assume such a metric has been selected for a particular use case and can be computed either per pixel or per
discretized segment of each camera frame. Candidate regions in the background correspond to segments that produce
the highest metric. Finding a host trajectory that improves perspective then becomes a purely geometric problem, which
is outlined in upcoming sections.

For the abstract problem of tracking a black sphere, it is sufficient to use the grayscale intensity of the background as
a metric. Any region in the image plane with intensity above some designated threshold can be considered a “good"
prospective background. To illustrate this, consider the gradient background depicted in Figure 1a. Three spheres have
been placed at varying relative altitudes within the scene. The upper two spheres are clearly visible and would likely be
detected by a detection algorithm. The bottom sphere is partially obscured by the background. Even for such a simple
metric, detection success could vary by choice of algorithm, which is apparent when comparing the bottom sphere’s
edges produced by the Sobel and Canny edge detectors in Figure 1b and Figure Ic, respectively. Each edge detector
would have its own ideal intensity threshold, where the Sobel algorithm requires a stricter threshold.
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B. Maintaining Perspective with respect to a Reference Point

Maintaining perspective requires that the motion of the host responds appropriately to the motion of the threat.
The host to threat to background geometry for one discrete time step of length AT is outlined in Figure 2. Note that
although this scenario takes place in 3D, the threat initial position, threat final position, and reference point define a
plane, the x-y plane shown in Figure 2. A vector drawn from the host through the threat will intersect the background at
some reference point, which is the origin of this coordinate frame for convenience. The host and threat are initially at
distances dj, and d;, respectively. The threat is moving at constant velocity v, at a heading angle ¢ with respect to its
position vector, defined from [, 7). It travels distance v,AT over the time step, which sweeps angle 6. The defined
distances are related to 6 by:

tand = v, AT sin ¢ 0
dy +v,AT cos ¢

Assume the host and threat are positioned in such a way that the host has an unobscured view (i.e. the visibility
metric is high). The host’s objective is to maintain this relative orientation, so that the threat does not shift with respect
to the background. If attempting to make the background appear static with respect to the threat, the vector from the
origin to the threat must also intersect the host after the AT time step. The shortest host trajectory from its initial location
to this vector is one that is perpendicular and within the same plane, which reduces to a 2D problem. Therefore, the
geometry in Figure 2 is applicable for both vertical and lateral movement. The host must travel at a velocity v, defined
by:

dy sinf
—_Zn>7 2
AT (2)

When background to threat distance, d,, increases towards infinity, 8 approaches 0 and d; + v;AT cos ¢ approaches d;,
resulting in the approximation:

Vi

v & (d—h) Vs sin ¢ 3)
d;

There are a few important takeaways from this construction. The effort (i.e. vj) required by the host to maintain
perspective is a function of background distance, threat distance, and threat heading angle. The host can remain
stationary when the threat is moving towards or away from it, corresponding to heading angles of 0 and +x. The ratio '2—’:
will always be greater than 1, so for some heading angles v;, will be greater than v,, placing a performance requirement
on the host relative to the threat. Maintaining perspective is most challenging when the threat moves perpendicular to

T

the background-threat-host vector, at heading angles +7, since (3) is maximized with respect to ¢. If the host is in

visual range of the threat, this implies that the ratio ‘fl—’: approaches 1. Maintaining perspective of the threat then reduces

to the trivial case of matching the threat’s velocity that is orthogonal to the background-threat-host vector, described by
the term v; sin ¢.

C. Defining Locations with Acceptable Threat Visibility in 3D

Maintaining a good view of the threat does not require maintaining perspective with respect to a single reference
point. Instead, it requires maintaining perspective with respect to any reference point designated as “good” by the
background visibility metric. Regions of pixels with acceptable visibility metrics can be can be used to define 3D
volumes within which a host can view the threat with high contrast. Consider a circular region, for example, and suppose
one draws a vector from each point in this region to the threat, thus defining a conical volume. Extending the vectors
through the apex defined by the threat, one obtains a second cone within which the host would be able to view the threat.
See Figure 3. The interior of this cone defines the set of all 3D points that produce a “good” perspective.

