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Passive visual tracking performance has drastically improved in recent years, thanks to
advances in hardware and algorithms, but scenarios in which small mobile threats are indistin-
guishable from complex backgrounds remain challenging. There is an opportunity to explore
whether the maneuverability of a multirotor can be leveraged in order to strategically influence
perspective, an approach that can complement existing computer vision strategies. This paper
describes an algorithm to determine candidate perspectives and plan host motion that will
produce and maintain these perspectives, in order to improve threat detection. A baseline
problem abstraction of tracking a mobile sphere is presented with appropriate assumptions,
to validate the methodology.

I. Introduction

D
rone based, passive intruder detection and tracking is valuable because it is discreet, lightweight, and highly

maneuverable. Specifically, electro-optical (EO) tracking, also known as visual tracking, has been used increasingly

for situational awareness due to its low cost and continuously improving algorithms, including feature extraction

and blob analysis algorithms [1]. However, commercial off-the-shelf (COTS) vision-based systems capable of

achieving high detection rates often suffer from a large number of false positives, making them unreliable in some

environments [2]. Efforts to improve visual tracking include the addition of skyline extraction algorithms [3], background

subtraction algorithms, or even use of trained classifiers [4], but these methods can still often fail to discriminate small

threats in complex scenes. A relatively unexplored possibility is to complement existing strategies by leveraging the

maneuverability of a drone in order to influence the background perspective.

Theory about motion planning with respect to a moving threat has been developed for other applications. LaValle et

al. presented a control law to maintain visibility of threats [5], using a Boolean concept of visibility. However, the focus

is on two-dimensional planning when the view can be obstructed by obstacles. Cancemi et al. broadened the concept

of visibility to a stochastic model [6], but this formulation emphasizes the issue of obstacles, similar to an art gallery

problem. Potentially most promising in the context of aerial robotic vision is the use of model predictive control (MPC)

with quadrotors [7], which reduces complexity of the planning problem by iteratively minimizing a cost function over a

limited time horizon. MPC algorithms have been implemented with drones to support aerial videography [8] [9], with

cost functions that consider properties such as size of target, viewing angle of target, and target position within the

image plane.

The research described here explores whether the maneuverability of an aircraft can be exploited to produce and

maintain perspectives that will improve visual threat detection and tracking. The objectives are twofold: develop a

strategy to predict optimal host-threat-background perspectives and develop a control law capable of enforcing these

perspectives. We consider an abstracted problem which isolates the general prediction and control challenges from

problem-specific issues of computer vision within a particular scene. The remainder of this paper is organized as follows.

Section II establishes the host, threat, and background assumptions that will be used when applying the proposed

strategy. Section III details the methodology of the threat tracking strategy. Section IV presents some scenarios that

highlight how the algorithm might behave under various initial conditions and tuning parameters. Finally, Section V

provides some concluding remarks and opportunities for future work.

II. Problem Formulation and Assumptions
Detecting and tracking a moving threat in an arbitrary environment is a complex task, whose performance is

dependent on choice of detection and tracking algorithms, choice of hardware and sensors, visual and geometric

characteristics of the background with respect to the threat, and dynamics of the threat, among other variables. Although

a long-term objective is to develop and implement a complete solution in a field experiment or photo-realistic simulation,
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this paper presents a general strategy, for an abstracted problem, that is agnostic to the underlying computer vision

algorithms. This strategy is formulated to address the following simplified task: 3D tracking of a constant velocity

black sphere against an arbitrary grayscale background by controlling the motion of a remote visual sensor. Relevant

assumptions are detailed below and summarized in Table 1.

A. Host Assumptions
Consider a multirotor host with a mounted gimballed camera. This host has sole responsibility for tracking the

threat. (This formulation will not consider how a network of hosts should coordinate to collectively optimize coverage

of the threat.) The host is able to perfectly self-localize, so its position and orientation will always be known in a 3D

world coordinate frame; there is no uncertainty stemming from imperfect GPS or IMU readings. In addition to live

video feed from the camera, the host has knowledge of the range to its threat and background. If using solely passive

methods, this range estimate could come from monocular ranging techniques [10], stereo vision techniques [11], or

acoustic techniques [12]. If allowing for active technologies, camera data could be supplemented with radar [13] to

obtain range. Use of an off-board sensor such as ground-based radar to obtain range is also viable. The camera can

freely translate its perspective due to the multirotor’s vertical and lateral mobility. Camera attitude in all three axes is

controlled by the multirotor and gimbal attitude controllers in such a way that the camera remains level, so that only its

pitch and yaw attitude vary. Considering translational camera motion in 3 dimensions and rotational motion about 2

axes yields 5 total degrees of freedom. Finally, the camera is assumed to be a pinhole camera with fixed focal length, so

lens distortion effects and zoom will not be considered.

