

162-1 - TRENCH VERSUS FOREARC: LATE CRETACEOUS TRENCH SEDIMENT ACCUMULATION AND FOREARC EROSION ALONG THE SOUTHERN MARGIN OF TIBET AS REVEALED BY PROVENANCE ANALYSIS

 Tuesday, October 12, 2021

 9:00 AM - 1:00 PM

 Oregon Convention Center - Exhibit Hall A

Booth No. 113

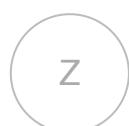
Abstract

Trench and forearc basins preserved along the southern margin of the Lhasa Terrane, Tibet are sedimentologic records of convergent margin processes prior to Cenozoic India-Asia collision. We present new sedimentologic, petrographic and geochronologic data from the Rongmawa Formation and surrounding strata near Dênggar, Tibet to constrain the depositional environment, provenance and age of investigated trench strata. In turn, these records are compared to sedimentary and provenance data from the neighboring Xigaze forearc to reconstruct periods of accretion and erosion along the Late Cretaceous subduction margin. Stratigraphic ages from the Rongmawa Formation range from ~92-87 Ma and lithofacies are consistent with deposition by low- and high-density turbidity currents and suspension settling of pelagic detritus in a deep-marine, trench basin setting. Sandstone modal analyses and U-Pb geochronology indicate trench basin detritus in this region was derived from the Lhasa Terrane, including from Triassic-Jurassic plutons located ~ 500 km to the east of the study region. We propose a model in which the Cretaceous subduction trench received detritus from an axial sediment dispersal system that transported sediment from headwaters in the central-southern Lhasa terrane near Lhasa City directly to the trench and then flowed westward parallel to the trench, depositing detritus in trench basins. Preservation of trench basin strata deposited during Late Cretaceous time compared with the lack of trench deposits prior to ~ 90 Ma and after ~ 80 Ma suggests the margin experienced a period of significant accretion during this interval. A period of decreased convergence at ~90-85 Ma followed by a period of increased convergence ~ 80 Ma may have promoted trench sediment accumulation and subsequent erosion, respectively. In addition, deposition of trench basin strata is coeval with tectonic models that propose subduction of an oceanic ridge at this time, in an area where no forearc basin stratigraphy is preserved. Subduction of this ridge may provide a mechanism to potentially erode forearc basin strata and promote increased sediment delivery directly to the trench during Late Cretaceous time.

Geological Society of America Abstracts with Programs. Vol 53, No. 6, 2021
doi: 10.1130/abs/2021AM-368259

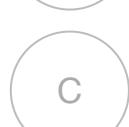
© Copyright 2021 The Geological Society of America (GSA), all rights reserved.

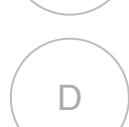
Author


Devon Orme
Montana State University

Authors

Andrew Laskowski
Montana State University


Misia F. Zilinksy
Montana State University


Wang Chao
Chinese Academy of Sciences

Xudong Guo
Chinese Academy of Sciences

Fulong Cai
Institute of Tibetan Plateau Research, Chinese Academy of Sciences

Lin Ding
Institute of Tibetan Plateau Research, Chinese Academy of Sciences

View Related

Session

162: T7. Initiation and Evolution of Arc-Forearc Systems in Cascadia and Beyond (Posters)

Michael Darin, Nevada Bureau of Mines & Geology, University of Nevada, Reno, Reno, NV, **Kristin McDougall**, U.S. Geological Survey, GMEG Science Center, Flagstaff, AZ, **James Jackson**, Department of Geology, Portland State University, Portland, OR, **Paul Umhoefer**, School of Earth & Sustainability, Northern Arizona University, Flagstaff, AZ, **Megan Mueller**, Department of Earth and Space Sciences, University of Washington, Seattle, WA, **Devon Orme**, Department of Earth Sciences, Montana State University, Bozeman, MT and **Harold Tobin**, Dept. of Earth and Space Sciences, University of Washington, Seattle, WA