In this implementation, background regions with high visibility scores are assumed to be elliptical. This choice
should be considered an abstraction for illustrative purposes, though one may choose to inscribe a maximal ellipse
within an irregular region of high visibility as a means of simplifying later computations. Considering elliptical
regions provides more flexibility than circular regions, but also retains elements of symmetry that will be useful in the
upcoming cost function derivation. Consider the ellipse defined in Figure 4, centered at (x, y.), with semi-major axis
a, semi-minor axis b, and rotation y. The set Eey pix of all camera pixel coordinates contained within this ellipse is:
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Fig. 2 Geometry of maintaining threat and background perspective for one time step. The threat, initially at
distance d; from a reference point in the background, travels from the initial to final position, covering distance
v;AT and sweeping angle 6 with respect to the reference point. The host, initially at distance d; from the
reference point, and located along the same line defined by the reference point and threat, responds by finding
the closest point along the new vector from reference point to threat. Attaining this new position requires
traveling at velocity v, during the AT time step.

Eeitpix = {xI(x = x)"RT (9)P'R(y) (x - X) < 1}

= by = Xe P a’ 0 R(y) = cosy siny 4)
& el 0 b’ siny cosy
Equivalently, e pix can be parameterized by u; and u5:
aell,pix = {Xc +All| ||ll||2 < 1}
1/2 5
u= "1, A=(RT()PRO)) ®
uz

For an ideal perspective camera [19], a physical coordinate (X, Y, Z) in the world frame maps to a pixel coordinate
(x, y):

X

X fSx fse ox| |1 0 0 Ol |R T ¥
Alyl=10 fsy oy| |0 1 0 0 z 6)

1 0 0 1{]0 0 1 0] (0 1 1

Parameter A represents the range to the point from the camera and f is the known focal length of the camera. Parameters
sx and sy, are scaling factors where fs, and fs, represent the number of horizontal and vertical pixels per unit length,
respectively. Parameter s¢ is a skew factor, which is zero when pixels are rectangular. Parameters o, and oy, are x and y
coordinates of the camera’s principal point (usually the center of the image plane), measured in pixels. Matrix R is a
matrix in SO(3) that represents the camera’s known orientation with respect to the world frame and T is a 3x1 vector
that represents the camera’s known position with respect to the world frame’s origin. The set &gy pix can therefore be
mapped to set Eell world, €Xpressed in 3D world coordinates, assuming the background is at known depth A.
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Fig. 3 Visualization of the perspective problem. A black background (left) contains two white regions, against
which the black threat would be visible. The host’s line of sight to the threat intersects background coordinate
(X1,Y1, 7)), yielding poor visibility. If the host were to move into one of the green conic volumes, its line of sight
to the threat would intersect the white regions, improving visibility.

Fig. 4 Ellipse in image plane corresponding to ‘“‘good” visibility, with center (x., y.), semi-major axis a, semi-
minor axis b, and rotation y

A 3D conical volume can be parameterized in terms of a fixed point, its apex, and the interior of a curve; the curve is
known as the directrix. In this derivation, the elliptic cone that defines good visibility of a threat, set Ecope, has apex at
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the threat’s position in world coordinates, X;, and planar directrix interior equal to Eeji world.- Econe 15 defined:

Econe = {X¢ + v(Xen — X¢) | Xen € Eeitworld € R39 v eR}

Xt XCH (7)
Xl’ = Yt s Xell = YCH s v < 0
Z, p

The scalar parameter v can be thought of as a measure along the cone’s axis of symmetry. The apex of the cone
corresponds to v = 0, while the ellipse in the background plane corresponds to v = 1. Parameter v is constrained to
negative values to enforce that the threat is always between the host and the background, i.e. the “green” regions in
Figure 3.

For backgrounds with multiple candidate regions, multiple ellipses can be defined and elliptic cones can be generated
for each ellipse. The task of finding the optimal viewing location becomes the task of selecting the best elliptic cone, as
well as finding the best host position within that elliptic cone.

D. Elliptic Cone Selection via Cost Function

There are multiple competing factors to consider when comparing elliptic cones. One viable strategy is to use an
optimization algorithm to minimize a nonlinear cost function J(X, Xy, X;, v,); iteratively for each cone, , with respect
to X, the host aircraft’s proposed position vector, subject to the constraint that X € Egope. Xp, X; and v, are the host’s
current position vector, threat’s current position vector, and threat’s current velocity vector, respectively. Objectives
can be prioritized within the cost function by applying relative weights. A multi-objective cost function that could be
applied to the i elliptic cone, assuming N candidate cones is the following weighted combination of 4 objectives:

J(X, Xn, Xs, Vt)i = WIJproximity,i(X’ Xn, Xt) + WZJrobust,i(X» Xt) + W3Jrate,i(X» X, Vt) + W4Jvisibility,i

8
i=12,..,N ®

In this expression, 0 < w; < land }}; w; = 1.