B. Threat Assumptions
The threat is a solid black sphere moving at constant velocity. Its color is a property that is known to the host. The

sphere exhibits Lambertian reflectance, so both its geometry and visual characteristics are invariant when viewed from

different perspectives. The constant velocity implies that the threat is both non-cooperative and non-antagonistic, so

it will not modify its trajectory in an attempt to defeat the tracking algorithm. Furthermore, assume the threat has

already been detected and resides in the center of the image plane of the camera by means of a visual-servoing strategy.

Since the host knows the range to the threat and its location in the camera’s image plane, it effectively knows the 3D

world coordinates of the threat as well. Although the particular tracking algorithm is not specified, assume a traditional

combination of corner detector, optical flow algorithm, and Kalman filter with a constant velocity model, an approach

that has been validated by Kang et al [14].

C. Background Assumptions
The host continuously tracks the threat against a grayscale background. Justification for the use of grayscale will be

discussed in Section III. This background occupies the entire image plane and objects in the background are assumed to

be the same distance from the host (i.e. no variability in depth of background). The background is defined to be at

a range that is substantially larger than the range from the host to the threat, in order to assume that the background

is invariant to translation of the host aircraft position for small time scales. There are no additional obstacles in the

environment that could occlude the threat or disrupt the motion of the host or threat.

III. Proposed Methodology

A. Quantifying Visibility
The first step towards producing an optimal perspective is to use a metric to identify candidate locations in the

background, relative to the host position, that provide greatest contrast between the threat and the background so that the

threat is more visible. Intuitively, the threat will stand out more clearly against a simpler background with a distinct

color. Visibility and background complexity are extremely contextual properties, so there is no universal metric that can

be applied. One approach is to consider “image discriminability," defined as the visibility of the difference between a

pair of images, which arguably quantifies object detectability [15]. For threat detection, the images considered would be

an image of the unobstructed background and a nearly identical image with the threat present. Attempts to model image

discriminability by a human observer include the HDR-VDP-2 metric [16], which applies to a generic scene, as well

as the Spatial Standard Observer (SSO) metric [17], which applies specifically to aircraft. For automated detection
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Table 1 Host, Threat, and Background Assumptions

# Assumption
1 Single host

2 Perfect host self-localization

3 Host has knowledge of finite threat and background ranges

4 5 DOF camera motion (no roll)

5 Pinhole camera model

6 Single threat

7 Constant velocity threat motion

8 Threat is solid black sphere that exhibits Lambertian reflectance (host knows this)

9 Threat has been detected and is centered in image plane

10 Grayscale background with no depth variability

11 Range to background is much larger than range to threat

12 No obstacles (no occlusion, no collision risk)

(a) Image of three spheres in gradi-
ent background. The spheres become
progressively more occluded.

(b) Sobel edge detection is applied to
the image. Only the uppermost por-
tion of the bottom sphere is detected.

(c) Canny edge detection is applied
to the image. More edges are found
than with Sobel edge detection.

Fig. 1 Relationship between pixel intensity and detection success

using computer vision techniques, a summary of approximately 50 candidate metrics is provided by Peters et al. [18].

In general, the applicability of each metric varies based on how camera frames are processed and which detection

algorithm is used.

The problem of selecting the perfect metric can be circumvented by allowing the control strategy to accept any scalar

metric. Assume such a metric has been selected for a particular use case and can be computed either per pixel or per

discretized segment of each camera frame. Candidate regions in the background correspond to segments that produce

the highest metric. Finding a host trajectory that improves perspective then becomes a purely geometric problem, which

is outlined in upcoming sections.

For the abstract problem of tracking a black sphere, it is sufficient to use the grayscale intensity of the background as

a metric. Any region in the image plane with intensity above some designated threshold can be considered a “good"

prospective background. To illustrate this, consider the gradient background depicted in Figure 1a. Three spheres have

been placed at varying relative altitudes within the scene. The upper two spheres are clearly visible and would likely be

detected by a detection algorithm. The bottom sphere is partially obscured by the background. Even for such a simple

metric, detection success could vary by choice of algorithm, which is apparent when comparing the bottom sphere’s

edges produced by the Sobel and Canny edge detectors in Figure 1b and Figure 1c, respectively. Each edge detector

would have its own ideal intensity threshold, where the Sobel algorithm requires a stricter threshold.
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B. Maintaining Perspective with respect to a Reference Point
Maintaining perspective requires that the motion of the host responds appropriately to the motion of the threat.