Tuesday, October 12, 2021

9:00 AM - 1:00 PM

Oregon Convention Center - Exhibit Hall A

Topical Sessions

Technical Programs

Similar

FOREARC AND FORELAND BASIN EVIDENCE FOR PROTRACTED LATE CRETACEOUS-EOCENE COLLISION IN WESTERN ANATOLIA

MUELLER, Megan¹, LICHT, Alexis², CAMPBELL, Clay³, OCAKOGLU, Faruk⁴, BEARD, K. Christopher⁵, MÖLLER, Andreas⁶, AKSIT, Gu⁷, METAIS, Gregoire⁸, LOWERY, Kyle⁹, SHEKUT, Samuel¹⁰, COSTER, Pauline¹¹ and TAYLOR, Michael H.³, (1)Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, (2)Aix-Marseille Université, CNRS, Centre de Recherche et d'Enseignement de Géosciences de l'Environnement (CEREGE), Aix-en-Provence, 13545, France, (3)Department of Geology, University of Kansas, Lawrence, KS 66045, (4)Department of Geological Engineering, Eskisehir Osmangazi University, Eskisehir, 26480, Turkey, (5)Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, (6)Department of Geology, University of Kansas, Ritchie Hall, Earth, Energy, and Environment Center, 1414 Naismith Dr Room 254, Lawrence, KS 66045, (7)Department of Earth Sciences, University of Oregon, Eugene, OR 97403, (8)Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements, Muséum National d'Histoire Naturelle, Paris, 75005, France, (9)Seattle, WA 98103, (10)Earth and Space Science, University of Washington, 4000 15th Ave NE, Seattle, WA 98195, (11)Réserv naturelle nationale géologique du Luberon, Apt, 84400, France

DEVELOPMENT OF THE KUMANO FOREARC BASIN, NANKAI TROUGH SUBDUCTION ZONE

MOORE, Gregory¹, CORNARD, Pauline² and STRASSER, Michael², (1)Earth Sciences, University of Hawaii, 1680 East-West Rd., POST 813, Honolulu, HI 96822, (2)Institute of Geology, University of Innsbruck, Innrain 52, Innsbruck, 6020, Austria

TERRANES, SPREADING RIDGES, AND OCEANIC PLATEAUS – A TALE OF THE SOUTH-CENTRAL ALASKAN FOREARC

FINZEL, Emily, University of IowaEarth & Environmental Sciences, 115 Trowbridge Hall, Iowa City, IA 52242, ENKELMANN, Eva, Department of Geoscience, University of Calgary, Earth Sciences 118, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada, RIDGWAY, Kenneth D., Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, TROP, Jeffrey M., Department of Geology and Environmental Geosciences, Bucknell University, 1 Dent Drive, Lewisburg, PA 17837 and MCCLELLAND, William C., Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242

TECTONOSTRATIGRAPHIC EVOLUTION OF SW OREGON FROM EARLY EOCENE COLLISION OF SILETZIA TO THE MODERN CASCADIA CONVERGENT MARGIN

DORSEY, Rebecca J., Department of Earth Sciences, University of Oregon, Eugene, OR 97403, DARIN, Michael, Nevada Bureau of Mines & Geology, University of Nevada, Reno, 1664 N. Virginia St, MS 0178, Reno, NV 89557-0178, ARMENTROUT, John, Earth Sciences -- Research Associate (not faculty), University of Oregon, 20060 SE Highway 224, Damascus, OR 97089, SANTRA, Manasij, Univ of Texas, Austin, Institute for Geophysics, 4327 Lasker Brook ct, Katy, TX 77494, BLACKWELL, David L.S., Department of Earth Sciences, University of Oregon, Eugene, OR 97403-1272 and BINDEMAN, Ilya, Earth Sciences, University of Oregon, Eugene, OR 97403

AGE RELATIONSHIPS BETWEEN THE COAST RANGE OPHIOLITE, OPHIOLITIC BRECCIA, AND OVERLYING STRATA OF THE GREAT VALLEY FOREARC, SACRAMENTO SUBBASIN, NORTHERN CALIFORNIA

ROMERO, Mariah and ORME, Devon, Department of Earth Sciences, Montana State University, Bozeman, MT 59717