1. Jproximity,i (X, Xh’ Xt)
The Euclidean distance that must be traveled by the host aircraft to obtain the required threat visibility can be
penalized by defining:

Jproximity,i(X7 X, X)) = |IX = Xpll2 9

When w; = 0 for j = 2, 3,4, minimizing the cost in (8) is equivalent to navigating to the nearest point on the surface of
the the nearest elliptic cone, i.e. the shortest distance required to obtain improved threat visibility.

2. Jrobust,i(X7 Xt)

The size of the elliptic cone’s cross section can be seen as a measurement of robustness to disturbances in the host’s
position as well as uncertainties in X, and A; a host within a large cross-section is less likely to exit the volume and lose
threat visibility. For an elliptic cone, this measurement can be expressed as the radius of a circle with area equivalent to
the elliptic cross-section. Higher values are desirable, so the robustness cost can be expressed as the negative radius:

Jrobusti (X, X;) = —|v[Vab (10)

Scalar v is dependent on X and X, obtained from the parameterization used in (7), while a and b are once again the
semi-major and semi-minor axes of the respective background ellipse. Increased |v| correlates with increased distance
between the host and threat, so minimizing a weighted combination of Jproximity,i (X, X7, X;) and Jrobust,i (Xn, X¢)
involves compromising between the competing proximity and robustness objectives. Note that this negative robustness
term is unbounded below, so there must always be a competing proximity objective.

It should also be noted that robustness is direction dependent; ellipses with very high eccentricities could have
much greater robustness along the semi-major axis compared to the semi-minor axis. The quantity Vab does not take
eccentricity into account, but one could include an eccentricity term to factor in directional robustness.
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3. Jrate,i(Xs Xt, Vt)

The elliptic cones are dynamic since their apex, the threat, is moving at some velocity. A rate term is included to
account for the fact that the host must move with a given elliptic cone in order to maintain threat visibility. Assuming
that the background stays relatively invariant with respect to the host motion requires that host’s range to background
A is much greater than the host’s range to the threat. When this assumption holds, the approximation in (2) can be
expressed in terms of the defined problem variables to produce the penalty:

A
A—|IX =X ]

)

Jrate,i (X, X, V;) = v sin ¢

(a1
A M
¢ = arccos (Ré3 - ——
lIvell
The term A/(A — || X — X;||) corresponds to the ratio fl—’t’ in (3), while ¢ corresponds to the angle between the camera’s
line of sight vector, Ré3, and the threat velocity vector.

Although the rate term will increase as the host’s distance to threat increases, /(4 — || X — X;||) will remain relatively
close to 1, meaning that the term remains relatively constant for ellipses of equal background depth A. This term
becomes much more important, however, if extending to more complex situations where the background is of variable
depth, especially if the near-infinite background assumption is violated. In these situations, the ratio /(1 — || X — X;||)
can be much greater than 1, which means that the rate cost term will help enforce the velocity limits of the host aircraft.

4. Jisivility, i

The ﬁilal term, the visibility term, is invariant with respect to the cost function arguments. Instead, it is intrinsic to
the conic volume being analyzed, so the value will vary amongst the N elliptic cones. The visibility cost is related to the
visibility metric applied to the relevant elliptic region, where visibility metric is context-dependent, as discussed in
Section IILA. In this simple grayscale example, Jyisiviliy,i 1S defined as the negative of the average grayscale intensity of
the elliptic region, which varies from 0 to 255.

E. Accounting for Threat Dynamics

The constraint X € &cqne has been derived with respect to a static threat. Extension to a dynamic threat is
straightforward; the host extrapolates the future position of the threat for some time step AT to compute where the
elliptic volume will be at a future time. For this constant velocity abstraction, a Kalman filter with constant velocity
model is sufficient. For more complex threat dynamics models, viable trajectory generation strategies are summarized
by Li et al [20]. For a fixed-wing threat, the threat’s pose data can also be considered to improve trajectory prediction
[21]. In this implementation, the host can solve a similar nonlinear optimization problem, where the i cone’s modified
constraint is X € Econe;, predict> Which uses the predicted threat position as apex, rather than the current threat position;
X, in (7) is replaced by (X; + AT'v;):

Scone,-,predicl = {(Xt + ATVZ) + V(Xell - (Xt + ATVz‘))p(ell € Sell,world C R3, Ve R}

Xt Xell (12)
X; =Y, Xa= Yar |, v<0
Z; A

Note that this optimization process assumes the host is currently outside an elliptic cone. If the host is currently within a
cone, its modified control objective is to navigate to the cone’s axis of symmetry. The axis of symmetry of a elliptic cone
is desirable because it increases robustness with respect to uncertainty of the exact conic boundary, due to uncertainties
in background range estimate A and threat position X;.