The host to threat to background geometry for one discrete time step of length Δ𝑇 is outlined in Figure 2. Note that

although this scenario takes place in 3D, the threat initial position, threat final position, and reference point define a

plane, the 𝑥-𝑦 plane shown in Figure 2. A vector drawn from the host through the threat will intersect the background at

some reference point, which is the origin of this coordinate frame for convenience. The host and threat are initially at

distances 𝑑ℎ and 𝑑𝑡 , respectively. The threat is moving at constant velocity 𝑣𝑡 at a heading angle 𝜙 with respect to its

position vector, defined from [−𝜋, 𝜋). It travels distance 𝑣𝑡Δ𝑇 over the time step, which sweeps angle 𝜃. The defined

distances are related to 𝜃 by:

tan 𝜃 =
𝑣𝑡Δ𝑇 sin 𝜙

𝑑𝑡 + 𝑣𝑡Δ𝑇 cos 𝜙
(1)

Assume the host and threat are positioned in such a way that the host has an unobscured view (i.e. the visibility

metric is high). The host’s objective is to maintain this relative orientation, so that the threat does not shift with respect

to the background. If attempting to make the background appear static with respect to the threat, the vector from the

origin to the threat must also intersect the host after the Δ𝑇 time step. The shortest host trajectory from its initial location

to this vector is one that is perpendicular and within the same plane, which reduces to a 2D problem. Therefore, the

geometry in Figure 2 is applicable for both vertical and lateral movement. The host must travel at a velocity 𝑣ℎ , defined

by:

𝑣ℎ =
𝑑ℎ sin 𝜃

Δ𝑇
(2)

When background to threat distance, 𝑑𝑡 , increases towards infinity, 𝜃 approaches 0 and 𝑑𝑡 + 𝑣𝑡Δ𝑇 cos 𝜙 approaches 𝑑𝑡 ,
resulting in the approximation:

𝑣ℎ ≈
(
𝑑ℎ
𝑑𝑡

)
𝑣𝑡 sin 𝜙 (3)

There are a few important takeaways from this construction. The effort (i.e. 𝑣ℎ) required by the host to maintain

perspective is a function of background distance, threat distance, and threat heading angle. The host can remain

stationary when the threat is moving towards or away from it, corresponding to heading angles of 0 and ±𝜋. The ratio 𝑑ℎ
𝑑𝑡

will always be greater than 1, so for some heading angles 𝑣ℎ will be greater than 𝑣𝑡 , placing a performance requirement

on the host relative to the threat. Maintaining perspective is most challenging when the threat moves perpendicular to

the background-threat-host vector, at heading angles ± 𝜋
2

, since (3) is maximized with respect to 𝜙. If the host is in

visual range of the threat, this implies that the ratio 𝑑ℎ
𝑑𝑡

approaches 1. Maintaining perspective of the threat then reduces

to the trivial case of matching the threat’s velocity that is orthogonal to the background-threat-host vector, described by

the term 𝑣𝑡 sin 𝜙.

C. Defining Locations with Acceptable Threat Visibility in 3D
Maintaining a good view of the threat does not require maintaining perspective with respect to a single reference

point. Instead, it requires maintaining perspective with respect to any reference point designated as “good” by the

background visibility metric. Regions of pixels with acceptable visibility metrics can be can be used to define 3D

volumes within which a host can view the threat with high contrast. Consider a circular region, for example, and suppose

one draws a vector from each point in this region to the threat, thus defining a conical volume. Extending the vectors

through the apex defined by the threat, one obtains a second cone within which the host would be able to view the threat.

See Figure 3. The interior of this cone defines the set of all 3D points that produce a “good” perspective.

In this implementation, background regions with high visibility scores are assumed to be elliptical. This choice

should be considered an abstraction for illustrative purposes, though one may choose to inscribe a maximal ellipse

within an irregular region of high visibility as a means of simplifying later computations. Considering elliptical

regions provides more flexibility than circular regions, but also retains elements of symmetry that will be useful in the

upcoming cost function derivation. Consider the ellipse defined in Figure 4, centered at (𝑥𝑐 , 𝑦𝑐), with semi-major axis

𝑎, semi-minor axis 𝑏, and rotation 𝛾. The set Eell,pix of all camera pixel coordinates contained within this ellipse is:
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Fig. 2 Geometry of maintaining threat and background perspective for one time step. The threat, initially at
distance 𝑑𝑡 from a reference point in the background, travels from the initial to final position, covering distance
𝑣𝑡Δ𝑇 and sweeping angle 𝜃 with respect to the reference point. The host, initially at distance 𝑑ℎ from the
reference point, and located along the same line defined by the reference point and threat, responds by finding
the closest point along the new vector from reference point to threat. Attaining this new position requires
traveling at velocity 𝑣ℎ during the Δ𝑇 time step.

Eell,pix = {x| (x − xc)𝑇 R𝑇 (𝛾)P−1R(𝛾) (x − xc) ≤ 1}

x =

[
𝑥

𝑦

]
, xc =

[
𝑥𝑐

𝑦𝑐

]
, P =

[
𝑎2 0

0 𝑏2

]
, R(𝛾) =

[
cos 𝛾 − sin 𝛾

sin 𝛾 cos 𝛾

]
(4)

Equivalently, Eell,pix can be parameterized by 𝑢1 and 𝑢2:

Eell,pix = {xc + Au| ‖u‖2 ≤ 1}

u =

[
𝑢1

𝑢2

]
, A =

(
R𝑇 (𝛾)PR(𝛾)

)1/2 (5)

For an ideal perspective camera [19], a physical coordinate (𝑋,𝑌, 𝑍) in the world frame maps to a pixel coordinate

(𝑥, 𝑦):

𝜆

⎡⎢⎢⎢⎢⎢⎣
𝑥

𝑦

1

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
𝑓 𝑠𝑥 𝑓 𝑠𝜃 𝑜𝑥

0 𝑓 𝑠𝑦 𝑜𝑦

0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
R T

0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑋

𝑌

𝑍

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6)

Parameter 𝜆 represents the range to the point from the camera and 𝑓 is the known focal length of the camera. Parameters

𝑠𝑥 and 𝑠𝑦 are scaling factors where 𝑓 𝑠𝑥 and 𝑓 𝑠𝑦 represent the number of horizontal and vertical pixels per unit length,

respectively. Parameter 𝑠𝜃 is a skew factor, which is zero when pixels are rectangular. Parameters 𝑜𝑥 and 𝑜𝑦 are x and y

coordinates of the camera’s principal point (usually the center of the image plane), measured in pixels. Matrix R is a

matrix in SO(3) that represents the camera’s known orientation with respect to the world frame and T is a 3x1 vector

that represents the camera’s known position with respect to the world frame’s origin. The set Eell,pix can therefore be

mapped to set Eell,world, expressed in 3D world coordinates, assuming the background is at known depth 𝜆.
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Fig. 3 Visualization of the perspective problem. A black background (left) contains two white regions, against
which the black threat would be visible. The host’s line of sight to the threat intersects background coordinate
(𝑋1, 𝑌1, 𝑍1), yielding poor visibility. If the host were to move into one of the green conic volumes, its line of sight
to the threat would intersect the white regions, improving visibility.

Fig. 4 Ellipse in image plane corresponding to “good” visibility, with center (𝑥𝑐 , 𝑦𝑐), semi-major axis 𝑎, semi-
minor axis 𝑏, and rotation 𝛾

A 3D conical volume can be parameterized in terms of a fixed point, its apex, and the interior of a curve; the curve is

known as the directrix. In this derivation, the elliptic cone that defines good visibility of a threat, set Econe, has apex at
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the threat’s position in world coordinates, X𝑡 , and planar directrix interior equal to Eell,world. Econe is defined:

Econe = {X𝑡 + 𝑣(Xell − X𝑡 ) |Xell ∈ Eell,world ⊂ R3, 𝑣 ∈ R}

X𝑡 =

⎡⎢⎢⎢⎢⎢⎣
𝑋𝑡

𝑌𝑡

𝑍𝑡

⎤⎥⎥⎥⎥⎥⎦
, Xell =

⎡⎢⎢⎢⎢⎢⎣
𝑋ell

𝑌ell

𝜆

⎤⎥⎥⎥⎥⎥⎦
, 𝑣 ≤ 0

(7)

The scalar parameter 𝑣 can be thought of as a measure along the cone’s axis of symmetry. The apex of the cone

corresponds to 𝑣 = 0, while the ellipse in the background plane corresponds to 𝑣 = 1. Parameter 𝑣 is constrained to

negative values to enforce that the threat is always between the host and the background, i.e. the “green” regions in

Figure 3.