IV. Examples
To illustrate the trade-offs that exist with varying objective function weights in different scenarios, optimization
examples were constructed in MATLAB for (256 x 256) resolution scenes, shown in Figure 5. Scene A consists of a
single white ellipse centered near the top of the image plane. Scene B consists of two white ellipses, where Ellipse 1 is
larger but further from the center of the image plane, while Ellipse 2 is smaller but more centered. Scene C consists of
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(a) Binary scene with a single elliptic (b) Binary scene with two elliptic re- (c) Grayscale scene with two ellip-
region of visibility, centered near the gions of visibility that vary by shape tic regions of visibility that vary by
top of the image plane. and position. grayscale intensity.

Fig.5 Scenes used in MATLAB Examples with Labeled Ellipses

two ellipses that are symmetric about the image plane, but vary by grayscale intensity; Ellipse 1 is white while Ellipse 2
is gray.

The geometry of the example scenarios is visualized in Figure 6. A host at the origin of a right-handed world
coordinate frame in R? is looking at a threat at X, = (0, 0, 50), moving at velocity v, against a background of range
A =1000. The parameters of the virtual camera are presented in Table 2:

Table 2 Virtual Camera Parameters

T R A [ sx sy s¢  ox 0y
0 1 0 0
0 0 1 0 1000 1 50 50 O 128 128
0 0 0 1]

For each scene, Canny edge detection was performed and ellipses were detected using a 1D Hough transform [22].
The properties of the detected ellipses are displayed in Table 3:

Table 3 Properties of Detected Ellipses

Scene Ellipse # Xe Ve a b b% Intensity
(pixels) (pixels) (pixels) (pixels) (degrees)  (0-255)
A 1 128 66 92 42 0 255
B 1 82 53 67 37 0 255
B 2 146 160 19 15 -85 255
C 1 64 130 42 32 0 255
C 2 192 130 42 32 0 199

The nonlinear cost function defined in (8) was minimized for each elliptic cone in a given scene using MATLAB’s
nonlinear solver fmincon, subject to the constraint that X € Ecope, predict- 10 make the effects of varying weights w;
more intuitive, the cost terms were normalized:
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Fig. 6 Example Problem Setup (shown for Scene A). A host with X;, = (0,0, 0) is looking at a threat centered
at X, = (0,0, 50) against a grayscale scene of range A = 1000. The threat’s predicted translation over time step
AT is defined by vector v,AT. The host’s line of sight is along the positive Z axis, with an image plane aligned
with the XY plane. The problem is to find a host position that yields improved threat visibility.

]proximity,i (Xs Xh s Xt)

Toroximity,i (X, X, X¢) = ot , drer =50
Jrobust.i (X, X;) = meusu(}f’ 1)_([) : e e = 100
re 13
Fuisibility,i = M, Iier = 255

I ref

The scalar reference values d.f, and vyr are the distance and velocity values that map to a cost of 1 for the proximity
and rate terms, respectively. The scalar reference values ry.f, and Ii.f are the conic radius and pixel intensity values
that map to a cost of O for the robustness and visibility terms, respectively. Each normalization is a simple affine
transformation that maps the respective cost term to a value generally between 0 and 1. In a real implementation, the
normalization process would be part of the weight tuning process, where the scaling factors would be determined via
calibration and absorbed into the weights {w j}‘l‘.zl. Any constant offsets would have no effect on the optimization
process.

Table 4 summarizes the threat initial velocity v,, time step AT and weights {w‘,-}‘}:1 used for each example scenario.
It also includes the returned costs {Jl-}%:1 , with lower cost highlighted, and optimal host positions {Xi}%:] for each
elliptic cone in the example’s corresponding background:

10
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Table 4 Example Scenario Parameters and Results

Threat Motion Weights Costs Optimal Host Positions
Ex # Scene \ 7 AT wi wo w3 Wy J] ]2 X] Y] Z] X2 Yz Zz
1 A [0, 0, 2] 0.5 0.5 0 0 0.378 N/A 0.1 251 -6.1 N/A