For backgrounds with multiple candidate regions, multiple ellipses can be defined and elliptic cones can be generated

for each ellipse. The task of finding the optimal viewing location becomes the task of selecting the best elliptic cone, as

well as finding the best host position within that elliptic cone.

D. Elliptic Cone Selection via Cost Function
There are multiple competing factors to consider when comparing elliptic cones. One viable strategy is to use an

optimization algorithm to minimize a nonlinear cost function 𝐽 (X,Xℎ ,X𝑡 , v𝑡 )𝑖 iteratively for each cone, , with respect

to X, the host aircraft’s proposed position vector, subject to the constraint that X ∈ Econe. Xℎ , X𝑡 and v𝑡 are the host’s

current position vector, threat’s current position vector, and threat’s current velocity vector, respectively. Objectives

can be prioritized within the cost function by applying relative weights. A multi-objective cost function that could be

applied to the 𝑖th elliptic cone, assuming N candidate cones is the following weighted combination of 4 objectives:

𝐽 (X,Xℎ ,X𝑡 , v𝑡 )𝑖 = 𝑤1𝐽proximity,𝑖 (X,Xℎ ,X𝑡 ) + 𝑤2𝐽robust,𝑖 (X,X𝑡 ) + 𝑤3𝐽rate,𝑖 (X,X𝑡 , v𝑡 ) + 𝑤4𝐽visibility,𝑖

𝑖 = 1, 2, ..., 𝑁
(8)

In this expression, 0 ≤ 𝑤𝑖 ≤ 1 and
∑

𝑖 𝑤𝑖 = 1.

1. 𝐽proximity,𝑖 (X,Xℎ ,X𝑡 )
The Euclidean distance that must be traveled by the host aircraft to obtain the required threat visibility can be

penalized by defining:

𝐽proximity,𝑖 (X,Xℎ ,X𝑡 ) = ‖X − Xℎ ‖2 (9)

When 𝑤 𝑗 = 0 for 𝑗 = 2, 3, 4, minimizing the cost in (8) is equivalent to navigating to the nearest point on the surface of

the the nearest elliptic cone, i.e. the shortest distance required to obtain improved threat visibility.

2. 𝐽robust,𝑖 (X,X𝑡 )
The size of the elliptic cone’s cross section can be seen as a measurement of robustness to disturbances in the host’s

position as well as uncertainties in X𝑡 and 𝜆; a host within a large cross-section is less likely to exit the volume and lose

threat visibility. For an elliptic cone, this measurement can be expressed as the radius of a circle with area equivalent to

the elliptic cross-section. Higher values are desirable, so the robustness cost can be expressed as the negative radius:

𝐽robust,𝑖 (X,X𝑡 ) = −|𝑣 |
√
𝑎𝑏 (10)

Scalar 𝑣 is dependent on X and X𝑡 , obtained from the parameterization used in (7), while 𝑎 and 𝑏 are once again the

semi-major and semi-minor axes of the respective background ellipse. Increased |𝑣 | correlates with increased distance

between the host and threat, so minimizing a weighted combination of 𝐽proximity,𝑖 (X,Xℎ ,X𝑡 ) and 𝐽robust,𝑖 (Xℎ ,X𝑡 )
involves compromising between the competing proximity and robustness objectives. Note that this negative robustness

term is unbounded below, so there must always be a competing proximity objective.

It should also be noted that robustness is direction dependent; ellipses with very high eccentricities could have

much greater robustness along the semi-major axis compared to the semi-minor axis. The quantity
√
𝑎𝑏 does not take

eccentricity into account, but one could include an eccentricity term to factor in directional robustness.
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3. 𝐽rate,𝑖 (X,X𝑡 , v𝑡 )
The elliptic cones are dynamic since their apex, the threat, is moving at some velocity. A rate term is included to

account for the fact that the host must move with a given elliptic cone in order to maintain threat visibility. Assuming

that the background stays relatively invariant with respect to the host motion requires that host’s range to background

𝜆 is much greater than the host’s range to the threat. When this assumption holds, the approximation in (2) can be

expressed in terms of the defined problem variables to produce the penalty:

𝐽rate,𝑖 (X,X𝑡 , v𝑡 ) = 𝜆

𝜆 − ‖X − X𝑡 ‖
v𝑡 sin 𝜙

𝜙 = arccos (𝑅𝑒3 · v𝑡
‖v𝑡 ‖

)
(11)

The term 𝜆/(𝜆 − ‖X − X𝑡 ‖) corresponds to the ratio 𝑑ℎ
𝑑𝑡

in (3), while 𝜙 corresponds to the angle between the camera’s

line of sight vector, 𝑅𝑒3, and the threat velocity vector.

Although the rate term will increase as the host’s distance to threat increases, 𝜆/(𝜆− ‖X−X𝑡 ‖) will remain relatively

close to 1, meaning that the term remains relatively constant for ellipses of equal background depth 𝜆. This term

becomes much more important, however, if extending to more complex situations where the background is of variable

depth, especially if the near-infinite background assumption is violated. In these situations, the ratio 𝜆/(𝜆 − ‖X − X𝑡 ‖)
can be much greater than 1, which means that the rate cost term will help enforce the velocity limits of the host aircraft.

4. 𝐽visibility,𝑖

The final term, the visibility term, is invariant with respect to the cost function arguments. Instead, it is intrinsic to

the conic volume being analyzed, so the value will vary amongst the 𝑁 elliptic cones. The visibility cost is related to the

visibility metric applied to the relevant elliptic region, where visibility metric is context-dependent, as discussed in

Section III.A. In this simple grayscale example, 𝐽visibility,i is defined as the negative of the average grayscale intensity of

the elliptic region, which varies from 0 to 255.

E. Accounting for Threat Dynamics
The constraint X ∈ Econe has been derived with respect to a static threat. Extension to a dynamic threat is

straightforward; the host extrapolates the future position of the threat for some time step Δ𝑇 to compute where the

elliptic volume will be at a future time. For this constant velocity abstraction, a Kalman filter with constant velocity

model is sufficient. For more complex threat dynamics models, viable trajectory generation strategies are summarized

by Li et al [20]. For a fixed-wing threat, the threat’s pose data can also be considered to improve trajectory prediction

[21]. In this implementation, the host can solve a similar nonlinear optimization problem, where the 𝑖th cone’s modified

constraint is X ∈ Econe𝑖 ,predict, which uses the predicted threat position as apex, rather than the current threat position;

X𝑡 in (7) is replaced by (X𝑡 + Δ𝑇v𝑡 ):

Econe𝑖 ,predict = {(X𝑡 + Δ𝑇v𝑡 ) + 𝑣(Xell − (X𝑡 + Δ𝑇v𝑡 )) |Xell ∈ Eell,world ⊂ R3, 𝑣 ∈ R}

X𝑡 =

⎡⎢⎢⎢⎢⎢⎣
𝑋𝑡

𝑌𝑡

𝑍𝑡

⎤⎥⎥⎥⎥⎥⎦
, Xell =

⎡⎢⎢⎢⎢⎢⎣
𝑋ell

𝑌ell

𝜆

⎤⎥⎥⎥⎥⎥⎦
, 𝑣 ≤ 0

(12)

Note that this optimization process assumes the host is currently outside an elliptic cone. If the host is currently within a

cone, its modified control objective is to navigate to the cone’s axis of symmetry. The axis of symmetry of a elliptic cone

is desirable because it increases robustness with respect to uncertainty of the exact conic boundary, due to uncertainties

in background range estimate 𝜆 and threat position X𝑡 .

IV. Examples
To illustrate the trade-offs that exist with varying objective function weights in different scenarios, optimization

examples were constructed in MATLAB for (256 x 256) resolution scenes, shown in Figure 5. Scene A consists of a

single white ellipse centered near the top of the image plane. Scene B consists of two white ellipses, where Ellipse 1 is

larger but further from the center of the image plane, while Ellipse 2 is smaller but more centered. Scene C consists of
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(a) Binary scene with a single elliptic
region of visibility, centered near the
top of the image plane.

(b) Binary scene with two elliptic re-
gions of visibility that vary by shape
and position.

(c) Grayscale scene with two ellip-
tic regions of visibility that vary by
grayscale intensity.

Fig. 5 Scenes used in MATLAB Examples with Labeled Ellipses

two ellipses that are symmetric about the image plane, but vary by grayscale intensity; Ellipse 1 is white while Ellipse 2

is gray.

The geometry of the example scenarios is visualized in Figure 6. A host at the origin of a right-handed world

coordinate frame in R3 is looking at a threat at X≈ = (0, 0, 50), moving at velocity v𝑡 against a background of range

𝜆 = 1000. The parameters of the virtual camera are presented in Table 2:

Table 2 Virtual Camera Parameters

T R 𝜆 𝑓 𝑠𝑥 𝑠𝑦 𝑠𝜃 𝑜𝑥 𝑜𝑦⎡⎢⎢⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
1000 1 50 50 0 128 128

For each scene, Canny edge detection was performed and ellipses were detected using a 1D Hough transform [22].