1

II A [0, 0, 2] 1 04 06 0 0 0326 N/A | 0.1 36.1 -31.6 N/A

11 B [0, 0, 2] 1 025 025 025 0250344 0302 | 109 344 140 | -102 -154 3.7

v B [0, 0, 2] 1 0.15 035 025 025 ] 0300 0346 | 22.1 69.6 -25.0 | -11.1 -16.7 -0.6

v B [0, -5, 2] 1 025 025 025 025]0383 0387 99 296 119 | -105 -19.1 45

VI C [0, 0, 2] 1 025 025 025 0250270 0.324 | 233 -05 1.8 | -233 -05 1.8

VIl C [5,0,2] 1 025 025 025 0250362 0364 | 283 -05 24 |-183 -05 13
C 1

VIII [5,0,2] 03 03 03 01 |0435 0393|283 -05 24 |-183 -05 13

Scene A represents an extremely common real-world occurrence, where the top portion of the image plane yields
good visibility (e.g. a skyline). Ex I considers a threat moving away from the host, with a prediction step AT of 1
second. The solution shows that the closest trajectory that will yield improved robust visibility is mainly along the
positive Y axis (i.e. by causing the host aircraft to descend). Ex II considers the same scenario, except the robustness
term is prioritized more heavily than the proximity term. In this case, the host aircraft is made to descend and also move
away from the threat along the negative Z axis. For both Ex I and Ex II, rate and visibility terms have been ignored,
since there is no competing ellipse. Furthermore, the visibility cost is static in this formulation, rather than a function of
distance from the threat. In a real scenario, the robustness and visibility terms describe the inherent trade-off between
robust visibility and pixels-on-target that all digital imaging systems face, so their relative weights would have to be
tuned accordingly.

The next three examples consider Scene B, where one of two ellipses of differing size and location must be selected.
In Ex III, the host must move in the positive X and positive Y directions to enter the elliptic cone defined by Ellipse 1 or
move in the negative X and Y directions to enter the elliptic cone defined by Ellipse 2. When all weights are equal, the
closer, smaller ellipse, Ellipse 2, is selected, due to its lower associated cost. However, when robustness is slightly more
prioritized, as in Ex IV, the lower cost is associated with Ellipse 1, due to its larger size and corresponding larger conic
cross-section. Furthermore, when the threat is given a velocity component in the negative Y direction (ascending), as
in Ex V, the equally distributed weights actually select Ellipse 1 as the better option. This is because the algorithm
predicts that the threat’s Y velocity will move the larger elliptic cone towards the host.

The final three examples consider Scene C, where the elliptic backgrounds yield different levels of visibility. In
Ex VI, weights are all equal, which results in selecting the whiter ellipse, Ellipse 1. Note that the optimal host
perspectives, X1 and X are symmetric about the X axis for this example, as expected. Ex VII is identical to the previous
example, except the threat is given velocity along the X axis. This results in nearly identical cost between Ellipse 1 and
Ellipse 2; any additional velocity in the X direction will cause the lower-visibility ellipse to be selected. When the same
conditions are repeated, but visibility weight is reduced, as in Ex VIII, the lower-visibility ellipse is selected.

V. Conclusion and Future Considerations

This paper hypothesizes a method to determine candidate perspectives and plan host motion that will produce and
maintain these perspectives, in order to improve threat detection. The approach models acceptable threat to background
perspectives as three-dimensional conic volumes and suggests minimizing a nonlinear cost function over a short time
horizon to find the optimal host position. A baseline problem abstraction of tracking a mobile sphere is presented with
appropriate assumptions, to validate the methodology.

There are many logical extensions of this approach. For example, the scene could be made more complex by
considering backgrounds of different colors and geometries. The threat motion could extended to random speeds and
directions, or even antagonistic motion (e.g. intentional camouflage). The three-dimensionality of the background
could be considered by relaxing the assumption of constant depth background, as mentioned in the discussion about
Jrate,i (X, Xy, v¢). This change would require a method (likely non-visual, given the limitations of visual ranging
methods) to map the ranges of different background areas, but this would increase the applicability of the algorithm to
scenarios with more complex background geometry, such as urban areas, mountainous regions, or near tree lines. The
algorithm could be adapted to consider a multi-host scenario, where the goal is to collectively maximize coverage of the
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threat. Hosts could coordinate to assign regions of coverage to one another, to ensure that at least one host always has a
suitable view of the threat.

One important extension is to consider host performance limitations by implementing this approach in a simulation

environment. This approach was designed with MPC in mind, since controls are selected to optimize some cost over a
finite time horizon. The optimal position X could then be tied to an actual trajectory with associated cost that considers
the flight modes of the aircraft (e.g. cost to ascend vs. cost for lateral movement). AirSim [23] is a viable tool for testing,
since it is photorealistic with a powerful physics engine and library of available sensors. Photorealism allows one to
better tie the visibility cost term to a more complex visibility metric or actual detection score. Furthermore, AirSim
supports integration with ROS [24], so field-ready controllers and algorithms can be implemented.
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