The properties of the detected ellipses are displayed in Table 3:

Table 3 Properties of Detected Ellipses

Scene Ellipse # 𝑥𝑐 𝑦𝑐 𝑎 𝑏 𝛾 Intensity
(pixels) (pixels) (pixels) (pixels) (degrees) (0-255)

A 1 128 66 92 42 0 255

B 1 82 53 67 37 0 255

B 2 146 160 19 15 -85 255

C 1 64 130 42 32 0 255

C 2 192 130 42 32 0 199

The nonlinear cost function defined in (8) was minimized for each elliptic cone in a given scene using MATLAB’s

nonlinear solver fmincon, subject to the constraint that X ∈ Econe𝑖 ,predict. To make the effects of varying weights 𝑤𝑖

more intuitive, the cost terms were normalized:
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Fig. 6 Example Problem Setup (shown for Scene A). A host with Xℎ = (0, 0, 0) is looking at a threat centered
at X𝑡 = (0, 0, 50) against a grayscale scene of range 𝜆 = 1000. The threat’s predicted translation over time step
Δ𝑇 is defined by vector v𝑡Δ𝑇 . The host’s line of sight is along the positive Z axis, with an image plane aligned
with the XY plane. The problem is to find a host position that yields improved threat visibility.

𝐽proximity,𝑖 (X,Xℎ ,X𝑡 ) =
𝐽proximity,𝑖 (X,Xℎ ,X𝑡 )

𝑑ref
, 𝑑ref = 50

𝐽robust,𝑖 (X,X𝑡 ) =
𝐽robust,𝑖 (X,X𝑡 ) + 𝑟ref

𝑟ref
, 𝑟ref = 100

𝐽rate,𝑖 (X,X𝑡 , v𝑡 ) =
𝐽rate,𝑖 (X,X𝑡 , v𝑡 )

𝑣ref
, 𝑣ref = 20

𝐽visibility,𝑖 =
𝐽visibility,𝑖 + 𝐼ref

𝐼ref
, 𝐼ref = 255

(13)

The scalar reference values 𝑑ref , and 𝑣ref are the distance and velocity values that map to a cost of 1 for the proximity

and rate terms, respectively. The scalar reference values 𝑟ref , and 𝐼ref are the conic radius and pixel intensity values

that map to a cost of 0 for the robustness and visibility terms, respectively. Each normalization is a simple affine

transformation that maps the respective cost term to a value generally between 0 and 1. In a real implementation, the

normalization process would be part of the weight tuning process, where the scaling factors would be determined via

calibration and absorbed into the weights {𝑤 𝑗 }4
𝑗=1

. Any constant offsets would have no effect on the optimization

process.

Table 4 summarizes the threat initial velocity v𝑡 , time step Δ𝑇 and weights {𝑤 𝑗 }4
𝑗=1

used for each example scenario.

It also includes the returned costs {𝐽𝑖}2
𝑖=1

, with lower cost highlighted, and optimal host positions {Xi}2
𝑖=1

for each

elliptic cone in the example’s corresponding background:
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Table 4 Example Scenario Parameters and Results

Threat Motion Weights Costs Optimal Host Positions
Ex # Scene v𝑡 Δ𝑇 𝑤1 𝑤2 𝑤3 𝑤4 𝐽1 𝐽2 𝑋1 𝑌1 𝑍1 𝑋2 𝑌2 𝑍2

I A [0, 0, 2] 1 0.5 0.5 0 0 0.378 N/A 0.1 25.1 -6.1 N/A

II A [0, 0, 2] 1 0.4 0.6 0 0 0.326 N/A 0.1 36.1 -31.6 N/A

III B [0, 0, 2] 1 0.25 0.25 0.25 0.25 0.344 0.302 10.9 34.4 14.0 -10.2 -15.4 3.7

IV B [0, 0, 2] 1 0.15 0.35 0.25 0.25 0.300 0.346 22.1 69.6 -25.0 -11.1 -16.7 -0.6

V B [0, -5, 2] 1 0.25 0.25 0.25 0.25 0.383 0.387 9.9 29.6 11.9 -10.5 -19.1 4.5

VI C [0, 0, 2] 1 0.25 0.25 0.25 0.25 0.270 0.324 23.3 -0.5 1.8 -23.3 -0.5 1.8

VII C [5, 0, 2] 1 0.25 0.25 0.25 0.25 0.362 0.364 28.3 -0.5 2.4 -18.3 -0.5 1.3

VIII C [5, 0, 2] 1 0.3 0.3 0.3 0.1 0.435 0.393 28.3 -0.5 2.4 -18.3 -0.5 1.3

Scene A represents an extremely common real-world occurrence, where the top portion of the image plane yields

good visibility (e.g. a skyline). Ex I considers a threat moving away from the host, with a prediction step Δ𝑇 of 1

second. The solution shows that the closest trajectory that will yield improved robust visibility is mainly along the

positive Y axis (i.e. by causing the host aircraft to descend). Ex II considers the same scenario, except the robustness

term is prioritized more heavily than the proximity term. In this case, the host aircraft is made to descend and also move

away from the threat along the negative Z axis. For both Ex I and Ex II, rate and visibility terms have been ignored,

since there is no competing ellipse. Furthermore, the visibility cost is static in this formulation, rather than a function of

distance from the threat. In a real scenario, the robustness and visibility terms describe the inherent trade-off between

robust visibility and pixels-on-target that all digital imaging systems face, so their relative weights would have to be

tuned accordingly.

The next three examples consider Scene B, where one of two ellipses of differing size and location must be selected.

In Ex III, the host must move in the positive X and positive Y directions to enter the elliptic cone defined by Ellipse 1 or

move in the negative X and Y directions to enter the elliptic cone defined by Ellipse 2. When all weights are equal, the

closer, smaller ellipse, Ellipse 2, is selected, due to its lower associated cost. However, when robustness is slightly more

prioritized, as in Ex IV, the lower cost is associated with Ellipse 1, due to its larger size and corresponding larger conic

cross-section. Furthermore, when the threat is given a velocity component in the negative Y direction (ascending), as

in Ex V, the equally distributed weights actually select Ellipse 1 as the better option. This is because the algorithm

predicts that the threat’s Y velocity will move the larger elliptic cone towards the host.

The final three examples consider Scene C, where the elliptic backgrounds yield different levels of visibility. In

Ex VI, weights are all equal, which results in selecting the whiter ellipse, Ellipse 1. Note that the optimal host

perspectives, X1 and X2 are symmetric about the X axis for this example, as expected. Ex VII is identical to the previous

example, except the threat is given velocity along the X axis. This results in nearly identical cost between Ellipse 1 and

Ellipse 2; any additional velocity in the X direction will cause the lower-visibility ellipse to be selected. When the same

conditions are repeated, but visibility weight is reduced, as in Ex VIII, the lower-visibility ellipse is selected.

V. Conclusion and Future Considerations
This paper hypothesizes a method to determine candidate perspectives and plan host motion that will produce and

maintain these perspectives, in order to improve threat detection. The approach models acceptable threat to background

perspectives as three-dimensional conic volumes and suggests minimizing a nonlinear cost function over a short time

horizon to find the optimal host position. A baseline problem abstraction of tracking a mobile sphere is presented with

appropriate assumptions, to validate the methodology.

There are many logical extensions of this approach. For example, the scene could be made more complex by

considering backgrounds of different colors and geometries. The threat motion could extended to random speeds and

directions, or even antagonistic motion (e.g. intentional camouflage). The three-dimensionality of the background

could be considered by relaxing the assumption of constant depth background, as mentioned in the discussion about

𝐽rate,𝑖 (X,X𝑡 , v𝑡 ). This change would require a method (likely non-visual, given the limitations of visual ranging

methods) to map the ranges of different background areas, but this would increase the applicability of the algorithm to

scenarios with more complex background geometry, such as urban areas, mountainous regions, or near tree lines. The

algorithm could be adapted to consider a multi-host scenario, where the goal is to collectively maximize coverage of the
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threat. Hosts could coordinate to assign regions of coverage to one another, to ensure that at least one host always has a

suitable view of the threat.

One important extension is to consider host performance limitations by implementing this approach in a simulation

environment. This approach was designed with MPC in mind, since controls are selected to optimize some cost over a

finite time horizon. The optimal position X could then be tied to an actual trajectory with associated cost that considers

the flight modes of the aircraft (e.g. cost to ascend vs. cost for lateral movement). AirSim [23] is a viable tool for testing,

since it is photorealistic with a powerful physics engine and library of available sensors. Photorealism allows one to

better tie the visibility cost term to a more complex visibility metric or actual detection score. Furthermore, AirSim

supports integration with ROS [24], so field-ready controllers and algorithms can be implemented.
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